| //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements a fast scheduler. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "pre-RA-sched" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "InstrEmitter.h" |
| #include "ScheduleDAGSDNodes.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| using namespace llvm; |
| |
| STATISTIC(NumUnfolds, "Number of nodes unfolded"); |
| STATISTIC(NumDups, "Number of duplicated nodes"); |
| STATISTIC(NumPRCopies, "Number of physical copies"); |
| |
| static RegisterScheduler |
| fastDAGScheduler("fast", "Fast suboptimal list scheduling", |
| createFastDAGScheduler); |
| static RegisterScheduler |
| linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling", |
| createDAGLinearizer); |
| |
| |
| namespace { |
| /// FastPriorityQueue - A degenerate priority queue that considers |
| /// all nodes to have the same priority. |
| /// |
| struct FastPriorityQueue { |
| SmallVector<SUnit *, 16> Queue; |
| |
| bool empty() const { return Queue.empty(); } |
| |
| void push(SUnit *U) { |
| Queue.push_back(U); |
| } |
| |
| SUnit *pop() { |
| if (empty()) return NULL; |
| SUnit *V = Queue.back(); |
| Queue.pop_back(); |
| return V; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// ScheduleDAGFast - The actual "fast" list scheduler implementation. |
| /// |
| class ScheduleDAGFast : public ScheduleDAGSDNodes { |
| private: |
| /// AvailableQueue - The priority queue to use for the available SUnits. |
| FastPriorityQueue AvailableQueue; |
| |
| /// LiveRegDefs - A set of physical registers and their definition |
| /// that are "live". These nodes must be scheduled before any other nodes that |
| /// modifies the registers can be scheduled. |
| unsigned NumLiveRegs; |
| std::vector<SUnit*> LiveRegDefs; |
| std::vector<unsigned> LiveRegCycles; |
| |
| public: |
| ScheduleDAGFast(MachineFunction &mf) |
| : ScheduleDAGSDNodes(mf) {} |
| |
| void Schedule(); |
| |
| /// AddPred - adds a predecessor edge to SUnit SU. |
| /// This returns true if this is a new predecessor. |
| void AddPred(SUnit *SU, const SDep &D) { |
| SU->addPred(D); |
| } |
| |
| /// RemovePred - removes a predecessor edge from SUnit SU. |
| /// This returns true if an edge was removed. |
| void RemovePred(SUnit *SU, const SDep &D) { |
| SU->removePred(D); |
| } |
| |
| private: |
| void ReleasePred(SUnit *SU, SDep *PredEdge); |
| void ReleasePredecessors(SUnit *SU, unsigned CurCycle); |
| void ScheduleNodeBottomUp(SUnit*, unsigned); |
| SUnit *CopyAndMoveSuccessors(SUnit*); |
| void InsertCopiesAndMoveSuccs(SUnit*, unsigned, |
| const TargetRegisterClass*, |
| const TargetRegisterClass*, |
| SmallVector<SUnit*, 2>&); |
| bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&); |
| void ListScheduleBottomUp(); |
| |
| /// forceUnitLatencies - The fast scheduler doesn't care about real latencies. |
| bool forceUnitLatencies() const { return true; } |
| }; |
| } // end anonymous namespace |
| |
| |
| /// Schedule - Schedule the DAG using list scheduling. |
| void ScheduleDAGFast::Schedule() { |
| DEBUG(dbgs() << "********** List Scheduling **********\n"); |
| |
| NumLiveRegs = 0; |
| LiveRegDefs.resize(TRI->getNumRegs(), NULL); |
| LiveRegCycles.resize(TRI->getNumRegs(), 0); |
| |
| // Build the scheduling graph. |
| BuildSchedGraph(NULL); |
| |
| DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| SUnits[su].dumpAll(this)); |
| |
| // Execute the actual scheduling loop. |
| ListScheduleBottomUp(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Bottom-Up Scheduling |
| //===----------------------------------------------------------------------===// |
| |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to |
| /// the AvailableQueue if the count reaches zero. Also update its cycle bound. |
| void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) { |
| SUnit *PredSU = PredEdge->getSUnit(); |
| |
| #ifndef NDEBUG |
| if (PredSU->NumSuccsLeft == 0) { |
| dbgs() << "*** Scheduling failed! ***\n"; |
| PredSU->dump(this); |
| dbgs() << " has been released too many times!\n"; |
| llvm_unreachable(0); |
| } |
| #endif |
