| //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the TargetLoweringBase class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include <cctype> |
| using namespace llvm; |
| |
| /// InitLibcallNames - Set default libcall names. |
| /// |
| static void InitLibcallNames(const char **Names, const TargetMachine &TM) { |
| Names[RTLIB::SHL_I16] = "__ashlhi3"; |
| Names[RTLIB::SHL_I32] = "__ashlsi3"; |
| Names[RTLIB::SHL_I64] = "__ashldi3"; |
| Names[RTLIB::SHL_I128] = "__ashlti3"; |
| Names[RTLIB::SRL_I16] = "__lshrhi3"; |
| Names[RTLIB::SRL_I32] = "__lshrsi3"; |
| Names[RTLIB::SRL_I64] = "__lshrdi3"; |
| Names[RTLIB::SRL_I128] = "__lshrti3"; |
| Names[RTLIB::SRA_I16] = "__ashrhi3"; |
| Names[RTLIB::SRA_I32] = "__ashrsi3"; |
| Names[RTLIB::SRA_I64] = "__ashrdi3"; |
| Names[RTLIB::SRA_I128] = "__ashrti3"; |
| Names[RTLIB::MUL_I8] = "__mulqi3"; |
| Names[RTLIB::MUL_I16] = "__mulhi3"; |
| Names[RTLIB::MUL_I32] = "__mulsi3"; |
| Names[RTLIB::MUL_I64] = "__muldi3"; |
| Names[RTLIB::MUL_I128] = "__multi3"; |
| Names[RTLIB::MULO_I32] = "__mulosi4"; |
| Names[RTLIB::MULO_I64] = "__mulodi4"; |
| Names[RTLIB::MULO_I128] = "__muloti4"; |
| Names[RTLIB::SDIV_I8] = "__divqi3"; |
| Names[RTLIB::SDIV_I16] = "__divhi3"; |
| Names[RTLIB::SDIV_I32] = "__divsi3"; |
| Names[RTLIB::SDIV_I64] = "__divdi3"; |
| Names[RTLIB::SDIV_I128] = "__divti3"; |
| Names[RTLIB::UDIV_I8] = "__udivqi3"; |
| Names[RTLIB::UDIV_I16] = "__udivhi3"; |
| Names[RTLIB::UDIV_I32] = "__udivsi3"; |
| Names[RTLIB::UDIV_I64] = "__udivdi3"; |
| Names[RTLIB::UDIV_I128] = "__udivti3"; |
| Names[RTLIB::SREM_I8] = "__modqi3"; |
| Names[RTLIB::SREM_I16] = "__modhi3"; |
| Names[RTLIB::SREM_I32] = "__modsi3"; |
| Names[RTLIB::SREM_I64] = "__moddi3"; |
| Names[RTLIB::SREM_I128] = "__modti3"; |
| Names[RTLIB::UREM_I8] = "__umodqi3"; |
| Names[RTLIB::UREM_I16] = "__umodhi3"; |
| Names[RTLIB::UREM_I32] = "__umodsi3"; |
| Names[RTLIB::UREM_I64] = "__umoddi3"; |
| Names[RTLIB::UREM_I128] = "__umodti3"; |
| |
| // These are generally not available. |
| Names[RTLIB::SDIVREM_I8] = 0; |
| Names[RTLIB::SDIVREM_I16] = 0; |
| Names[RTLIB::SDIVREM_I32] = 0; |
| Names[RTLIB::SDIVREM_I64] = 0; |
| Names[RTLIB::SDIVREM_I128] = 0; |
| Names[RTLIB::UDIVREM_I8] = 0; |
| Names[RTLIB::UDIVREM_I16] = 0; |
| Names[RTLIB::UDIVREM_I32] = 0; |
| Names[RTLIB::UDIVREM_I64] = 0; |
| Names[RTLIB::UDIVREM_I128] = 0; |
| |
| Names[RTLIB::NEG_I32] = "__negsi2"; |
| Names[RTLIB::NEG_I64] = "__negdi2"; |
| Names[RTLIB::ADD_F32] = "__addsf3"; |
| Names[RTLIB::ADD_F64] = "__adddf3"; |
| Names[RTLIB::ADD_F80] = "__addxf3"; |
| Names[RTLIB::ADD_F128] = "__addtf3"; |
| Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; |
| Names[RTLIB::SUB_F32] = "__subsf3"; |
| Names[RTLIB::SUB_F64] = "__subdf3"; |
| Names[RTLIB::SUB_F80] = "__subxf3"; |
| Names[RTLIB::SUB_F128] = "__subtf3"; |
| Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; |
| Names[RTLIB::MUL_F32] = "__mulsf3"; |
| Names[RTLIB::MUL_F64] = "__muldf3"; |
| Names[RTLIB::MUL_F80] = "__mulxf3"; |
| Names[RTLIB::MUL_F128] = "__multf3"; |
| Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; |
| Names[RTLIB::DIV_F32] = "__divsf3"; |
| Names[RTLIB::DIV_F64] = "__divdf3"; |
| Names[RTLIB::DIV_F80] = "__divxf3"; |
| Names[RTLIB::DIV_F128] = "__divtf3"; |
| Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; |
| Names[RTLIB::REM_F32] = "fmodf"; |
| Names[RTLIB::REM_F64] = "fmod"; |
| Names[RTLIB::REM_F80] = "fmodl"; |
| Names[RTLIB::REM_F128] = "fmodl"; |
| Names[RTLIB::REM_PPCF128] = "fmodl"; |
| Names[RTLIB::FMA_F32] = "fmaf"; |
| Names[RTLIB::FMA_F64] = "fma"; |
| Names[RTLIB::FMA_F80] = "fmal"; |
| Names[RTLIB::FMA_F128] = "fmal"; |
| Names[RTLIB::FMA_PPCF128] = "fmal"; |
| Names[RTLIB::POWI_F32] = "__powisf2"; |
| Names[RTLIB::POWI_F64] = "__powidf2"; |
| Names[RTLIB::POWI_F80] = "__powixf2"; |
| Names[RTLIB::POWI_F128] = "__powitf2"; |
| Names[RTLIB::POWI_PPCF128] = "__powitf2"; |
| Names[RTLIB::SQRT_F32] = "sqrtf"; |
| Names[RTLIB::SQRT_F64] = "sqrt"; |
| Names[RTLIB::SQRT_F80] = "sqrtl"; |
| Names[RTLIB::SQRT_F128] = "sqrtl"; |
| Names[RTLIB::SQRT_PPCF128] = "sqrtl"; |
| Names[RTLIB::LOG_F32] = "logf"; |
| Names[RTLIB::LOG_F64] = "log"; |
| Names[RTLIB::LOG_F80] = "logl"; |
| Names[RTLIB::LOG_F128] = "logl"; |
| Names[RTLIB::LOG_PPCF128] = "logl"; |
| Names[RTLIB::LOG2_F32] = "log2f"; |
| Names[RTLIB::LOG2_F64] = "log2"; |
| Names[RTLIB::LOG2_F80] = "log2l"; |
| Names[RTLIB::LOG2_F128] = "log2l"; |
| Names[RTLIB::LOG2_PPCF128] = "log2l"; |
| Names[RTLIB::LOG10_F32] = "log10f"; |
| Names[RTLIB::LOG10_F64] = "log10"; |
| Names[RTLIB::LOG10_F80] = "log10l"; |
| Names[RTLIB::LOG10_F128] = "log10l"; |
| Names[RTLIB::LOG10_PPCF128] = "log10l"; |
| Names[RTLIB::EXP_F32] = "expf"; |
| Names[RTLIB::EXP_F64] = "exp"; |
| Names[RTLIB::EXP_F80] = "expl"; |
| Names[RTLIB::EXP_F128] = "expl"; |
| Names[RTLIB::EXP_PPCF128] = "expl"; |
| Names[RTLIB::EXP2_F32] = "exp2f"; |
| Names[RTLIB::EXP2_F64] = "exp2"; |
| Names[RTLIB::EXP2_F80] = "exp2l"; |
| Names[RTLIB::EXP2_F128] = "exp2l"; |
| Names[RTLIB::EXP2_PPCF128] = "exp2l"; |
| Names[RTLIB::SIN_F32] = "sinf"; |
| Names[RTLIB::SIN_F64] = "sin"; |
| Names[RTLIB::SIN_F80] = "sinl"; |
| Names[RTLIB::SIN_F128] = "sinl"; |
| Names[RTLIB::SIN_PPCF128] = "sinl"; |
| Names[RTLIB::COS_F32] = "cosf"; |
| Names[RTLIB::COS_F64] = "cos"; |
| Names[RTLIB::COS_F80] = "cosl"; |
| Names[RTLIB::COS_F128] = "cosl"; |
| Names[RTLIB::COS_PPCF128] = "cosl"; |
| Names[RTLIB::POW_F32] = "powf"; |
| Names[RTLIB::POW_F64] = "pow"; |
| Names[RTLIB::POW_F80] = "powl"; |
| Names[RTLIB::POW_F128] = "powl"; |
| Names[RTLIB::POW_PPCF128] = "powl"; |
| Names[RTLIB::CEIL_F32] = "ceilf"; |
