| //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This transformation analyzes and transforms the induction variables (and |
| // computations derived from them) into forms suitable for efficient execution |
| // on the target. |
| // |
| // This pass performs a strength reduction on array references inside loops that |
| // have as one or more of their components the loop induction variable, it |
| // rewrites expressions to take advantage of scaled-index addressing modes |
| // available on the target, and it performs a variety of other optimizations |
| // related to loop induction variables. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-reduce" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Type.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/IVUsers.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Transforms/Utils/AddrModeMatcher.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumReduced , "Number of IV uses strength reduced"); |
| STATISTIC(NumInserted, "Number of PHIs inserted"); |
| STATISTIC(NumVariable, "Number of PHIs with variable strides"); |
| STATISTIC(NumEliminated, "Number of strides eliminated"); |
| STATISTIC(NumShadow, "Number of Shadow IVs optimized"); |
| STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses"); |
| STATISTIC(NumLoopCond, "Number of loop terminating conds optimized"); |
| |
| static cl::opt<bool> EnableFullLSRMode("enable-full-lsr", |
| cl::init(false), |
| cl::Hidden); |
| |
| namespace { |
| |
| struct BasedUser; |
| |
| /// IVInfo - This structure keeps track of one IV expression inserted during |
| /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as |
| /// well as the PHI node and increment value created for rewrite. |
| struct VISIBILITY_HIDDEN IVExpr { |
| const SCEV *Stride; |
| const SCEV *Base; |
| PHINode *PHI; |
| |
| IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi) |
| : Stride(stride), Base(base), PHI(phi) {} |
| }; |
| |
| /// IVsOfOneStride - This structure keeps track of all IV expression inserted |
| /// during StrengthReduceStridedIVUsers for a particular stride of the IV. |
| struct VISIBILITY_HIDDEN IVsOfOneStride { |
| std::vector<IVExpr> IVs; |
| |
| void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) { |
| IVs.push_back(IVExpr(Stride, Base, PHI)); |
| } |
| }; |
| |
| class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass { |
| IVUsers *IU; |
| LoopInfo *LI; |
| DominatorTree *DT; |
| ScalarEvolution *SE; |
| bool Changed; |
| |
| /// IVsByStride - Keep track of all IVs that have been inserted for a |
| /// particular stride. |
| std::map<const SCEV *, IVsOfOneStride> IVsByStride; |
| |
| /// StrideNoReuse - Keep track of all the strides whose ivs cannot be |
| /// reused (nor should they be rewritten to reuse other strides). |
| SmallSet<const SCEV *, 4> StrideNoReuse; |
| |
| /// DeadInsts - Keep track of instructions we may have made dead, so that |
| /// we can remove them after we are done working. |
| SmallVector<WeakVH, 16> DeadInsts; |
| |
| /// TLI - Keep a pointer of a TargetLowering to consult for determining |
| /// transformation profitability. |
| const TargetLowering *TLI; |
| |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| explicit LoopStrengthReduce(const TargetLowering *tli = NULL) : |
| LoopPass(&ID), TLI(tli) { |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| // We split critical edges, so we change the CFG. However, we do update |
| // many analyses if they are around. |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addPreserved<LoopInfo>(); |
| AU.addPreserved<DominanceFrontier>(); |
| AU.addPreserved<DominatorTree>(); |
| |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addRequired<LoopInfo>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addRequired<IVUsers>(); |
| AU.addPreserved<IVUsers>(); |
| } |
| |
| private: |
| ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond, |
| IVStrideUse* &CondUse, |
| const SCEV *const * &CondStride); |
| |
| void OptimizeIndvars(Loop *L); |
| void OptimizeLoopCountIV(Loop *L); |
| void OptimizeLoopTermCond(Loop *L); |
| |
| /// OptimizeShadowIV - If IV is used in a int-to-float cast |
| /// inside the loop then try to eliminate the cast opeation. |
| void OptimizeShadowIV(Loop *L); |
| |
| /// OptimizeMax - Rewrite the loop's terminating condition |
| /// if it uses a max computation. |
| ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond, |
| IVStrideUse* &CondUse); |
| |
| bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse, |
| const SCEV *const * &CondStride); |
| bool RequiresTypeConversion(const Type *Ty, const Type *NewTy); |
| const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *const&, |
| IVExpr&, const Type*, |
| const std::vector<BasedUser>& UsersToProcess); |
| bool ValidScale(bool, int64_t, |
| const std::vector<BasedUser>& UsersToProcess); |
| bool ValidOffset(bool, int64_t, int64_t, |
| const std::vector<BasedUser>& UsersToProcess); |
| const SCEV *CollectIVUsers(const SCEV *const &Stride, |
| IVUsersOfOneStride &Uses, |
| Loop *L, |
| bool &AllUsesAreAddresses, |
| bool &AllUsesAreOutsideLoop, |
| std::vector<BasedUser> &UsersToProcess); |
| bool ShouldUseFullStrengthReductionMode( |
| const std::vector<BasedUser> &UsersToProcess, |
| const Loop *L, |
| bool AllUsesAreAddresses, |
| const SCEV *Stride); |
| void PrepareToStrengthReduceFully( |
| std::vector<BasedUser> &UsersToProcess, |
| const SCEV *Stride, |
| const SCEV *CommonExprs, |
| const Loop *L, |
| SCEVExpander &PreheaderRewriter); |
| void PrepareToStrengthReduceFromSmallerStride( |
| std::vector<BasedUser> &UsersToProcess, |
| Value *CommonBaseV, |
| const IVExpr &ReuseIV, |
| Instruction *PreInsertPt); |
| void PrepareToStrengthReduceWithNewPhi( |
| std::vector<BasedUser> &UsersToProcess, |
| const SCEV *Stride, |
| const SCEV *CommonExprs, |
| Value *CommonBaseV, |
| Instruction *IVIncInsertPt, |
| const Loop *L, |
| SCEVExpander &PreheaderRewriter); |
| void StrengthReduceStridedIVUsers(const SCEV *const &Stride, |
| IVUsersOfOneStride &Uses, |
| Loop *L); |
| void DeleteTriviallyDeadInstructions(); |
| }; |
| } |
| |
| char LoopStrengthReduce::ID = 0; |
| static RegisterPass<LoopStrengthReduce> |
| X("loop-reduce", "Loop Strength Reduction"); |
| |
| Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { |
| return new LoopStrengthReduce(TLI); |
| } |
| |
| /// DeleteTriviallyDeadInstructions - If any of the instructions is the |
| /// specified set are trivially dead, delete them and see if this makes any of |
| /// their operands subsequently dead. |
| void LoopStrengthReduce::DeleteTriviallyDeadInstructions() { |
| if (DeadInsts.empty()) return; |
| |
| while (!DeadInsts.empty()) { |
| Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back()); |
| DeadInsts.pop_back(); |
| |
| if (I == 0 || !isInstructionTriviallyDead(I)) |
| continue; |
| |
| for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { |
| if (Instruction *U = dyn_cast<Instruction>(*OI)) { |
| *OI = 0; |
| if (U->use_empty()) |
| DeadInsts.push_back(U); |
| } |
| } |
| |
| I->eraseFromParent(); |
| Changed = true; |
| } |
| } |
| |
| /// containsAddRecFromDifferentLoop - Determine whether expression S involves a |
| /// subexpression that is an AddRec from a loop other than L. An outer loop |
| /// of L is OK, but not an inner loop nor a disjoint loop. |
| static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) { |
| // This is very common, put it first. |
| if (isa<SCEVConstant>(S)) |
| return false; |
| if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) { |
| for (unsigned int i=0; i< AE->getNumOperands(); i++) |
| if (containsAddRecFromDifferentLoop(AE->getOperand(i), L)) |
| return true; |
| return false; |
| } |
| if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) { |
| if (const Loop *newLoop = AE->getLoop()) { |
| if (newLoop == L) |
| return false; |
| // if newLoop is an outer loop of L, this is OK. |
| if (!LoopInfo::isNotAlreadyContainedIn(L, newLoop)) |
| return false; |
| } |
| return true; |
| } |
| if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S)) |
| return containsAddRecFromDifferentLoop(DE->getLHS(), L) || |
| containsAddRecFromDifferentLoop(DE->getRHS(), L); |
| #if 0 |
| // SCEVSDivExpr has been backed out temporarily, but will be back; we'll |
| // need this when it is. |
| if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S)) |
| return containsAddRecFromDifferentLoop(DE->getLHS(), L) || |
| containsAddRecFromDifferentLoop(DE->getRHS(), L); |
| #endif |
| if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S)) |
| return containsAddRecFromDifferentLoop(CE->getOperand(), L); |
| return false; |
| } |
| |
| /// isAddressUse - Returns true if the specified instruction is using the |
| /// specified value as an address. |
| static bool isAddressUse(Instruction *Inst, Value *OperandVal) { |
| bool isAddress = isa<LoadInst>(Inst); |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| if (SI->getOperand(1) == OperandVal) |
| isAddress = true; |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| // Addressing modes can also be folded into prefetches and a variety |
| // of intrinsics. |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::prefetch: |
| case Intrinsic::x86_sse2_loadu_dq: |
| case Intrinsic::x86_sse2_loadu_pd: |
| case Intrinsic::x86_sse_loadu_ps: |
| case Intrinsic::x86_sse_storeu_ps: |
| case Intrinsic::x86_sse2_storeu_pd: |
| case Intrinsic::x86_sse2_storeu_dq: |
| case Intrinsic::x86_sse2_storel_dq: |
| if (II->getOperand(1) == OperandVal) |
| isAddress = true; |
| break; |
| } |
| } |
| return isAddress; |
| } |
| |
| /// getAccessType - Return the type of the memory being accessed. |
| static const Type *getAccessType(const Instruction *Inst) { |
| const Type *AccessTy = Inst->getType(); |
| if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| AccessTy = SI->getOperand(0)->getType(); |
| else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| // Addressing modes can also be folded into prefetches and a variety |
| // of intrinsics. |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::x86_sse_storeu_ps: |
| case Intrinsic::x86_sse2_storeu_pd: |
| case Intrinsic::x86_sse2_storeu_dq: |
| case Intrinsic::x86_sse2_storel_dq: |
| AccessTy = II->getOperand(1)->getType(); |
| break; |
| } |
| } |
| return AccessTy; |
| } |
| |
| namespace { |
| /// BasedUser - For a particular base value, keep information about how we've |
| /// partitioned the expression so far. |
| struct BasedUser { |
| /// SE - The current ScalarEvolution object. |
| ScalarEvolution *SE; |
| |
| /// Base - The Base value for the PHI node that needs to be inserted for |
| /// this use. As the use is processed, information gets moved from this |
| /// field to the Imm field (below). BasedUser values are sorted by this |
| /// field. |
| const SCEV *Base; |
| |
| /// Inst - The instruction using the induction variable. |
| Instruction *Inst; |
| |
| /// OperandValToReplace - The operand value of Inst to replace with the |
| /// EmittedBase. |
| Value *OperandValToReplace; |
| |
| /// Imm - The immediate value that should be added to the base immediately |
| /// before Inst, because it will be folded into the imm field of the |
| /// instruction. This is also sometimes used for loop-variant values that |
| /// must be added inside the loop. |
| const SCEV *Imm; |
| |
| /// Phi - The induction variable that performs the striding that |
| /// should be used for this user. |
| PHINode *Phi; |
| |
| // isUseOfPostIncrementedValue - True if this should use the |
| // post-incremented version of this IV, not the preincremented version. |
| // This can only be set in special cases, such as the terminating setcc |
| // instruction for a loop and uses outside the loop that are dominated by |
| // the loop. |
| bool isUseOfPostIncrementedValue; |
| |
| BasedUser(IVStrideUse &IVSU, ScalarEvolution *se) |
| : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()), |
| OperandValToReplace(IVSU.getOperandValToReplace()), |
| Imm(SE->getIntegerSCEV(0, Base->getType())), |
| isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {} |
| |
| // Once we rewrite the code to insert the new IVs we want, update the |
| // operands of Inst to use the new expression 'NewBase', with 'Imm' added |
| // to it. |
| void RewriteInstructionToUseNewBase(const SCEV *const &NewBase, |
| Instruction *InsertPt, |
| SCEVExpander &Rewriter, Loop *L, Pass *P, |
| LoopInfo &LI, |