| --PredSU->NumSuccsLeft; |
| |
| // If all the node's successors are scheduled, this node is ready |
| // to be scheduled. Ignore the special EntrySU node. |
| if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { |
| PredSU->isAvailable = true; |
| AvailableQueue.push(PredSU); |
| } |
| } |
| |
| void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) { |
| // Bottom up: release predecessors |
| for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| ReleasePred(SU, &*I); |
| if (I->isAssignedRegDep()) { |
| // This is a physical register dependency and it's impossible or |
| // expensive to copy the register. Make sure nothing that can |
| // clobber the register is scheduled between the predecessor and |
| // this node. |
| if (!LiveRegDefs[I->getReg()]) { |
| ++NumLiveRegs; |
| LiveRegDefs[I->getReg()] = I->getSUnit(); |
| LiveRegCycles[I->getReg()] = CurCycle; |
| } |
| } |
| } |
| } |
| |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending |
| /// count of its predecessors. If a predecessor pending count is zero, add it to |
| /// the Available queue. |
| void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { |
| DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); |
| DEBUG(SU->dump(this)); |
| |
| assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!"); |
| SU->setHeightToAtLeast(CurCycle); |
| Sequence.push_back(SU); |
| |
| ReleasePredecessors(SU, CurCycle); |
| |
| // Release all the implicit physical register defs that are live. |
| for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| if (I->isAssignedRegDep()) { |
| if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) { |
| assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!"); |
| assert(LiveRegDefs[I->getReg()] == SU && |
| "Physical register dependency violated?"); |
| --NumLiveRegs; |
| LiveRegDefs[I->getReg()] = NULL; |
| LiveRegCycles[I->getReg()] = 0; |
| } |
| } |
| } |
| |
| SU->isScheduled = true; |
| } |
| |
| /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled |
| /// successors to the newly created node. |
| SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) { |
| if (SU->getNode()->getGluedNode()) |
| return NULL; |
| |
| SDNode *N = SU->getNode(); |
| if (!N) |
| return NULL; |
| |
| SUnit *NewSU; |
| bool TryUnfold = false; |
| for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { |
| EVT VT = N->getValueType(i); |
| if (VT == MVT::Glue) |
| return NULL; |
| else if (VT == MVT::Other) |
| TryUnfold = true; |
| } |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| const SDValue &Op = N->getOperand(i); |
| EVT VT = Op.getNode()->getValueType(Op.getResNo()); |
| if (VT == MVT::Glue) |
| return NULL; |
| } |
| |
| if (TryUnfold) { |
| SmallVector<SDNode*, 2> NewNodes; |
| if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes)) |
| return NULL; |
| |
| DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n"); |
| assert(NewNodes.size() == 2 && "Expected a load folding node!"); |
| |
| N = NewNodes[1]; |
| SDNode *LoadNode = NewNodes[0]; |
| unsigned NumVals = N->getNumValues(); |
| unsigned OldNumVals = SU->getNode()->getNumValues(); |
| for (unsigned i = 0; i != NumVals; ++i) |
| DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i)); |
| DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1), |
| SDValue(LoadNode, 1)); |
| |
| SUnit *NewSU = newSUnit(N); |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NewSU->NodeNum); |
| |
| const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); |
| for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { |
| if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { |
| NewSU->isTwoAddress = true; |
| break; |
| } |
| } |
| if (MCID.isCommutable()) |
| NewSU->isCommutable = true; |
| |
| // LoadNode may already exist. This can happen when there is another |
| // load from the same location and producing the same type of value |
| // but it has different alignment or volatileness. |
| bool isNewLoad = true; |
| SUnit *LoadSU; |
| if (LoadNode->getNodeId() != -1) { |
| LoadSU = &SUnits[LoadNode->getNodeId()]; |
| isNewLoad = false; |
| } else { |