| Names[RTLIB::CEIL_F64] = "ceil"; |
| Names[RTLIB::CEIL_F80] = "ceill"; |
| Names[RTLIB::CEIL_F128] = "ceill"; |
| Names[RTLIB::CEIL_PPCF128] = "ceill"; |
| Names[RTLIB::TRUNC_F32] = "truncf"; |
| Names[RTLIB::TRUNC_F64] = "trunc"; |
| Names[RTLIB::TRUNC_F80] = "truncl"; |
| Names[RTLIB::TRUNC_F128] = "truncl"; |
| Names[RTLIB::TRUNC_PPCF128] = "truncl"; |
| Names[RTLIB::RINT_F32] = "rintf"; |
| Names[RTLIB::RINT_F64] = "rint"; |
| Names[RTLIB::RINT_F80] = "rintl"; |
| Names[RTLIB::RINT_F128] = "rintl"; |
| Names[RTLIB::RINT_PPCF128] = "rintl"; |
| Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; |
| Names[RTLIB::NEARBYINT_F64] = "nearbyint"; |
| Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; |
| Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; |
| Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; |
| Names[RTLIB::FLOOR_F32] = "floorf"; |
| Names[RTLIB::FLOOR_F64] = "floor"; |
| Names[RTLIB::FLOOR_F80] = "floorl"; |
| Names[RTLIB::FLOOR_F128] = "floorl"; |
| Names[RTLIB::FLOOR_PPCF128] = "floorl"; |
| Names[RTLIB::COPYSIGN_F32] = "copysignf"; |
| Names[RTLIB::COPYSIGN_F64] = "copysign"; |
| Names[RTLIB::COPYSIGN_F80] = "copysignl"; |
| Names[RTLIB::COPYSIGN_F128] = "copysignl"; |
| Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; |
| Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; |
| Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; |
| Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; |
| Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; |
| Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; |
| Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; |
| Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; |
| Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; |
| Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; |
| Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; |
| Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; |
| Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; |
| Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; |
| Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; |
| Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; |
| Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; |
| Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; |
| Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; |
| Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; |
| Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; |
| Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; |
| Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; |
| Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; |
| Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; |
| Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; |
| Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; |
| Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; |
| Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; |
| Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; |
| Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; |
| Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; |
| Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; |
| Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; |
| Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; |
| Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; |
| Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; |
| Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; |
| Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; |
| Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; |
| Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; |
| Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; |
| Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; |
| Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; |
| Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; |
| Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; |
| Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; |
| Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; |
| Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; |
| Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; |
| Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; |
| Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; |
| Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; |
| Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; |
| Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; |
| Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; |
| Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; |
| Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; |
| Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; |
| Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; |
| Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; |
| Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; |
| Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; |
| Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; |
| Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; |
| Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; |
| Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; |
| Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; |
| Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; |
| Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; |
| Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; |
| Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; |
| Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; |
| Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; |
| Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; |
| Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; |
| Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; |
| Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; |
| Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; |
| Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; |
| Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; |
| Names[RTLIB::OEQ_F32] = "__eqsf2"; |
| Names[RTLIB::OEQ_F64] = "__eqdf2"; |
| Names[RTLIB::OEQ_F128] = "__eqtf2"; |
| Names[RTLIB::UNE_F32] = "__nesf2"; |
| Names[RTLIB::UNE_F64] = "__nedf2"; |
| Names[RTLIB::UNE_F128] = "__netf2"; |
| Names[RTLIB::OGE_F32] = "__gesf2"; |
| Names[RTLIB::OGE_F64] = "__gedf2"; |
| Names[RTLIB::OGE_F128] = "__getf2"; |
| Names[RTLIB::OLT_F32] = "__ltsf2"; |
| Names[RTLIB::OLT_F64] = "__ltdf2"; |
| Names[RTLIB::OLT_F128] = "__lttf2"; |
| Names[RTLIB::OLE_F32] = "__lesf2"; |
| Names[RTLIB::OLE_F64] = "__ledf2"; |
| Names[RTLIB::OLE_F128] = "__letf2"; |
| Names[RTLIB::OGT_F32] = "__gtsf2"; |
| Names[RTLIB::OGT_F64] = "__gtdf2"; |
| Names[RTLIB::OGT_F128] = "__gttf2"; |
| Names[RTLIB::UO_F32] = "__unordsf2"; |
| Names[RTLIB::UO_F64] = "__unorddf2"; |
| Names[RTLIB::UO_F128] = "__unordtf2"; |
| Names[RTLIB::O_F32] = "__unordsf2"; |
| Names[RTLIB::O_F64] = "__unorddf2"; |
| Names[RTLIB::O_F128] = "__unordtf2"; |
| Names[RTLIB::MEMCPY] = "memcpy"; |
| Names[RTLIB::MEMMOVE] = "memmove"; |
| Names[RTLIB::MEMSET] = "memset"; |
| Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; |
| |
| if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) { |
| Names[RTLIB::SINCOS_F32] = "sincosf"; |
| Names[RTLIB::SINCOS_F64] = "sincos"; |
| Names[RTLIB::SINCOS_F80] = "sincosl"; |
| Names[RTLIB::SINCOS_F128] = "sincosl"; |
| Names[RTLIB::SINCOS_PPCF128] = "sincosl"; |
| } else { |
| // These are generally not available. |
| Names[RTLIB::SINCOS_F32] = 0; |
| Names[RTLIB::SINCOS_F64] = 0; |
| Names[RTLIB::SINCOS_F80] = 0; |
| Names[RTLIB::SINCOS_F128] = 0; |
| Names[RTLIB::SINCOS_PPCF128] = 0; |
| } |
| } |
| |
| /// InitLibcallCallingConvs - Set default libcall CallingConvs. |
| /// |
| static void InitLibcallCallingConvs(CallingConv::ID *CCs) { |
| for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { |
| CCs[i] = CallingConv::C; |
| } |
| } |
| |
| /// getFPEXT - Return the FPEXT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f32) { |
| if (RetVT == MVT::f64) |
| return FPEXT_F32_F64; |
| if (RetVT == MVT::f128) |
| return FPEXT_F32_F128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::f128) |
| return FPEXT_F64_F128; |
| } |
| |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPROUND - Return the FPROUND_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { |
| if (RetVT == MVT::f32) { |
| if (OpVT == MVT::f64) |
| return FPROUND_F64_F32; |
| if (OpVT == MVT::f80) |
| return FPROUND_F80_F32; |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F32; |
| if (OpVT == MVT::ppcf128) |
| return FPROUND_PPCF128_F32; |
| } else if (RetVT == MVT::f64) { |
| if (OpVT == MVT::f80) |
| return FPROUND_F80_F64; |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F64; |
| if (OpVT == MVT::ppcf128) |
| return FPROUND_PPCF128_F64; |
| } |
| |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f32) { |
| if (RetVT == MVT::i8) |
| return FPTOSINT_F32_I8; |
| if (RetVT == MVT::i16) |
| return FPTOSINT_F32_I16; |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F32_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F32_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F32_I128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::i8) |
| return FPTOSINT_F64_I8; |
| if (RetVT == MVT::i16) |
| return FPTOSINT_F64_I16; |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F64_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F64_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F64_I128; |
| } else if (OpVT == MVT::f80) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F80_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F80_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F80_I128; |
| } else if (OpVT == MVT::f128) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F128_I128; |
| } else if (OpVT == MVT::ppcf128) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_PPCF128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_PPCF128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_PPCF128_I128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f32) { |
| if (RetVT == MVT::i8) |
| return FPTOUINT_F32_I8; |
| if (RetVT == MVT::i16) |
| return FPTOUINT_F32_I16; |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F32_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F32_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F32_I128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::i8) |
| return FPTOUINT_F64_I8; |
| if (RetVT == MVT::i16) |
| return FPTOUINT_F64_I16; |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F64_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F64_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F64_I128; |
| } else if (OpVT == MVT::f80) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F80_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F80_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F80_I128; |
| } else if (OpVT == MVT::f128) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F128_I128; |
| } else if (OpVT == MVT::ppcf128) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_PPCF128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_PPCF128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_PPCF128_I128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::i32) { |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I32_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I32_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I32_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I32_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I32_PPCF128; |