| SmallVectorImpl<WeakVH> &DeadInsts); |
| |
| Value *InsertCodeForBaseAtPosition(const SCEV *const &NewBase, |
| const Type *Ty, |
| SCEVExpander &Rewriter, |
| Instruction *IP, Loop *L, |
| LoopInfo &LI); |
| void dump() const; |
| }; |
| } |
| |
| void BasedUser::dump() const { |
| cerr << " Base=" << *Base; |
| cerr << " Imm=" << *Imm; |
| cerr << " Inst: " << *Inst; |
| } |
| |
| Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *const &NewBase, |
| const Type *Ty, |
| SCEVExpander &Rewriter, |
| Instruction *IP, Loop *L, |
| LoopInfo &LI) { |
| // Figure out where we *really* want to insert this code. In particular, if |
| // the user is inside of a loop that is nested inside of L, we really don't |
| // want to insert this expression before the user, we'd rather pull it out as |
| // many loops as possible. |
| Instruction *BaseInsertPt = IP; |
| |
| // Figure out the most-nested loop that IP is in. |
| Loop *InsertLoop = LI.getLoopFor(IP->getParent()); |
| |
| // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out |
| // the preheader of the outer-most loop where NewBase is not loop invariant. |
| if (L->contains(IP->getParent())) |
| while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) { |
| BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator(); |
| InsertLoop = InsertLoop->getParentLoop(); |
| } |
| |
| Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt); |
| |
| const SCEV *NewValSCEV = SE->getUnknown(Base); |
| |
| // Always emit the immediate into the same block as the user. |
| NewValSCEV = SE->getAddExpr(NewValSCEV, Imm); |
| |
| return Rewriter.expandCodeFor(NewValSCEV, Ty, IP); |
| } |
| |
| |
| // Once we rewrite the code to insert the new IVs we want, update the |
| // operands of Inst to use the new expression 'NewBase', with 'Imm' added |
| // to it. NewBasePt is the last instruction which contributes to the |
| // value of NewBase in the case that it's a diffferent instruction from |
| // the PHI that NewBase is computed from, or null otherwise. |
| // |
| void BasedUser::RewriteInstructionToUseNewBase(const SCEV *const &NewBase, |
| Instruction *NewBasePt, |
| SCEVExpander &Rewriter, Loop *L, Pass *P, |
| LoopInfo &LI, |
| SmallVectorImpl<WeakVH> &DeadInsts) { |
| if (!isa<PHINode>(Inst)) { |
| // By default, insert code at the user instruction. |
| BasicBlock::iterator InsertPt = Inst; |
| |
| // However, if the Operand is itself an instruction, the (potentially |
| // complex) inserted code may be shared by many users. Because of this, we |
| // want to emit code for the computation of the operand right before its old |
| // computation. This is usually safe, because we obviously used to use the |
| // computation when it was computed in its current block. However, in some |
| // cases (e.g. use of a post-incremented induction variable) the NewBase |
| // value will be pinned to live somewhere after the original computation. |
| // In this case, we have to back off. |
| // |
| // If this is a use outside the loop (which means after, since it is based |
| // on a loop indvar) we use the post-incremented value, so that we don't |
| // artificially make the preinc value live out the bottom of the loop. |
| if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) { |
| if (NewBasePt && isa<PHINode>(OperandValToReplace)) { |
| InsertPt = NewBasePt; |
| ++InsertPt; |
| } else if (Instruction *OpInst |
| = dyn_cast<Instruction>(OperandValToReplace)) { |
| InsertPt = OpInst; |
| while (isa<PHINode>(InsertPt)) ++InsertPt; |
| } |
| } |
| Value *NewVal = InsertCodeForBaseAtPosition(NewBase, |
| OperandValToReplace->getType(), |
| Rewriter, InsertPt, L, LI); |
| // Replace the use of the operand Value with the new Phi we just created. |
| Inst->replaceUsesOfWith(OperandValToReplace, NewVal); |
| |
| DOUT << " Replacing with "; |
| DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false)); |
| DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n"; |
| return; |
| } |
| |
| // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm |
| // expression into each operand block that uses it. Note that PHI nodes can |
| // have multiple entries for the same predecessor. We use a map to make sure |
| // that a PHI node only has a single Value* for each predecessor (which also |
| // prevents us from inserting duplicate code in some blocks). |
| DenseMap<BasicBlock*, Value*> InsertedCode; |
| PHINode *PN = cast<PHINode>(Inst); |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| if (PN->getIncomingValue(i) == OperandValToReplace) { |
| // If the original expression is outside the loop, put the replacement |
| // code in the same place as the original expression, |
| // which need not be an immediate predecessor of this PHI. This way we |
| // need only one copy of it even if it is referenced multiple times in |
| // the PHI. We don't do this when the original expression is inside the |
| // loop because multiple copies sometimes do useful sinking of code in |
| // that case(?). |
| Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace); |
| if (L->contains(OldLoc->getParent())) { |
| // If this is a critical edge, split the edge so that we do not insert |
| // the code on all predecessor/successor paths. We do this unless this |
| // is the canonical backedge for this loop, as this can make some |
| // inserted code be in an illegal position. |
| BasicBlock *PHIPred = PN->getIncomingBlock(i); |
| if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 && |
| (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) { |
| |
| // First step, split the critical edge. |
| SplitCriticalEdge(PHIPred, PN->getParent(), P, false); |
| |
| // Next step: move the basic block. In particular, if the PHI node |
| // is outside of the loop, and PredTI is in the loop, we want to |
| // move the block to be immediately before the PHI block, not |
| // immediately after PredTI. |
| if (L->contains(PHIPred) && !L->contains(PN->getParent())) { |
| BasicBlock *NewBB = PN->getIncomingBlock(i); |
| NewBB->moveBefore(PN->getParent()); |
| } |
| |
| // Splitting the edge can reduce the number of PHI entries we have. |
| e = PN->getNumIncomingValues(); |
| } |
| } |
| Value *&Code = InsertedCode[PN->getIncomingBlock(i)]; |
| if (!Code) { |
| // Insert the code into the end of the predecessor block. |
| Instruction *InsertPt = (L->contains(OldLoc->getParent())) ? |
| PN->getIncomingBlock(i)->getTerminator() : |
| OldLoc->getParent()->getTerminator(); |
| Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(), |
| Rewriter, InsertPt, L, LI); |
| |
| DOUT << " Changing PHI use to "; |
| DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false)); |
| DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n"; |
| } |
| |
| // Replace the use of the operand Value with the new Phi we just created. |
| PN->setIncomingValue(i, Code); |
| Rewriter.clear(); |
| } |
| } |
| |
| // PHI node might have become a constant value after SplitCriticalEdge. |
| DeadInsts.push_back(Inst); |
| } |
| |
| |
| /// fitsInAddressMode - Return true if V can be subsumed within an addressing |
| /// mode, and does not need to be put in a register first. |
| static bool fitsInAddressMode(const SCEV *const &V, const Type *AccessTy, |
| const TargetLowering *TLI, bool HasBaseReg) { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { |
| int64_t VC = SC->getValue()->getSExtValue(); |
| if (TLI) { |
| TargetLowering::AddrMode AM; |
| AM.BaseOffs = VC; |
| AM.HasBaseReg = HasBaseReg; |
| return TLI->isLegalAddressingMode(AM, AccessTy); |
| } else { |
| // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field. |
| return (VC > -(1 << 16) && VC < (1 << 16)-1); |
| } |
| } |
| |
| if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) { |
| if (TLI) { |
| TargetLowering::AddrMode AM; |
| AM.BaseGV = GV; |
| AM.HasBaseReg = HasBaseReg; |
| return TLI->isLegalAddressingMode(AM, AccessTy); |
| } else { |
| // Default: assume global addresses are not legal. |
| } |
| } |
| |
| return false; |
| } |
| |
| /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are |
| /// loop varying to the Imm operand. |
| static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm, |
| Loop *L, ScalarEvolution *SE) { |
| if (Val->isLoopInvariant(L)) return; // Nothing to do. |
| |
| if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) { |
| SmallVector<const SCEV *, 4> NewOps; |
| NewOps.reserve(SAE->getNumOperands()); |
| |
| for (unsigned i = 0; i != SAE->getNumOperands(); ++i) |
| if (!SAE->getOperand(i)->isLoopInvariant(L)) { |
| // If this is a loop-variant expression, it must stay in the immediate |
| // field of the expression. |
| Imm = SE->getAddExpr(Imm, SAE->getOperand(i)); |
| } else { |
| NewOps.push_back(SAE->getOperand(i)); |
| } |
| |
| if (NewOps.empty()) |
| Val = SE->getIntegerSCEV(0, Val->getType()); |
| else |
| Val = SE->getAddExpr(NewOps); |
| } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) { |
| // Try to pull immediates out of the start value of nested addrec's. |
| const SCEV *Start = SARE->getStart(); |
| MoveLoopVariantsToImmediateField(Start, Imm, L, SE); |
| |
| SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); |
| Ops[0] = Start; |
| Val = SE->getAddRecExpr(Ops, SARE->getLoop()); |
| } else { |
| // Otherwise, all of Val is variant, move the whole thing over. |
| Imm = SE->getAddExpr(Imm, Val); |
| Val = SE->getIntegerSCEV(0, Val->getType()); |
| } |
| } |
| |
| |
| /// MoveImmediateValues - Look at Val, and pull out any additions of constants |
| /// that can fit into the immediate field of instructions in the target. |
| /// Accumulate these immediate values into the Imm value. |
| static void MoveImmediateValues(const TargetLowering *TLI, |
| const Type *AccessTy, |
| const SCEV *&Val, const SCEV *&Imm, |
| bool isAddress, Loop *L, |
| ScalarEvolution *SE) { |
| if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) { |
| SmallVector<const SCEV *, 4> NewOps; |
| NewOps.reserve(SAE->getNumOperands()); |
| |
| for (unsigned i = 0; i != SAE->getNumOperands(); ++i) { |
| const SCEV *NewOp = SAE->getOperand(i); |
| MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE); |
| |
| if (!NewOp->isLoopInvariant(L)) { |
| // If this is a loop-variant expression, it must stay in the immediate |
| // field of the expression. |
| Imm = SE->getAddExpr(Imm, NewOp); |
| } else { |
| NewOps.push_back(NewOp); |
| } |
| } |
| |
| if (NewOps.empty()) |
| Val = SE->getIntegerSCEV(0, Val->getType()); |
| else |
| Val = SE->getAddExpr(NewOps); |
| return; |
| } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) { |
| // Try to pull immediates out of the start value of nested addrec's. |
| const SCEV *Start = SARE->getStart(); |
| MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE); |
| |
| if (Start != SARE->getStart()) { |
| SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); |
| Ops[0] = Start; |
| Val = SE->getAddRecExpr(Ops, SARE->getLoop()); |
| } |
| return; |
| } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) { |
| // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field. |
| if (isAddress && |
| fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) && |
| SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) { |
| |
| const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType()); |
| const SCEV *NewOp = SME->getOperand(1); |
| MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE); |
| |
| // If we extracted something out of the subexpressions, see if we can |
| // simplify this! |
| if (NewOp != SME->getOperand(1)) { |
| // Scale SubImm up by "8". If the result is a target constant, we are |
| // good. |
| SubImm = SE->getMulExpr(SubImm, SME->getOperand(0)); |
| if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) { |
| // Accumulate the immediate. |
| Imm = SE->getAddExpr(Imm, SubImm); |
| |
| // Update what is left of 'Val'. |
| Val = SE->getMulExpr(SME->getOperand(0), NewOp); |
| return; |
| } |
| } |
| } |
| } |
| |
| // Loop-variant expressions must stay in the immediate field of the |
| // expression. |
| if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) || |
| !Val->isLoopInvariant(L)) { |
| Imm = SE->getAddExpr(Imm, Val); |
| Val = SE->getIntegerSCEV(0, Val->getType()); |
| return; |
| } |
| |
| // Otherwise, no immediates to move. |
| } |
| |
| static void MoveImmediateValues(const TargetLowering *TLI, |
| Instruction *User, |
| const SCEV *&Val, const SCEV *&Imm, |
| bool isAddress, Loop *L, |
| ScalarEvolution *SE) { |
| const Type *AccessTy = getAccessType(User); |
| MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE); |
| } |
| |
| /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are |
| /// added together. This is used to reassociate common addition subexprs |
| /// together for maximal sharing when rewriting bases. |
| static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs, |
| const SCEV *Expr, |
| ScalarEvolution *SE) { |
| if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) { |
| for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j) |
| SeparateSubExprs(SubExprs, AE->getOperand(j), SE); |
| } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) { |
| const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType()); |
| if (SARE->getOperand(0) == Zero) { |
| SubExprs.push_back(Expr); |
| } else { |
| // Compute the addrec with zero as its base. |
| SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); |
| Ops[0] = Zero; // Start with zero base. |
| SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop())); |
| |
| |
| SeparateSubExprs(SubExprs, SARE->getOperand(0), SE); |
| } |
| } else if (!Expr->isZero()) { |
| // Do not add zero. |
| SubExprs.push_back(Expr); |
| } |
| } |
| |
| // This is logically local to the following function, but C++ says we have |
| // to make it file scope. |
| struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; }; |
| |
| /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all |
| /// the Uses, removing any common subexpressions, except that if all such |
| /// subexpressions can be folded into an addressing mode for all uses inside |
| /// the loop (this case is referred to as "free" in comments herein) we do |
| /// not remove anything. This looks for things like (a+b+c) and |
| /// (a+c+d) and computes the common (a+c) subexpression. The common expression |
| /// is *removed* from the Bases and returned. |
| static const SCEV * |
| RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses, |
| ScalarEvolution *SE, Loop *L, |
| const TargetLowering *TLI) { |
| unsigned NumUses = Uses.size(); |
| |
| // Only one use? This is a very common case, so we handle it specially and |
| // cheaply. |
| const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType()); |
| const SCEV *Result = Zero; |
| const SCEV *FreeResult = Zero; |
| if (NumUses == 1) { |
| // If the use is inside the loop, use its base, regardless of what it is: |
| // it is clearly shared across all the IV's. If the use is outside the loop |
| // (which means after it) we don't want to factor anything *into* the loop, |
| // so just use 0 as the base. |
| if (L->contains(Uses[0].Inst->getParent())) |
| std::swap(Result, Uses[0].Base); |
| return Result; |
| } |
| |
| // To find common subexpressions, count how many of Uses use each expression. |
| // If any subexpressions are used Uses.size() times, they are common. |
| // Also track whether all uses of each expression can be moved into an |
| // an addressing mode "for free"; such expressions are left within the loop. |
| // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; }; |
| std::map<const SCEV *, SubExprUseData> SubExpressionUseData; |
| |
| // UniqueSubExprs - Keep track of all of the subexpressions we see in the |
| // order we see them. |
| SmallVector<const SCEV *, 16> UniqueSubExprs; |
| |
| SmallVector<const SCEV *, 16> SubExprs; |
| unsigned NumUsesInsideLoop = 0; |
| for (unsigned i = 0; i != NumUses; ++i) { |
| // If the user is outside the loop, just ignore it for base computation. |
| // Since the user is outside the loop, it must be *after* the loop (if it |
| // were before, it could not be based on the loop IV). We don't want users |
| // after the loop to affect base computation of values *inside* the loop, |
| // because we can always add their offsets to the result IV after the loop |
| // is done, ensuring we get good code inside the loop. |
| if (!L->contains(Uses[i].Inst->getParent())) |
| continue; |
| NumUsesInsideLoop++; |
| |
| // If the base is zero (which is common), return zero now, there are no |
| // CSEs we can find. |
| if (Uses[i].Base == Zero) return Zero; |
| |
| // If this use is as an address we may be able to put CSEs in the addressing |
| // mode rather than hoisting them. |
| bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace); |
| // We may need the AccessTy below, but only when isAddrUse, so compute it |
| // only in that case. |
| const Type *AccessTy = 0; |
| if (isAddrUse) |
| AccessTy = getAccessType(Uses[i].Inst); |
| |
| // Split the expression into subexprs. |
| SeparateSubExprs(SubExprs, Uses[i].Base, SE); |
| // Add one to SubExpressionUseData.Count for each subexpr present, and |
| // if the subexpr is not a valid immediate within an addressing mode use, |
| // set SubExpressionUseData.notAllUsesAreFree. We definitely want to |
| // hoist these out of the loop (if they are common to all uses). |
| for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) { |
| if (++SubExpressionUseData[SubExprs[j]].Count == 1) |
| UniqueSubExprs.push_back(SubExprs[j]); |
| if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false)) |
| SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true; |
| } |
| SubExprs.clear(); |
| } |
| |
| // Now that we know how many times each is used, build Result. Iterate over |
| // UniqueSubexprs so that we have a stable ordering. |
| for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) { |
| std::map<const SCEV *, SubExprUseData>::iterator I = |
| SubExpressionUseData.find(UniqueSubExprs[i]); |
| assert(I != SubExpressionUseData.end() && "Entry not found?"); |
| if (I->second.Count == NumUsesInsideLoop) { // Found CSE! |
| if (I->second.notAllUsesAreFree) |
| Result = SE->getAddExpr(Result, I->first); |
| else |
| FreeResult = SE->getAddExpr(FreeResult, I->first); |
| } else |
| // Remove non-cse's from SubExpressionUseData. |
| SubExpressionUseData.erase(I); |
| } |
| |
| if (FreeResult != Zero) { |
| // We have some subexpressions that can be subsumed into addressing |
| // modes in every use inside the loop. However, it's possible that |
| // there are so many of them that the combined FreeResult cannot |
| // be subsumed, or that the target cannot handle both a FreeResult |
| // and a Result in the same instruction (for example because it would |
| // require too many registers). Check this. |
| for (unsigned i=0; i<NumUses; ++i) { |
| if (!L->contains(Uses[i].Inst->getParent())) |
| continue; |
| // We know this is an addressing mode use; if there are any uses that |
| // are not, FreeResult would be Zero. |
| const Type *AccessTy = getAccessType(Uses[i].Inst); |
| if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) { |
| // FIXME: could split up FreeResult into pieces here, some hoisted |
| // and some not. There is no obvious advantage to this. |
| Result = SE->getAddExpr(Result, FreeResult); |
| FreeResult = Zero; |
| break; |
| } |
| } |
| } |
| |
| // If we found no CSE's, return now. |
| if (Result == Zero) return Result; |
| |
| // If we still have a FreeResult, remove its subexpressions from |
| // SubExpressionUseData. This means they will remain in the use Bases. |
| if (FreeResult != Zero) { |
| SeparateSubExprs(SubExprs, FreeResult, SE); |
| for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) { |
| std::map<const SCEV *, SubExprUseData>::iterator I = |
| SubExpressionUseData.find(SubExprs[j]); |
| SubExpressionUseData.erase(I); |
| } |
| SubExprs.clear(); |
| } |
| |
| // Otherwise, remove all of the CSE's we found from each of the base values. |
| for (unsigned i = 0; i != NumUses; ++i) { |
| // Uses outside the loop don't necessarily include the common base, but |
| // the final IV value coming into those uses does. Instead of trying to |
| // remove the pieces of the common base, which might not be there, |
| // subtract off the base to compensate for this. |
| if (!L->contains(Uses[i].Inst->getParent())) { |
| Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result); |
| continue; |
| } |
| |
| // Split the expression into subexprs. |
| SeparateSubExprs(SubExprs, Uses[i].Base, SE); |
| |
| // Remove any common subexpressions. |
| for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) |
| if (SubExpressionUseData.count(SubExprs[j])) { |
| SubExprs.erase(SubExprs.begin()+j); |
| --j; --e; |
| } |
| |
| // Finally, add the non-shared expressions together. |
| if (SubExprs.empty()) |
| Uses[i].Base = Zero; |
| else |
| Uses[i].Base = SE->getAddExpr(SubExprs); |
| SubExprs.clear(); |
| } |
| |
| return Result; |
| } |
| |
| /// ValidScale - Check whether the given Scale is valid for all loads and |
| /// stores in UsersToProcess. |
| /// |
| bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale, |
| const std::vector<BasedUser>& UsersToProcess) { |
| if (!TLI) |
| return true; |
| |
| for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) { |
| // If this is a load or other access, pass the type of the access in. |
| const Type *AccessTy = Type::VoidTy; |
| if (isAddressUse(UsersToProcess[i].Inst, |
| UsersToProcess[i].OperandValToReplace)) |
| AccessTy = getAccessType(UsersToProcess[i].Inst); |
| else if (isa<PHINode>(UsersToProcess[i].Inst)) |
| continue; |
| |
| TargetLowering::AddrMode AM; |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm)) |
| AM.BaseOffs = SC->getValue()->getSExtValue(); |
| AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero(); |
| AM.Scale = Scale; |
| |
| // If load[imm+r*scale] is illegal, bail out. |
| if (!TLI->isLegalAddressingMode(AM, AccessTy)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// ValidOffset - Check whether the given Offset is valid for all loads and |
| /// stores in UsersToProcess. |
| /// |
| bool LoopStrengthReduce::ValidOffset(bool HasBaseReg, |
| int64_t Offset, |
| int64_t Scale, |
| const std::vector<BasedUser>& UsersToProcess) { |
| if (!TLI) |
| return true; |
| |
| for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) { |
| // If this is a load or other access, pass the type of the access in. |
| const Type *AccessTy = Type::VoidTy; |
| if (isAddressUse(UsersToProcess[i].Inst, |
| UsersToProcess[i].OperandValToReplace)) |
| AccessTy = getAccessType(UsersToProcess[i].Inst); |
| else if (isa<PHINode>(UsersToProcess[i].Inst)) |
| continue; |
| |
| TargetLowering::AddrMode AM; |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm)) |
| AM.BaseOffs = SC->getValue()->getSExtValue(); |
| AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset; |
| AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero(); |
| AM.Scale = Scale; |
| |
| // If load[imm+r*scale] is illegal, bail out. |
| if (!TLI->isLegalAddressingMode(AM, AccessTy)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not |
| /// a nop. |
| bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1, |
| const Type *Ty2) { |
| if (Ty1 == Ty2) |
| return false; |
| Ty1 = SE->getEffectiveSCEVType(Ty1); |
| Ty2 = SE->getEffectiveSCEVType(Ty2); |
| if (Ty1 == Ty2) |
| return false; |
| if (Ty1->canLosslesslyBitCastTo(Ty2)) |
| return false; |
| if (TLI && TLI->isTruncateFree(Ty1, Ty2)) |
| return false; |
| return true; |
| } |
| |
| /// CheckForIVReuse - Returns the multiple if the stride is the multiple |
| /// of a previous stride and it is a legal value for the target addressing |
| /// mode scale component and optional base reg. This allows the users of |
| /// this stride to be rewritten as prev iv * factor. It returns 0 if no |
| /// reuse is possible. Factors can be negative on same targets, e.g. ARM. |
| /// |
| /// If all uses are outside the loop, we don't require that all multiplies |
| /// be folded into the addressing mode, nor even that the factor be constant; |
| /// a multiply (executed once) outside the loop is better than another IV |
| /// within. Well, usually. |
| const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg, |
| bool AllUsesAreAddresses, |
| bool AllUsesAreOutsideLoop, |
| const SCEV *const &Stride, |
| IVExpr &IV, const Type *Ty, |
| const std::vector<BasedUser>& UsersToProcess) { |
| if (StrideNoReuse.count(Stride)) |
| return SE->getIntegerSCEV(0, Stride->getType()); |
| |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) { |
| int64_t SInt = SC->getValue()->getSExtValue(); |
| for (unsigned NewStride = 0, e = IU->StrideOrder.size(); |
| NewStride != e; ++NewStride) { |
| std::map<const SCEV *, IVsOfOneStride>::iterator SI = |
| IVsByStride.find(IU->StrideOrder[NewStride]); |
| if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) || |