| LoadSU = newSUnit(LoadNode); |
| LoadNode->setNodeId(LoadSU->NodeNum); |
| } |
| |
| SDep ChainPred; |
| SmallVector<SDep, 4> ChainSuccs; |
| SmallVector<SDep, 4> LoadPreds; |
| SmallVector<SDep, 4> NodePreds; |
| SmallVector<SDep, 4> NodeSuccs; |
| for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| if (I->isCtrl()) |
| ChainPred = *I; |
| else if (I->getSUnit()->getNode() && |
| I->getSUnit()->getNode()->isOperandOf(LoadNode)) |
| LoadPreds.push_back(*I); |
| else |
| NodePreds.push_back(*I); |
| } |
| for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| if (I->isCtrl()) |
| ChainSuccs.push_back(*I); |
| else |
| NodeSuccs.push_back(*I); |
| } |
| |
| if (ChainPred.getSUnit()) { |
| RemovePred(SU, ChainPred); |
| if (isNewLoad) |
| AddPred(LoadSU, ChainPred); |
| } |
| for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) { |
| const SDep &Pred = LoadPreds[i]; |
| RemovePred(SU, Pred); |
| if (isNewLoad) { |
| AddPred(LoadSU, Pred); |
| } |
| } |
| for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) { |
| const SDep &Pred = NodePreds[i]; |
| RemovePred(SU, Pred); |
| AddPred(NewSU, Pred); |
| } |
| for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) { |
| SDep D = NodeSuccs[i]; |
| SUnit *SuccDep = D.getSUnit(); |
| D.setSUnit(SU); |
| RemovePred(SuccDep, D); |
| D.setSUnit(NewSU); |
| AddPred(SuccDep, D); |
| } |
| for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) { |
| SDep D = ChainSuccs[i]; |
| SUnit *SuccDep = D.getSUnit(); |
| D.setSUnit(SU); |
| RemovePred(SuccDep, D); |
| if (isNewLoad) { |
| D.setSUnit(LoadSU); |
| AddPred(SuccDep, D); |
| } |
| } |
| if (isNewLoad) { |
| SDep D(LoadSU, SDep::Barrier); |
| D.setLatency(LoadSU->Latency); |
| AddPred(NewSU, D); |
| } |
| |
| ++NumUnfolds; |
| |
| if (NewSU->NumSuccsLeft == 0) { |
| NewSU->isAvailable = true; |
| return NewSU; |
| } |
| SU = NewSU; |
| } |
| |
| DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n"); |
| NewSU = Clone(SU); |
| |
| // New SUnit has the exact same predecessors. |
| for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) |
| if (!I->isArtificial()) |
| AddPred(NewSU, *I); |
| |
| // Only copy scheduled successors. Cut them from old node's successor |
| // list and move them over. |
| SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; |
| for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| if (I->isArtificial()) |
| continue; |
| SUnit *SuccSU = I->getSUnit(); |
| if (SuccSU->isScheduled) { |
| SDep D = *I; |
| D.setSUnit(NewSU); |
| AddPred(SuccSU, D); |
| D.setSUnit(SU); |
| DelDeps.push_back(std::make_pair(SuccSU, D)); |
| } |
| } |
| for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) |
| RemovePred(DelDeps[i].first, DelDeps[i].second); |
| |
| ++NumDups; |
| return NewSU; |
| } |
| |
| /// InsertCopiesAndMoveSuccs - Insert register copies and move all |
| /// scheduled successors of the given SUnit to the last copy. |
| void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, |
| const TargetRegisterClass *DestRC, |
| const TargetRegisterClass *SrcRC, |
| SmallVector<SUnit*, 2> &Copies) { |
| SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(NULL)); |
| CopyFromSU->CopySrcRC = SrcRC; |
| CopyFromSU->CopyDstRC = DestRC; |
| |
| SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(NULL)); |
| CopyToSU->CopySrcRC = DestRC; |
| CopyToSU->CopyDstRC = SrcRC; |
| |
| // Only copy scheduled successors. Cut them from old node's successor |
| // list and move them over. |
| SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; |
| for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| if (I->isArtificial()) |
| continue; |
| SUnit *SuccSU = I->getSUnit(); |
| if (SuccSU->isScheduled) { |
| SDep D = *I; |
| D.setSUnit(CopyToSU); |
| AddPred(SuccSU, D); |
| DelDeps.push_back(std::make_pair(SuccSU, *I)); |
| } |
| } |
| for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { |
| RemovePred(DelDeps[i].first, DelDeps[i].second); |
| } |
| SDep FromDep(SU, SDep::Data, Reg); |
| FromDep.setLatency(SU->Latency); |
| AddPred(CopyFromSU, FromDep); |
| SDep ToDep(CopyFromSU, SDep::Data, 0); |