| } else if (OpVT == MVT::i64) { |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I64_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I64_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I64_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I64_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I64_PPCF128; |
| } else if (OpVT == MVT::i128) { |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I128_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I128_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I128_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I128_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I128_PPCF128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::i32) { |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I32_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I32_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I32_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I32_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I32_PPCF128; |
| } else if (OpVT == MVT::i64) { |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I64_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I64_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I64_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I64_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I64_PPCF128; |
| } else if (OpVT == MVT::i128) { |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I128_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I128_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I128_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I128_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I128_PPCF128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// InitCmpLibcallCCs - Set default comparison libcall CC. |
| /// |
| static void InitCmpLibcallCCs(ISD::CondCode *CCs) { |
| memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); |
| CCs[RTLIB::OEQ_F32] = ISD::SETEQ; |
| CCs[RTLIB::OEQ_F64] = ISD::SETEQ; |
| CCs[RTLIB::OEQ_F128] = ISD::SETEQ; |
| CCs[RTLIB::UNE_F32] = ISD::SETNE; |
| CCs[RTLIB::UNE_F64] = ISD::SETNE; |
| CCs[RTLIB::UNE_F128] = ISD::SETNE; |
| CCs[RTLIB::OGE_F32] = ISD::SETGE; |
| CCs[RTLIB::OGE_F64] = ISD::SETGE; |
| CCs[RTLIB::OGE_F128] = ISD::SETGE; |
| CCs[RTLIB::OLT_F32] = ISD::SETLT; |
| CCs[RTLIB::OLT_F64] = ISD::SETLT; |
| CCs[RTLIB::OLT_F128] = ISD::SETLT; |
| CCs[RTLIB::OLE_F32] = ISD::SETLE; |
| CCs[RTLIB::OLE_F64] = ISD::SETLE; |
| CCs[RTLIB::OLE_F128] = ISD::SETLE; |
| CCs[RTLIB::OGT_F32] = ISD::SETGT; |
| CCs[RTLIB::OGT_F64] = ISD::SETGT; |
| CCs[RTLIB::OGT_F128] = ISD::SETGT; |
| CCs[RTLIB::UO_F32] = ISD::SETNE; |
| CCs[RTLIB::UO_F64] = ISD::SETNE; |
| CCs[RTLIB::UO_F128] = ISD::SETNE; |
| CCs[RTLIB::O_F32] = ISD::SETEQ; |
| CCs[RTLIB::O_F64] = ISD::SETEQ; |
| CCs[RTLIB::O_F128] = ISD::SETEQ; |
| } |
| |
| /// NOTE: The constructor takes ownership of TLOF. |
| TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm, |
| const TargetLoweringObjectFile *tlof) |
| : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) { |
| // All operations default to being supported. |
| memset(OpActions, 0, sizeof(OpActions)); |
| memset(LoadExtActions, 0, sizeof(LoadExtActions)); |
| memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); |
| memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); |
| memset(CondCodeActions, 0, sizeof(CondCodeActions)); |
| |
| // Set default actions for various operations. |
| for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { |
| // Default all indexed load / store to expand. |
| for (unsigned IM = (unsigned)ISD::PRE_INC; |
| IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { |
| setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); |
| setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); |
| } |
| |
| // These operations default to expand. |
| setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); |
| } |
| |
| // Most targets ignore the @llvm.prefetch intrinsic. |
| setOperationAction(ISD::PREFETCH, MVT::Other, Expand); |
| |
| // ConstantFP nodes default to expand. Targets can either change this to |
| // Legal, in which case all fp constants are legal, or use isFPImmLegal() |
| // to optimize expansions for certain constants. |
| setOperationAction(ISD::ConstantFP, MVT::f16, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f80, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f128, Expand); |
| |
| // These library functions default to expand. |
| setOperationAction(ISD::FLOG , MVT::f16, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f16, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f16, Expand); |
| setOperationAction(ISD::FEXP , MVT::f16, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f16, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::f16, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); |
| setOperationAction(ISD::FCEIL, MVT::f16, Expand); |
| setOperationAction(ISD::FRINT, MVT::f16, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::f16, Expand); |
| setOperationAction(ISD::FLOG , MVT::f32, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f32, Expand); |
| setOperationAction(ISD::FEXP , MVT::f32, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f32, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::f32, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); |
| setOperationAction(ISD::FCEIL, MVT::f32, Expand); |
