| //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that ARM uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "arm-isel" |
| #include "ARMISelLowering.h" |
| #include "ARM.h" |
| #include "ARMCallingConv.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMPerfectShuffle.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetMachine.h" |
| #include "ARMTargetObjectFile.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); |
| STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); |
| |
| // This option should go away when tail calls fully work. |
| static cl::opt<bool> |
| EnableARMTailCalls("arm-tail-calls", cl::Hidden, |
| cl::desc("Generate tail calls (TEMPORARY OPTION)."), |
| cl::init(false)); |
| |
| cl::opt<bool> |
| EnableARMLongCalls("arm-long-calls", cl::Hidden, |
| cl::desc("Generate calls via indirect call instructions"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| ARMInterworking("arm-interworking", cl::Hidden, |
| cl::desc("Enable / disable ARM interworking (for debugging only)"), |
| cl::init(true)); |
| |
| namespace { |
| class ARMCCState : public CCState { |
| public: |
| ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, |
| const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs, |
| LLVMContext &C, ParmContext PC) |
| : CCState(CC, isVarArg, MF, TM, locs, C) { |
| assert(((PC == Call) || (PC == Prologue)) && |
| "ARMCCState users must specify whether their context is call" |
| "or prologue generation."); |
| CallOrPrologue = PC; |
| } |
| }; |
| } |
| |
| // The APCS parameter registers. |
| static const uint16_t GPRArgRegs[] = { |
| ARM::R0, ARM::R1, ARM::R2, ARM::R3 |
| }; |
| |
| void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, |
| MVT PromotedBitwiseVT) { |
| if (VT != PromotedLdStVT) { |
| setOperationAction(ISD::LOAD, VT, Promote); |
| AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); |
| |
| setOperationAction(ISD::STORE, VT, Promote); |
| AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); |
| } |
| |
| MVT ElemTy = VT.getVectorElementType(); |
| if (ElemTy != MVT::i64 && ElemTy != MVT::f64) |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| if (ElemTy == MVT::i32) { |
| setOperationAction(ISD::SINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::UINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::FP_TO_SINT, VT, Custom); |
| setOperationAction(ISD::FP_TO_UINT, VT, Custom); |
| } else { |
| setOperationAction(ISD::SINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::UINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::FP_TO_SINT, VT, Expand); |
| setOperationAction(ISD::FP_TO_UINT, VT, Expand); |
| } |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); |
| setOperationAction(ISD::SELECT, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| if (VT.isInteger()) { |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| setOperationAction(ISD::SRL, VT, Custom); |
| } |
| |
| // Promote all bit-wise operations. |
| if (VT.isInteger() && VT != PromotedBitwiseVT) { |
| setOperationAction(ISD::AND, VT, Promote); |
| AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); |
| setOperationAction(ISD::OR, VT, Promote); |
| AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); |
| setOperationAction(ISD::XOR, VT, Promote); |
| AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); |
| } |
| |
| // Neon does not support vector divide/remainder operations. |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::FDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| } |
| |
| void ARMTargetLowering::addDRTypeForNEON(MVT VT) { |
| addRegisterClass(VT, &ARM::DPRRegClass); |
| addTypeForNEON(VT, MVT::f64, MVT::v2i32); |
| } |
| |
| void ARMTargetLowering::addQRTypeForNEON(MVT VT) { |
| addRegisterClass(VT, &ARM::QPRRegClass); |
| addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); |
| } |
| |
| static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) { |
| if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin()) |
| return new TargetLoweringObjectFileMachO(); |
| |
| return new ARMElfTargetObjectFile(); |
| } |
| |
| ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) |
| : TargetLowering(TM, createTLOF(TM)) { |
| Subtarget = &TM.getSubtarget<ARMSubtarget>(); |
| RegInfo = TM.getRegisterInfo(); |
| Itins = TM.getInstrItineraryData(); |
| |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Uses VFP for Thumb libfuncs if available. |
| if (Subtarget->isThumb() && Subtarget->hasVFP2()) { |
| // Single-precision floating-point arithmetic. |
| setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); |
| setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); |
| setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); |
| setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); |
| |
| // Double-precision floating-point arithmetic. |
| setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); |
| setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); |
| setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); |
| setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); |
| |
| // Single-precision comparisons. |
| setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); |
| setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); |
| setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); |
| setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); |
| setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); |
| setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); |
| setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); |
| setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); |
| |
| setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); |
| |
| // Double-precision comparisons. |
| setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); |
| setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); |
| setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); |
| setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); |
| setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); |
| setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); |
| setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); |
| setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); |
| |
| setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); |
| |
| // Floating-point to integer conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); |
| |
| // Conversions between floating types. |
| setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); |
| setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); |
| |
| // Integer to floating-point conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| // FIXME: There appears to be some naming inconsistency in ARM libgcc: |
| // e.g., __floatunsidf vs. __floatunssidfvfp. |
| setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); |
| } |
| } |
| |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, 0); |
| setLibcallName(RTLIB::SRL_I128, 0); |
| setLibcallName(RTLIB::SRA_I128, 0); |
| |
| if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) { |
| // Double-precision floating-point arithmetic helper functions |
| // RTABI chapter 4.1.2, Table 2 |
| setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd"); |
| setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv"); |
| setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul"); |
| setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub"); |
| setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS); |
| |
| // Double-precision floating-point comparison helper functions |
| // RTABI chapter 4.1.2, Table 3 |
| setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq"); |
| setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); |
| setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq"); |
| setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ); |
| setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt"); |
| setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); |
| setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple"); |
| setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); |
| setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge"); |
| setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); |
| setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt"); |
| setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); |
| setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun"); |
| setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); |
| setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun"); |
| setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); |
| setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS); |
| |
| // Single-precision floating-point arithmetic helper functions |
| // RTABI chapter 4.1.2, Table 4 |
| setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd"); |
| setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv"); |
| setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul"); |
| setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub"); |
| setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS); |
| |
| // Single-precision floating-point comparison helper functions |
| // RTABI chapter 4.1.2, Table 5 |
| setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq"); |
| setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); |
| setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq"); |
| setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ); |
| setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt"); |
| setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); |
| setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple"); |
| setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); |
| setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge"); |
| setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); |
| setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt"); |
| setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); |
| setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun"); |
| setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); |
| setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun"); |
| setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); |
| setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS); |
| |
| // Floating-point to integer conversions. |
| // RTABI chapter 4.1.2, Table 6 |
| setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz"); |
| setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz"); |
| setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS); |
| |
| // Conversions between floating types. |
| // RTABI chapter 4.1.2, Table 7 |
| setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f"); |
| setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d"); |
| setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS); |
| |
| // Integer to floating-point conversions. |
| // RTABI chapter 4.1.2, Table 8 |
| setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d"); |
| setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f"); |
| setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f"); |
| setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS); |
| |
| // Long long helper functions |
| // RTABI chapter 4.2, Table 9 |
| setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul"); |
| setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl"); |
| setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr"); |
| setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr"); |
| setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS); |
| |
| // Integer division functions |
| // RTABI chapter 4.3.1 |
| setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv"); |
| setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv"); |
| setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv"); |
| setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod"); |
| setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv"); |
| setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv"); |
| setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv"); |
| setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod"); |
| setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS); |
| |
| // Memory operations |
| // RTABI chapter 4.3.4 |
| setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy"); |
| setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove"); |
| setLibcallName(RTLIB::MEMSET, "__aeabi_memset"); |
| setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS); |
| setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS); |
| } |
| |
| // Use divmod compiler-rt calls for iOS 5.0 and later. |
| if (Subtarget->getTargetTriple().getOS() == Triple::IOS && |
| !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) { |
| setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); |
| setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); |
| } |
| |
| if (Subtarget->isThumb1Only()) |
| addRegisterClass(MVT::i32, &ARM::tGPRRegClass); |
| else |
| addRegisterClass(MVT::i32, &ARM::GPRRegClass); |
| if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && |
| !Subtarget->isThumb1Only()) { |
| addRegisterClass(MVT::f32, &ARM::SPRRegClass); |
| if (!Subtarget->isFPOnlySP()) |
| addRegisterClass(MVT::f64, &ARM::DPRRegClass); |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| } |
| |
| for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { |
| for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) |
| setTruncStoreAction((MVT::SimpleValueType)VT, |
| (MVT::SimpleValueType)InnerVT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| } |
| |
| setOperationAction(ISD::ConstantFP, MVT::f32, Custom); |
| |
| if (Subtarget->hasNEON()) { |
| addDRTypeForNEON(MVT::v2f32); |
| addDRTypeForNEON(MVT::v8i8); |
| addDRTypeForNEON(MVT::v4i16); |
| addDRTypeForNEON(MVT::v2i32); |
| addDRTypeForNEON(MVT::v1i64); |
| |
| addQRTypeForNEON(MVT::v4f32); |
| addQRTypeForNEON(MVT::v2f64); |
| addQRTypeForNEON(MVT::v16i8); |
| addQRTypeForNEON(MVT::v8i16); |
| addQRTypeForNEON(MVT::v4i32); |
| addQRTypeForNEON(MVT::v2i64); |
| |
| // v2f64 is legal so that QR subregs can be extracted as f64 elements, but |
| // neither Neon nor VFP support any arithmetic operations on it. |
| // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively |
| // supported for v4f32. |
| setOperationAction(ISD::FADD, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSUB, MVT::v2f64, Expand); |
| setOperationAction(ISD::FMUL, MVT::v2f64, Expand); |
| // FIXME: Code duplication: FDIV and FREM are expanded always, see |
| // ARMTargetLowering::addTypeForNEON method for details. |
| setOperationAction(ISD::FDIV, MVT::v2f64, Expand); |
| setOperationAction(ISD::FREM, MVT::v2f64, Expand); |
| // FIXME: Create unittest. |
| // In another words, find a way when "copysign" appears in DAG with vector |
| // operands. |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); |
| // FIXME: Code duplication: SETCC has custom operation action, see |
| // ARMTargetLowering::addTypeForNEON method for details. |
| setOperationAction(ISD::SETCC, MVT::v2f64, Expand); |
| // FIXME: Create unittest for FNEG and for FABS. |
| setOperationAction(ISD::FNEG, MVT::v2f64, Expand); |
| setOperationAction(ISD::FABS, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::v2f64, Expand); |
| setOperationAction(ISD::FCOS, MVT::v2f64, Expand); |
| setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); |
| setOperationAction(ISD::FEXP, MVT::v2f64, Expand); |
| setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); |
| // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. |
| setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); |
| setOperationAction(ISD::FRINT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); |
| setOperationAction(ISD::FMA, MVT::v2f64, Expand); |
| |
| setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::v4f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::v4f32, Expand); |
| setOperationAction(ISD::FPOWI, MVT::v4f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::v4f32, Expand); |
| setOperationAction(ISD::FLOG, MVT::v4f32, Expand); |
| setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); |
| setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); |
| setOperationAction(ISD::FEXP, MVT::v4f32, Expand); |
| setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); |
| setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); |
| setOperationAction(ISD::FRINT, MVT::v4f32, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); |
| |
| // Mark v2f32 intrinsics. |
| setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::v2f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::v2f32, Expand); |
| setOperationAction(ISD::FPOWI, MVT::v2f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::v2f32, Expand); |
| setOperationAction(ISD::FLOG, MVT::v2f32, Expand); |
| setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); |
| setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); |
| setOperationAction(ISD::FEXP, MVT::v2f32, Expand); |
| setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); |
| setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); |
| setOperationAction(ISD::FRINT, MVT::v2f32, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); |
| |
| // Neon does not support some operations on v1i64 and v2i64 types. |
| setOperationAction(ISD::MUL, MVT::v1i64, Expand); |
| // Custom handling for some quad-vector types to detect VMULL. |
| setOperationAction(ISD::MUL, MVT::v8i16, Custom); |
| setOperationAction(ISD::MUL, MVT::v4i32, Custom); |
| setOperationAction(ISD::MUL, MVT::v2i64, Custom); |
| // Custom handling for some vector types to avoid expensive expansions |
| setOperationAction(ISD::SDIV, MVT::v4i16, Custom); |
| setOperationAction(ISD::SDIV, MVT::v8i8, Custom); |