| ToDep.setLatency(CopyFromSU->Latency); |
| AddPred(CopyToSU, ToDep); |
| |
| Copies.push_back(CopyFromSU); |
| Copies.push_back(CopyToSU); |
| |
| ++NumPRCopies; |
| } |
| |
| /// getPhysicalRegisterVT - Returns the ValueType of the physical register |
| /// definition of the specified node. |
| /// FIXME: Move to SelectionDAG? |
| static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, |
| const TargetInstrInfo *TII) { |
| const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); |
| assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!"); |
| unsigned NumRes = MCID.getNumDefs(); |
| for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) { |
| if (Reg == *ImpDef) |
| break; |
| ++NumRes; |
| } |
| return N->getValueType(NumRes); |
| } |
| |
| /// CheckForLiveRegDef - Return true and update live register vector if the |
| /// specified register def of the specified SUnit clobbers any "live" registers. |
| static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg, |
| std::vector<SUnit*> &LiveRegDefs, |
| SmallSet<unsigned, 4> &RegAdded, |
| SmallVector<unsigned, 4> &LRegs, |
| const TargetRegisterInfo *TRI) { |
| bool Added = false; |
| for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { |
| if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) { |
| if (RegAdded.insert(*AI)) { |
| LRegs.push_back(*AI); |
| Added = true; |
| } |
| } |
| } |
| return Added; |
| } |
| |
| /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay |
| /// scheduling of the given node to satisfy live physical register dependencies. |
| /// If the specific node is the last one that's available to schedule, do |
| /// whatever is necessary (i.e. backtracking or cloning) to make it possible. |
| bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU, |
| SmallVector<unsigned, 4> &LRegs){ |
| if (NumLiveRegs == 0) |
| return false; |
| |
| SmallSet<unsigned, 4> RegAdded; |
| // If this node would clobber any "live" register, then it's not ready. |
| for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| if (I->isAssignedRegDep()) { |
| CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs, |
| RegAdded, LRegs, TRI); |
| } |
| } |
| |
| for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { |
| if (Node->getOpcode() == ISD::INLINEASM) { |
| // Inline asm can clobber physical defs. |
| unsigned NumOps = Node->getNumOperands(); |
| if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) |
| --NumOps; // Ignore the glue operand. |
| |
| for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { |
| unsigned Flags = |
| cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); |
| unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); |
| |
| ++i; // Skip the ID value. |
| if (InlineAsm::isRegDefKind(Flags) || |
| InlineAsm::isRegDefEarlyClobberKind(Flags) || |
| InlineAsm::isClobberKind(Flags)) { |
| // Check for def of register or earlyclobber register. |
| for (; NumVals; --NumVals, ++i) { |
| unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); |
| } |
| } else |
| i += NumVals; |
| } |
| continue; |
| } |
| if (!Node->isMachineOpcode()) |
| continue; |
| const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode()); |
| if (!MCID.ImplicitDefs) |
| continue; |
| for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) { |
| CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI); |
| } |
| } |
| return !LRegs.empty(); |
| } |
| |
| |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up |
| /// schedulers. |
| void ScheduleDAGFast::ListScheduleBottomUp() { |
| unsigned CurCycle = 0; |
| |
| // Release any predecessors of the special Exit node. |
| ReleasePredecessors(&ExitSU, CurCycle); |
| |
| // Add root to Available queue. |
| if (!SUnits.empty()) { |
| SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; |
| assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!"); |
| RootSU->isAvailable = true; |
| AvailableQueue.push(RootSU); |
| } |
| |
| // While Available queue is not empty, grab the node with the highest |
| // priority. If it is not ready put it back. Schedule the node. |