| StrideNoReuse.count(SI->first)) |
| continue; |
| int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); |
| if (SI->first != Stride && |
| (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0)) |
| continue; |
| int64_t Scale = SInt / SSInt; |
| // Check that this stride is valid for all the types used for loads and |
| // stores; if it can be used for some and not others, we might as well use |
| // the original stride everywhere, since we have to create the IV for it |
| // anyway. If the scale is 1, then we don't need to worry about folding |
| // multiplications. |
| if (Scale == 1 || |
| (AllUsesAreAddresses && |
| ValidScale(HasBaseReg, Scale, UsersToProcess))) { |
| // Prefer to reuse an IV with a base of zero. |
| for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), |
| IE = SI->second.IVs.end(); II != IE; ++II) |
| // Only reuse previous IV if it would not require a type conversion |
| // and if the base difference can be folded. |
| if (II->Base->isZero() && |
| !RequiresTypeConversion(II->Base->getType(), Ty)) { |
| IV = *II; |
| return SE->getIntegerSCEV(Scale, Stride->getType()); |
| } |
| // Otherwise, settle for an IV with a foldable base. |
| if (AllUsesAreAddresses) |
| for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), |
| IE = SI->second.IVs.end(); II != IE; ++II) |
| // Only reuse previous IV if it would not require a type conversion |
| // and if the base difference can be folded. |
| if (SE->getEffectiveSCEVType(II->Base->getType()) == |
| SE->getEffectiveSCEVType(Ty) && |
| isa<SCEVConstant>(II->Base)) { |
| int64_t Base = |
| cast<SCEVConstant>(II->Base)->getValue()->getSExtValue(); |
| if (Base > INT32_MIN && Base <= INT32_MAX && |
| ValidOffset(HasBaseReg, -Base * Scale, |
| Scale, UsersToProcess)) { |
| IV = *II; |
| return SE->getIntegerSCEV(Scale, Stride->getType()); |
| } |
| } |
| } |
| } |
| } else if (AllUsesAreOutsideLoop) { |
| // Accept nonconstant strides here; it is really really right to substitute |
| // an existing IV if we can. |
| for (unsigned NewStride = 0, e = IU->StrideOrder.size(); |
| NewStride != e; ++NewStride) { |
| std::map<const SCEV *, IVsOfOneStride>::iterator SI = |
| IVsByStride.find(IU->StrideOrder[NewStride]); |
| if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first)) |
| continue; |
| int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); |
| if (SI->first != Stride && SSInt != 1) |
| continue; |
| for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), |
| IE = SI->second.IVs.end(); II != IE; ++II) |
| // Accept nonzero base here. |
| // Only reuse previous IV if it would not require a type conversion. |
| if (!RequiresTypeConversion(II->Base->getType(), Ty)) { |
| IV = *II; |
| return Stride; |
| } |
| } |
| // Special case, old IV is -1*x and this one is x. Can treat this one as |
| // -1*old. |
| for (unsigned NewStride = 0, e = IU->StrideOrder.size(); |
| NewStride != e; ++NewStride) { |
| std::map<const SCEV *, IVsOfOneStride>::iterator SI = |
| IVsByStride.find(IU->StrideOrder[NewStride]); |
| if (SI == IVsByStride.end()) |
| continue; |
| if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first)) |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0))) |
| if (Stride == ME->getOperand(1) && |
| SC->getValue()->getSExtValue() == -1LL) |
| for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), |
| IE = SI->second.IVs.end(); II != IE; ++II) |
| // Accept nonzero base here. |
| // Only reuse previous IV if it would not require type conversion. |
| if (!RequiresTypeConversion(II->Base->getType(), Ty)) { |
| IV = *II; |
| return SE->getIntegerSCEV(-1LL, Stride->getType()); |
| } |
| } |
| } |
| return SE->getIntegerSCEV(0, Stride->getType()); |
| } |
| |
| /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that |
| /// returns true if Val's isUseOfPostIncrementedValue is true. |
| static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) { |
| return Val.isUseOfPostIncrementedValue; |
| } |
| |
| /// isNonConstantNegative - Return true if the specified scev is negated, but |
| /// not a constant. |
| static bool isNonConstantNegative(const SCEV *const &Expr) { |
| const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr); |
| if (!Mul) return false; |
| |
| // If there is a constant factor, it will be first. |
| const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); |
| if (!SC) return false; |
| |
| // Return true if the value is negative, this matches things like (-42 * V). |
| return SC->getValue()->getValue().isNegative(); |
| } |
| |
| /// CollectIVUsers - Transform our list of users and offsets to a bit more |
| /// complex table. In this new vector, each 'BasedUser' contains 'Base', the base |
| /// of the strided accesses, as well as the old information from Uses. We |
| /// progressively move information from the Base field to the Imm field, until |
| /// we eventually have the full access expression to rewrite the use. |
| const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *const &Stride, |
| IVUsersOfOneStride &Uses, |
| Loop *L, |
| bool &AllUsesAreAddresses, |
| bool &AllUsesAreOutsideLoop, |
| std::vector<BasedUser> &UsersToProcess) { |
| // FIXME: Generalize to non-affine IV's. |
| if (!Stride->isLoopInvariant(L)) |
| return SE->getIntegerSCEV(0, Stride->getType()); |
| |
| UsersToProcess.reserve(Uses.Users.size()); |
| for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(), |
| E = Uses.Users.end(); I != E; ++I) { |
| UsersToProcess.push_back(BasedUser(*I, SE)); |
| |
| // Move any loop variant operands from the offset field to the immediate |
| // field of the use, so that we don't try to use something before it is |
| // computed. |
| MoveLoopVariantsToImmediateField(UsersToProcess.back().Base, |
| UsersToProcess.back().Imm, L, SE); |
| assert(UsersToProcess.back().Base->isLoopInvariant(L) && |
| "Base value is not loop invariant!"); |
| } |
| |
| // We now have a whole bunch of uses of like-strided induction variables, but |
| // they might all have different bases. We want to emit one PHI node for this |
| // stride which we fold as many common expressions (between the IVs) into as |
| // possible. Start by identifying the common expressions in the base values |
| // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find |
| // "A+B"), emit it to the preheader, then remove the expression from the |
| // UsersToProcess base values. |
| const SCEV *CommonExprs = |
| RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI); |
| |
| // Next, figure out what we can represent in the immediate fields of |
| // instructions. If we can represent anything there, move it to the imm |
| // fields of the BasedUsers. We do this so that it increases the commonality |
| // of the remaining uses. |
| unsigned NumPHI = 0; |
| bool HasAddress = false; |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { |
| // If the user is not in the current loop, this means it is using the exit |
| // value of the IV. Do not put anything in the base, make sure it's all in |
| // the immediate field to allow as much factoring as possible. |
| if (!L->contains(UsersToProcess[i].Inst->getParent())) { |
| UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, |
| UsersToProcess[i].Base); |
| UsersToProcess[i].Base = |
| SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType()); |
| } else { |
| // Not all uses are outside the loop. |
| AllUsesAreOutsideLoop = false; |
| |
| // Addressing modes can be folded into loads and stores. Be careful that |
| // the store is through the expression, not of the expression though. |
| bool isPHI = false; |
| bool isAddress = isAddressUse(UsersToProcess[i].Inst, |
| UsersToProcess[i].OperandValToReplace); |
| if (isa<PHINode>(UsersToProcess[i].Inst)) { |
| isPHI = true; |
| ++NumPHI; |
| } |
| |
| if (isAddress) |
| HasAddress = true; |
| |
| // If this use isn't an address, then not all uses are addresses. |
| if (!isAddress && !isPHI) |
| AllUsesAreAddresses = false; |
| |
| MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base, |
| UsersToProcess[i].Imm, isAddress, L, SE); |
| } |
| } |
| |
| // If one of the use is a PHI node and all other uses are addresses, still |
| // allow iv reuse. Essentially we are trading one constant multiplication |
| // for one fewer iv. |
| if (NumPHI > 1) |
| AllUsesAreAddresses = false; |
| |
| // There are no in-loop address uses. |
| if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop)) |
| AllUsesAreAddresses = false; |
| |
| return CommonExprs; |
| } |
| |
| /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction |
| /// is valid and profitable for the given set of users of a stride. In |
| /// full strength-reduction mode, all addresses at the current stride are |
| /// strength-reduced all the way down to pointer arithmetic. |
| /// |
| bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode( |
| const std::vector<BasedUser> &UsersToProcess, |
| const Loop *L, |
| bool AllUsesAreAddresses, |
| const SCEV *Stride) { |
| if (!EnableFullLSRMode) |
| return false; |
| |
| // The heuristics below aim to avoid increasing register pressure, but |
| // fully strength-reducing all the addresses increases the number of |
| // add instructions, so don't do this when optimizing for size. |
| // TODO: If the loop is large, the savings due to simpler addresses |
| // may oughtweight the costs of the extra increment instructions. |
| if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize)) |
| return false; |
| |
| // TODO: For now, don't do full strength reduction if there could |
| // potentially be greater-stride multiples of the current stride |
| // which could reuse the current stride IV. |
| if (IU->StrideOrder.back() != Stride) |
| return false; |
| |
| // Iterate through the uses to find conditions that automatically rule out |
| // full-lsr mode. |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) { |
| const SCEV *Base = UsersToProcess[i].Base; |
| const SCEV *Imm = UsersToProcess[i].Imm; |
| // If any users have a loop-variant component, they can't be fully |
| // strength-reduced. |
| if (Imm && !Imm->isLoopInvariant(L)) |
| return false; |
| // If there are to users with the same base and the difference between |
| // the two Imm values can't be folded into the address, full |
| // strength reduction would increase register pressure. |
| do { |
| const SCEV *CurImm = UsersToProcess[i].Imm; |
| if ((CurImm || Imm) && CurImm != Imm) { |
| if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType()); |
| if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType()); |
| const Instruction *Inst = UsersToProcess[i].Inst; |
| const Type *AccessTy = getAccessType(Inst); |
| const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm); |
| if (!Diff->isZero() && |
| (!AllUsesAreAddresses || |
| !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true))) |
| return false; |
| } |
| } while (++i != e && Base == UsersToProcess[i].Base); |
| } |
| |
| // If there's exactly one user in this stride, fully strength-reducing it |
| // won't increase register pressure. If it's starting from a non-zero base, |
| // it'll be simpler this way. |
| if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero()) |
| return true; |
| |
| // Otherwise, if there are any users in this stride that don't require |
| // a register for their base, full strength-reduction will increase |
| // register pressure. |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) |
| if (UsersToProcess[i].Base->isZero()) |
| return false; |
| |
| // Otherwise, go for it. |
| return true; |
| } |
| |
| /// InsertAffinePhi Create and insert a PHI node for an induction variable |
| /// with the specified start and step values in the specified loop. |
| /// |
| /// If NegateStride is true, the stride should be negated by using a |
| /// subtract instead of an add. |
| /// |
| /// Return the created phi node. |
| /// |
| static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step, |
| Instruction *IVIncInsertPt, |
| const Loop *L, |
| SCEVExpander &Rewriter) { |
| assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!"); |
| assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!"); |
| |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| const Type *Ty = Start->getType(); |
| Ty = Rewriter.SE.getEffectiveSCEVType(Ty); |
| |
| PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin()); |
| PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()), |
| Preheader); |
| |