| setOperationAction(ISD::UDIV, MVT::v4i16, Custom); |
| setOperationAction(ISD::UDIV, MVT::v8i8, Custom); |
| setOperationAction(ISD::SETCC, MVT::v1i64, Expand); |
| setOperationAction(ISD::SETCC, MVT::v2i64, Expand); |
| // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with |
| // a destination type that is wider than the source, and nor does |
| // it have a FP_TO_[SU]INT instruction with a narrower destination than |
| // source. |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); |
| |
| setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); |
| setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); |
| |
| // NEON does not have single instruction CTPOP for vectors with element |
| // types wider than 8-bits. However, custom lowering can leverage the |
| // v8i8/v16i8 vcnt instruction. |
| setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); |
| setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); |
| setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); |
| setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); |
| |
| // NEON only has FMA instructions as of VFP4. |
| if (!Subtarget->hasVFP4()) { |
| setOperationAction(ISD::FMA, MVT::v2f32, Expand); |
| setOperationAction(ISD::FMA, MVT::v4f32, Expand); |
| } |
| |
| setTargetDAGCombine(ISD::INTRINSIC_VOID); |
| setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); |
| setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SIGN_EXTEND); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| setTargetDAGCombine(ISD::ANY_EXTEND); |
| setTargetDAGCombine(ISD::SELECT_CC); |
| setTargetDAGCombine(ISD::BUILD_VECTOR); |
| setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::FP_TO_SINT); |
| setTargetDAGCombine(ISD::FP_TO_UINT); |
| setTargetDAGCombine(ISD::FDIV); |
| |
| // It is legal to extload from v4i8 to v4i16 or v4i32. |
| MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8, |
| MVT::v4i16, MVT::v2i16, |
| MVT::v2i32}; |
| for (unsigned i = 0; i < 6; ++i) { |
| setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal); |
| setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal); |
| setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal); |
| } |
| } |
| |
| // ARM and Thumb2 support UMLAL/SMLAL. |
| if (!Subtarget->isThumb1Only()) |
| setTargetDAGCombine(ISD::ADDC); |
| |
| |
| computeRegisterProperties(); |
| |
| // ARM does not have f32 extending load. |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); |
| |
| // ARM does not have i1 sign extending load. |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| |
| // ARM supports all 4 flavors of integer indexed load / store. |
| if (!Subtarget->isThumb1Only()) { |
| for (unsigned im = (unsigned)ISD::PRE_INC; |
| im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| setIndexedLoadAction(im, MVT::i1, Legal); |
| setIndexedLoadAction(im, MVT::i8, Legal); |
| setIndexedLoadAction(im, MVT::i16, Legal); |
| setIndexedLoadAction(im, MVT::i32, Legal); |
| setIndexedStoreAction(im, MVT::i1, Legal); |
| setIndexedStoreAction(im, MVT::i8, Legal); |
| setIndexedStoreAction(im, MVT::i16, Legal); |
| setIndexedStoreAction(im, MVT::i32, Legal); |
| } |
| } |
| |
| // i64 operation support. |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| if (Subtarget->isThumb1Only()) { |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| } |
| if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() |
| || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP())) |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL, MVT::i64, Custom); |
| setOperationAction(ISD::SRA, MVT::i64, Custom); |
| |
| if (!Subtarget->isThumb1Only()) { |
| // FIXME: We should do this for Thumb1 as well. |
| setOperationAction(ISD::ADDC, MVT::i32, Custom); |
| setOperationAction(ISD::ADDE, MVT::i32, Custom); |
| setOperationAction(ISD::SUBC, MVT::i32, Custom); |
| setOperationAction(ISD::SUBE, MVT::i32, Custom); |
| } |
| |
| // ARM does not have ROTL. |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i32, Custom); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) |
| setOperationAction(ISD::CTLZ, MVT::i32, Expand); |
| |
| // These just redirect to CTTZ and CTLZ on ARM. |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand); |
| |
| // Only ARMv6 has BSWAP. |
| if (!Subtarget->hasV6Ops()) |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| |
| if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) && |
| !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) { |
| // These are expanded into libcalls if the cpu doesn't have HW divider. |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| } |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| if (!Subtarget->isTargetDarwin()) { |
| // Non-Darwin platforms may return values in these registers via the |
| // personality function. |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| setExceptionPointerRegister(ARM::R0); |
| setExceptionSelectorRegister(ARM::R1); |
| } |
| |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); |
| // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use |
| // the default expansion. |
| // FIXME: This should be checking for v6k, not just v6. |
| if (Subtarget->hasDataBarrier() || |
| (Subtarget->hasV6Ops() && !Subtarget->isThumb())) { |
| // membarrier needs custom lowering; the rest are legal and handled |
| // normally. |
| setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom); |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); |
| // Custom lowering for 64-bit ops |
| setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); |
| // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc. |
| setInsertFencesForAtomic(true); |
| } else { |
| // Set them all for expansion, which will force libcalls. |
| setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); |
| // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the |
| // Unordered/Monotonic case. |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); |
| // Since the libcalls include locking, fold in the fences |
| setShouldFoldAtomicFences(true); |
| } |
| |
| setOperationAction(ISD::PREFETCH, MVT::Other, Custom); |
| |
| // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. |
| if (!Subtarget->hasV6Ops()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| } |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && |
| !Subtarget->isThumb1Only()) { |
| // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR |
| // iff target supports vfp2. |
| setOperationAction(ISD::BITCAST, MVT::i64, Custom); |
| setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); |
| } |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| if (Subtarget->isTargetDarwin()) { |
| setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); |
| setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); |
| setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); |
| } |
| |
| setOperationAction(ISD::SETCC, MVT::i32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| setOperationAction(ISD::BR_JT, MVT::Other, Custom); |
| |
| // We don't support sin/cos/fmod/copysign/pow |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FREM, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f32, Expand); |
| if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && |
| !Subtarget->isThumb1Only()) { |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| } |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| |
| if (!Subtarget->hasVFP4()) { |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| setOperationAction(ISD::FMA, MVT::f32, Expand); |
| } |
| |
| // Various VFP goodness |
| if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) { |
| // int <-> fp are custom expanded into bit_convert + ARMISD ops. |
| if (Subtarget->hasVFP2()) { |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| } |
| // Special handling for half-precision FP. |
| if (!Subtarget->hasFP16()) { |
| setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand); |
| setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand); |
| } |
| } |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| // ARMISD::VMOVRRD - No need to call setTargetDAGCombine |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::MUL); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::XOR); |
| |
| if (Subtarget->hasV6Ops()) |
| setTargetDAGCombine(ISD::SRL); |
| |
| setStackPointerRegisterToSaveRestore(ARM::SP); |
| |
| if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() || |
| !Subtarget->hasVFP2()) |
| setSchedulingPreference(Sched::RegPressure); |
| else |
| setSchedulingPreference(Sched::Hybrid); |
| |
| //// temporary - rewrite interface to use type |
| MaxStoresPerMemset = 8; |
| MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4; |
| MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores |
| MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2; |
| MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores |
| MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2; |
| |
| // On ARM arguments smaller than 4 bytes are extended, so all arguments |
| // are at least 4 bytes aligned. |
| setMinStackArgumentAlignment(4); |
| |
| BenefitFromCodePlacementOpt = true; |
| |
| // Prefer likely predicted branches to selects on out-of-order cores. |
| PredictableSelectIsExpensive = Subtarget->isLikeA9(); |
| |
| setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2); |
| } |
| |
| // FIXME: It might make sense to define the representative register class as the |
| // nearest super-register that has a non-null superset. For example, DPR_VFP2 is |
| // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, |
| // SPR's representative would be DPR_VFP2. This should work well if register |
| // pressure tracking were modified such that a register use would increment the |
| // pressure of the register class's representative and all of it's super |
| // classes' representatives transitively. We have not implemented this because |
| // of the difficulty prior to coalescing of modeling operand register classes |
| // due to the common occurrence of cross class copies and subregister insertions |
| // and extractions. |
| std::pair<const TargetRegisterClass*, uint8_t> |
| ARMTargetLowering::findRepresentativeClass(MVT VT) const{ |
| const TargetRegisterClass *RRC = 0; |
| uint8_t Cost = 1; |
| switch (VT.SimpleTy) { |
| default: |
| return TargetLowering::findRepresentativeClass(VT); |
| // Use DPR as representative register class for all floating point |
| // and vector types. Since there are 32 SPR registers and 32 DPR registers so |
| // the cost is 1 for both f32 and f64. |
| case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: |
| case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: |
| RRC = &ARM::DPRRegClass; |
| // When NEON is used for SP, only half of the register file is available |
| // because operations that define both SP and DP results will be constrained |
| // to the VFP2 class (D0-D15). We currently model this constraint prior to |
| // coalescing by double-counting the SP regs. See the FIXME above. |
| if (Subtarget->useNEONForSinglePrecisionFP()) |
| Cost = 2; |
| break; |
| case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: |
| case MVT::v4f32: case MVT::v2f64: |
| RRC = &ARM::DPRRegClass; |
| Cost = 2; |
| break; |
| case MVT::v4i64: |
| RRC = &ARM::DPRRegClass; |
| Cost = 4; |
| break; |
| case MVT::v8i64: |
| RRC = &ARM::DPRRegClass; |
| Cost = 8; |
| break; |
| } |
| return std::make_pair(RRC, Cost); |
| } |
| |
| const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return 0; |
| case ARMISD::Wrapper: return "ARMISD::Wrapper"; |
| case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN"; |
| case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; |
| case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; |
| case ARMISD::CALL: return "ARMISD::CALL"; |
| case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; |
| case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; |
| case ARMISD::tCALL: return "ARMISD::tCALL"; |
| case ARMISD::BRCOND: return "ARMISD::BRCOND"; |
| case ARMISD::BR_JT: return "ARMISD::BR_JT"; |
| case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; |
| case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; |
| case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; |
| case ARMISD::CMP: return "ARMISD::CMP"; |
| case ARMISD::CMN: return "ARMISD::CMN"; |
| case ARMISD::CMPZ: return "ARMISD::CMPZ"; |
| case ARMISD::CMPFP: return "ARMISD::CMPFP"; |
| case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; |
| case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; |
| case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; |
| |
| case ARMISD::CMOV: return "ARMISD::CMOV"; |
| |
| case ARMISD::RBIT: return "ARMISD::RBIT"; |
| |
| case ARMISD::FTOSI: return "ARMISD::FTOSI"; |
| case ARMISD::FTOUI: return "ARMISD::FTOUI"; |
| case ARMISD::SITOF: return "ARMISD::SITOF"; |
| case ARMISD::UITOF: return "ARMISD::UITOF"; |
| |
| case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; |
| case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; |
| case ARMISD::RRX: return "ARMISD::RRX"; |
| |
| case ARMISD::ADDC: return "ARMISD::ADDC"; |
| case ARMISD::ADDE: return "ARMISD::ADDE"; |
| case ARMISD::SUBC: return "ARMISD::SUBC"; |
| case ARMISD::SUBE: return "ARMISD::SUBE"; |
| |
| case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; |
| case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; |
| |
| case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; |
| case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP"; |
| |
| case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; |
| |
| case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; |
| |
| case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; |
| |
| case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER"; |
| case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; |
| |
| case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; |
| |
| case ARMISD::VCEQ: return "ARMISD::VCEQ"; |
| case ARMISD::VCEQZ: return "ARMISD::VCEQZ"; |
| case ARMISD::VCGE: return "ARMISD::VCGE"; |
| case ARMISD::VCGEZ: return "ARMISD::VCGEZ"; |
| case ARMISD::VCLEZ: return "ARMISD::VCLEZ"; |
| case ARMISD::VCGEU: return "ARMISD::VCGEU"; |
| case ARMISD::VCGT: return "ARMISD::VCGT"; |
| case ARMISD::VCGTZ: return "ARMISD::VCGTZ"; |
| case ARMISD::VCLTZ: return "ARMISD::VCLTZ"; |
| case ARMISD::VCGTU: return "ARMISD::VCGTU"; |
| case ARMISD::VTST: return "ARMISD::VTST"; |
| |
| case ARMISD::VSHL: return "ARMISD::VSHL"; |
| case ARMISD::VSHRs: return "ARMISD::VSHRs"; |
| case ARMISD::VSHRu: return "ARMISD::VSHRu"; |
| case ARMISD::VSHLLs: return "ARMISD::VSHLLs"; |
| case ARMISD::VSHLLu: return "ARMISD::VSHLLu"; |
| case ARMISD::VSHLLi: return "ARMISD::VSHLLi"; |
| case ARMISD::VSHRN: return "ARMISD::VSHRN"; |
| case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; |
| case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; |
| case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; |
| case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; |
| case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; |
| case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; |
| case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; |
| case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; |
| case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; |
| case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; |
| case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; |
| case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; |
| case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; |
| case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; |
| case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; |
| case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; |
| case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM"; |
| case ARMISD::VDUP: return "ARMISD::VDUP"; |
| case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; |
| case ARMISD::VEXT: return "ARMISD::VEXT"; |
| case ARMISD::VREV64: return "ARMISD::VREV64"; |
| case ARMISD::VREV32: return "ARMISD::VREV32"; |
| case ARMISD::VREV16: return "ARMISD::VREV16"; |
| case ARMISD::VZIP: return "ARMISD::VZIP"; |
| case ARMISD::VUZP: return "ARMISD::VUZP"; |
| case ARMISD::VTRN: return "ARMISD::VTRN"; |
| case ARMISD::VTBL1: return "ARMISD::VTBL1"; |
| case ARMISD::VTBL2: return "ARMISD::VTBL2"; |
| case ARMISD::VMULLs: return "ARMISD::VMULLs"; |
| case ARMISD::VMULLu: return "ARMISD::VMULLu"; |
| case ARMISD::UMLAL: return "ARMISD::UMLAL"; |
| case ARMISD::SMLAL: return "ARMISD::SMLAL"; |
| case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; |
| case ARMISD::FMAX: return "ARMISD::FMAX"; |
| case ARMISD::FMIN: return "ARMISD::FMIN"; |
| case ARMISD::BFI: return "ARMISD::BFI"; |
| case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; |
| case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; |
| case ARMISD::VBSL: return "ARMISD::VBSL"; |
| case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; |
| case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; |
| case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; |
| case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; |
| case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; |
| case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; |
| case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; |
| case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; |
| case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; |
| case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; |
| case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; |
| case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; |
| case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; |
| case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; |