| setOperationAction(ISD::FRINT, MVT::f32, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG , MVT::f64, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f64, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f64, Expand); |
| setOperationAction(ISD::FEXP , MVT::f64, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f64, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::f64, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); |
| setOperationAction(ISD::FCEIL, MVT::f64, Expand); |
| setOperationAction(ISD::FRINT, MVT::f64, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::f64, Expand); |
| setOperationAction(ISD::FLOG , MVT::f128, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f128, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f128, Expand); |
| setOperationAction(ISD::FEXP , MVT::f128, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f128, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::f128, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand); |
| setOperationAction(ISD::FCEIL, MVT::f128, Expand); |
| setOperationAction(ISD::FRINT, MVT::f128, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::f128, Expand); |
| |
| // Default ISD::TRAP to expand (which turns it into abort). |
| setOperationAction(ISD::TRAP, MVT::Other, Expand); |
| |
| // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" |
| // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. |
| // |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); |
| |
| IsLittleEndian = TD->isLittleEndian(); |
| PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0)); |
| memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); |
| memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); |
| MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; |
| MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize |
| = MaxStoresPerMemmoveOptSize = 4; |
| BenefitFromCodePlacementOpt = false; |
| UseUnderscoreSetJmp = false; |
| UseUnderscoreLongJmp = false; |
| SelectIsExpensive = false; |
| IntDivIsCheap = false; |
| Pow2DivIsCheap = false; |
| JumpIsExpensive = false; |
| PredictableSelectIsExpensive = false; |
| StackPointerRegisterToSaveRestore = 0; |
| ExceptionPointerRegister = 0; |
| ExceptionSelectorRegister = 0; |
| BooleanContents = UndefinedBooleanContent; |
| BooleanVectorContents = UndefinedBooleanContent; |
| SchedPreferenceInfo = Sched::ILP; |
| JumpBufSize = 0; |
| JumpBufAlignment = 0; |
| MinFunctionAlignment = 0; |
| PrefFunctionAlignment = 0; |
| PrefLoopAlignment = 0; |
| MinStackArgumentAlignment = 1; |
| ShouldFoldAtomicFences = false; |
| InsertFencesForAtomic = false; |
| SupportJumpTables = true; |
| MinimumJumpTableEntries = 4; |
| |
| InitLibcallNames(LibcallRoutineNames, TM); |
| InitCmpLibcallCCs(CmpLibcallCCs); |
| InitLibcallCallingConvs(LibcallCallingConvs); |
| } |
| |
| TargetLoweringBase::~TargetLoweringBase() { |
| delete &TLOF; |
| } |
| |
| MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const { |
| return MVT::getIntegerVT(8*TD->getPointerSize(0)); |
| } |
| |
| EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const { |
| assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); |
| if (LHSTy.isVector()) |
| return LHSTy; |
| return getScalarShiftAmountTy(LHSTy); |
| } |
| |
| /// canOpTrap - Returns true if the operation can trap for the value type. |
| /// VT must be a legal type. |
| bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { |
| assert(isTypeLegal(VT)); |
| switch (Op) { |
| default: |
| return false; |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| return true; |
| } |
| } |
| |
| |
| static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, |
| unsigned &NumIntermediates, |
| MVT &RegisterVT, |
| TargetLoweringBase *TLI) { |
| // Figure out the right, legal destination reg to copy into. |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT EltTy = VT.getVectorElementType(); |
| |
| unsigned NumVectorRegs = 1; |
| |
| // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we |
| // could break down into LHS/RHS like LegalizeDAG does. |
| if (!isPowerOf2_32(NumElts)) { |
| NumVectorRegs = NumElts; |
| NumElts = 1; |
| } |
| |
| // Divide the input until we get to a supported size. This will always |
| // end with a scalar if the target doesn't support vectors. |
| while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { |
| NumElts >>= 1; |
| NumVectorRegs <<= 1; |
| } |
| |
| NumIntermediates = NumVectorRegs; |
| |
| MVT NewVT = MVT::getVectorVT(EltTy, NumElts); |
| if (!TLI->isTypeLegal(NewVT)) |
| NewVT = EltTy; |
| IntermediateVT = NewVT; |
| |
| unsigned NewVTSize = NewVT.getSizeInBits(); |
| |
| // Convert sizes such as i33 to i64. |
| if (!isPowerOf2_32(NewVTSize)) |
| NewVTSize = NextPowerOf2(NewVTSize); |
| |
| MVT DestVT = TLI->getRegisterType(NewVT); |
| RegisterVT = DestVT; |
| if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. |
| return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); |
| |
| // Otherwise, promotion or legal types use the same number of registers as |
| // the vector decimated to the appropriate level. |
| return NumVectorRegs; |
| } |
| |
| /// isLegalRC - Return true if the value types that can be represented by the |
| /// specified register class are all legal. |
| bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { |
| for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| I != E; ++I) { |
| if (isTypeLegal(*I)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// findRepresentativeClass - Return the largest legal super-reg register class |
| /// of the register class for the specified type and its associated "cost". |
| std::pair<const TargetRegisterClass*, uint8_t> |