| // If the stride is negative, insert a sub instead of an add for the |
| // increment. |
| bool isNegative = isNonConstantNegative(Step); |
| const SCEV *IncAmount = Step; |
| if (isNegative) |
| IncAmount = Rewriter.SE.getNegativeSCEV(Step); |
| |
| // Insert an add instruction right before the terminator corresponding |
| // to the back-edge or just before the only use. The location is determined |
| // by the caller and passed in as IVIncInsertPt. |
| Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty, |
| Preheader->getTerminator()); |
| Instruction *IncV; |
| if (isNegative) { |
| IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next", |
| IVIncInsertPt); |
| } else { |
| IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next", |
| IVIncInsertPt); |
| } |
| if (!isa<ConstantInt>(StepV)) ++NumVariable; |
| |
| PN->addIncoming(IncV, LatchBlock); |
| |
| ++NumInserted; |
| return PN; |
| } |
| |
| static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) { |
| // We want to emit code for users inside the loop first. To do this, we |
| // rearrange BasedUser so that the entries at the end have |
| // isUseOfPostIncrementedValue = false, because we pop off the end of the |
| // vector (so we handle them first). |
| std::partition(UsersToProcess.begin(), UsersToProcess.end(), |
| PartitionByIsUseOfPostIncrementedValue); |
| |
| // Sort this by base, so that things with the same base are handled |
| // together. By partitioning first and stable-sorting later, we are |
| // guaranteed that within each base we will pop off users from within the |
| // loop before users outside of the loop with a particular base. |
| // |
| // We would like to use stable_sort here, but we can't. The problem is that |
| // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so |
| // we don't have anything to do a '<' comparison on. Because we think the |
| // number of uses is small, do a horrible bubble sort which just relies on |
| // ==. |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { |
| // Get a base value. |
| const SCEV *Base = UsersToProcess[i].Base; |
| |
| // Compact everything with this base to be consecutive with this one. |
| for (unsigned j = i+1; j != e; ++j) { |
| if (UsersToProcess[j].Base == Base) { |
| std::swap(UsersToProcess[i+1], UsersToProcess[j]); |
| ++i; |
| } |
| } |
| } |
| } |
| |
| /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce |
| /// UsersToProcess, meaning lowering addresses all the way down to direct |
| /// pointer arithmetic. |
| /// |
| void |
| LoopStrengthReduce::PrepareToStrengthReduceFully( |
| std::vector<BasedUser> &UsersToProcess, |
| const SCEV *Stride, |
| const SCEV *CommonExprs, |
| const Loop *L, |
| SCEVExpander &PreheaderRewriter) { |
| DOUT << " Fully reducing all users\n"; |
| |
| // Rewrite the UsersToProcess records, creating a separate PHI for each |
| // unique Base value. |
| Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator(); |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) { |
| // TODO: The uses are grouped by base, but not sorted. We arbitrarily |
| // pick the first Imm value here to start with, and adjust it for the |
| // other uses. |
| const SCEV *Imm = UsersToProcess[i].Imm; |
| const SCEV *Base = UsersToProcess[i].Base; |
| const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm); |
| PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L, |
| PreheaderRewriter); |
| // Loop over all the users with the same base. |
| do { |
| UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType()); |
| UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm); |
| UsersToProcess[i].Phi = Phi; |
| assert(UsersToProcess[i].Imm->isLoopInvariant(L) && |
| "ShouldUseFullStrengthReductionMode should reject this!"); |
| } while (++i != e && Base == UsersToProcess[i].Base); |
| } |
| } |
| |
| /// FindIVIncInsertPt - Return the location to insert the increment instruction. |
| /// If the only use if a use of postinc value, (must be the loop termination |
| /// condition), then insert it just before the use. |
| static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess, |
| const Loop *L) { |
| if (UsersToProcess.size() == 1 && |
| UsersToProcess[0].isUseOfPostIncrementedValue && |
| L->contains(UsersToProcess[0].Inst->getParent())) |
| return UsersToProcess[0].Inst; |
| return L->getLoopLatch()->getTerminator(); |
| } |
| |
| /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the |
| /// given users to share. |
| /// |
| void |
| LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi( |
| std::vector<BasedUser> &UsersToProcess, |
| const SCEV *Stride, |
| const SCEV *CommonExprs, |
| Value *CommonBaseV, |
| Instruction *IVIncInsertPt, |
| const Loop *L, |
| SCEVExpander &PreheaderRewriter) { |
| DOUT << " Inserting new PHI:\n"; |
| |
| PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV), |
| Stride, IVIncInsertPt, L, |
| PreheaderRewriter); |
| |
| // Remember this in case a later stride is multiple of this. |
| IVsByStride[Stride].addIV(Stride, CommonExprs, Phi); |
| |
| // All the users will share this new IV. |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) |
| UsersToProcess[i].Phi = Phi; |
| |
| DOUT << " IV="; |
| DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false)); |
| DOUT << "\n"; |
| } |
| |
| /// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to |
| /// reuse an induction variable with a stride that is a factor of the current |
| /// induction variable. |
| /// |
| void |
| LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride( |
| std::vector<BasedUser> &UsersToProcess, |
| Value *CommonBaseV, |
| const IVExpr &ReuseIV, |
| Instruction *PreInsertPt) { |
| DOUT << " Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride |
| << " and BASE " << *ReuseIV.Base << "\n"; |
| |
| // All the users will share the reused IV. |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) |
| UsersToProcess[i].Phi = ReuseIV.PHI; |
| |
| Constant *C = dyn_cast<Constant>(CommonBaseV); |
| if (C && |
| (!C->isNullValue() && |
| !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(), |
| TLI, false))) |
| // We want the common base emitted into the preheader! This is just |
| // using cast as a copy so BitCast (no-op cast) is appropriate |
| CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(), |
| "commonbase", PreInsertPt); |
| } |
| |
| static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset, |
| const Type *AccessTy, |
| std::vector<BasedUser> &UsersToProcess, |
| const TargetLowering *TLI) { |
| SmallVector<Instruction*, 16> AddrModeInsts; |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { |
| if (UsersToProcess[i].isUseOfPostIncrementedValue) |
| continue; |
| ExtAddrMode AddrMode = |
| AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace, |
| AccessTy, UsersToProcess[i].Inst, |
| AddrModeInsts, *TLI); |
| if (GV && GV != AddrMode.BaseGV) |
| return false; |
| if (Offset && !AddrMode.BaseOffs) |
| // FIXME: How to accurate check it's immediate offset is folded. |
| return false; |
| AddrModeInsts.clear(); |
| } |
| return true; |
| } |
| |
| /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single |
| /// stride of IV. All of the users may have different starting values, and this |
| /// may not be the only stride. |
| void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV *const &Stride, |
| IVUsersOfOneStride &Uses, |
| Loop *L) { |
| // If all the users are moved to another stride, then there is nothing to do. |
| if (Uses.Users.empty()) |
| return; |
| |
| // Keep track if every use in UsersToProcess is an address. If they all are, |
| // we may be able to rewrite the entire collection of them in terms of a |
| // smaller-stride IV. |
| bool AllUsesAreAddresses = true; |
| |
| // Keep track if every use of a single stride is outside the loop. If so, |
| // we want to be more aggressive about reusing a smaller-stride IV; a |
| // multiply outside the loop is better than another IV inside. Well, usually. |
| bool AllUsesAreOutsideLoop = true; |
| |
| // Transform our list of users and offsets to a bit more complex table. In |
| // this new vector, each 'BasedUser' contains 'Base' the base of the |
| // strided accessas well as the old information from Uses. We progressively |
| // move information from the Base field to the Imm field, until we eventually |
| // have the full access expression to rewrite the use. |
| std::vector<BasedUser> UsersToProcess; |
| const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses, |
| AllUsesAreOutsideLoop, |
| UsersToProcess); |
| |
| // Sort the UsersToProcess array so that users with common bases are |
| // next to each other. |
| SortUsersToProcess(UsersToProcess); |
| |
| // If we managed to find some expressions in common, we'll need to carry |
| // their value in a register and add it in for each use. This will take up |
| // a register operand, which potentially restricts what stride values are |
| // valid. |
| bool HaveCommonExprs = !CommonExprs->isZero(); |
| const Type *ReplacedTy = CommonExprs->getType(); |
| |
| // If all uses are addresses, consider sinking the immediate part of the |
| // common expression back into uses if they can fit in the immediate fields. |
| if (TLI && HaveCommonExprs && AllUsesAreAddresses) { |
| const SCEV *NewCommon = CommonExprs; |
| const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy); |
| MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE); |
| if (!Imm->isZero()) { |
| bool DoSink = true; |
| |
| // If the immediate part of the common expression is a GV, check if it's |
| // possible to fold it into the target addressing mode. |
| GlobalValue *GV = 0; |
| if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm)) |
| GV = dyn_cast<GlobalValue>(SU->getValue()); |
| int64_t Offset = 0; |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm)) |
| Offset = SC->getValue()->getSExtValue(); |
| if (GV || Offset) |
| // Pass VoidTy as the AccessTy to be conservative, because |
| // there could be multiple access types among all the uses. |
| DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy, |
| UsersToProcess, TLI); |
| |
| if (DoSink) { |
| DOUT << " Sinking " << *Imm << " back down into uses\n"; |
| for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) |
| UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm); |
| CommonExprs = NewCommon; |
| HaveCommonExprs = !CommonExprs->isZero(); |
| ++NumImmSunk; |
| } |
| } |
| } |
| |
| // Now that we know what we need to do, insert the PHI node itself. |
| // |
| DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE " |
| << *Stride << ":\n" |
| << " Common base: " << *CommonExprs << "\n"; |
| |
| SCEVExpander Rewriter(*SE); |
| SCEVExpander PreheaderRewriter(*SE); |
| |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| Instruction *PreInsertPt = Preheader->getTerminator(); |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| Instruction *IVIncInsertPt = LatchBlock->getTerminator(); |
| |
| LLVMContext &Context = Preheader->getContext(); |
| |
| Value *CommonBaseV = Context.getNullValue(ReplacedTy); |
| |
| const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy); |
| IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty), |
| SE->getIntegerSCEV(0, Type::Int32Ty), |
| 0); |
| |
| /// Choose a strength-reduction strategy and prepare for it by creating |
| /// the necessary PHIs and adjusting the bookkeeping. |
| if (ShouldUseFullStrengthReductionMode(UsersToProcess, L, |
| AllUsesAreAddresses, Stride)) { |
| PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L, |
| PreheaderRewriter); |
| } else { |
| // Emit the initial base value into the loop preheader. |
| CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy, |
| PreInsertPt); |
| |
| // If all uses are addresses, check if it is possible to reuse an IV. The |
| // new IV must have a stride that is a multiple of the old stride; the |
| // multiple must be a number that can be encoded in the scale field of the |
| // target addressing mode; and we must have a valid instruction after this |
| // substitution, including the immediate field, if any. |
| RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses, |
| AllUsesAreOutsideLoop, |
| Stride, ReuseIV, ReplacedTy, |
| UsersToProcess); |
| if (!RewriteFactor->isZero()) |
| PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV, |
| ReuseIV, PreInsertPt); |
| else { |
| IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L); |
| PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs, |