| case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; |
| case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; |
| case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; |
| case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; |
| case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; |
| case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; |
| } |
| } |
| |
| EVT ARMTargetLowering::getSetCCResultType(EVT VT) const { |
| if (!VT.isVector()) return getPointerTy(); |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| /// getRegClassFor - Return the register class that should be used for the |
| /// specified value type. |
| const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const { |
| // Map v4i64 to QQ registers but do not make the type legal. Similarly map |
| // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to |
| // load / store 4 to 8 consecutive D registers. |
| if (Subtarget->hasNEON()) { |
| if (VT == MVT::v4i64) |
| return &ARM::QQPRRegClass; |
| if (VT == MVT::v8i64) |
| return &ARM::QQQQPRRegClass; |
| } |
| return TargetLowering::getRegClassFor(VT); |
| } |
| |
| // Create a fast isel object. |
| FastISel * |
| ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) const { |
| return ARM::createFastISel(funcInfo, libInfo); |
| } |
| |
| /// getMaximalGlobalOffset - Returns the maximal possible offset which can |
| /// be used for loads / stores from the global. |
| unsigned ARMTargetLowering::getMaximalGlobalOffset() const { |
| return (Subtarget->isThumb1Only() ? 127 : 4095); |
| } |
| |
| Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { |
| unsigned NumVals = N->getNumValues(); |
| if (!NumVals) |
| return Sched::RegPressure; |
| |
| for (unsigned i = 0; i != NumVals; ++i) { |
| EVT VT = N->getValueType(i); |
| if (VT == MVT::Glue || VT == MVT::Other) |
| continue; |
| if (VT.isFloatingPoint() || VT.isVector()) |
| return Sched::ILP; |
| } |
| |
| if (!N->isMachineOpcode()) |
| return Sched::RegPressure; |
| |
| // Load are scheduled for latency even if there instruction itinerary |
| // is not available. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); |
| |
| if (MCID.getNumDefs() == 0) |
| return Sched::RegPressure; |
| if (!Itins->isEmpty() && |
| Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) |
| return Sched::ILP; |
| |
| return Sched::RegPressure; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC |
| static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Unknown condition code!"); |
| case ISD::SETNE: return ARMCC::NE; |
| case ISD::SETEQ: return ARMCC::EQ; |
| case ISD::SETGT: return ARMCC::GT; |
| case ISD::SETGE: return ARMCC::GE; |
| case ISD::SETLT: return ARMCC::LT; |
| case ISD::SETLE: return ARMCC::LE; |
| case ISD::SETUGT: return ARMCC::HI; |
| case ISD::SETUGE: return ARMCC::HS; |
| case ISD::SETULT: return ARMCC::LO; |
| case ISD::SETULE: return ARMCC::LS; |
| } |
| } |
| |
| /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. |
| static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, |
| ARMCC::CondCodes &CondCode2) { |
| CondCode2 = ARMCC::AL; |
| switch (CC) { |
| default: llvm_unreachable("Unknown FP condition!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: CondCode = ARMCC::EQ; break; |
| case ISD::SETGT: |
| case ISD::SETOGT: CondCode = ARMCC::GT; break; |
| case ISD::SETGE: |
| case ISD::SETOGE: CondCode = ARMCC::GE; break; |
| case ISD::SETOLT: CondCode = ARMCC::MI; break; |
| case ISD::SETOLE: CondCode = ARMCC::LS; break; |
| case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; |
| case ISD::SETO: CondCode = ARMCC::VC; break; |
| case ISD::SETUO: CondCode = ARMCC::VS; break; |
| case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; |
| case ISD::SETUGT: CondCode = ARMCC::HI; break; |
| case ISD::SETUGE: CondCode = ARMCC::PL; break; |
| case ISD::SETLT: |
| case ISD::SETULT: CondCode = ARMCC::LT; break; |
| case ISD::SETLE: |
| case ISD::SETULE: CondCode = ARMCC::LE; break; |
| case ISD::SETNE: |
| case ISD::SETUNE: CondCode = ARMCC::NE; break; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMGenCallingConv.inc" |
| |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for a the |
| /// given CallingConvention value. |
| CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, |
| bool Return, |
| bool isVarArg) const { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unsupported calling convention"); |
| case CallingConv::Fast: |
| if (Subtarget->hasVFP2() && !isVarArg) { |
| if (!Subtarget->isAAPCS_ABI()) |
| return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); |
| // For AAPCS ABI targets, just use VFP variant of the calling convention. |
| return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); |
| } |
| // Fallthrough |
| case CallingConv::C: { |
| // Use target triple & subtarget features to do actual dispatch. |
| if (!Subtarget->isAAPCS_ABI()) |
| return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); |
| else if (Subtarget->hasVFP2() && |
| getTargetMachine().Options.FloatABIType == FloatABI::Hard && |
| !isVarArg) |
| return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); |
| return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); |
| } |
| case CallingConv::ARM_AAPCS_VFP: |
| if (!isVarArg) |
| return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); |
| // Fallthrough |
| case CallingConv::ARM_AAPCS: |
| return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); |
| case CallingConv::ARM_APCS: |
| return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); |
| case CallingConv::GHC: |
| return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); |
| } |
| } |
| |
| /// LowerCallResult - Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| SDValue |
| ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext(), Call); |
| CCInfo.AnalyzeCallResult(Ins, |
| CCAssignFnForNode(CallConv, /* Return*/ true, |
| isVarArg)); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign VA = RVLocs[i]; |
| |
| SDValue Val; |
| if (VA.needsCustom()) { |
| // Handle f64 or half of a v2f64. |
| SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); |
| |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, |
| DAG.getConstant(0, MVT::i32)); |
| |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, |
| DAG.getConstant(1, MVT::i32)); |
| } |
| } else { |
| Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), |
| InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); |
| break; |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| /// LowerMemOpCallTo - Store the argument to the stack. |
| SDValue |
| ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, |
| SDValue StackPtr, SDValue Arg, |
| DebugLoc dl, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| ISD::ArgFlagsTy Flags) const { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| return DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo::getStack(LocMemOffset), |
| false, false, 0); |
| } |
| |
| void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG, |
| SDValue Chain, SDValue &Arg, |
| RegsToPassVector &RegsToPass, |
| CCValAssign &VA, CCValAssign &NextVA, |
| SDValue &StackPtr, |
| SmallVector<SDValue, 8> &MemOpChains, |
| ISD::ArgFlagsTy Flags) const { |
| |
| SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), Arg); |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd)); |
| |
| if (NextVA.isRegLoc()) |
| RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1))); |
| else { |
| assert(NextVA.isMemLoc()); |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1), |
| dl, DAG, NextVA, |
| Flags)); |
| } |
| } |
| |
| /// LowerCall - Lowering a call into a callseq_start <- |
| /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter |
| /// nodes. |
| SDValue |
| ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| DebugLoc &dl = CLI.DL; |
| SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool doesNotRet = CLI.DoesNotReturn; |
| bool isVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); |
| bool IsSibCall = false; |
| // Disable tail calls if they're not supported. |
| if (!EnableARMTailCalls && !Subtarget->supportsTailCall()) |
| isTailCall = false; |
| if (isTailCall) { |
| // Check if it's really possible to do a tail call. |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), |
| Outs, OutVals, Ins, DAG); |
| // We don't support GuaranteedTailCallOpt for ARM, only automatically |
| // detected sibcalls. |
| if (isTailCall) { |
| ++NumTailCalls; |
| IsSibCall = true; |
| } |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext(), Call); |
| CCInfo.AnalyzeCallOperands(Outs, |
| CCAssignFnForNode(CallConv, /* Return*/ false, |
| isVarArg)); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| // For tail calls, memory operands are available in our caller's stack. |
| if (IsSibCall) |
| NumBytes = 0; |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| if (!IsSibCall) |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| |
| SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); |
| |
| RegsToPassVector RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. In the case |
| // of tail call optimization, arguments are handled later. |
| for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[realArgIdx]; |
| ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| bool isByVal = Flags.isByVal(); |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| // f64 and v2f64 might be passed in i32 pairs and must be split into pieces |
| if (VA.needsCustom()) { |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(0, MVT::i32)); |
| SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(1, MVT::i32)); |
| |
| PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, |
| VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); |
| |
| VA = ArgLocs[++i]; // skip ahead to next loc |
| if (VA.isRegLoc()) { |
| PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, |
| VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, |
| dl, DAG, VA, Flags)); |
| } |
| } else { |
| PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], |
| StackPtr, MemOpChains, Flags); |
| } |
| } else if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else if (isByVal) { |
| assert(VA.isMemLoc()); |
| unsigned offset = 0; |
| |
| // True if this byval aggregate will be split between registers |
| // and memory. |
| if (CCInfo.isFirstByValRegValid()) { |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| unsigned int i, j; |
| for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) { |
| SDValue Const = DAG.getConstant(4*i, MVT::i32); |
| SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); |
| SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(j, Load)); |
| } |
| offset = ARM::R4 - CCInfo.getFirstByValReg(); |
| CCInfo.clearFirstByValReg(); |
| } |
| |
| if (Flags.getByValSize() - 4*offset > 0) { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, |
| StkPtrOff); |
| SDValue SrcOffset = DAG.getIntPtrConstant(4*offset); |
| SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset); |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, |
| MVT::i32); |
| SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32); |
| |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; |
| MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, |
| Ops, array_lengthof(Ops))); |
| } |
| } else if (!IsSibCall) { |
| assert(VA.isMemLoc()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, |
| dl, DAG, VA, Flags)); |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| // Tail call byval lowering might overwrite argument registers so in case of |
| // tail call optimization the copies to registers are lowered later. |
| if (!isTailCall) |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // For tail calls lower the arguments to the 'real' stack slot. |
| if (isTailCall) { |
| // Force all the incoming stack arguments to be loaded from the stack |
| // before any new outgoing arguments are stored to the stack, because the |
| // outgoing stack slots may alias the incoming argument stack slots, and |
| // the alias isn't otherwise explicit. This is slightly more conservative |
| // than necessary, because it means that each store effectively depends |
| // on every argument instead of just those arguments it would clobber. |
| |
| // Do not flag preceding copytoreg stuff together with the following stuff. |
| InFlag = SDValue(); |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| InFlag =SDValue(); |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| bool isDirect = false; |
| bool isARMFunc = false; |
| bool isLocalARMFunc = false; |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| if (EnableARMLongCalls) { |
| assert (getTargetMachine().getRelocationModel() == Reloc::Static |
| && "long-calls with non-static relocation model!"); |
| // Handle a global address or an external symbol. If it's not one of |
| // those, the target's already in a register, so we don't need to do |
| // anything extra. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| // Create a constant pool entry for the callee address |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0); |
| |
| // Get the address of the callee into a register |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| const char *Sym = S->getSymbol(); |
| |
| // Create a constant pool entry for the callee address |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, |
| ARMPCLabelIndex, 0); |
| // Get the address of the callee into a register |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| } |
| } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| isDirect = true; |
| bool isExt = GV->isDeclaration() || GV->isWeakForLinker(); |
| bool isStub = (isExt && Subtarget->isTargetDarwin()) && |
| getTargetMachine().getRelocationModel() != Reloc::Static; |
| isARMFunc = !Subtarget->isThumb() || isStub; |
| // ARM call to a local ARM function is predicable. |
| isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking); |
| // tBX takes a register source operand. |
| if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, dl, |
| getPointerTy(), Callee, PICLabel); |
| } else { |
| // On ELF targets for PIC code, direct calls should go through the PLT |
| unsigned OpFlags = 0; |
| if (Subtarget->isTargetELF() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| OpFlags = ARMII::MO_PLT; |
| Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); |
| } |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| isDirect = true; |
| bool isStub = Subtarget->isTargetDarwin() && |
| getTargetMachine().getRelocationModel() != Reloc::Static; |
| isARMFunc = !Subtarget->isThumb() || isStub; |
| // tBX takes a register source operand. |
| const char *Sym = S->getSymbol(); |
| if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, |
| ARMPCLabelIndex, 4); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, dl, |
| getPointerTy(), Callee, PICLabel); |
| } else { |
| unsigned OpFlags = 0; |
| // On ELF targets for PIC code, direct calls should go through the PLT |
| if (Subtarget->isTargetELF() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| OpFlags = ARMII::MO_PLT; |
| Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags); |
| } |
| } |
| |
| // FIXME: handle tail calls differently. |
| unsigned CallOpc; |
| bool HasMinSizeAttr = MF.getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); |
| if (Subtarget->isThumb()) { |
| if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) |
| CallOpc = ARMISD::CALL_NOLINK; |
| else |
| CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; |
| } else { |
| if (!isDirect && !Subtarget->hasV5TOps()) |
| CallOpc = ARMISD::CALL_NOLINK; |
| else if (doesNotRet && isDirect && Subtarget->hasRAS() && |
| // Emit regular call when code size is the priority |
| !HasMinSizeAttr) |
| // "mov lr, pc; b _foo" to avoid confusing the RSP |
| CallOpc = ARMISD::CALL_NOLINK; |
| else |
| CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; |
| } |
| |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| if (isTailCall) |
| return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); |
| |
| // Returns a chain and a flag for retval copy to use. |
| Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| if (!Ins.empty()) |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, |
| dl, DAG, InVals); |
| } |
| |
| /// HandleByVal - Every parameter *after* a byval parameter is passed |
| /// on the stack. Remember the next parameter register to allocate, |
| /// and then confiscate the rest of the parameter registers to insure |
| /// this. |
| void |
| ARMTargetLowering::HandleByVal( |
| CCState *State, unsigned &size, unsigned Align) const { |
| unsigned reg = State->AllocateReg(GPRArgRegs, 4); |
| assert((State->getCallOrPrologue() == Prologue || |
| State->getCallOrPrologue() == Call) && |
| "unhandled ParmContext"); |
| if ((!State->isFirstByValRegValid()) && |
| (ARM::R0 <= reg) && (reg <= ARM::R3)) { |
| if (Subtarget->isAAPCS_ABI() && Align > 4) { |
| unsigned AlignInRegs = Align / 4; |
| unsigned Waste = (ARM::R4 - reg) % AlignInRegs; |
| for (unsigned i = 0; i < Waste; ++i) |
| reg = State->AllocateReg(GPRArgRegs, 4); |
| } |
| if (reg != 0) { |
| State->setFirstByValReg(reg); |
| // At a call site, a byval parameter that is split between |
| // registers and memory needs its size truncated here. In a |
| // function prologue, such byval parameters are reassembled in |
| // memory, and are not truncated. |
| if (State->getCallOrPrologue() == Call) { |
| unsigned excess = 4 * (ARM::R4 - reg); |
| assert(size >= excess && "expected larger existing stack allocation"); |
| size -= excess; |
| } |
| } |
| } |
| // Confiscate any remaining parameter registers to preclude their |
| // assignment to subsequent parameters. |
| while (State->AllocateReg(GPRArgRegs, 4)) |
| ; |
| } |
| |
| /// MatchingStackOffset - Return true if the given stack call argument is |
