| //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the spill code placement analysis. |
| // |
| // Each edge bundle corresponds to a node in a Hopfield network. Constraints on |
| // basic blocks are weighted by the block frequency and added to become the node |
| // bias. |
| // |
| // Transparent basic blocks have the variable live through, but don't care if it |
| // is spilled or in a register. These blocks become connections in the Hopfield |
| // network, again weighted by block frequency. |
| // |
| // The Hopfield network minimizes (possibly locally) its energy function: |
| // |
| // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) |
| // |
| // The energy function represents the expected spill code execution frequency, |
| // or the cost of spilling. This is a Lyapunov function which never increases |
| // when a node is updated. It is guaranteed to converge to a local minimum. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "spillplacement" |
| #include "SpillPlacement.h" |
| #include "llvm/CodeGen/EdgeBundles.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Format.h" |
| |
| using namespace llvm; |
| |
| char SpillPlacement::ID = 0; |
| INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement", |
| "Spill Code Placement Analysis", true, true) |
| INITIALIZE_PASS_DEPENDENCY(EdgeBundles) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement", |
| "Spill Code Placement Analysis", true, true) |
| |
| char &llvm::SpillPlacementID = SpillPlacement::ID; |
| |
| void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequiredTransitive<EdgeBundles>(); |
| AU.addRequiredTransitive<MachineLoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// Node - Each edge bundle corresponds to a Hopfield node. |
| /// |
| /// The node contains precomputed frequency data that only depends on the CFG, |
| /// but Bias and Links are computed each time placeSpills is called. |
| /// |
| /// The node Value is positive when the variable should be in a register. The |
| /// value can change when linked nodes change, but convergence is very fast |
| /// because all weights are positive. |
| /// |
| struct SpillPlacement::Node { |
| /// Scale - Inverse block frequency feeding into[0] or out of[1] the bundle. |
| /// Ideally, these two numbers should be identical, but inaccuracies in the |
| /// block frequency estimates means that we need to normalize ingoing and |
| /// outgoing frequencies separately so they are commensurate. |
| float Scale[2]; |
| |
| /// Bias - Normalized contributions from non-transparent blocks. |
| /// A bundle connected to a MustSpill block has a huge negative bias, |
| /// otherwise it is a number in the range [-2;2]. |
| float Bias; |
| |
| /// Value - Output value of this node computed from the Bias and links. |
| /// This is always in the range [-1;1]. A positive number means the variable |
| /// should go in a register through this bundle. |
| float Value; |
| |
| typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector; |
| |
| /// Links - (Weight, BundleNo) for all transparent blocks connecting to other |
| /// bundles. The weights are all positive and add up to at most 2, weights |
| /// from ingoing and outgoing nodes separately add up to a most 1. The weight |
| /// sum can be less than 2 when the variable is not live into / out of some |
| /// connected basic blocks. |
| LinkVector Links; |
| |
| /// preferReg - Return true when this node prefers to be in a register. |
| bool preferReg() const { |
| // Undecided nodes (Value==0) go on the stack. |
| return Value > 0; |
| } |
| |
| /// mustSpill - Return True if this node is so biased that it must spill. |
| bool mustSpill() const { |
| // Actually, we must spill if Bias < sum(weights). |
| // It may be worth it to compute the weight sum here? |
| return Bias < -2.0f; |
| } |
| |
| /// Node - Create a blank Node. |
| Node() { |
| Scale[0] = Scale[1] = 0; |
| } |
| |
| /// clear - Reset per-query data, but preserve frequencies that only depend on |
| // the CFG. |
| void clear() { |
| Bias = Value = 0; |
| Links.clear(); |
| } |
| |
| /// addLink - Add a link to bundle b with weight w. |
| /// out=0 for an ingoing link, and 1 for an outgoing link. |
| void addLink(unsigned b, float w, bool out) { |