| CommonBaseV, IVIncInsertPt, |
| L, PreheaderRewriter); |
| } |
| } |
| |
| // Process all the users now, replacing their strided uses with |
| // strength-reduced forms. This outer loop handles all bases, the inner |
| // loop handles all users of a particular base. |
| while (!UsersToProcess.empty()) { |
| const SCEV *Base = UsersToProcess.back().Base; |
| Instruction *Inst = UsersToProcess.back().Inst; |
| |
| // Emit the code for Base into the preheader. |
| Value *BaseV = 0; |
| if (!Base->isZero()) { |
| BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt); |
| |
| DOUT << " INSERTING code for BASE = " << *Base << ":"; |
| if (BaseV->hasName()) |
| DOUT << " Result value name = %" << BaseV->getNameStr(); |
| DOUT << "\n"; |
| |
| // If BaseV is a non-zero constant, make sure that it gets inserted into |
| // the preheader, instead of being forward substituted into the uses. We |
| // do this by forcing a BitCast (noop cast) to be inserted into the |
| // preheader in this case. |
| if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) && |
| !isa<Instruction>(BaseV)) { |
| // We want this constant emitted into the preheader! This is just |
| // using cast as a copy so BitCast (no-op cast) is appropriate |
| BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert", |
| PreInsertPt); |
| } |
| } |
| |
| // Emit the code to add the immediate offset to the Phi value, just before |
| // the instructions that we identified as using this stride and base. |
| do { |
| // FIXME: Use emitted users to emit other users. |
| BasedUser &User = UsersToProcess.back(); |
| |
| DOUT << " Examining "; |
| if (User.isUseOfPostIncrementedValue) |
| DOUT << "postinc"; |
| else |
| DOUT << "preinc"; |
| DOUT << " use "; |
| DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace, |
| /*PrintType=*/false)); |
| DOUT << " in Inst: " << *(User.Inst); |
| |
| // If this instruction wants to use the post-incremented value, move it |
| // after the post-inc and use its value instead of the PHI. |
| Value *RewriteOp = User.Phi; |
| if (User.isUseOfPostIncrementedValue) { |
| RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock); |
| // If this user is in the loop, make sure it is the last thing in the |
| // loop to ensure it is dominated by the increment. In case it's the |
| // only use of the iv, the increment instruction is already before the |
| // use. |
| if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt) |
| User.Inst->moveBefore(IVIncInsertPt); |
| } |
| |
| const SCEV *RewriteExpr = SE->getUnknown(RewriteOp); |
| |
| if (SE->getEffectiveSCEVType(RewriteOp->getType()) != |
| SE->getEffectiveSCEVType(ReplacedTy)) { |
| assert(SE->getTypeSizeInBits(RewriteOp->getType()) > |
| SE->getTypeSizeInBits(ReplacedTy) && |
| "Unexpected widening cast!"); |
| RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy); |
| } |
| |
| // If we had to insert new instructions for RewriteOp, we have to |
| // consider that they may not have been able to end up immediately |
| // next to RewriteOp, because non-PHI instructions may never precede |
| // PHI instructions in a block. In this case, remember where the last |
| // instruction was inserted so that if we're replacing a different |
| // PHI node, we can use the later point to expand the final |
| // RewriteExpr. |
| Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp); |
| if (RewriteOp == User.Phi) NewBasePt = 0; |
| |
| // Clear the SCEVExpander's expression map so that we are guaranteed |
| // to have the code emitted where we expect it. |
| Rewriter.clear(); |
| |
| // If we are reusing the iv, then it must be multiplied by a constant |
| // factor to take advantage of the addressing mode scale component. |
| if (!RewriteFactor->isZero()) { |
| // If we're reusing an IV with a nonzero base (currently this happens |
| // only when all reuses are outside the loop) subtract that base here. |
| // The base has been used to initialize the PHI node but we don't want |
| // it here. |
| if (!ReuseIV.Base->isZero()) { |
| const SCEV *typedBase = ReuseIV.Base; |
| if (SE->getEffectiveSCEVType(RewriteExpr->getType()) != |
| SE->getEffectiveSCEVType(ReuseIV.Base->getType())) { |
| // It's possible the original IV is a larger type than the new IV, |
| // in which case we have to truncate the Base. We checked in |
| // RequiresTypeConversion that this is valid. |
| assert(SE->getTypeSizeInBits(RewriteExpr->getType()) < |
| SE->getTypeSizeInBits(ReuseIV.Base->getType()) && |
| "Unexpected lengthening conversion!"); |
| typedBase = SE->getTruncateExpr(ReuseIV.Base, |
| RewriteExpr->getType()); |
| } |
| RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase); |
| } |
| |
| // Multiply old variable, with base removed, by new scale factor. |
| RewriteExpr = SE->getMulExpr(RewriteFactor, |
| RewriteExpr); |
| |
| // The common base is emitted in the loop preheader. But since we |
| // are reusing an IV, it has not been used to initialize the PHI node. |
| // Add it to the expression used to rewrite the uses. |
| // When this use is outside the loop, we earlier subtracted the |
| // common base, and are adding it back here. Use the same expression |
| // as before, rather than CommonBaseV, so DAGCombiner will zap it. |
| if (!CommonExprs->isZero()) { |
| if (L->contains(User.Inst->getParent())) |
| RewriteExpr = SE->getAddExpr(RewriteExpr, |
| SE->getUnknown(CommonBaseV)); |
| else |
| RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs); |
| } |
| } |
| |
| // Now that we know what we need to do, insert code before User for the |
| // immediate and any loop-variant expressions. |
| if (BaseV) |
| // Add BaseV to the PHI value if needed. |
| RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV)); |
| |
| User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt, |
| Rewriter, L, this, *LI, |
| DeadInsts); |
| |
| // Mark old value we replaced as possibly dead, so that it is eliminated |
| // if we just replaced the last use of that value. |
| DeadInsts.push_back(User.OperandValToReplace); |
| |
| UsersToProcess.pop_back(); |
| ++NumReduced; |
| |
| // If there are any more users to process with the same base, process them |
| // now. We sorted by base above, so we just have to check the last elt. |
| } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base); |
| // TODO: Next, find out which base index is the most common, pull it out. |
| } |
| |
| // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but |
| // different starting values, into different PHIs. |
| } |
| |
| /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, |
| /// set the IV user and stride information and return true, otherwise return |
| /// false. |
| bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse, |
| const SCEV *const * &CondStride) { |
| for (unsigned Stride = 0, e = IU->StrideOrder.size(); |
| Stride != e && !CondUse; ++Stride) { |
| std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = |
| IU->IVUsesByStride.find(IU->StrideOrder[Stride]); |
| assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); |
| |
| for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), |
| E = SI->second->Users.end(); UI != E; ++UI) |
| if (UI->getUser() == Cond) { |
| // NOTE: we could handle setcc instructions with multiple uses here, but |
| // InstCombine does it as well for simple uses, it's not clear that it |
| // occurs enough in real life to handle. |
| CondUse = UI; |
| CondStride = &SI->first; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| namespace { |
| // Constant strides come first which in turns are sorted by their absolute |
| // values. If absolute values are the same, then positive strides comes first. |
| // e.g. |
| // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X |
| struct StrideCompare { |
| const ScalarEvolution *SE; |
| explicit StrideCompare(const ScalarEvolution *se) : SE(se) {} |
| |
| bool operator()(const SCEV *const &LHS, const SCEV *const &RHS) { |
| const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS); |
| const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); |
| if (LHSC && RHSC) { |
| int64_t LV = LHSC->getValue()->getSExtValue(); |
| int64_t RV = RHSC->getValue()->getSExtValue(); |
| uint64_t ALV = (LV < 0) ? -LV : LV; |
| uint64_t ARV = (RV < 0) ? -RV : RV; |
| if (ALV == ARV) { |
| if (LV != RV) |
| return LV > RV; |
| } else { |
| return ALV < ARV; |
| } |
| |
| // If it's the same value but different type, sort by bit width so |
| // that we emit larger induction variables before smaller |
| // ones, letting the smaller be re-written in terms of larger ones. |
| return SE->getTypeSizeInBits(RHS->getType()) < |
| SE->getTypeSizeInBits(LHS->getType()); |
| } |
| return LHSC && !RHSC; |
| } |
| }; |
| } |
| |
| /// ChangeCompareStride - If a loop termination compare instruction is the |
| /// only use of its stride, and the compaison is against a constant value, |
| /// try eliminate the stride by moving the compare instruction to another |
| /// stride and change its constant operand accordingly. e.g. |
| /// |
| /// loop: |
| /// ... |
| /// v1 = v1 + 3 |
| /// v2 = v2 + 1 |
| /// if (v2 < 10) goto loop |
| /// => |
| /// loop: |
| /// ... |
| /// v1 = v1 + 3 |
| /// if (v1 < 30) goto loop |
| ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond, |
| IVStrideUse* &CondUse, |
| const SCEV *const* &CondStride) { |
| // If there's only one stride in the loop, there's nothing to do here. |
| if (IU->StrideOrder.size() < 2) |
| return Cond; |
| // If there are other users of the condition's stride, don't bother |
| // trying to change the condition because the stride will still |
| // remain. |
| std::map<const SCEV *, IVUsersOfOneStride *>::iterator I = |
| IU->IVUsesByStride.find(*CondStride); |
| if (I == IU->IVUsesByStride.end() || |
| I->second->Users.size() != 1) |
| return Cond; |
| // Only handle constant strides for now. |
| const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride); |
| if (!SC) return Cond; |
| |
| LLVMContext &Context = Cond->getContext(); |
| |
| ICmpInst::Predicate Predicate = Cond->getPredicate(); |
| int64_t CmpSSInt = SC->getValue()->getSExtValue(); |
| unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType()); |
| uint64_t SignBit = 1ULL << (BitWidth-1); |
| const Type *CmpTy = Cond->getOperand(0)->getType(); |
| const Type *NewCmpTy = NULL; |
| unsigned TyBits = SE->getTypeSizeInBits(CmpTy); |
| unsigned NewTyBits = 0; |
| const SCEV **NewStride = NULL; |
| Value *NewCmpLHS = NULL; |
| Value *NewCmpRHS = NULL; |
| int64_t Scale = 1; |
| const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy); |
| |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) { |
| int64_t CmpVal = C->getValue().getSExtValue(); |
| |
| // Check stride constant and the comparision constant signs to detect |
| // overflow. |
| if ((CmpVal & SignBit) != (CmpSSInt & SignBit)) |
| return Cond; |
| |
| // Look for a suitable stride / iv as replacement. |
| for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) { |
| std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = |
| IU->IVUsesByStride.find(IU->StrideOrder[i]); |
| if (!isa<SCEVConstant>(SI->first)) |
| continue; |
| int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); |
| if (SSInt == CmpSSInt || |
| abs64(SSInt) < abs64(CmpSSInt) || |
| (SSInt % CmpSSInt) != 0) |
| continue; |
| |
| Scale = SSInt / CmpSSInt; |
| int64_t NewCmpVal = CmpVal * Scale; |
| APInt Mul = APInt(BitWidth*2, CmpVal, true); |
| Mul = Mul * APInt(BitWidth*2, Scale, true); |
| // Check for overflow. |
| if (!Mul.isSignedIntN(BitWidth)) |
| continue; |
| // Check for overflow in the stride's type too. |
| if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType()))) |
| continue; |
| |
| // Watch out for overflow. |
| if (ICmpInst::isSignedPredicate(Predicate) && |
| (CmpVal & SignBit) != (NewCmpVal & SignBit)) |
| continue; |
| |
| if (NewCmpVal == CmpVal) |
| continue; |
| // Pick the best iv to use trying to avoid a cast. |
| NewCmpLHS = NULL; |
| for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), |
| E = SI->second->Users.end(); UI != E; ++UI) { |
| Value *Op = UI->getOperandValToReplace(); |
| |
| // If the IVStrideUse implies a cast, check for an actual cast which |
| // can be used to find the original IV expression. |
| if (SE->getEffectiveSCEVType(Op->getType()) != |
| SE->getEffectiveSCEVType(SI->first->getType())) { |
| CastInst *CI = dyn_cast<CastInst>(Op); |
| // If it's not a simple cast, it's complicated. |