| SmallVector<SUnit*, 4> NotReady; |
| DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap; |
| Sequence.reserve(SUnits.size()); |
| while (!AvailableQueue.empty()) { |
| bool Delayed = false; |
| LRegsMap.clear(); |
| SUnit *CurSU = AvailableQueue.pop(); |
| while (CurSU) { |
| SmallVector<unsigned, 4> LRegs; |
| if (!DelayForLiveRegsBottomUp(CurSU, LRegs)) |
| break; |
| Delayed = true; |
| LRegsMap.insert(std::make_pair(CurSU, LRegs)); |
| |
| CurSU->isPending = true; // This SU is not in AvailableQueue right now. |
| NotReady.push_back(CurSU); |
| CurSU = AvailableQueue.pop(); |
| } |
| |
| // All candidates are delayed due to live physical reg dependencies. |
| // Try code duplication or inserting cross class copies |
| // to resolve it. |
| if (Delayed && !CurSU) { |
| if (!CurSU) { |
| // Try duplicating the nodes that produces these |
| // "expensive to copy" values to break the dependency. In case even |
| // that doesn't work, insert cross class copies. |
| SUnit *TrySU = NotReady[0]; |
| SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU]; |
| assert(LRegs.size() == 1 && "Can't handle this yet!"); |
| unsigned Reg = LRegs[0]; |
| SUnit *LRDef = LiveRegDefs[Reg]; |
| EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII); |
| const TargetRegisterClass *RC = |
| TRI->getMinimalPhysRegClass(Reg, VT); |
| const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); |
| |
| // If cross copy register class is the same as RC, then it must be |
| // possible copy the value directly. Do not try duplicate the def. |
| // If cross copy register class is not the same as RC, then it's |
| // possible to copy the value but it require cross register class copies |
| // and it is expensive. |
| // If cross copy register class is null, then it's not possible to copy |
| // the value at all. |
| SUnit *NewDef = 0; |
| if (DestRC != RC) { |
| NewDef = CopyAndMoveSuccessors(LRDef); |
| if (!DestRC && !NewDef) |
| report_fatal_error("Can't handle live physical " |
| "register dependency!"); |
| } |
| if (!NewDef) { |
| // Issue copies, these can be expensive cross register class copies. |
| SmallVector<SUnit*, 2> Copies; |
| InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies); |
| DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum |
| << " to SU #" << Copies.front()->NodeNum << "\n"); |
| AddPred(TrySU, SDep(Copies.front(), SDep::Artificial)); |
| NewDef = Copies.back(); |
| } |
| |
| DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum |
| << " to SU #" << TrySU->NodeNum << "\n"); |
| LiveRegDefs[Reg] = NewDef; |
| AddPred(NewDef, SDep(TrySU, SDep::Artificial)); |
| TrySU->isAvailable = false; |
| CurSU = NewDef; |
| } |
| |
| if (!CurSU) { |
| llvm_unreachable("Unable to resolve live physical register dependencies!"); |
| } |
| } |
| |
| // Add the nodes that aren't ready back onto the available list. |
| for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { |
| NotReady[i]->isPending = false; |
| // May no longer be available due to backtracking. |
| if (NotReady[i]->isAvailable) |
| AvailableQueue.push(NotReady[i]); |
| } |
| NotReady.clear(); |
| |
| if (CurSU) |
| ScheduleNodeBottomUp(CurSU, CurCycle); |
| ++CurCycle; |
| } |
| |
| // Reverse the order since it is bottom up. |
| std::reverse(Sequence.begin(), Sequence.end()); |
| |
| #ifndef NDEBUG |
| VerifyScheduledSequence(/*isBottomUp=*/true); |
| #endif |
| } |
| |
| |
| namespace { |
| //===----------------------------------------------------------------------===// |
| // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the |
| // DAG in topological order. |
| // IMPORTANT: this may not work for targets with phyreg dependency. |
| // |
| class ScheduleDAGLinearize : public ScheduleDAGSDNodes { |
| public: |
| ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {} |
| |
| void Schedule(); |
| |
| MachineBasicBlock *EmitSchedule(MachineBasicBlock::iterator &InsertPos); |
| |
| private: |
| std::vector<SDNode*> Sequence; |
| DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user |
| |
| void ScheduleNode(SDNode *N); |
| }; |
| } // end anonymous namespace |