| /// already available in the same position (relatively) of the caller's |
| /// incoming argument stack. |
| static |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, |
| MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, |
| const TargetInstrInfo *TII) { |
| unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; |
| int FI = INT_MAX; |
| if (Arg.getOpcode() == ISD::CopyFromReg) { |
| unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(VR)) |
| return false; |
| MachineInstr *Def = MRI->getVRegDef(VR); |
| if (!Def) |
| return false; |
| if (!Flags.isByVal()) { |
| if (!TII->isLoadFromStackSlot(Def, FI)) |
| return false; |
| } else { |
| return false; |
| } |
| } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { |
| if (Flags.isByVal()) |
| // ByVal argument is passed in as a pointer but it's now being |
| // dereferenced. e.g. |
| // define @foo(%struct.X* %A) { |
| // tail call @bar(%struct.X* byval %A) |
| // } |
| return false; |
| SDValue Ptr = Ld->getBasePtr(); |
| FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); |
| if (!FINode) |
| return false; |
| FI = FINode->getIndex(); |
| } else |
| return false; |
| |
| assert(FI != INT_MAX); |
| if (!MFI->isFixedObjectIndex(FI)) |
| return false; |
| return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool |
| ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| bool isCalleeStructRet, |
| bool isCallerStructRet, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| const Function *CallerF = DAG.getMachineFunction().getFunction(); |
| CallingConv::ID CallerCC = CallerF->getCallingConv(); |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| // Look for obvious safe cases to perform tail call optimization that do not |
| // require ABI changes. This is what gcc calls sibcall. |
| |
| // Do not sibcall optimize vararg calls unless the call site is not passing |
| // any arguments. |
| if (isVarArg && !Outs.empty()) |
| return false; |
| |
| // Also avoid sibcall optimization if either caller or callee uses struct |
| // return semantics. |
| if (isCalleeStructRet || isCallerStructRet) |
| return false; |
| |
| // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo:: |
| // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as |
| // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation |
| // support in the assembler and linker to be used. This would need to be |
| // fixed to fully support tail calls in Thumb1. |
| // |
| // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take |
| // LR. This means if we need to reload LR, it takes an extra instructions, |
| // which outweighs the value of the tail call; but here we don't know yet |
| // whether LR is going to be used. Probably the right approach is to |
| // generate the tail call here and turn it back into CALL/RET in |
| // emitEpilogue if LR is used. |
| |
| // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, |
| // but we need to make sure there are enough registers; the only valid |
| // registers are the 4 used for parameters. We don't currently do this |
| // case. |
| if (Subtarget->isThumb1Only()) |
| return false; |
| |
| // If the calling conventions do not match, then we'd better make sure the |
| // results are returned in the same way as what the caller expects. |
| if (!CCMatch) { |
| SmallVector<CCValAssign, 16> RVLocs1; |
| ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs1, *DAG.getContext(), Call); |
| CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg)); |
| |
| SmallVector<CCValAssign, 16> RVLocs2; |
| ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs2, *DAG.getContext(), Call); |
| CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg)); |
| |
| if (RVLocs1.size() != RVLocs2.size()) |
| return false; |
| for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { |
| if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) |
| return false; |
| if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) |
| return false; |
| if (RVLocs1[i].isRegLoc()) { |
| if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) |
| return false; |
| } else { |
| if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) |
| return false; |
| } |
| } |
| } |
| |
| // If Caller's vararg or byval argument has been split between registers and |
| // stack, do not perform tail call, since part of the argument is in caller's |
| // local frame. |
| const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction(). |
| getInfo<ARMFunctionInfo>(); |
| if (AFI_Caller->getVarArgsRegSaveSize()) |
| return false; |
| |
| // If the callee takes no arguments then go on to check the results of the |
| // call. |
| if (!Outs.empty()) { |
| // Check if stack adjustment is needed. For now, do not do this if any |
| // argument is passed on the stack. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext(), Call); |
| CCInfo.AnalyzeCallOperands(Outs, |
| CCAssignFnForNode(CalleeCC, false, isVarArg)); |
| if (CCInfo.getNextStackOffset()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Check if the arguments are already laid out in the right way as |
| // the caller's fixed stack objects. |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = OutVals[realArgIdx]; |
| ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| if (VA.needsCustom()) { |
| // f64 and vector types are split into multiple registers or |
| // register/stack-slot combinations. The types will not match |
| // the registers; give up on memory f64 refs until we figure |
| // out what to do about this. |
| if (!VA.isRegLoc()) |
| return false; |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| if (RegVT == MVT::v2f64) { |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| } |
| } else if (!VA.isRegLoc()) { |
| if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, |
| MFI, MRI, TII)) |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool |
| ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, |
| MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true, |
| isVarArg)); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| DebugLoc dl, SelectionDAG &DAG) const { |
| |
| // CCValAssign - represent the assignment of the return value to a location. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slots. |
| ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext(), Call); |
| |
| // Analyze outgoing return values. |
| CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, |
| isVarArg)); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps; |
| RetOps.push_back(Chain); // Operand #0 = Chain (updated below) |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, realRVLocIdx = 0; |
| i != RVLocs.size(); |
| ++i, ++realRVLocIdx) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Arg = OutVals[realRVLocIdx]; |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.needsCustom()) { |
| if (VA.getLocVT() == MVT::v2f64) { |
| // Extract the first half and return it in two registers. |
| SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(0, MVT::i32)); |
| SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), Half); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), |
| HalfGPRs.getValue(1), Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| |
| // Extract the 2nd half and fall through to handle it as an f64 value. |
| Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(1, MVT::i32)); |
| } |
| // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is |
| // available. |
| SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1), |
| Flag); |
| } else |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); |
| |
| // Guarantee that all emitted copies are |
| // stuck together, avoiding something bad. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| // Update chain and glue. |
| RetOps[0] = Chain; |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, |
| RetOps.data(), RetOps.size()); |
| } |
| |
| bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { |
| if (N->getNumValues() != 1) |
| return false; |
| if (!N->hasNUsesOfValue(1, 0)) |
| return false; |
| |
| SDValue TCChain = Chain; |
| SDNode *Copy = *N->use_begin(); |
| if (Copy->getOpcode() == ISD::CopyToReg) { |
| // If the copy has a glue operand, we conservatively assume it isn't safe to |
| // perform a tail call. |
| if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) |
| return false; |
| TCChain = Copy->getOperand(0); |
| } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { |
| SDNode *VMov = Copy; |
| // f64 returned in a pair of GPRs. |
| SmallPtrSet<SDNode*, 2> Copies; |
| for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); |
| UI != UE; ++UI) { |
| if (UI->getOpcode() != ISD::CopyToReg) |
| return false; |
| Copies.insert(*UI); |
| } |
| if (Copies.size() > 2) |
| return false; |
| |
| for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); |
| UI != UE; ++UI) { |
| SDValue UseChain = UI->getOperand(0); |
| if (Copies.count(UseChain.getNode())) |
| // Second CopyToReg |
| Copy = *UI; |
| else |
| // First CopyToReg |
| TCChain = UseChain; |
| } |
| } else if (Copy->getOpcode() == ISD::BITCAST) { |
| // f32 returned in a single GPR. |
| if (!Copy->hasOneUse()) |
| return false; |
| Copy = *Copy->use_begin(); |
| if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) |
| return false; |
| Chain = Copy->getOperand(0); |
| } else { |
| return false; |
| } |
| |
| bool HasRet = false; |
| for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); |
| UI != UE; ++UI) { |
| if (UI->getOpcode() != ARMISD::RET_FLAG) |
| return false; |
| HasRet = true; |
| } |
| |
| if (!HasRet) |
| return false; |
| |
| Chain = TCChain; |
| return true; |
| } |
| |
| bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { |
| if (!EnableARMTailCalls && !Subtarget->supportsTailCall()) |
| return false; |
| |
| if (!CI->isTailCall()) |
| return false; |
| |
| return !Subtarget->isThumb1Only(); |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOVi. |
| static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { |
| EVT PtrVT = Op.getValueType(); |
| // FIXME there is no actual debug info here |
| DebugLoc dl = Op.getDebugLoc(); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDValue Res; |
| if (CP->isMachineConstantPoolEntry()) |
| Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, |
| CP->getAlignment()); |
| else |
| Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, |
| CP->getAlignment()); |
| return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); |
| } |
| |
| unsigned ARMTargetLowering::getJumpTableEncoding() const { |
| return MachineJumpTableInfo::EK_Inline; |
| } |
| |
| SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = 0; |
| DebugLoc DL = Op.getDebugLoc(); |
| EVT PtrVT = getPointerTy(); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| SDValue CPAddr; |
| if (RelocM == Reloc::Static) { |
| CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); |
| } else { |
| unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, |
| ARMCP::CPBlockAddress, PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| } |
| CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); |
| SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| if (RelocM == Reloc::Static) |
| return Result; |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model |
| SDValue |
| ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = GA->getDebugLoc(); |
| EVT PtrVT = getPointerTy(); |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, |
| ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); |
| SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); |
| Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| SDValue Chain = Argument.getValue(1); |
| |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); |
| |
| // call __tls_get_addr. |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Argument; |
| Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); |
| Args.push_back(Entry); |
| // FIXME: is there useful debug info available here? |
| TargetLowering::CallLoweringInfo CLI(Chain, |
| (Type *) Type::getInt32Ty(*DAG.getContext()), |
| false, false, false, false, |
| 0, CallingConv::C, /*isTailCall=*/false, |
| /*doesNotRet=*/false, /*isReturnValueUsed=*/true, |
| DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl); |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| return CallResult.first; |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or |
| // "local exec" model. |
| SDValue |
| ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG, |
| TLSModel::Model model) const { |
| const GlobalValue *GV = GA->getGlobal(); |
| DebugLoc dl = GA->getDebugLoc(); |
| SDValue Offset; |
| SDValue Chain = DAG.getEntryNode(); |
| EVT PtrVT = getPointerTy(); |
| // Get the Thread Pointer |
| SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); |
| |
| if (model == TLSModel::InitialExec) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| // Initial exec model. |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, |
| ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, |
| true); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| Chain = Offset.getValue(1); |
| |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); |
| |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| } else { |
| // local exec model |
| assert(model == TLSModel::LocalExec); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| } |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { |
| // TODO: implement the "local dynamic" model |
| assert(Subtarget->isTargetELF() && |
| "TLS not implemented for non-ELF targets"); |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| |
| TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); |
| |
| switch (model) { |
| case TLSModel::GeneralDynamic: |
| case TLSModel::LocalDynamic: |
| return LowerToTLSGeneralDynamicModel(GA, DAG); |
| case TLSModel::InitialExec: |
| case TLSModel::LocalExec: |
| return LowerToTLSExecModels(GA, DAG, model); |
| } |
| llvm_unreachable("bogus TLS model"); |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GV, |
| UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| SDValue Chain = Result.getValue(1); |
| SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); |
| Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); |
| if (!UseGOTOFF) |
| Result = DAG.getLoad(PtrVT, dl, Chain, Result, |
| MachinePointerInfo::getGOT(), |
| false, false, false, 0); |
| return Result; |
| } |
| |
| // If we have T2 ops, we can materialize the address directly via movt/movw |
| // pair. This is always cheaper. |
| if (Subtarget->useMovt()) { |
| ++NumMovwMovt; |
| // FIXME: Once remat is capable of dealing with instructions with register |
| // operands, expand this into two nodes. |
| return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT)); |
| } else { |
| SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| } |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| |
| // FIXME: Enable this for static codegen when tool issues are fixed. Also |
| // update ARMFastISel::ARMMaterializeGV. |
| if (Subtarget->useMovt() && RelocM != Reloc::Static) { |
| ++NumMovwMovt; |
| // FIXME: Once remat is capable of dealing with instructions with register |
| // operands, expand this into two nodes. |
| if (RelocM == Reloc::Static) |
| return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT)); |
| |
| unsigned Wrapper = (RelocM == Reloc::PIC_) |
| ? ARMISD::WrapperPIC : ARMISD::WrapperDYN; |
| SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT)); |
| if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) |
| Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(), |
| false, false, false, 0); |
| return Result; |
| } |
| |
| unsigned ARMPCLabelIndex = 0; |
| SDValue CPAddr; |
| if (RelocM == Reloc::Static) { |
| CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); |
| } else { |
| ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); |
| ARMPCLabelIndex = AFI->createPICLabelUId(); |
| unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, |
| PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| } |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| SDValue Chain = Result.getValue(1); |
| |
| if (RelocM == Reloc::PIC_) { |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| |
| if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) |
| Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(), |
| false, false, false, 0); |
| |
| return Result; |
| } |
| |
| SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetELF() && |
| "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| EVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_", |
| ARMPCLabelIndex, PCAdj); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Val = DAG.getConstant(0, MVT::i32); |
| return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, |
| DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), |
| Op.getOperand(1), Val); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), |
| Op.getOperand(1), DAG.getConstant(0, MVT::i32)); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) const { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| DebugLoc dl = Op.getDebugLoc(); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| case Intrinsic::arm_thread_pointer: { |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); |
| } |
| case Intrinsic::eh_sjlj_lsda: { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
| EVT PtrVT = getPointerTy(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| SDValue CPAddr; |
| unsigned PCAdj = (RelocM != Reloc::PIC_) |
| ? 0 : (Subtarget->isThumb() ? 4 : 8); |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex, |
| ARMCP::CPLSDA, PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = |
| DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 0); |
| |
| if (RelocM == Reloc::PIC_) { |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| return Result; |
| } |