| if (!CI) |
| continue; |
| // If it's a cast from a type other than the stride type, |
| // it's complicated. |
| if (CI->getOperand(0)->getType() != SI->first->getType()) |
| continue; |
| // Ok, we found the IV expression in the stride's type. |
| Op = CI->getOperand(0); |
| } |
| |
| NewCmpLHS = Op; |
| if (NewCmpLHS->getType() == CmpTy) |
| break; |
| } |
| if (!NewCmpLHS) |
| continue; |
| |
| NewCmpTy = NewCmpLHS->getType(); |
| NewTyBits = SE->getTypeSizeInBits(NewCmpTy); |
| const Type *NewCmpIntTy = Context.getIntegerType(NewTyBits); |
| if (RequiresTypeConversion(NewCmpTy, CmpTy)) { |
| // Check if it is possible to rewrite it using |
| // an iv / stride of a smaller integer type. |
| unsigned Bits = NewTyBits; |
| if (ICmpInst::isSignedPredicate(Predicate)) |
| --Bits; |
| uint64_t Mask = (1ULL << Bits) - 1; |
| if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal) |
| continue; |
| } |
| |
| // Don't rewrite if use offset is non-constant and the new type is |
| // of a different type. |
| // FIXME: too conservative? |
| if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset())) |
| continue; |
| |
| bool AllUsesAreAddresses = true; |
| bool AllUsesAreOutsideLoop = true; |
| std::vector<BasedUser> UsersToProcess; |
| const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L, |
| AllUsesAreAddresses, |
| AllUsesAreOutsideLoop, |
| UsersToProcess); |
| // Avoid rewriting the compare instruction with an iv of new stride |
| // if it's likely the new stride uses will be rewritten using the |
| // stride of the compare instruction. |
| if (AllUsesAreAddresses && |
| ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) |
| continue; |
| |
| // Avoid rewriting the compare instruction with an iv which has |
| // implicit extension or truncation built into it. |
| // TODO: This is over-conservative. |
| if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits) |
| continue; |
| |
| // If scale is negative, use swapped predicate unless it's testing |
| // for equality. |
| if (Scale < 0 && !Cond->isEquality()) |
| Predicate = ICmpInst::getSwappedPredicate(Predicate); |
| |
| NewStride = &IU->StrideOrder[i]; |
| if (!isa<PointerType>(NewCmpTy)) |
| NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal); |
| else { |
| Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal); |
| NewCmpRHS = Context.getConstantExprIntToPtr(CI, NewCmpTy); |
| } |
| NewOffset = TyBits == NewTyBits |
| ? SE->getMulExpr(CondUse->getOffset(), |
| SE->getConstant(CmpTy, Scale)) |
| : SE->getConstant(NewCmpIntTy, |
| cast<SCEVConstant>(CondUse->getOffset())->getValue() |
| ->getSExtValue()*Scale); |
| break; |
| } |
| } |
| |
| // Forgo this transformation if it the increment happens to be |
| // unfortunately positioned after the condition, and the condition |
| // has multiple uses which prevent it from being moved immediately |
| // before the branch. See |
| // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll |
| // for an example of this situation. |
| if (!Cond->hasOneUse()) { |
| for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end(); |
| I != E; ++I) |
| if (I == NewCmpLHS) |
| return Cond; |
| } |
| |
| if (NewCmpRHS) { |
| // Create a new compare instruction using new stride / iv. |
| ICmpInst *OldCond = Cond; |
| // Insert new compare instruction. |
| Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS, |
| L->getHeader()->getName() + ".termcond"); |
| |
| // Remove the old compare instruction. The old indvar is probably dead too. |
| DeadInsts.push_back(CondUse->getOperandValToReplace()); |
| OldCond->replaceAllUsesWith(Cond); |
| OldCond->eraseFromParent(); |
| |
| IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS); |
| CondUse = &IU->IVUsesByStride[*NewStride]->Users.back(); |
| CondStride = NewStride; |
| ++NumEliminated; |
| Changed = true; |
| } |
| |
| return Cond; |
| } |
| |
| /// OptimizeMax - Rewrite the loop's terminating condition if it uses |
| /// a max computation. |
| /// |
| /// This is a narrow solution to a specific, but acute, problem. For loops |
| /// like this: |
| /// |
| /// i = 0; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i < n); |
| /// |
| /// the trip count isn't just 'n', because 'n' might not be positive. And |
| /// unfortunately this can come up even for loops where the user didn't use |
| /// a C do-while loop. For example, seemingly well-behaved top-test loops |
| /// will commonly be lowered like this: |
| // |
| /// if (n > 0) { |
| /// i = 0; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i < n); |
| /// } |
| /// |
| /// and then it's possible for subsequent optimization to obscure the if |
| /// test in such a way that indvars can't find it. |
| /// |
| /// When indvars can't find the if test in loops like this, it creates a |
| /// max expression, which allows it to give the loop a canonical |
| /// induction variable: |
| /// |
| /// i = 0; |
| /// max = n < 1 ? 1 : n; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i != max); |
| /// |
| /// Canonical induction variables are necessary because the loop passes |
| /// are designed around them. The most obvious example of this is the |
| /// LoopInfo analysis, which doesn't remember trip count values. It |
| /// expects to be able to rediscover the trip count each time it is |
| /// needed, and it does this using a simple analyis that only succeeds if |
| /// the loop has a canonical induction variable. |
| /// |
| /// However, when it comes time to generate code, the maximum operation |
| /// can be quite costly, especially if it's inside of an outer loop. |
| /// |
| /// This function solves this problem by detecting this type of loop and |
| /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting |
| /// the instructions for the maximum computation. |
| /// |
| ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond, |
| IVStrideUse* &CondUse) { |
| // Check that the loop matches the pattern we're looking for. |
| if (Cond->getPredicate() != CmpInst::ICMP_EQ && |
| Cond->getPredicate() != CmpInst::ICMP_NE) |
| return Cond; |
| |
| SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); |
| if (!Sel || !Sel->hasOneUse()) return Cond; |
| |
| const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| return Cond; |
| const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType()); |
| |
| // Add one to the backedge-taken count to get the trip count. |
| const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One); |
| |
| // Check for a max calculation that matches the pattern. |
| if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount)) |
| return Cond; |
| const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount); |
| if (Max != SE->getSCEV(Sel)) return Cond; |
| |
| // To handle a max with more than two operands, this optimization would |
| // require additional checking and setup. |
| if (Max->getNumOperands() != 2) |
| return Cond; |
| |
| const SCEV *MaxLHS = Max->getOperand(0); |
| const SCEV *MaxRHS = Max->getOperand(1); |
| if (!MaxLHS || MaxLHS != One) return Cond; |
| |
| // Check the relevant induction variable for conformance to |
| // the pattern. |
| const SCEV *IV = SE->getSCEV(Cond->getOperand(0)); |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); |
| if (!AR || !AR->isAffine() || |
| AR->getStart() != One || |
| AR->getStepRecurrence(*SE) != One) |
| return Cond; |
| |
| assert(AR->getLoop() == L && |
| "Loop condition operand is an addrec in a different loop!"); |
| |
| // Check the right operand of the select, and remember it, as it will |
| // be used in the new comparison instruction. |
| Value *NewRHS = 0; |
| if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS) |
| NewRHS = Sel->getOperand(1); |
| else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS) |
| NewRHS = Sel->getOperand(2); |
| if (!NewRHS) return Cond; |
| |
| // Determine the new comparison opcode. It may be signed or unsigned, |
| // and the original comparison may be either equality or inequality. |
| CmpInst::Predicate Pred = |
| isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; |
| if (Cond->getPredicate() == CmpInst::ICMP_EQ) |
| Pred = CmpInst::getInversePredicate(Pred); |
| |
| // Ok, everything looks ok to change the condition into an SLT or SGE and |
| // delete the max calculation. |
| ICmpInst *NewCond = |
| new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); |
| |
| // Delete the max calculation instructions. |
| Cond->replaceAllUsesWith(NewCond); |
| CondUse->setUser(NewCond); |
| Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); |
| Cond->eraseFromParent(); |
| Sel->eraseFromParent(); |
| if (Cmp->use_empty()) |
| Cmp->eraseFromParent(); |
| return NewCond; |
| } |
| |
| /// OptimizeShadowIV - If IV is used in a int-to-float cast |
| /// inside the loop then try to eliminate the cast opeation. |
| void LoopStrengthReduce::OptimizeShadowIV(Loop *L) { |
| |
| const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| return; |
| |
| LLVMContext &Context = L->getHeader()->getContext(); |
| |
| for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e; |
| ++Stride) { |
| std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = |
| IU->IVUsesByStride.find(IU->StrideOrder[Stride]); |
| assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); |
| if (!isa<SCEVConstant>(SI->first)) |
| continue; |
| |
| for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), |
| E = SI->second->Users.end(); UI != E; /* empty */) { |
| ilist<IVStrideUse>::iterator CandidateUI = UI; |
| ++UI; |
| Instruction *ShadowUse = CandidateUI->getUser(); |
| const Type *DestTy = NULL; |
| |
| /* If shadow use is a int->float cast then insert a second IV |
| to eliminate this cast. |
| |
| for (unsigned i = 0; i < n; ++i) |
| foo((double)i); |
| |
| is transformed into |
| |
| double d = 0.0; |
| for (unsigned i = 0; i < n; ++i, ++d) |
| foo(d); |
| */ |
| if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) |
| DestTy = UCast->getDestTy(); |
| else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) |
| DestTy = SCast->getDestTy(); |
| if (!DestTy) continue; |
| |
| if (TLI) { |
| // If target does not support DestTy natively then do not apply |
| // this transformation. |
| MVT DVT = TLI->getValueType(DestTy); |
| if (!TLI->isTypeLegal(DVT)) continue; |
| } |
| |
| PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); |
| if (!PH) continue; |
| if (PH->getNumIncomingValues() != 2) continue; |
| |
| const Type *SrcTy = PH->getType(); |
| int Mantissa = DestTy->getFPMantissaWidth(); |
| if (Mantissa == -1) continue; |
| if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa) |
| continue; |
| |
| unsigned Entry, Latch; |
| if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { |
| Entry = 0; |
| Latch = 1; |
| } else { |
| Entry = 1; |
| Latch = 0; |
| } |
| |
| ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); |
| if (!Init) continue; |
| Constant *NewInit = Context.getConstantFP(DestTy, Init->getZExtValue()); |
| |
| BinaryOperator *Incr = |
| dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); |
| if (!Incr) continue; |
| if (Incr->getOpcode() != Instruction::Add |
| && Incr->getOpcode() != Instruction::Sub) |
| continue; |
| |
| /* Initialize new IV, double d = 0.0 in above example. */ |
| ConstantInt *C = NULL; |
| if (Incr->getOperand(0) == PH) |
| C = dyn_cast<ConstantInt>(Incr->getOperand(1)); |
| else if (Incr->getOperand(1) == PH) |
| C = dyn_cast<ConstantInt>(Incr->getOperand(0)); |
| else |
| continue; |
| |
| if (!C) continue; |
| |
| /* Add new PHINode. */ |
| PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH); |
| |
| /* create new increment. '++d' in above example. */ |
| Constant *CFP = Context.getConstantFP(DestTy, C->getZExtValue()); |
| BinaryOperator *NewIncr = |
| BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? |
| Instruction::FAdd : Instruction::FSub, |
| NewPH, CFP, "IV.S.next.", Incr); |
| |
| NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); |
| NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); |
| |
| /* Remove cast operation */ |
| ShadowUse->replaceAllUsesWith(NewPH); |
| ShadowUse->eraseFromParent(); |
| NumShadow++; |
| break; |
| } |
| } |
| } |
| |
| /// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar |
| /// uses in the loop, look to see if we can eliminate some, in favor of using |
| /// common indvars for the different uses. |
| void LoopStrengthReduce::OptimizeIndvars(Loop *L) { |
| // TODO: implement optzns here. |
| |