| // Normalize w relative to all connected blocks from that direction. |
| w *= Scale[out]; |
| |
| // There can be multiple links to the same bundle, add them up. |
| for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) |
| if (I->second == b) { |
| I->first += w; |
| return; |
| } |
| // This must be the first link to b. |
| Links.push_back(std::make_pair(w, b)); |
| } |
| |
| /// addBias - Bias this node from an ingoing[0] or outgoing[1] link. |
| /// Return the change to the total number of positive biases. |
| void addBias(float w, bool out) { |
| // Normalize w relative to all connected blocks from that direction. |
| w *= Scale[out]; |
| Bias += w; |
| } |
| |
| /// update - Recompute Value from Bias and Links. Return true when node |
| /// preference changes. |
| bool update(const Node nodes[]) { |
| // Compute the weighted sum of inputs. |
| float Sum = Bias; |
| for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) |
| Sum += I->first * nodes[I->second].Value; |
| |
| // The weighted sum is going to be in the range [-2;2]. Ideally, we should |
| // simply set Value = sign(Sum), but we will add a dead zone around 0 for |
| // two reasons: |
| // 1. It avoids arbitrary bias when all links are 0 as is possible during |
| // initial iterations. |
| // 2. It helps tame rounding errors when the links nominally sum to 0. |
| const float Thres = 1e-4f; |
| bool Before = preferReg(); |
| if (Sum < -Thres) |
| Value = -1; |
| else if (Sum > Thres) |
| Value = 1; |
| else |
| Value = 0; |
| return Before != preferReg(); |
| } |
| }; |
| |
| bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { |
| MF = &mf; |
| bundles = &getAnalysis<EdgeBundles>(); |
| loops = &getAnalysis<MachineLoopInfo>(); |
| |
| assert(!nodes && "Leaking node array"); |
| nodes = new Node[bundles->getNumBundles()]; |
| |
| // Compute total ingoing and outgoing block frequencies for all bundles. |
| BlockFrequency.resize(mf.getNumBlockIDs()); |
| for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) { |
| float Freq = LiveIntervals::getSpillWeight(true, false, |
| loops->getLoopDepth(I)); |
| unsigned Num = I->getNumber(); |
| BlockFrequency[Num] = Freq; |
| nodes[bundles->getBundle(Num, 1)].Scale[0] += Freq; |
| nodes[bundles->getBundle(Num, 0)].Scale[1] += Freq; |
| } |
| |
| // Scales are reciprocal frequencies. |
| for (unsigned i = 0, e = bundles->getNumBundles(); i != e; ++i) |
| for (unsigned d = 0; d != 2; ++d) |
| if (nodes[i].Scale[d] > 0) |
| nodes[i].Scale[d] = 1 / nodes[i].Scale[d]; |
| |
| // We never change the function. |
| return false; |
| } |
| |
| void SpillPlacement::releaseMemory() { |
| delete[] nodes; |
| nodes = 0; |
| } |
| |
| /// activate - mark node n as active if it wasn't already. |
| void SpillPlacement::activate(unsigned n) { |
| if (ActiveNodes->test(n)) |
| return; |
| ActiveNodes->set(n); |
| nodes[n].clear(); |
| |
| // Very large bundles usually come from big switches, indirect branches, |
| // landing pads, or loops with many 'continue' statements. It is difficult to |
| // allocate registers when so many different blocks are involved. |
| // |
| // Give a small negative bias to large bundles such that 1/32 of the |
| // connected blocks need to be interested before we consider expanding the |
| // region through the bundle. This helps compile time by limiting the number |
| // of blocks visited and the number of links in the Hopfield network. |
| if (bundles->getBlocks(n).size() > 100) |
| nodes[n].Bias = -0.0625f; |
| } |
| |
| |
| /// addConstraints - Compute node biases and weights from a set of constraints. |
| /// Set a bit in NodeMask for each active node. |
| void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) { |
| for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(), |
| E = LiveBlocks.end(); I != E; ++I) { |
| float Freq = getBlockFrequency(I->Number); |
| const float Bias[] = { |
| 0, // DontCare, |
| 1, // PrefReg, |
| -1, // PrefSpill |
| 0, // PrefBoth |
| -HUGE_VALF // MustSpill |
| }; |
| |
| // Live-in to block? |
| if (I->Entry != DontCare) { |
| unsigned ib = bundles->getBundle(I->Number, 0); |
| activate(ib); |
| nodes[ib].addBias(Freq * Bias[I->Entry], 1); |
| } |
| |
| // Live-out from block? |
| if (I->Exit != DontCare) { |
| unsigned ob = bundles->getBundle(I->Number, 1); |