| case Intrinsic::arm_neon_vmulls: |
| case Intrinsic::arm_neon_vmullu: { |
| unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) |
| ? ARMISD::VMULLs : ARMISD::VMULLu; |
| return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| } |
| } |
| |
| static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| DebugLoc dl = Op.getDebugLoc(); |
| if (!Subtarget->hasDataBarrier()) { |
| // Some ARMv6 cpus can support data barriers with an mcr instruction. |
| // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get |
| // here. |
| assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && |
| "Unexpected ISD::MEMBARRIER encountered. Should be libcall!"); |
| return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| } |
| |
| SDValue Op5 = Op.getOperand(5); |
| bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0; |
| unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0); |
| |
| ARM_MB::MemBOpt DMBOpt; |
| if (isDeviceBarrier) |
| DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY; |
| else |
| DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH; |
| return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(DMBOpt, MVT::i32)); |
| } |
| |
| |
| static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| // FIXME: handle "fence singlethread" more efficiently. |
| DebugLoc dl = Op.getDebugLoc(); |
| if (!Subtarget->hasDataBarrier()) { |
| // Some ARMv6 cpus can support data barriers with an mcr instruction. |
| // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get |
| // here. |
| assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && |
| "Unexpected ISD::MEMBARRIER encountered. Should be libcall!"); |
| return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| } |
| |
| return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(ARM_MB::ISH, MVT::i32)); |
| } |
| |
| static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| // ARM pre v5TE and Thumb1 does not have preload instructions. |
| if (!(Subtarget->isThumb2() || |
| (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) |
| // Just preserve the chain. |
| return Op.getOperand(0); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1; |
| if (!isRead && |
| (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) |
| // ARMv7 with MP extension has PLDW. |
| return Op.getOperand(0); |
| |
| unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); |
| if (Subtarget->isThumb()) { |
| // Invert the bits. |
| isRead = ~isRead & 1; |
| isData = ~isData & 1; |
| } |
| |
| return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), |
| Op.getOperand(1), DAG.getConstant(isRead, MVT::i32), |
| DAG.getConstant(isData, MVT::i32)); |
| } |
| |
| static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), |
| MachinePointerInfo(SV), false, false, 0); |
| } |
| |
| SDValue |
| ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, |
| SDValue &Root, SelectionDAG &DAG, |
| DebugLoc dl) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| const TargetRegisterClass *RC; |
| if (AFI->isThumb1OnlyFunction()) |
| RC = &ARM::tGPRRegClass; |
| else |
| RC = &ARM::GPRRegClass; |
| |
| // Transform the arguments stored in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); |
| |
| SDValue ArgValue2; |
| if (NextVA.isMemLoc()) { |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true); |
| |
| // Create load node to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, |
| MachinePointerInfo::getFixedStack(FI), |
| false, false, false, 0); |
| } else { |
| Reg = MF.addLiveIn(NextVA.getLocReg(), RC); |
| ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); |
| } |
| |
| return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); |
| } |
| |
| void |
| ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF, |
| unsigned &VARegSize, unsigned &VARegSaveSize) |
| const { |
| unsigned NumGPRs; |
| if (CCInfo.isFirstByValRegValid()) |
| NumGPRs = ARM::R4 - CCInfo.getFirstByValReg(); |
| else { |
| unsigned int firstUnalloced; |
| firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs, |
| sizeof(GPRArgRegs) / |
| sizeof(GPRArgRegs[0])); |
| NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0; |
| } |
| |
| unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment(); |
| VARegSize = NumGPRs * 4; |
| VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1); |
| } |
| |
| // The remaining GPRs hold either the beginning of variable-argument |
| // data, or the beginning of an aggregate passed by value (usually |
| // byval). Either way, we allocate stack slots adjacent to the data |
| // provided by our caller, and store the unallocated registers there. |
| // If this is a variadic function, the va_list pointer will begin with |
| // these values; otherwise, this reassembles a (byval) structure that |
| // was split between registers and memory. |
| void |
| ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, |
| DebugLoc dl, SDValue &Chain, |
| const Value *OrigArg, |
| unsigned OffsetFromOrigArg, |
| unsigned ArgOffset, |
| bool ForceMutable) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned firstRegToSaveIndex; |
| if (CCInfo.isFirstByValRegValid()) |
| firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0; |
| else { |
| firstRegToSaveIndex = CCInfo.getFirstUnallocated |
| (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0])); |
| } |
| |
| unsigned VARegSize, VARegSaveSize; |
| computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize); |
| if (VARegSaveSize) { |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing |
| // the result of va_next. |
| AFI->setVarArgsRegSaveSize(VARegSaveSize); |
| AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize, |
| ArgOffset + VARegSaveSize |
| - VARegSize, |
| false)); |
| SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), |
| getPointerTy()); |
| |
| SmallVector<SDValue, 4> MemOps; |
| for (unsigned i = 0; firstRegToSaveIndex < 4; ++firstRegToSaveIndex, ++i) { |
| const TargetRegisterClass *RC; |
| if (AFI->isThumb1OnlyFunction()) |
| RC = &ARM::tGPRRegClass; |
| else |
| RC = &ARM::GPRRegClass; |
| |
| unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i), |
| false, false, 0); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, |
| DAG.getConstant(4, getPointerTy())); |
| } |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } else |
| // This will point to the next argument passed via stack. |
| AFI->setVarArgsFrameIndex( |
| MFI->CreateFixedObject(4, ArgOffset, !ForceMutable)); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> |
| &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) |
| const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue); |
| CCInfo.AnalyzeFormalArguments(Ins, |
| CCAssignFnForNode(CallConv, /* Return*/ false, |
| isVarArg)); |
| |
| SmallVector<SDValue, 16> ArgValues; |
| int lastInsIndex = -1; |
| SDValue ArgValue; |
| Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); |
| unsigned CurArgIdx = 0; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx); |
| CurArgIdx = Ins[VA.getValNo()].OrigArgIndex; |
| // Arguments stored in registers. |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| |
| if (VA.needsCustom()) { |
| // f64 and vector types are split up into multiple registers or |
| // combinations of registers and stack slots. |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], |
| Chain, DAG, dl); |
| VA = ArgLocs[++i]; // skip ahead to next loc |
| SDValue ArgValue2; |
| if (VA.isMemLoc()) { |
| int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true); |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(FI), |
| false, false, false, 0); |
| } else { |
| ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], |
| Chain, DAG, dl); |
| } |
| ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); |
| ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, |
| ArgValue, ArgValue1, DAG.getIntPtrConstant(0)); |
| ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, |
| ArgValue, ArgValue2, DAG.getIntPtrConstant(1)); |
| } else |
| ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); |
| |
| } else { |
| const TargetRegisterClass *RC; |
| |
| if (RegVT == MVT::f32) |
| RC = &ARM::SPRRegClass; |
| else if (RegVT == MVT::f64) |
| RC = &ARM::DPRRegClass; |
| else if (RegVT == MVT::v2f64) |
| RC = &ARM::QPRRegClass; |
| else if (RegVT == MVT::i32) |
| RC = AFI->isThumb1OnlyFunction() ? |
| (const TargetRegisterClass*)&ARM::tGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRRegClass; |
| else |
| llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); |
| |
| // Transform the arguments in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| } |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted |
| // to 32 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::SExt: |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::ZExt: |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| } |
| |
| InVals.push_back(ArgValue); |
| |
| } else { // VA.isRegLoc() |
| |
| // sanity check |
| assert(VA.isMemLoc()); |
| assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); |
| |
| int index = ArgLocs[i].getValNo(); |
| |
| // Some Ins[] entries become multiple ArgLoc[] entries. |
| // Process them only once. |
| if (index != lastInsIndex) |
| { |
| ISD::ArgFlagsTy Flags = Ins[index].Flags; |
| // FIXME: For now, all byval parameter objects are marked mutable. |
| // This can be changed with more analysis. |
| // In case of tail call optimization mark all arguments mutable. |
| // Since they could be overwritten by lowering of arguments in case of |
| // a tail call. |
| if (Flags.isByVal()) { |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| if (!AFI->getVarArgsFrameIndex()) { |
| VarArgStyleRegisters(CCInfo, DAG, |
| dl, Chain, CurOrigArg, |
| Ins[VA.getValNo()].PartOffset, |
| VA.getLocMemOffset(), |
| true /*force mutable frames*/); |
| int VAFrameIndex = AFI->getVarArgsFrameIndex(); |
| InVals.push_back(DAG.getFrameIndex(VAFrameIndex, getPointerTy())); |
| } else { |
| int FI = MFI->CreateFixedObject(Flags.getByValSize(), |
| VA.getLocMemOffset(), false); |
| InVals.push_back(DAG.getFrameIndex(FI, getPointerTy())); |
| } |
| } else { |
| int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, |
| VA.getLocMemOffset(), true); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(FI), |
| false, false, false, 0)); |
| } |
| lastInsIndex = index; |
| } |
| } |
| } |
| |
| // varargs |
| if (isVarArg) |
| VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0, 0, |
| CCInfo.getNextStackOffset()); |
| |
| return Chain; |
| } |
| |
| /// isFloatingPointZero - Return true if this is +0.0. |
| static bool isFloatingPointZero(SDValue Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->getValueAPF().isPosZero(); |
| else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { |
| // Maybe this has already been legalized into the constant pool? |
| if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { |
| SDValue WrapperOp = Op.getOperand(1).getOperand(0); |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) |
| return CFP->getValueAPF().isPosZero(); |
| } |
| } |
| return false; |
| } |
| |
| /// Returns appropriate ARM CMP (cmp) and corresponding condition code for |
| /// the given operands. |
| SDValue |
| ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| SDValue &ARMcc, SelectionDAG &DAG, |
| DebugLoc dl) const { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { |
| unsigned C = RHSC->getZExtValue(); |
| if (!isLegalICmpImmediate(C)) { |
| // Constant does not fit, try adjusting it by one? |
| switch (CC) { |
| default: break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { |
| CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| RHS = DAG.getConstant(C-1, MVT::i32); |
| } |
| break; |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| if (C != 0 && isLegalICmpImmediate(C-1)) { |
| CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| RHS = DAG.getConstant(C-1, MVT::i32); |
| } |
| break; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { |
| CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| RHS = DAG.getConstant(C+1, MVT::i32); |
| } |
| break; |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { |
| CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| RHS = DAG.getConstant(C+1, MVT::i32); |
| } |
| break; |
| } |
| } |
| } |
| |
| ARMCC::CondCodes CondCode = IntCCToARMCC(CC); |
| ARMISD::NodeType CompareType; |
| switch (CondCode) { |
| default: |
| CompareType = ARMISD::CMP; |
| break; |
| case ARMCC::EQ: |
| case ARMCC::NE: |
| // Uses only Z Flag |
| CompareType = ARMISD::CMPZ; |
| break; |
| } |
| ARMcc = DAG.getConstant(CondCode, MVT::i32); |
| return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); |
| } |
| |
| /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. |
| SDValue |
| ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, |
| DebugLoc dl) const { |
| SDValue Cmp; |
| if (!isFloatingPointZero(RHS)) |
| Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS); |
| else |
| Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS); |
| return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); |
| } |
| |
| /// duplicateCmp - Glue values can have only one use, so this function |
| /// duplicates a comparison node. |
| SDValue |
| ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { |
| unsigned Opc = Cmp.getOpcode(); |
| DebugLoc DL = Cmp.getDebugLoc(); |
| if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) |
| return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); |
| |
| assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); |
| Cmp = Cmp.getOperand(0); |
| Opc = Cmp.getOpcode(); |
| if (Opc == ARMISD::CMPFP) |
| Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); |
| else { |
| assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); |
| Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); |
| } |
| return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); |
| } |
| |
| SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Cond = Op.getOperand(0); |
| SDValue SelectTrue = Op.getOperand(1); |
| SDValue SelectFalse = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Convert: |
| // |
| // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) |
| // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) |
| // |
| if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { |
| const ConstantSDNode *CMOVTrue = |
| dyn_cast<ConstantSDNode>(Cond.getOperand(0)); |
| const ConstantSDNode *CMOVFalse = |
| dyn_cast<ConstantSDNode>(Cond.getOperand(1)); |
| |
| if (CMOVTrue && CMOVFalse) { |
| unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); |
| unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); |
| |
| SDValue True; |
| SDValue False; |
| if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { |
| True = SelectTrue; |
| False = SelectFalse; |
| } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { |
| True = SelectFalse; |
| False = SelectTrue; |
| } |
| |
| if (True.getNode() && False.getNode()) { |
| EVT VT = Op.getValueType(); |
| SDValue ARMcc = Cond.getOperand(2); |
| SDValue CCR = Cond.getOperand(3); |
| SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); |
| assert(True.getValueType() == VT); |
| return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp); |
| } |
| } |
| } |
| |
| // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the |
| // undefined bits before doing a full-word comparison with zero. |
| Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, |
| DAG.getConstant(1, Cond.getValueType())); |
| |
| return DAG.getSelectCC(dl, Cond, |
| DAG.getConstant(0, Cond.getValueType()), |
| SelectTrue, SelectFalse, ISD::SETNE); |
| } |
| |
| SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDValue TrueVal = Op.getOperand(2); |
| SDValue FalseVal = Op.getOperand(3); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDValue ARMcc; |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); |
| return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp); |
| } |
| |
| ARMCC::CondCodes CondCode, CondCode2; |
| FPCCToARMCC(CC, CondCode, CondCode2); |
| |
| SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); |
| SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, |
| ARMcc, CCR, Cmp); |
| if (CondCode2 != ARMCC::AL) { |
| SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32); |
| // FIXME: Needs another CMP because flag can have but one use. |
| SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); |
| Result = DAG.getNode(ARMISD::CMOV, dl, VT, |
| Result, TrueVal, ARMcc2, CCR, Cmp2); |
| } |
| return Result; |
| } |
| |
| /// canChangeToInt - Given the fp compare operand, return true if it is suitable |
| /// to morph to an integer compare sequence. |
| static bool canChangeToInt(SDValue Op, bool &SeenZero, |
| const ARMSubtarget *Subtarget) { |
| SDNode *N = Op.getNode(); |
| if (!N->hasOneUse()) |
| // Otherwise it requires moving the value from fp to integer registers. |
| return false; |
| if (!N->getNumValues()) |
| return false; |
| EVT VT = Op.getValueType(); |
| if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) |
| // f32 case is generally profitable. f64 case only makes sense when vcmpe + |
| // vmrs are very slow, e.g. cortex-a8. |
| return false; |
| |
| if (isFloatingPointZero(Op)) { |
| SeenZero = true; |
| return true; |
| } |
| return ISD::isNormalLoad(N); |
| } |
| |
| static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { |
| if (isFloatingPointZero(Op)) |
| return DAG.getConstant(0, MVT::i32); |
| |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) |
| return DAG.getLoad(MVT::i32, Op.getDebugLoc(), |
| Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), |
| Ld->isVolatile(), Ld->isNonTemporal(), |
| Ld->isInvariant(), Ld->getAlignment()); |
| |
| llvm_unreachable("Unknown VFP cmp argument!"); |
| } |
| |
| static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, |