| |
| void ScheduleDAGLinearize::ScheduleNode(SDNode *N) { |
| if (N->getNodeId() != 0) |
| llvm_unreachable(0); |
| |
| if (!N->isMachineOpcode() && |
| (N->getOpcode() == ISD::EntryToken || isPassiveNode(N))) |
| // These nodes do not need to be translated into MIs. |
| return; |
| |
| DEBUG(dbgs() << "\n*** Scheduling: "); |
| DEBUG(N->dump(DAG)); |
| Sequence.push_back(N); |
| |
| unsigned NumOps = N->getNumOperands(); |
| if (unsigned NumLeft = NumOps) { |
| SDNode *GluedOpN = 0; |
| do { |
| const SDValue &Op = N->getOperand(NumLeft-1); |
| SDNode *OpN = Op.getNode(); |
| |
| if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) { |
| // Schedule glue operand right above N. |
| GluedOpN = OpN; |
| assert(OpN->getNodeId() != 0 && "Glue operand not ready?"); |
| OpN->setNodeId(0); |
| ScheduleNode(OpN); |
| continue; |
| } |
| |
| if (OpN == GluedOpN) |
| // Glue operand is already scheduled. |
| continue; |
| |
| DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN); |
| if (DI != GluedMap.end() && DI->second != N) |
| // Users of glues are counted against the glued users. |
| OpN = DI->second; |
| |
| unsigned Degree = OpN->getNodeId(); |
| assert(Degree > 0 && "Predecessor over-released!"); |
| OpN->setNodeId(--Degree); |
| if (Degree == 0) |
| ScheduleNode(OpN); |
| } while (--NumLeft); |
| } |
| } |
| |
| /// findGluedUser - Find the representative use of a glue value by walking |
| /// the use chain. |
| static SDNode *findGluedUser(SDNode *N) { |
| while (SDNode *Glued = N->getGluedUser()) |
| N = Glued; |
| return N; |
| } |
| |
| void ScheduleDAGLinearize::Schedule() { |
| DEBUG(dbgs() << "********** DAG Linearization **********\n"); |
| |
| SmallVector<SDNode*, 8> Glues; |
| unsigned DAGSize = 0; |
| for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(), |
| E = DAG->allnodes_end(); I != E; ++I) { |
| SDNode *N = I; |
| |
| // Use node id to record degree. |
| unsigned Degree = N->use_size(); |
| N->setNodeId(Degree); |
| unsigned NumVals = N->getNumValues(); |
| if (NumVals && N->getValueType(NumVals-1) == MVT::Glue && |
| N->hasAnyUseOfValue(NumVals-1)) { |
| SDNode *User = findGluedUser(N); |
| if (User) { |
| Glues.push_back(N); |
| GluedMap.insert(std::make_pair(N, User)); |
| } |
| } |
| |
| if (N->isMachineOpcode() || |
| (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N))) |
| ++DAGSize; |
| } |
| |
| for (unsigned i = 0, e = Glues.size(); i != e; ++i) { |
| SDNode *Glue = Glues[i]; |
| SDNode *GUser = GluedMap[Glue]; |
| unsigned Degree = Glue->getNodeId(); |
| unsigned UDegree = GUser->getNodeId(); |
| |
| // Glue user must be scheduled together with the glue operand. So other |
| // users of the glue operand must be treated as its users. |
| SDNode *ImmGUser = Glue->getGluedUser(); |
| for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end(); |
| ui != ue; ++ui) |
| if (*ui == ImmGUser) |
| --Degree; |
| GUser->setNodeId(UDegree + Degree); |
| Glue->setNodeId(1); |
| } |
| |
| Sequence.reserve(DAGSize); |
| ScheduleNode(DAG->getRoot().getNode()); |
| } |
| |
| MachineBasicBlock* |
| ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) { |
| InstrEmitter Emitter(BB, InsertPos); |
| DenseMap<SDValue, unsigned> VRBaseMap; |
| |
| DEBUG({ |
| dbgs() << "\n*** Final schedule ***\n"; |
| }); |
| |
| // FIXME: Handle dbg_values. |
| unsigned NumNodes = Sequence.size(); |
| for (unsigned i = 0; i != NumNodes; ++i) { |
| SDNode *N = Sequence[NumNodes-i-1]; |
| DEBUG(N->dump(DAG)); |
| Emitter.EmitNode(N, false, false, VRBaseMap); |
| } |
| |
| DEBUG(dbgs() << '\n'); |
| |
| InsertPos = Emitter.getInsertPos(); |
| return Emitter.getBlock(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Public Constructor Functions |
| //===----------------------------------------------------------------------===// |
| |
| llvm::ScheduleDAGSDNodes * |
| llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { |
| return new ScheduleDAGFast(*IS->MF); |
| } |
| |
| llvm::ScheduleDAGSDNodes * |
| llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) { |
| return new ScheduleDAGLinearize(*IS->MF); |
| } |