| TargetLoweringBase::findRepresentativeClass(MVT VT) const { |
| const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; |
| if (!RC) |
| return std::make_pair(RC, 0); |
| |
| // Compute the set of all super-register classes. |
| BitVector SuperRegRC(TRI->getNumRegClasses()); |
| for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) |
| SuperRegRC.setBitsInMask(RCI.getMask()); |
| |
| // Find the first legal register class with the largest spill size. |
| const TargetRegisterClass *BestRC = RC; |
| for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { |
| const TargetRegisterClass *SuperRC = TRI->getRegClass(i); |
| // We want the largest possible spill size. |
| if (SuperRC->getSize() <= BestRC->getSize()) |
| continue; |
| if (!isLegalRC(SuperRC)) |
| continue; |
| BestRC = SuperRC; |
| } |
| return std::make_pair(BestRC, 1); |
| } |
| |
| /// computeRegisterProperties - Once all of the register classes are added, |
| /// this allows us to compute derived properties we expose. |
| void TargetLoweringBase::computeRegisterProperties() { |
| assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && |
| "Too many value types for ValueTypeActions to hold!"); |
| |
| // Everything defaults to needing one register. |
| for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { |
| NumRegistersForVT[i] = 1; |
| RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; |
| } |
| // ...except isVoid, which doesn't need any registers. |
| NumRegistersForVT[MVT::isVoid] = 0; |
| |
| // Find the largest integer register class. |
| unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; |
| for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) |
| assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| |
| // Every integer value type larger than this largest register takes twice as |
| // many registers to represent as the previous ValueType. |
| for (unsigned ExpandedReg = LargestIntReg + 1; |
| ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { |
| NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; |
| RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; |
| TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); |
| ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, |
| TypeExpandInteger); |
| } |
| |
| // Inspect all of the ValueType's smaller than the largest integer |
| // register to see which ones need promotion. |
| unsigned LegalIntReg = LargestIntReg; |
| for (unsigned IntReg = LargestIntReg - 1; |
| IntReg >= (unsigned)MVT::i1; --IntReg) { |
| MVT IVT = (MVT::SimpleValueType)IntReg; |
| if (isTypeLegal(IVT)) { |
| LegalIntReg = IntReg; |
| } else { |
| RegisterTypeForVT[IntReg] = TransformToType[IntReg] = |
| (const MVT::SimpleValueType)LegalIntReg; |
| ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); |
| } |
| } |
| |
| // ppcf128 type is really two f64's. |
| if (!isTypeLegal(MVT::ppcf128)) { |
| NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; |
| RegisterTypeForVT[MVT::ppcf128] = MVT::f64; |
| TransformToType[MVT::ppcf128] = MVT::f64; |
| ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); |
| } |
| |
| // Decide how to handle f128. If the target does not have native f128 support, |
| // expand it to i128 and we will be generating soft float library calls. |
| if (!isTypeLegal(MVT::f128)) { |
| NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; |
| RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; |
| TransformToType[MVT::f128] = MVT::i128; |
| ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); |
| } |
| |
| // Decide how to handle f64. If the target does not have native f64 support, |
| // expand it to i64 and we will be generating soft float library calls. |
| if (!isTypeLegal(MVT::f64)) { |
| NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; |
| RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; |
| TransformToType[MVT::f64] = MVT::i64; |
| ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); |
| } |
| |
| // Decide how to handle f32. If the target does not have native support for |
| // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. |
| if (!isTypeLegal(MVT::f32)) { |
| if (isTypeLegal(MVT::f64)) { |
| NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; |
| RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; |
| TransformToType[MVT::f32] = MVT::f64; |
| ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); |
| } else { |
| NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; |
| RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; |
| TransformToType[MVT::f32] = MVT::i32; |
| ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); |
| } |
| } |
| |
| // Loop over all of the vector value types to see which need transformations. |
| for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; |
| i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { |
| MVT VT = (MVT::SimpleValueType)i; |
| if (isTypeLegal(VT)) continue; |
| |
| // Determine if there is a legal wider type. If so, we should promote to |
| // that wider vector type. |
| MVT EltVT = VT.getVectorElementType(); |
| unsigned NElts = VT.getVectorNumElements(); |
| if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) { |
| bool IsLegalWiderType = false; |
| // First try to promote the elements of integer vectors. If no legal |
| // promotion was found, fallback to the widen-vector method. |
| for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { |
| MVT SVT = (MVT::SimpleValueType)nVT; |
| // Promote vectors of integers to vectors with the same number |
| // of elements, with a wider element type. |
| if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() |