| OptimizeShadowIV(L); |
| } |
| |
| /// OptimizeLoopTermCond - Change loop terminating condition to use the |
| /// postinc iv when possible. |
| void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) { |
| // Finally, get the terminating condition for the loop if possible. If we |
| // can, we want to change it to use a post-incremented version of its |
| // induction variable, to allow coalescing the live ranges for the IV into |
| // one register value. |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| BasicBlock *ExitingBlock = L->getExitingBlock(); |
| LLVMContext &Context = LatchBlock->getContext(); |
| |
| if (!ExitingBlock) |
| // Multiple exits, just look at the exit in the latch block if there is one. |
| ExitingBlock = LatchBlock; |
| BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| if (!TermBr) |
| return; |
| if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) |
| return; |
| |
| // Search IVUsesByStride to find Cond's IVUse if there is one. |
| IVStrideUse *CondUse = 0; |
| const SCEV *const *CondStride = 0; |
| ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); |
| if (!FindIVUserForCond(Cond, CondUse, CondStride)) |
| return; // setcc doesn't use the IV. |
| |
| if (ExitingBlock != LatchBlock) { |
| if (!Cond->hasOneUse()) |
| // See below, we don't want the condition to be cloned. |
| return; |
| |
| // If exiting block is the latch block, we know it's safe and profitable to |
| // transform the icmp to use post-inc iv. Otherwise do so only if it would |
| // not reuse another iv and its iv would be reused by other uses. We are |
| // optimizing for the case where the icmp is the only use of the iv. |
| IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride]; |
| for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(), |
| E = StrideUses.Users.end(); I != E; ++I) { |
| if (I->getUser() == Cond) |
| continue; |
| if (!I->isUseOfPostIncrementedValue()) |
| return; |
| } |
| |
| // FIXME: This is expensive, and worse still ChangeCompareStride does a |
| // similar check. Can we perform all the icmp related transformations after |
| // StrengthReduceStridedIVUsers? |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) { |
| int64_t SInt = SC->getValue()->getSExtValue(); |
| for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee; |
| ++NewStride) { |
| std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = |
| IU->IVUsesByStride.find(IU->StrideOrder[NewStride]); |
| if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride) |
| continue; |
| int64_t SSInt = |
| cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); |
| if (SSInt == SInt) |
| return; // This can definitely be reused. |
| if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0) |
| continue; |
| int64_t Scale = SSInt / SInt; |
| bool AllUsesAreAddresses = true; |
| bool AllUsesAreOutsideLoop = true; |
| std::vector<BasedUser> UsersToProcess; |
| const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L, |
| AllUsesAreAddresses, |
| AllUsesAreOutsideLoop, |
| UsersToProcess); |
| // Avoid rewriting the compare instruction with an iv of new stride |
| // if it's likely the new stride uses will be rewritten using the |
| // stride of the compare instruction. |
| if (AllUsesAreAddresses && |
| ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) |
| return; |
| } |
| } |
| |
| StrideNoReuse.insert(*CondStride); |
| } |
| |
| // If the trip count is computed in terms of a max (due to ScalarEvolution |
| // being unable to find a sufficient guard, for example), change the loop |
| // comparison to use SLT or ULT instead of NE. |
| Cond = OptimizeMax(L, Cond, CondUse); |
| |
| // If possible, change stride and operands of the compare instruction to |
| // eliminate one stride. |
| if (ExitingBlock == LatchBlock) |
| Cond = ChangeCompareStride(L, Cond, CondUse, CondStride); |
| |
| // It's possible for the setcc instruction to be anywhere in the loop, and |
| // possible for it to have multiple users. If it is not immediately before |
| // the latch block branch, move it. |
| if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) { |
| if (Cond->hasOneUse()) { // Condition has a single use, just move it. |
| Cond->moveBefore(TermBr); |
| } else { |
| // Otherwise, clone the terminating condition and insert into the loopend. |
| Cond = cast<ICmpInst>(Cond->clone(Context)); |
| Cond->setName(L->getHeader()->getName() + ".termcond"); |
| LatchBlock->getInstList().insert(TermBr, Cond); |
| |
| // Clone the IVUse, as the old use still exists! |
| IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond, |
| CondUse->getOperandValToReplace()); |
| CondUse = &IU->IVUsesByStride[*CondStride]->Users.back(); |
| } |
| } |
| |
| // If we get to here, we know that we can transform the setcc instruction to |
| // use the post-incremented version of the IV, allowing us to coalesce the |
| // live ranges for the IV correctly. |
| CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride)); |
| CondUse->setIsUseOfPostIncrementedValue(true); |
| Changed = true; |
| |
| ++NumLoopCond; |
| } |
| |
| /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding |
| /// when to exit the loop is used only for that purpose, try to rearrange things |
| /// so it counts down to a test against zero. |
| void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) { |
| |
| // If the number of times the loop is executed isn't computable, give up. |
| const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| return; |
| |
| // Get the terminating condition for the loop if possible (this isn't |
| // necessarily in the latch, or a block that's a predecessor of the header). |
| if (!L->getExitBlock()) |
| return; // More than one loop exit blocks. |
| |
| // Okay, there is one exit block. Try to find the condition that causes the |
| // loop to be exited. |
| BasicBlock *ExitingBlock = L->getExitingBlock(); |
| if (!ExitingBlock) |
| return; // More than one block exiting! |
| |
| // Okay, we've computed the exiting block. See what condition causes us to |
| // exit. |
| // |
| // FIXME: we should be able to handle switch instructions (with a single exit) |
| BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| if (TermBr == 0) return; |
| assert(TermBr->isConditional() && "If unconditional, it can't be in loop!"); |
| if (!isa<ICmpInst>(TermBr->getCondition())) |
| return; |
| ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); |
| |
| // Handle only tests for equality for the moment, and only stride 1. |
| if (Cond->getPredicate() != CmpInst::ICMP_EQ) |
| return; |
| const SCEV *IV = SE->getSCEV(Cond->getOperand(0)); |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); |
| const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType()); |
| if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One) |
| return; |
| // If the RHS of the comparison is defined inside the loop, the rewrite |
| // cannot be done. |
| if (Instruction *CR = dyn_cast<Instruction>(Cond->getOperand(1))) |
| if (L->contains(CR->getParent())) |
| return; |
| |
| // Make sure the IV is only used for counting. Value may be preinc or |
| // postinc; 2 uses in either case. |
| if (!Cond->getOperand(0)->hasNUses(2)) |
| return; |
| PHINode *phi = dyn_cast<PHINode>(Cond->getOperand(0)); |
| Instruction *incr; |
| if (phi && phi->getParent()==L->getHeader()) { |
| // value tested is preinc. Find the increment. |
| // A CmpInst is not a BinaryOperator; we depend on this. |
| Instruction::use_iterator UI = phi->use_begin(); |
| incr = dyn_cast<BinaryOperator>(UI); |
| if (!incr) |
| incr = dyn_cast<BinaryOperator>(++UI); |
| // 1 use for postinc value, the phi. Unnecessarily conservative? |
| if (!incr || !incr->hasOneUse() || incr->getOpcode()!=Instruction::Add) |
| return; |
| } else { |
| // Value tested is postinc. Find the phi node. |
| incr = dyn_cast<BinaryOperator>(Cond->getOperand(0)); |
| if (!incr || incr->getOpcode()!=Instruction::Add) |
| return; |
| |
| Instruction::use_iterator UI = Cond->getOperand(0)->use_begin(); |
| phi = dyn_cast<PHINode>(UI); |
| if (!phi) |
| phi = dyn_cast<PHINode>(++UI); |
| // 1 use for preinc value, the increment. |
| if (!phi || phi->getParent()!=L->getHeader() || !phi->hasOneUse()) |
| return; |
| } |
| |
| // Replace the increment with a decrement. |
| BinaryOperator *decr = |
| BinaryOperator::Create(Instruction::Sub, incr->getOperand(0), |
| incr->getOperand(1), "tmp", incr); |
| incr->replaceAllUsesWith(decr); |
| incr->eraseFromParent(); |
| |
| // Substitute endval-startval for the original startval, and 0 for the |
| // original endval. Since we're only testing for equality this is OK even |
| // if the computation wraps around. |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| Instruction *PreInsertPt = Preheader->getTerminator(); |
| int inBlock = L->contains(phi->getIncomingBlock(0)) ? 1 : 0; |
| Value *startVal = phi->getIncomingValue(inBlock); |
| Value *endVal = Cond->getOperand(1); |
| // FIXME check for case where both are constant |
| Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0); |
| BinaryOperator *NewStartVal = |
| BinaryOperator::Create(Instruction::Sub, endVal, startVal, |
| "tmp", PreInsertPt); |
| phi->setIncomingValue(inBlock, NewStartVal); |
| Cond->setOperand(1, Zero); |
| |
| Changed = true; |
| } |
| |
| bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) { |
| |
| IU = &getAnalysis<IVUsers>(); |
| LI = &getAnalysis<LoopInfo>(); |
| DT = &getAnalysis<DominatorTree>(); |
| SE = &getAnalysis<ScalarEvolution>(); |
| Changed = false; |
| |
| if (!IU->IVUsesByStride.empty()) { |
| #ifndef NDEBUG |
| DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart() |
| << "\" "; |
| DEBUG(L->dump()); |
| #endif |
| |
| // Sort the StrideOrder so we process larger strides first. |
| std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(), |
| StrideCompare(SE)); |
| |
| // Optimize induction variables. Some indvar uses can be transformed to use |
| // strides that will be needed for other purposes. A common example of this |
| // is the exit test for the loop, which can often be rewritten to use the |
| // computation of some other indvar to decide when to terminate the loop. |
| OptimizeIndvars(L); |
| |
| // Change loop terminating condition to use the postinc iv when possible |
| // and optimize loop terminating compare. FIXME: Move this after |
| // StrengthReduceStridedIVUsers? |
| OptimizeLoopTermCond(L); |
| |
| // FIXME: We can shrink overlarge IV's here. e.g. if the code has |
| // computation in i64 values and the target doesn't support i64, demote |
| // the computation to 32-bit if safe. |
| |
| // FIXME: Attempt to reuse values across multiple IV's. In particular, we |
| // could have something like "for(i) { foo(i*8); bar(i*16) }", which should |
| // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. |
| // Need to be careful that IV's are all the same type. Only works for |
| // intptr_t indvars. |
| |
| // IVsByStride keeps IVs for one particular loop. |
| assert(IVsByStride.empty() && "Stale entries in IVsByStride?"); |
| |
| // Note: this processes each stride/type pair individually. All users |
| // passed into StrengthReduceStridedIVUsers have the same type AND stride. |
| // Also, note that we iterate over IVUsesByStride indirectly by using |
| // StrideOrder. This extra layer of indirection makes the ordering of |
| // strides deterministic - not dependent on map order. |
| for (unsigned Stride = 0, e = IU->StrideOrder.size(); |
| Stride != e; ++Stride) { |
| std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = |
| IU->IVUsesByStride.find(IU->StrideOrder[Stride]); |
| assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); |
| // FIXME: Generalize to non-affine IV's. |
| if (!SI->first->isLoopInvariant(L)) |
| continue; |
| StrengthReduceStridedIVUsers(SI->first, *SI->second, L); |
| } |
| } |
| |
| // After all sharing is done, see if we can adjust the loop to test against |
| // zero instead of counting up to a maximum. This is usually faster. |
| OptimizeLoopCountIV(L); |
| |
| // We're done analyzing this loop; release all the state we built up for it. |
| IVsByStride.clear(); |
| StrideNoReuse.clear(); |
| |
| // Clean up after ourselves |
| if (!DeadInsts.empty()) |
| DeleteTriviallyDeadInstructions(); |
| |
| // At this point, it is worth checking to see if any recurrence PHIs are also |
| // dead, so that we can remove them as well. |
| DeleteDeadPHIs(L->getHeader()); |
| |
| return Changed; |
| } |