| activate(ob); |
| nodes[ob].addBias(Freq * Bias[I->Exit], 0); |
| } |
| } |
| } |
| |
| /// addPrefSpill - Same as addConstraints(PrefSpill) |
| void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) { |
| for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); |
| I != E; ++I) { |
| float Freq = getBlockFrequency(*I); |
| if (Strong) |
| Freq += Freq; |
| unsigned ib = bundles->getBundle(*I, 0); |
| unsigned ob = bundles->getBundle(*I, 1); |
| activate(ib); |
| activate(ob); |
| nodes[ib].addBias(-Freq, 1); |
| nodes[ob].addBias(-Freq, 0); |
| } |
| } |
| |
| void SpillPlacement::addLinks(ArrayRef<unsigned> Links) { |
| for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E; |
| ++I) { |
| unsigned Number = *I; |
| unsigned ib = bundles->getBundle(Number, 0); |
| unsigned ob = bundles->getBundle(Number, 1); |
| |
| // Ignore self-loops. |
| if (ib == ob) |
| continue; |
| activate(ib); |
| activate(ob); |
| if (nodes[ib].Links.empty() && !nodes[ib].mustSpill()) |
| Linked.push_back(ib); |
| if (nodes[ob].Links.empty() && !nodes[ob].mustSpill()) |
| Linked.push_back(ob); |
| float Freq = getBlockFrequency(Number); |
| nodes[ib].addLink(ob, Freq, 1); |
| nodes[ob].addLink(ib, Freq, 0); |
| } |
| } |
| |
| bool SpillPlacement::scanActiveBundles() { |
| Linked.clear(); |
| RecentPositive.clear(); |
| for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) { |
| nodes[n].update(nodes); |
| // A node that must spill, or a node without any links is not going to |
| // change its value ever again, so exclude it from iterations. |
| if (nodes[n].mustSpill()) |
| continue; |
| if (!nodes[n].Links.empty()) |
| Linked.push_back(n); |
| if (nodes[n].preferReg()) |
| RecentPositive.push_back(n); |
| } |
| return !RecentPositive.empty(); |
| } |
| |
| /// iterate - Repeatedly update the Hopfield nodes until stability or the |
| /// maximum number of iterations is reached. |
| /// @param Linked - Numbers of linked nodes that need updating. |
| void SpillPlacement::iterate() { |
| // First update the recently positive nodes. They have likely received new |
| // negative bias that will turn them off. |
| while (!RecentPositive.empty()) |
| nodes[RecentPositive.pop_back_val()].update(nodes); |
| |
| if (Linked.empty()) |
| return; |
| |
| // Run up to 10 iterations. The edge bundle numbering is closely related to |
| // basic block numbering, so there is a strong tendency towards chains of |
| // linked nodes with sequential numbers. By scanning the linked nodes |
| // backwards and forwards, we make it very likely that a single node can |
| // affect the entire network in a single iteration. That means very fast |
| // convergence, usually in a single iteration. |
| for (unsigned iteration = 0; iteration != 10; ++iteration) { |
| // Scan backwards, skipping the last node which was just updated. |
| bool Changed = false; |
| for (SmallVectorImpl<unsigned>::const_reverse_iterator I = |
| llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) { |
| unsigned n = *I; |
| if (nodes[n].update(nodes)) { |
| Changed = true; |
| if (nodes[n].preferReg()) |
| RecentPositive.push_back(n); |
| } |
| } |
| if (!Changed || !RecentPositive.empty()) |
| return; |
| |
| // Scan forwards, skipping the first node which was just updated. |
| Changed = false; |
| for (SmallVectorImpl<unsigned>::const_iterator I = |
| llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) { |
| unsigned n = *I; |
| if (nodes[n].update(nodes)) { |
| Changed = true; |
| if (nodes[n].preferReg()) |
| RecentPositive.push_back(n); |
| } |
| } |
| if (!Changed || !RecentPositive.empty()) |
| return; |
| } |
| } |
| |
| void SpillPlacement::prepare(BitVector &RegBundles) { |
| Linked.clear(); |
| RecentPositive.clear(); |
| // Reuse RegBundles as our ActiveNodes vector. |
| ActiveNodes = &RegBundles; |
| ActiveNodes->clear(); |
| ActiveNodes->resize(bundles->getNumBundles()); |
| } |
| |
| bool |
| SpillPlacement::finish() { |
| assert(ActiveNodes && "Call prepare() first"); |
| |
| // Write preferences back to ActiveNodes. |
| bool Perfect = true; |
| for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) |
| if (!nodes[n].preferReg()) { |
| ActiveNodes->reset(n); |
| Perfect = false; |
| } |
| ActiveNodes = 0; |
| return Perfect; |
| } |