| && SVT.getVectorNumElements() == NElts && |
| isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { |
| TransformToType[i] = SVT; |
| RegisterTypeForVT[i] = SVT; |
| NumRegistersForVT[i] = 1; |
| ValueTypeActions.setTypeAction(VT, TypePromoteInteger); |
| IsLegalWiderType = true; |
| break; |
| } |
| } |
| |
| if (IsLegalWiderType) continue; |
| |
| // Try to widen the vector. |
| for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { |
| MVT SVT = (MVT::SimpleValueType)nVT; |
| if (SVT.getVectorElementType() == EltVT && |
| SVT.getVectorNumElements() > NElts && |
| isTypeLegal(SVT)) { |
| TransformToType[i] = SVT; |
| RegisterTypeForVT[i] = SVT; |
| NumRegistersForVT[i] = 1; |
| ValueTypeActions.setTypeAction(VT, TypeWidenVector); |
| IsLegalWiderType = true; |
| break; |
| } |
| } |
| if (IsLegalWiderType) continue; |
| } |
| |
| MVT IntermediateVT; |
| MVT RegisterVT; |
| unsigned NumIntermediates; |
| NumRegistersForVT[i] = |
| getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, |
| RegisterVT, this); |
| RegisterTypeForVT[i] = RegisterVT; |
| |
| MVT NVT = VT.getPow2VectorType(); |
| if (NVT == VT) { |
| // Type is already a power of 2. The default action is to split. |
| TransformToType[i] = MVT::Other; |
| unsigned NumElts = VT.getVectorNumElements(); |
| ValueTypeActions.setTypeAction(VT, |
| NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); |
| } else { |
| TransformToType[i] = NVT; |
| ValueTypeActions.setTypeAction(VT, TypeWidenVector); |
| } |
| } |
| |
| // Determine the 'representative' register class for each value type. |
| // An representative register class is the largest (meaning one which is |
| // not a sub-register class / subreg register class) legal register class for |
| // a group of value types. For example, on i386, i8, i16, and i32 |
| // representative would be GR32; while on x86_64 it's GR64. |
| for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { |
| const TargetRegisterClass* RRC; |
| uint8_t Cost; |
| tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); |
| RepRegClassForVT[i] = RRC; |
| RepRegClassCostForVT[i] = Cost; |
| } |
| } |
| |
| EVT TargetLoweringBase::getSetCCResultType(EVT VT) const { |
| assert(!VT.isVector() && "No default SetCC type for vectors!"); |
| return getPointerTy(0).SimpleTy; |
| } |
| |
| MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { |
| return MVT::i32; // return the default value |
| } |
| |
| /// getVectorTypeBreakdown - Vector types are broken down into some number of |
| /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 |
| /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. |
| /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. |
| /// |
| /// This method returns the number of registers needed, and the VT for each |
| /// register. It also returns the VT and quantity of the intermediate values |
| /// before they are promoted/expanded. |
| /// |
| unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, |
| EVT &IntermediateVT, |
| unsigned &NumIntermediates, |
| MVT &RegisterVT) const { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // If there is a wider vector type with the same element type as this one, |
| // or a promoted vector type that has the same number of elements which |
| // are wider, then we should convert to that legal vector type. |
| // This handles things like <2 x float> -> <4 x float> and |
| // <4 x i1> -> <4 x i32>. |
| LegalizeTypeAction TA = getTypeAction(Context, VT); |
| if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { |
| EVT RegisterEVT = getTypeToTransformTo(Context, VT); |
| if (isTypeLegal(RegisterEVT)) { |
| IntermediateVT = RegisterEVT; |
| RegisterVT = RegisterEVT.getSimpleVT(); |
| NumIntermediates = 1; |
| return 1; |
| } |
| } |
| |
| // Figure out the right, legal destination reg to copy into. |
| EVT EltTy = VT.getVectorElementType(); |
| |
| unsigned NumVectorRegs = 1; |
| |
| // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we |
| // could break down into LHS/RHS like LegalizeDAG does. |
| if (!isPowerOf2_32(NumElts)) { |
| NumVectorRegs = NumElts; |
| NumElts = 1; |
| } |
| |
| // Divide the input until we get to a supported size. This will always |
| // end with a scalar if the target doesn't support vectors. |
| while (NumElts > 1 && !isTypeLegal( |
| EVT::getVectorVT(Context, EltTy, NumElts))) { |
| NumElts >>= 1; |
| NumVectorRegs <<= 1; |
| } |
| |
| NumIntermediates = NumVectorRegs; |
| |
| EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); |
| if (!isTypeLegal(NewVT)) |
| NewVT = EltTy; |
| IntermediateVT = NewVT; |
| |
| MVT DestVT = getRegisterType(Context, NewVT); |
| RegisterVT = DestVT; |
| unsigned NewVTSize = NewVT.getSizeInBits(); |
| |
| // Convert sizes such as i33 to i64. |
| if (!isPowerOf2_32(NewVTSize)) |
| NewVTSize = NextPowerOf2(NewVTSize); |
| |
| if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. |
| return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); |
| |
| // Otherwise, promotion or legal types use the same number of registers as |
| // the vector decimated to the appropriate level. |
| return NumVectorRegs; |
| } |
| |
| /// Get the EVTs and ArgFlags collections that represent the legalized return |
| /// type of the given function. This does not require a DAG or a return value, |
| /// and is suitable for use before any DAGs for the function are constructed. |
| /// TODO: Move this out of TargetLowering.cpp. |
| void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr, |
| SmallVectorImpl<ISD::OutputArg> &Outs, |
| const TargetLowering &TLI) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, ReturnType, ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) return; |
| |
| for (unsigned j = 0, f = NumValues; j != f; ++j) { |
| EVT VT = ValueVTs[j]; |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| |
| if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| // FIXME: C calling convention requires the return type to be promoted to |
| // at least 32-bit. But this is not necessary for non-C calling |
| // conventions. The frontend should mark functions whose return values |
| // require promoting with signext or zeroext attributes. |
| if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { |
| MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); |
| if (VT.bitsLT(MinVT)) |
| VT = MinVT; |
| } |
| |
| unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); |
| MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); |
| |
| // 'inreg' on function refers to return value |
| ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
| if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) |
| Flags.setInReg(); |
| |
| // Propagate extension type if any |
| if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) |
| Flags.setSExt(); |
| else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) |
| Flags.setZExt(); |
| |
| for (unsigned i = 0; i < NumParts; ++i) |
| Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0)); |
| } |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. This is the actual |
| /// alignment, not its logarithm. |
| unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const { |
| return TD->getCallFrameTypeAlignment(Ty); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetTransformInfo Helpers |
| //===----------------------------------------------------------------------===// |
| |
| int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { |
| enum InstructionOpcodes { |
| #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, |
| #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM |
| #include "llvm/IR/Instruction.def" |
| }; |
| switch (static_cast<InstructionOpcodes>(Opcode)) { |
| case Ret: return 0; |
| case Br: return 0; |
| case Switch: return 0; |
| case IndirectBr: return 0; |
| case Invoke: return 0; |
| case Resume: return 0; |
| case Unreachable: return 0; |
| case Add: return ISD::ADD; |
| case FAdd: return ISD::FADD; |
| case Sub: return ISD::SUB; |
| case FSub: return ISD::FSUB; |
| case Mul: return ISD::MUL; |
| case FMul: return ISD::FMUL; |
| case UDiv: return ISD::UDIV; |
| case SDiv: return ISD::UDIV; |
| case FDiv: return ISD::FDIV; |
| case URem: return ISD::UREM; |
| case SRem: return ISD::SREM; |
| case FRem: return ISD::FREM; |
| case Shl: return ISD::SHL; |
| case LShr: return ISD::SRL; |
| case AShr: return ISD::SRA; |
| case And: return ISD::AND; |
| case Or: return ISD::OR; |
| case Xor: return ISD::XOR; |
| case Alloca: return 0; |
| case Load: return ISD::LOAD; |
| case Store: return ISD::STORE; |
| case GetElementPtr: return 0; |
| case Fence: return 0; |
| case AtomicCmpXchg: return 0; |
| case AtomicRMW: return 0; |
| case Trunc: return ISD::TRUNCATE; |
| case ZExt: return ISD::ZERO_EXTEND; |
| case SExt: return ISD::SIGN_EXTEND; |
| case FPToUI: return ISD::FP_TO_UINT; |
| case FPToSI: return ISD::FP_TO_SINT; |
| case UIToFP: return ISD::UINT_TO_FP; |
| case SIToFP: return ISD::SINT_TO_FP; |
| case FPTrunc: return ISD::FP_ROUND; |
| case FPExt: return ISD::FP_EXTEND; |
| case PtrToInt: return ISD::BITCAST; |
| case IntToPtr: return ISD::BITCAST; |
| case BitCast: return ISD::BITCAST; |
| case ICmp: return ISD::SETCC; |
| case FCmp: return ISD::SETCC; |
| case PHI: return 0; |
| case Call: return 0; |
| case Select: return ISD::SELECT; |
| case UserOp1: return 0; |
| case UserOp2: return 0; |
| case VAArg: return 0; |
| case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; |
| case InsertElement: return ISD::INSERT_VECTOR_ELT; |
| case ShuffleVector: return ISD::VECTOR_SHUFFLE; |
| case ExtractValue: return ISD::MERGE_VALUES; |
| case InsertValue: return ISD::MERGE_VALUES; |
| case LandingPad: return 0; |
| } |
| |
| llvm_unreachable("Unknown instruction type encountered!"); |
| } |
| |
| std::pair<unsigned, MVT> |
| TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const { |
| LLVMContext &C = Ty->getContext(); |
| EVT MTy = getValueType(Ty); |
| |
| unsigned Cost = 1; |
| // We keep legalizing the type until we find a legal kind. We assume that |
| // the only operation that costs anything is the split. After splitting |
| // we need to handle two types. |
| while (true) { |
| LegalizeKind LK = getTypeConversion(C, MTy); |
| |
| if (LK.first == TypeLegal) |
| return std::make_pair(Cost, MTy.getSimpleVT()); |
| |
| if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) |
| Cost *= 2; |
| |
| // Keep legalizing the type. |
| MTy = LK.second; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Loop Strength Reduction hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM, |
| Type *Ty) const { |
| // The default implementation of this implements a conservative RISCy, r+r and |
| // r+i addr mode. |
| |
| // Allows a sign-extended 16-bit immediate field. |
| if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) |
| return false; |
| |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| // Only support r+r, |
| switch (AM.Scale) { |
| case 0: // "r+i" or just "i", depending on HasBaseReg. |
| break; |
| case 1: |
| if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. |
| return false; |
| // Otherwise we have r+r or r+i. |
| break; |
| case 2: |
| if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. |
| return false; |
| // Allow 2*r as r+r. |
| break; |
| } |
| |
| return true; |
| } |