| SDValue &RetVal1, SDValue &RetVal2) { |
| if (isFloatingPointZero(Op)) { |
| RetVal1 = DAG.getConstant(0, MVT::i32); |
| RetVal2 = DAG.getConstant(0, MVT::i32); |
| return; |
| } |
| |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) { |
| SDValue Ptr = Ld->getBasePtr(); |
| RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(), |
| Ld->getChain(), Ptr, |
| Ld->getPointerInfo(), |
| Ld->isVolatile(), Ld->isNonTemporal(), |
| Ld->isInvariant(), Ld->getAlignment()); |
| |
| EVT PtrType = Ptr.getValueType(); |
| unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); |
| SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(), |
| PtrType, Ptr, DAG.getConstant(4, PtrType)); |
| RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(), |
| Ld->getChain(), NewPtr, |
| Ld->getPointerInfo().getWithOffset(4), |
| Ld->isVolatile(), Ld->isNonTemporal(), |
| Ld->isInvariant(), NewAlign); |
| return; |
| } |
| |
| llvm_unreachable("Unknown VFP cmp argument!"); |
| } |
| |
| /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some |
| /// f32 and even f64 comparisons to integer ones. |
| SDValue |
| ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| bool LHSSeenZero = false; |
| bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); |
| bool RHSSeenZero = false; |
| bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); |
| if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { |
| // If unsafe fp math optimization is enabled and there are no other uses of |
| // the CMP operands, and the condition code is EQ or NE, we can optimize it |
| // to an integer comparison. |
| if (CC == ISD::SETOEQ) |
| CC = ISD::SETEQ; |
| else if (CC == ISD::SETUNE) |
| CC = ISD::SETNE; |
| |
| SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32); |
| SDValue ARMcc; |
| if (LHS.getValueType() == MVT::f32) { |
| LHS = DAG.getNode(ISD::AND, dl, MVT::i32, |
| bitcastf32Toi32(LHS, DAG), Mask); |
| RHS = DAG.getNode(ISD::AND, dl, MVT::i32, |
| bitcastf32Toi32(RHS, DAG), Mask); |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, |
| Chain, Dest, ARMcc, CCR, Cmp); |
| } |
| |
| SDValue LHS1, LHS2; |
| SDValue RHS1, RHS2; |
| expandf64Toi32(LHS, DAG, LHS1, LHS2); |
| expandf64Toi32(RHS, DAG, RHS1, RHS2); |
| LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); |
| RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); |
| ARMCC::CondCodes CondCode = IntCCToARMCC(CC); |
| ARMcc = DAG.getConstant(CondCode, MVT::i32); |
| SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; |
| return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDValue ARMcc; |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, |
| Chain, Dest, ARMcc, CCR, Cmp); |
| } |
| |
| assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); |
| |
| if (getTargetMachine().Options.UnsafeFPMath && |
| (CC == ISD::SETEQ || CC == ISD::SETOEQ || |
| CC == ISD::SETNE || CC == ISD::SETUNE)) { |
| SDValue Result = OptimizeVFPBrcond(Op, DAG); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| ARMCC::CondCodes CondCode, CondCode2; |
| FPCCToARMCC(CC, CondCode, CondCode2); |
| |
| SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); |
| SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; |
| SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); |
| if (CondCode2 != ARMCC::AL) { |
| ARMcc = DAG.getConstant(CondCode2, MVT::i32); |
| SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; |
| Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); |
| } |
| return Res; |
| } |
| |
| SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Table = Op.getOperand(1); |
| SDValue Index = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| EVT PTy = getPointerTy(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); |
| ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); |
| SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); |
| SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); |
| Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); |
| Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); |
| SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); |
| if (Subtarget->isThumb2()) { |
| // Thumb2 uses a two-level jump. That is, it jumps into the jump table |
| // which does another jump to the destination. This also makes it easier |
| // to translate it to TBB / TBH later. |
| // FIXME: This might not work if the function is extremely large. |
| return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, |
| Addr, Op.getOperand(2), JTI, UId); |
| } |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, |
| MachinePointerInfo::getJumpTable(), |
| false, false, false, 0); |
| Chain = Addr.getValue(1); |
| Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); |
| return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); |
| } else { |
| Addr = DAG.getLoad(PTy, dl, Chain, Addr, |
| MachinePointerInfo::getJumpTable(), |
| false, false, false, 0); |
| Chain = Addr.getValue(1); |
| return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); |
| } |
| } |
| |
| static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (Op.getValueType().getVectorElementType() == MVT::i32) { |
| if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) |
| return Op; |
| return DAG.UnrollVectorOp(Op.getNode()); |
| } |
| |
| assert(Op.getOperand(0).getValueType() == MVT::v4f32 && |
| "Invalid type for custom lowering!"); |
| if (VT != MVT::v4i16) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); |
| } |
| |
| static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| if (VT.isVector()) |
| return LowerVectorFP_TO_INT(Op, DAG); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Opc; |
| |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Invalid opcode!"); |
| case ISD::FP_TO_SINT: |
| Opc = ARMISD::FTOSI; |
| break; |
| case ISD::FP_TO_UINT: |
| Opc = ARMISD::FTOUI; |
| break; |
| } |
| Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
| } |
| |
| static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { |
| if (VT.getVectorElementType() == MVT::f32) |
| return Op; |
| return DAG.UnrollVectorOp(Op.getNode()); |
| } |
| |
| assert(Op.getOperand(0).getValueType() == MVT::v4i16 && |
| "Invalid type for custom lowering!"); |
| if (VT != MVT::v4f32) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| unsigned CastOpc; |
| unsigned Opc; |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Invalid opcode!"); |
| case ISD::SINT_TO_FP: |
| CastOpc = ISD::SIGN_EXTEND; |
| Opc = ISD::SINT_TO_FP; |
| break; |
| case ISD::UINT_TO_FP: |
| CastOpc = ISD::ZERO_EXTEND; |
| Opc = ISD::UINT_TO_FP; |
| break; |
| } |
| |
| Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0)); |
| return DAG.getNode(Opc, dl, VT, Op); |
| } |
| |
| static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| if (VT.isVector()) |
| return LowerVectorINT_TO_FP(Op, DAG); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Opc; |
| |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Invalid opcode!"); |
| case ISD::SINT_TO_FP: |
| Opc = ARMISD::SITOF; |
| break; |
| case ISD::UINT_TO_FP: |
| Opc = ARMISD::UITOF; |
| break; |
| } |
| |
| Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(Opc, dl, VT, Op); |
| } |
| |
| SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { |
| // Implement fcopysign with a fabs and a conditional fneg. |
| SDValue Tmp0 = Op.getOperand(0); |
| SDValue Tmp1 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| EVT SrcVT = Tmp1.getValueType(); |
| bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || |
| Tmp0.getOpcode() == ARMISD::VMOVDRR; |
| bool UseNEON = !InGPR && Subtarget->hasNEON(); |
| |
| if (UseNEON) { |
| // Use VBSL to copy the sign bit. |
| unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80); |
| SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, |
| DAG.getTargetConstant(EncodedVal, MVT::i32)); |
| EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; |
| if (VT == MVT::f64) |
| Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT, |
| DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), |
| DAG.getConstant(32, MVT::i32)); |
| else /*if (VT == MVT::f32)*/ |
| Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); |
| if (SrcVT == MVT::f32) { |
| Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); |
| if (VT == MVT::f64) |
| Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT, |
| DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), |
| DAG.getConstant(32, MVT::i32)); |
| } else if (VT == MVT::f32) |
| Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), |
| DAG.getConstant(32, MVT::i32)); |
| Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); |
| Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); |
| |
| SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff), |
| MVT::i32); |
| AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); |
| SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, |
| DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); |
| |
| SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, |
| DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), |
| DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); |
| if (VT == MVT::f32) { |
| Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); |
| Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, |
| DAG.getConstant(0, MVT::i32)); |
| } else { |
| Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); |
| } |
| |
| return Res; |
| } |
| |
| // Bitcast operand 1 to i32. |
| if (SrcVT == MVT::f64) |
| Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), |
| &Tmp1, 1).getValue(1); |
| Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); |
| |
| // Or in the signbit with integer operations. |
| SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32); |
| SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32); |
| Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); |
| if (VT == MVT::f32) { |
| Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, |
| DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, |
| DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); |
| } |
| |
| // f64: Or the high part with signbit and then combine two parts. |
| Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), |
| &Tmp0, 1); |
| SDValue Lo = Tmp0.getValue(0); |
| SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); |
| Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); |
| return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); |
| } |
| |
| SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MFI->setReturnAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = DAG.getConstant(4, MVT::i32); |
| return DAG.getLoad(VT, dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), |
| MachinePointerInfo(), false, false, false, 0); |
| } |
| |
| // Return LR, which contains the return address. Mark it an implicit live-in. |
| unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); |
| } |
| |
| SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin()) |
| ? ARM::R7 : ARM::R11; |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| return FrameAddr; |
| } |
| |
| /// ExpandBITCAST - If the target supports VFP, this function is called to |
| /// expand a bit convert where either the source or destination type is i64 to |
| /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 |
| /// operand type is illegal (e.g., v2f32 for a target that doesn't support |
| /// vectors), since the legalizer won't know what to do with that. |
| static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue Op = N->getOperand(0); |
| |
| // This function is only supposed to be called for i64 types, either as the |
| // source or destination of the bit convert. |
| EVT SrcVT = Op.getValueType(); |
| EVT DstVT = N->getValueType(0); |
| assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && |
| "ExpandBITCAST called for non-i64 type"); |
| |
| // Turn i64->f64 into VMOVDRR. |
| if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, |
| DAG.getConstant(0, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, |
| DAG.getConstant(1, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, DstVT, |
| DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); |
| } |
| |
| // Turn f64->i64 into VMOVRRD. |
| if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { |
| SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// getZeroVector - Returns a vector of specified type with all zero elements. |
| /// Zero vectors are used to represent vector negation and in those cases |
| /// will be implemented with the NEON VNEG instruction. However, VNEG does |
| /// not support i64 elements, so sometimes the zero vectors will need to be |
| /// explicitly constructed. Regardless, use a canonical VMOV to create the |
| /// zero vector. |
| static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { |
| assert(VT.isVector() && "Expected a vector type"); |
| // The canonical modified immediate encoding of a zero vector is....0! |
| SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32); |
| EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; |
| SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); |
| } |
| |
| /// LowerShiftRightParts - Lower SRA_PARTS, which returns two |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount. |
| SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| SDValue ARMcc; |
| unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| |
| assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, MVT::i32), ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); |
| |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, |
| ARMcc, DAG, dl); |
| SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, |
| CCR, Cmp); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount. |
| SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| SDValue ARMcc; |
| |
| assert(Op.getOpcode() == ISD::SHL_PARTS); |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, MVT::i32), ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, |
| ARMcc, DAG, dl); |
| SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc, |
| CCR, Cmp); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, |
| SelectionDAG &DAG) const { |
| // The rounding mode is in bits 23:22 of the FPSCR. |
| // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 |
| // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) |
| // so that the shift + and get folded into a bitfield extract. |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, |
| DAG.getConstant(Intrinsic::arm_get_fpscr, |
| MVT::i32)); |
| SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, |
| DAG.getConstant(1U << 22, MVT::i32)); |
| SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, |
| DAG.getConstant(22, MVT::i32)); |
| return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, |
| DAG.getConstant(3, MVT::i32)); |
| } |
| |
| static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| if (!ST->hasV6T2Ops()) |
| return SDValue(); |
| |
| SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0)); |
| return DAG.getNode(ISD::CTLZ, dl, VT, rbit); |
| } |
| |
| /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count |
| /// for each 16-bit element from operand, repeated. The basic idea is to |
| /// leverage vcnt to get the 8-bit counts, gather and add the results. |
| /// |
| /// Trace for v4i16: |
| /// input = [v0 v1 v2 v3 ] (vi 16-bit element) |
| /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element) |
| /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi) |
| /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6] |
| /// [b0 b1 b2 b3 b4 b5 b6 b7] |
| /// +[b1 b0 b3 b2 b5 b4 b7 b6] |
| /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0, |
| /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits) |
| static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; |
| SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0)); |
| SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0); |
| SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1); |
| SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2); |
| return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3); |
| } |
| |
| /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the |
| /// bit-count for each 16-bit element from the operand. We need slightly |
| /// different sequencing for v4i16 and v8i16 to stay within NEON's available |
| /// 64/128-bit registers. |
| /// |
| /// Trace for v4i16: |
| /// input = [v0 v1 v2 v3 ] (vi 16-bit element) |
| /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi) |
| /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ] |
| /// v4i16:Extracted = [k0 k1 k2 k3 ] |
| static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| SDValue BitCounts = getCTPOP16BitCounts(N, DAG); |
| if (VT.is64BitVector()) { |
| SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended, |
| DAG.getIntPtrConstant(0)); |
| } else { |
| SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, |
| BitCounts, DAG.getIntPtrConstant(0)); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted); |
| } |
| } |
| |
| /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the |
| /// bit-count for each 32-bit element from the operand. The idea here is |
| /// to split the vector into 16-bit elements, leverage the 16-bit count |
| /// routine, and then combine the results. |
| /// |
| /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged): |
| /// input = [v0 v1 ] (vi: 32-bit elements) |
| /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1]) |
| /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi) |
| /// vrev: N0 = [k1 k0 k3 k2 ] |
| /// [k0 k1 k2 k3 ] |
| /// N1 =+[k1 k0 k3 k2 ] |
| /// [k0 k2 k1 k3 ] |
| /// N2 =+[k1 k3 k0 k2 ] |
| /// [k0 k2 k1 k3 ] |
| /// Extended =+[k1 k3 k0 k2 ] |
| /// [k0 k2 ] |
| /// Extracted=+[k1 k3 ] |
| /// |
| static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; |
| |
| SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0)); |
| SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG); |
| SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16); |
| SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0); |
| SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1); |
| |
| if (VT.is64BitVector()) { |
| SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended, |
| DAG.getIntPtrConstant(0)); |
| } else { |
| SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2, |
| DAG.getIntPtrConstant(0)); |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted); |
| } |
| } |
| |
| static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| |
| assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); |
| assert((VT == MVT::v2i32 || VT == MVT::v4i32 || |
| VT == MVT::v4i16 || VT == MVT::v8i16) && |
| "Unexpected type for custom ctpop lowering"); |
| |
| if (VT.getVectorElementType() == MVT::i32) |
| return lowerCTPOP32BitElements(N, DAG); |
| else |
| return lowerCTPOP16BitElements(N, DAG); |
| } |
| |
| static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| // Lower vector shifts on NEON to use VSHL. |
| assert(ST->hasNEON() && "unexpected vector shift"); |
| |
| // Left shifts translate directly to the vshiftu intrinsic. |
| if (N->getOpcode() == ISD::SHL) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32), |
| N->getOperand(0), N->getOperand(1)); |
| |
| assert((N->getOpcode() == ISD::SRA || |
| N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); |
| |
| // NEON uses the same intrinsics for both left and right shifts. For |
| // right shifts, the shift amounts are negative, so negate the vector of |
| // shift amounts. |
| EVT ShiftVT = N->getOperand(1).getValueType(); |
| SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, |
| getZeroVector(ShiftVT, DAG, dl), |
| N->getOperand(1)); |
| Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? |
| Intrinsic::arm_neon_vshifts : |
| Intrinsic::arm_neon_vshiftu); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(vshiftInt, MVT::i32), |
| N->getOperand(0), NegatedCount); |
| } |
| |
| static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| // We can get here for a node like i32 = ISD::SHL i32, i64 |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && |
| "Unknown shift to lower!"); |
| |
| // We only lower SRA, SRL of 1 here, all others use generic lowering. |
| if (!isa<ConstantSDNode>(N->getOperand(1)) || |
| cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1) |
| return SDValue(); |
| |
| // If we are in thumb mode, we don't have RRX. |
| if (ST->isThumb1Only()) return SDValue(); |
| |
| // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), |
| DAG.getConstant(1, MVT::i32)); |
| |
| // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and |
| // captures the result into a carry flag. |
| unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; |
| Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1); |
| |
| // The low part is an ARMISD::RRX operand, which shifts the carry in. |
| Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); |
| |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); |
| } |
| |
| static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { |
| SDValue TmpOp0, TmpOp1; |
| bool Invert = false; |
| bool Swap = false; |
| unsigned Opc = 0; |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue CC = Op.getOperand(2); |
| EVT VT = Op.getValueType(); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (Op.getOperand(1).getValueType().isFloatingPoint()) { |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Illegal FP comparison"); |
| case ISD::SETUNE: |
| case ISD::SETNE: Invert = true; // Fallthrough |
| case ISD::SETOEQ: |
| case ISD::SETEQ: Opc = ARMISD::VCEQ; break; |
| case ISD::SETOLT: |
| case ISD::SETLT: Swap = true; // Fallthrough |
| case ISD::SETOGT: |
| case ISD::SETGT: Opc = ARMISD::VCGT; break; |
| case ISD::SETOLE: |
| case ISD::SETLE: Swap = true; // Fallthrough |
| case ISD::SETOGE: |
| case ISD::SETGE: Opc = ARMISD::VCGE; break; |
| case ISD::SETUGE: Swap = true; // Fallthrough |
| case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; |
| case ISD::SETUGT: Swap = true; // Fallthrough |
| case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; |
| case ISD::SETUEQ: Invert = true; // Fallthrough |
| case ISD::SETONE: |
| // Expand this to (OLT | OGT). |
| TmpOp0 = Op0; |
| TmpOp1 = Op1; |
| Opc = ISD::OR; |
| Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); |
| Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1); |
| break; |
| case ISD::SETUO: Invert = true; // Fallthrough |
| case ISD::SETO: |
| // Expand this to (OLT | OGE). |
| TmpOp0 = Op0; |
| TmpOp1 = Op1; |
| Opc = ISD::OR; |
| Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); |
| Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1); |
| break; |
| } |
| } else { |
| // Integer comparisons. |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Illegal integer comparison"); |
| case ISD::SETNE: Invert = true; |
| case ISD::SETEQ: Opc = ARMISD::VCEQ; break; |
| case ISD::SETLT: Swap = true; |
| case ISD::SETGT: Opc = ARMISD::VCGT; break; |
| case ISD::SETLE: Swap = true; |
| case ISD::SETGE: Opc = ARMISD::VCGE; break; |
| case ISD::SETULT: Swap = true; |
| case ISD::SETUGT: Opc = ARMISD::VCGTU; break; |
| case ISD::SETULE: Swap = true; |
| case ISD::SETUGE: Opc = ARMISD::VCGEU; break; |
| } |
| |
| // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). |
| if (Opc == ARMISD::VCEQ) { |
| |
| SDValue AndOp; |
| if (ISD::isBuildVectorAllZeros(Op1.getNode())) |
| AndOp = Op0; |
| else if (ISD::isBuildVectorAllZeros(Op0.getNode())) |
| AndOp = Op1; |
| |
| // Ignore bitconvert. |
| if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) |
| AndOp = AndOp.getOperand(0); |
| |
| if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { |
| Opc = ARMISD::VTST; |
| Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0)); |
| Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1)); |
| Invert = !Invert; |
| } |
| } |
| } |
| |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| // If one of the operands is a constant vector zero, attempt to fold the |
| // comparison to a specialized compare-against-zero form. |
| SDValue SingleOp; |
| if (ISD::isBuildVectorAllZeros(Op1.getNode())) |
| SingleOp = Op0; |
| else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { |
| if (Opc == ARMISD::VCGE) |
| Opc = ARMISD::VCLEZ; |
| else if (Opc == ARMISD::VCGT) |
| Opc = ARMISD::VCLTZ; |
| SingleOp = Op1; |
| } |
| |
| SDValue Result; |
| if (SingleOp.getNode()) { |
| switch (Opc) { |
| case ARMISD::VCEQ: |
| Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break; |
| case ARMISD::VCGE: |
| Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break; |
| case ARMISD::VCLEZ: |
| Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break; |
| case ARMISD::VCGT: |
| Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break; |
| case ARMISD::VCLTZ: |
| Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break; |
| default: |
| Result = DAG.getNode(Opc, dl, VT, Op0, Op1); |
| } |
| } else { |
| Result = DAG.getNode(Opc, dl, VT, Op0, Op1); |
| } |
| |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, VT); |
| |
| return Result; |
| } |
| |
| /// isNEONModifiedImm - Check if the specified splat value corresponds to a |
| /// valid vector constant for a NEON instruction with a "modified immediate" |
| /// operand (e.g., VMOV). If so, return the encoded value. |
| static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, |
| unsigned SplatBitSize, SelectionDAG &DAG, |
| EVT &VT, bool is128Bits, NEONModImmType type) { |
| unsigned OpCmode, Imm; |
| |
| // SplatBitSize is set to the smallest size that splats the vector, so a |
| // zero vector will always have SplatBitSize == 8. However, NEON modified |
| // immediate instructions others than VMOV do not support the 8-bit encoding |
| // of a zero vector, and the default encoding of zero is supposed to be the |
| // 32-bit version. |
| if (SplatBits == 0) |
| SplatBitSize = 32; |
| |
| switch (SplatBitSize) { |
| case 8: |
| if (type != VMOVModImm) |
| return SDValue(); |
| // Any 1-byte value is OK. Op=0, Cmode=1110. |
| assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); |
| OpCmode = 0xe; |
| Imm = SplatBits; |
| VT = is128Bits ? MVT::v16i8 : MVT::v8i8; |
| break; |
| |
| case 16: |
| // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. |
| VT = is128Bits ? MVT::v8i16 : MVT::v4i16; |
| if ((SplatBits & ~0xff) == 0) { |
| // Value = 0x00nn: Op=x, Cmode=100x. |
| OpCmode = 0x8; |
| Imm = SplatBits; |
| break; |
| } |
| if ((SplatBits & ~0xff00) == 0) { |
| // Value = 0xnn00: Op=x, Cmode=101x. |
| OpCmode = 0xa; |
| Imm = SplatBits >> 8; |
| break; |
| } |
| return SDValue(); |
| |
| case 32: |
| // NEON's 32-bit VMOV supports splat values where: |
| // * only one byte is nonzero, or |
| // * the least significant byte is 0xff and the second byte is nonzero, or |
| // * the least significant 2 bytes are 0xff and the third is nonzero. |
| VT = is128Bits ? MVT::v4i32 : MVT::v2i32; |
| if ((SplatBits & ~0xff) == 0) { |
| // Value = 0x000000nn: Op=x, Cmode=000x. |
| OpCmode = 0; |
| Imm = SplatBits; |
| break; |
| } |
| if ((SplatBits & ~0xff00) == 0) { |
| // Value = 0x0000nn00: Op=x, Cmode=001x. |
| OpCmode = 0x2; |
| Imm = SplatBits >> 8; |
| break; |
| } |
| if ((SplatBits & ~0xff0000) == 0) { |
| // Value = 0x00nn0000: Op=x, Cmode=010x. |
| OpCmode = 0x4; |
| Imm = SplatBits >> 16; |
| break; |
| } |
| if ((SplatBits & ~0xff000000) == 0) { |
| // Value = 0xnn000000: Op=x, Cmode=011x. |
| OpCmode = 0x6; |
| Imm = SplatBits >> 24; |
| break; |
| } |
| |
| // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC |
| if (type == OtherModImm) return SDValue(); |
| |
| if ((SplatBits & ~0xffff) == 0 && |
| ((SplatBits | SplatUndef) & 0xff) == 0xff) { |
| // Value = 0x0000nnff: Op=x, Cmode=1100. |
| OpCmode = 0xc; |
| Imm = SplatBits >> 8; |
| SplatBits |= 0xff; |
| break; |
| } |
| |
| if ((SplatBits & ~0xffffff) == 0 && |
| ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { |
| // Value = 0x00nnffff: Op=x, Cmode=1101. |
| OpCmode = 0xd; |
| Imm = SplatBits >> 16; |
| SplatBits |= 0xffff; |
| break; |
| } |
| |
| // Note: there are a few 32-bit splat values (specifically: 00ffff00, |
| // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not |
| // VMOV.I32. A (very) minor optimization would be to replicate the value |
| // and fall through here to test for a valid 64-bit splat. But, then the |
| // caller would also need to check and handle the change in size. |
| return SDValue(); |
| |
| case 64: { |
| if (type != VMOVModImm) |
| return SDValue(); |
| // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. |
| uint64_t BitMask = 0xff; |
| uint64_t Val = 0; |
| unsigned ImmMask = 1; |
| Imm = 0; |
| for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { |
| if (((SplatBits | SplatUndef) & BitMask) == BitMask) { |
| Val |= BitMask; |
| Imm |= ImmMask; |
| } else if ((SplatBits & BitMask) != 0) { |
| return SDValue(); |
| } |
| BitMask <<= 8; |
| ImmMask <<= 1; |
| } |
| // Op=1, Cmode=1110. |
| OpCmode = 0x1e; |
| SplatBits = Val; |
| VT = is128Bits ? MVT::v2i64 : MVT::v1i64; |
| break; |
| } |
| |
| default: |
| llvm_unreachable("unexpected size for isNEONModifiedImm"); |
| } |
| |
| unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm); |
| return DAG.getTargetConstant(EncodedVal, MVT::i32); |
| } |
| |
| SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) const { |
| if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16()) |
| return SDValue(); |
| |
| ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op); |
| assert(Op.getValueType() == MVT::f32 && |
| "ConstantFP custom lowering should only occur for f32."); |
| |
| // Try splatting with a VMOV.f32... |
| APFloat FPVal = CFP->getValueAPF(); |
| int ImmVal = ARM_AM::getFP32Imm(FPVal); |
| if (ImmVal != -1) { |
| DebugLoc DL = Op.getDebugLoc(); |
| SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32); |
| SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, |
| NewVal); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, |
| DAG.getConstant(0, MVT::i32)); |
| } |
| |
| // If that fails, try a VMOV.i32 |
| EVT VMovVT; |
| unsigned iVal = FPVal.bitcastToAPInt().getZExtValue(); |
| SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false, |
| VMOVModImm); |
| if (NewVal != SDValue()) { |
| DebugLoc DL = Op.getDebugLoc(); |
| SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, |
| NewVal); |
| SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, |
| VecConstant); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, |
| DAG.getConstant(0, MVT::i32)); |
| } |
| |
| // Finally, try a VMVN.i32 |
| NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false, |
| VMVNModImm); |
| if (NewVal != SDValue()) { |
| DebugLoc DL = Op.getDebugLoc(); |
| SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); |
| SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, |
| VecConstant); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, |
| DAG.getConstant(0, MVT::i32)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // check if an VEXT instruction can handle the shuffle mask when the |
| // vector sources of the shuffle are the same. |
| static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // Assume that the first shuffle index is not UNDEF. Fail if it is. |
| if (M[0] < 0) |
| return false; |
| |
| Imm = M[0]; |
| |
| // If this is a VEXT shuffle, the immediate value is the index of the first |
| // element. The other shuffle indices must be the successive elements after |
| // the first one. |
| unsigned ExpectedElt = Imm; |
| for (unsigned i = 1; i < NumElts; ++i) { |
| // Increment the expected index. If it wraps around, just follow it |
| // back to index zero and keep going. |
| ++ExpectedElt; |
| if (ExpectedElt == NumElts) |
| ExpectedElt = 0; |
| |
| if (M[i] < 0) continue; // ignore UNDEF indices |
| if (ExpectedElt != static_cast<unsigned>(M[i])) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| static bool isVEXTMask(ArrayRef<int> M, EVT VT, |
| bool &ReverseVEXT, unsigned &Imm) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| ReverseVEXT = false; |
| |
| // Assume that the first shuffle index is not UNDEF. Fail if it is. |
| if (M[0] < 0) |
| return false; |
| |
| Imm = M[0]; |
| |
| // If this is a VEXT shuffle, the immediate value is the index of the first |
| // element. The other shuffle indices must be the successive elements after |
| // the first one. |
| unsigned ExpectedElt = Imm; |
| for (unsigned i = 1; i < NumElts; ++i) { |
| // Increment the expected index. If it wraps around, it may still be |
| // a VEXT but the source vectors must be swapped. |
| ExpectedElt += 1; |
| if (ExpectedElt == NumElts * 2) { |
| ExpectedElt = 0; |
| ReverseVEXT = true; |
| } |
| |
| if (M[i] < 0) continue; // ignore UNDEF indices |
| if (ExpectedElt != static_cast<unsigned>(M[i])) |
| return false; |
| } |
| |
| // Adjust the index value if the source operands will be swapped. |
| if (ReverseVEXT) |
| Imm -= NumElts; |
| |
| return true; |
| } |
| |
| /// isVREVMask - Check if a vector shuffle corresponds to a VREV |
| /// instruction with the specified blocksize. (The order of the elements |
| /// within each block of the vector is reversed.) |
| static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { |
| assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && |
| "Only possible block sizes for VREV are: 16, 32, 64"); |
| |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned BlockElts = M[0] + 1; |
| // If the first shuffle index is UNDEF, be optimistic. |
| if (M[0] < 0) |
| BlockElts = BlockSize / EltSz; |
| |
| if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) |
| return false; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if (M[i] < 0) continue; // ignore UNDEF indices |
| if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isVTBLMask(ArrayRef<int> M, EVT VT) { |
| // We can handle <8 x i8> vector shuffles. If the index in the mask is out of |
| // range, then 0 is placed into the resulting vector. So pretty much any mask |
| // of 8 elements can work here. |
| return VT == MVT::v8i8 && M.size() == 8; |
| } |
| |
| static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i < NumElts; i += 2) { |
| if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || |
| (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. |
| static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i < NumElts; i += 2) { |
| if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || |
| (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (M[i] < 0) continue; // ignore UNDEF indices |
| if ((unsigned) M[i] != 2 * i + WhichResult) |
| return false; |
| } |
| |
| // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, |
| static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned Half = VT.getVectorNumElements() / 2; |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned j = 0; j != 2; ++j) { |
| unsigned Idx = WhichResult; |
| for (unsigned i = 0; i != Half; ++i) { |
| int MIdx = M[i + j * Half]; |
| if (MIdx >= 0 && (unsigned) MIdx != Idx) |
| return false; |
| Idx += 2; |
| } |
| } |
| |
| // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| unsigned Idx = WhichResult * NumElts / 2; |
| for (unsigned i = 0; i != NumElts; i += 2) { |
| if ((M[i] >= 0 && (unsigned) M[i] != Idx) || |
| (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts)) |
| return false; |
| Idx += 1; |
| } |
| |
| // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. |
| static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| unsigned Idx = WhichResult * NumElts / 2; |
| for (unsigned i = 0; i != NumElts; i += 2) { |
| if ((M[i] >= 0 && (unsigned) M[i] != Idx) || |
| (M[i+1] >= 0 && (unsigned) M[i+1] != Idx)) |
| return false; |
| Idx += 1; |
| } |
| |
| // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| /// \return true if this is a reverse operation on an vector. |
| static bool isReverseMask(ArrayRef<int> M, EVT VT) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| // Make sure the mask has the right size. |
| if (NumElts != M.size()) |
| return false; |
| |
| // Look for <15, ..., 3, -1, 1, 0>. |
| for (unsigned i = 0; i != NumElts; ++i) |
| if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) |
| return false; |
| |
| return true; |
| } |
| |
| // If N is an integer constant that can be moved into a register in one |
| // instruction, return an SDValue of such a constant (will become a MOV |
| // instruction). Otherwise return null. |
| static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, |
| const ARMSubtarget *ST, DebugLoc dl) { |
| uint64_t Val; |
| if (!isa<ConstantSDNode>(N)) |
| return SDValue(); |
| Val = cast<ConstantSDNode>(N)->getZExtValue(); |
| |
| if (ST->isThumb1Only()) { |
| if (Val <= 255 || ~Val <= 255) |
| return DAG.getConstant(Val, MVT::i32); |
| } else { |
| if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) |
| return DAG.getConstant(Val, MVT::i32); |
| } |
| return SDValue(); |
| } |
| |
| // If this is a case we can't handle, return null and let the default |
| // expansion code take care of it. |
| SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) const { |
| BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| if (SplatBitSize <= 64) { |
| // Check if an immediate VMOV works. |
| EVT VmovVT; |
| SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), |
| SplatUndef.getZExtValue(), SplatBitSize, |
| DAG, VmovVT, VT.is128BitVector(), |
| VMOVModImm); |
| if (Val.getNode()) { |
| SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); |
| } |
| |
| // Try an immediate VMVN. |
| uint64_t NegatedImm = (~SplatBits).getZExtValue(); |
| Val = isNEONModifiedImm(NegatedImm, |
| SplatUndef.getZExtValue(), SplatBitSize, |
| DAG, VmovVT, VT.is128BitVector(), |
| VMVNModImm); |
| if (Val.getNode()) { |
| SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); |
| } |
| |
| // Use vmov.f32 to materialize other v2f32 and v4f32 splats. |
| if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { |
| int ImmVal = ARM_AM::getFP32Imm(SplatBits); |
| if (ImmVal != -1) { |
| SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32); |
| return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); |
| } |
| } |
| } |
| } |
| |
| // Scan through the operands to see if only one value is used. |
| // |
| // As an optimisation, even if more than one value is used it may be more |
| // profitable to splat with one value then change some lanes. |
| // |
| // Heuristically we decide to do this if the vector has a "dominant" value, |
| // defined as splatted to more than half of the lanes. |
| unsigned NumElts = VT.getVectorNumElements(); |
| bool isOnlyLowElement = true; |
| bool usesOnlyOneValue = true; |
| bool hasDominantValue = false; |
| bool isConstant = true; |
| |
| // Map of the number of times a particular SDValue appears in the |
| // element list. |
| DenseMap<SDValue, unsigned> ValueCounts; |
| SDValue Value; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.getOpcode() == ISD::UNDEF) |
| continue; |
| if (i > 0) |
| isOnlyLowElement = false; |
| if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) |
| isConstant = false; |
| |
| ValueCounts.insert(std::make_pair(V, 0)); |
| unsigned &Count = ValueCounts[V]; |
| |
| // Is this value dominant? (takes up more than half of the lanes) |
| if (++Count > (NumElts / 2)) { |
| hasDominantValue = true; |
| Value = V; |
| } |
| } |
| if (ValueCounts.size() != 1) |
| usesOnlyOneValue = false; |
| if (!Value.getNode() && ValueCounts.size() > 0) |
| Value = ValueCounts.begin()->first; |
| |
| if (ValueCounts.size() == 0) |
| return DAG.getUNDEF(VT); |
| |
| if (isOnlyLowElement) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); |
| |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| |
| // Use VDUP for non-constant splats. For f32 constant splats, reduce to |
| // i32 and try again. |
| if (hasDominantValue && EltSize <= 32) { |
| if (!isConstant) { |
| SDValue N; |
| |
| // If we are VDUPing a value that comes directly from a vector, that will |
| // cause an unnecessary move to and from a GPR, where instead we could |
| // just use VDUPLANE. We can only do this if the lane being extracted |
| // is at a constant index, as the VDUP from lane instructions only have |
| // constant-index forms. |
| if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| isa<ConstantSDNode>(Value->getOperand(1))) { |
| // We need to create a new undef vector to use for the VDUPLANE if the |
| // size of the vector from which we get the value is different than the |
| // size of the vector that we need to create. We will insert the element |
| // such that the register coalescer will remove unnecessary copies. |
| if (VT != Value->getOperand(0).getValueType()) { |
| ConstantSDNode *constIndex; |
| constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)); |
| assert(constIndex && "The index is not a constant!"); |
| unsigned index = constIndex->getAPIntValue().getLimitedValue() % |
| VT.getVectorNumElements(); |
| N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, |
| DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), |
| Value, DAG.getConstant(index, MVT::i32)), |
| DAG.getConstant(index, MVT::i32)); |
| } else |
| N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, |
| Value->getOperand(0), Value->getOperand(1)); |
| } else |
| N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); |
| |
| if (!usesOnlyOneValue) { |
| // The dominant value was splatted as 'N', but we now have to insert |
| // all differing elements. |
| for (unsigned I = 0; I < NumElts; ++I) { |
| if (Op.getOperand(I) == Value) |
| continue; |
| SmallVector<SDValue, 3> Ops; |
| Ops.push_back(N); |
| Ops.push_back(Op.getOperand(I)); |
| Ops.push_back(DAG.getConstant(I, MVT::i32)); |
| N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3); |
| } |
| } |
| return N; |
| } |
| if (VT.getVectorElementType().isFloatingPoint()) { |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumElts; ++i) |
| Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32, |
| Op.getOperand(i))); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); |
| SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts); |
| Val = LowerBUILD_VECTOR(Val, DAG, ST); |
| if (Val.getNode()) |
| return DAG.getNode(ISD::BITCAST, dl, VT, Val); |
| } |
| if (usesOnlyOneValue) { |
| SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); |
| if (isConstant && Val.getNode()) |
| return DAG.getNode(ARMISD::VDUP, dl, VT, Val); |
| } |
| } |
| |
| // If all elements are constants and the case above didn't get hit, fall back |
| // to the default expansion, which will generate a load from the constant |
| // pool. |
| if (isConstant) |
| return SDValue(); |
| |
| // Empirical tests suggest this is rarely worth it for vectors of length <= 2. |
| if (NumElts >= 4) { |
| SDValue shuffle = ReconstructShuffle(Op, DAG); |
| if (shuffle != SDValue()) |
| return shuffle; |
| } |
| |
| // Vectors with 32- or 64-bit elements can be built by directly assigning |
| // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands |
| // will be legalized. |
| if (EltSize >= 32) { |
| // Do the expansion with floating-point types, since that is what the VFP |
| // registers are defined to use, and since i64 is not legal. |
| EVT EltVT = EVT::getFloatingPointVT(EltSize); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumElts; ++i) |
| Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); |
| SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Val); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Gather data to see if the operation can be modelled as a |
| // shuffle in combination with VEXTs. |
| SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| SmallVector<SDValue, 2> SourceVecs; |
| SmallVector<unsigned, 2> MinElts; |
| SmallVector<unsigned, 2> MaxElts; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.getOpcode() == ISD::UNDEF) |
| continue; |
| else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { |
| // A shuffle can only come from building a vector from various |
| // elements of other vectors. |
| return SDValue(); |
| } else if (V.getOperand(0).getValueType().getVectorElementType() != |
| VT.getVectorElementType()) { |
| // This code doesn't know how to handle shuffles where the vector |
| // element types do not match (this happens because type legalization |
| // promotes the return type of EXTRACT_VECTOR_ELT). |
| // FIXME: It might be appropriate to extend this code to handle |
| // mismatched types. |
| return SDValue(); |
| } |
| |
| // Record this extraction against the appropriate vector if possible... |
| SDValue SourceVec = V.getOperand(0); |
| // If the element number isn't a constant, we can't effectively |
| // analyze what's going on. |
| if (!isa<ConstantSDNode>(V.getOperand(1))) |
| return SDValue(); |
| unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); |
| bool FoundSource = false; |
| for (unsigned j = 0; j < SourceVecs.size(); ++j) { |
| if (SourceVecs[j] == SourceVec) { |
| if (MinElts[j] > EltNo) |
| MinElts[j] = EltNo; |
| if (MaxElts[j] < EltNo) |
| MaxElts[j] = EltNo; |
| FoundSource = true; |
| break; |
| } |
| } |
| |
| // Or record a new source if not... |
| if (!FoundSource) { |
| SourceVecs.push_back(SourceVec); |
| MinElts.push_back(EltNo); |
| MaxElts.push_back(EltNo); |
| } |
| } |
| |
| // Currently only do something sane when at most two source vectors |
| // involved. |
| if (SourceVecs.size() > 2) |
| return SDValue(); |
| |
| SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) }; |
| int VEXTOffsets[2] = {0, 0}; |
| |
| // This loop extracts the usage patterns of the source vectors |
| // and prepares appropriate SDValues for a shuffle if possible. |
| for (unsigned i = 0; i < SourceVecs.size(); ++i) { |
| if (SourceVecs[i].getValueType() == VT) { |
| // No VEXT necessary |
| ShuffleSrcs[i] = SourceVecs[i]; |
| VEXTOffsets[i] = 0; |
| continue; |
| } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) { |
| // It probably isn't worth padding out a smaller vector just to |
| // break it down again in a shuffle. |
| return SDValue(); |
| } |
| |
| // Since only 64-bit and 128-bit vectors are legal on ARM and |
| // we've eliminated the other cases... |
| assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts && |
| "unexpected vector sizes in ReconstructShuffle"); |
| |
| if (MaxElts[i] - MinElts[i] >= NumElts) { |
| // Span too large for a VEXT to cope |
| return SDValue(); |
| } |
| |
| if (MinElts[i] >= NumElts) { |
| // The extraction can just take the second half |
| VEXTOffsets[i] = NumElts; |
| ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, |
| SourceVecs[i], |
| DAG.getIntPtrConstant(NumElts)); |
| } else if (MaxElts[i] < NumElts) { |
| // The extraction can just take the first half |
| VEXTOffsets[i] = 0; |
| ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, |
| SourceVecs[i], |
| DAG.getIntPtrConstant(0)); |
| } else { |
| // An actual VEXT is needed |
| VEXTOffsets[i] = MinElts[i]; |
| SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, |
| SourceVecs[i], |
| DAG.getIntPtrConstant(0)); |
| SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, |
| SourceVecs[i], |
| DAG.getIntPtrConstant(NumElts)); |
| ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2, |
| DAG.getConstant(VEXTOffsets[i], MVT::i32)); |
| } |
| } |
| |
| SmallVector<int, 8> Mask; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue Entry = Op.getOperand(i); |
| if (Entry.getOpcode() == ISD::UNDEF) { |
| Mask.push_back(-1); |
| continue; |
| } |
| |
| SDValue ExtractVec = Entry.getOperand(0); |
| int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i) |
| .getOperand(1))->getSExtValue(); |
| if (ExtractVec == SourceVecs[0]) { |
| Mask.push_back(ExtractElt - VEXTOffsets[0]); |
| } else { |
| Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]); |
| } |
| } |
| |
| // Final check before we try to produce nonsense... |
| if (isShuffleMaskLegal(Mask, VT)) |
| return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1], |
| &Mask[0]); |
| |
| return SDValue(); |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool |
| ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, |
| EVT VT) const { |
| if (VT.getVectorNumElements() == 4 && |
| (VT.is128BitVector() || VT.is64BitVector())) { |
| unsigned PFIndexes[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (M[i] < 0) |
| PFIndexes[i] = 8; |
| else |
| PFIndexes[i] = M[i]; |
| } |
| |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = |
| PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| if (Cost <= 4) |
| return true; |
| } |
| |
| bool ReverseVEXT; |
| unsigned Imm, WhichResult; |
| |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| return (EltSize >= 32 || |
| ShuffleVectorSDNode::isSplatMask(&M[0], VT) || |
| isVREVMask(M, VT, 64) || |
| isVREVMask(M, VT, 32) || |
| isVREVMask(M, VT, 16) || |
| isVEXTMask(M, VT, ReverseVEXT, Imm) || |
| isVTBLMask(M, VT) || |
| isVTRNMask(M, VT, WhichResult) || |
| isVUZPMask(M, VT, WhichResult) || |
| isVZIPMask(M, VT, WhichResult) || |
| isVTRN_v_undef_Mask(M, VT, WhichResult) || |
| isVUZP_v_undef_Mask(M, VT, WhichResult) || |
| isVZIP_v_undef_Mask(M, VT, WhichResult) || |
| ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT))); |
| } |
| |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit |
| /// the specified operations to build the shuffle. |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, |
| SDValue RHS, SelectionDAG &DAG, |
| DebugLoc dl) { |
| unsigned OpNum = (PFEntry >> 26) & 0x0F; |
| unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); |
| unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); |
| |
| enum { |
| OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| OP_VREV, |
| OP_VDUP0, |
| OP_VDUP1, |
| OP_VDUP2, |
| OP_VDUP3, |
| OP_VEXT1, |
| OP_VEXT2, |
| OP_VEXT3, |
| OP_VUZPL, // VUZP, left result |
| OP_VUZPR, // VUZP, right result |
| OP_VZIPL, // VZIP, left result |
| OP_VZIPR, // VZIP, right result |
| OP_VTRNL, // VTRN, left result |
| OP_VTRNR // VTRN, right result |
| }; |
| |
| if (OpNum == OP_COPY) { |
| if (LHSID == (1*9+2)*9+3) return LHS; |
| assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); |
| return RHS; |
| } |
| |
| SDValue OpLHS, OpRHS; |
| OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); |
| OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); |
| EVT VT = OpLHS.getValueType(); |
| |
| switch (OpNum) { |
| default: llvm_unreachable("Unknown shuffle opcode!"); |
| case OP_VREV: |
| // VREV divides the vector in half and swaps within the half. |
| if (VT.getVectorElementType() == MVT::i32 || |
| VT.getVectorElementType() == MVT::f32) |
| return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); |
| // vrev <4 x i16> -> VREV32 |
| if (VT.getVectorElementType() == MVT::i16) |
| return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); |
| // vrev <4 x i8> -> VREV16 |
| assert(VT.getVectorElementType() == MVT::i8); |
| return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); |
| case OP_VDUP0: |
| case OP_VDUP1: |
| case OP_VDUP2: |
| case OP_VDUP3: |
| return DAG.getNode(ARMISD::VDUPLANE, dl, VT, |
| OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32)); |
| case OP_VEXT1: |
| case OP_VEXT2: |
| case OP_VEXT3: |
| return DAG.getNode(ARMISD::VEXT, dl, VT, |
| OpLHS, OpRHS, |
| DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32)); |
| case OP_VUZPL: |
| case OP_VUZPR: |
| return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); |
| case OP_VZIPL: |
| case OP_VZIPR: |
| return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); |
| case OP_VTRNL: |
| case OP_VTRNR: |
| return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); |
| } |
| } |
| |
| static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, |
| ArrayRef<int> ShuffleMask, |
| SelectionDAG &DAG) { |
| // Check to see if we can use the VTBL instruction. |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| SmallVector<SDValue, 8> VTBLMask; |
| for (ArrayRef<int>::iterator |
| I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) |
| VTBLMask.push_back(DAG.getConstant(*I, MVT::i32)); |
| |
| if (V2.getNode()->getOpcode() == ISD::UNDEF) |
| return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, |
| &VTBLMask[0], 8)); |
| |
| return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, |
| &VTBLMask[0], 8)); |
| } |
| |
| static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, |
| SelectionDAG &DAG) { |
| DebugLoc DL = Op.getDebugLoc(); |
| SDValue OpLHS = Op.getOperand(0); |
| EVT VT = OpLHS.getValueType(); |
| |
| assert((VT == MVT::v8i16 || VT == MVT::v16i8) && |
| "Expect an v8i16/v16i8 type"); |
| OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS); |
| // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now, |
| // extract the first 8 bytes into the top double word and the last 8 bytes |
| // into the bottom double word. The v8i16 case is similar. |
| unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4; |
| return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS, |
| DAG.getConstant(ExtractNum, MVT::i32)); |
| } |
| |
| static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| |
| // Convert shuffles that are directly supported on NEON to target-specific |
| // DAG nodes, instead of keeping them as shuffles and matching them again |
| // during code selection. This is more efficient and avoids the possibility |
| // of inconsistencies between legalization and selection. |
| // FIXME: floating-point vectors should be canonicalized to integer vectors |
| // of the same time so that they get CSEd properly. |
| ArrayRef<int> ShuffleMask = SVN->getMask(); |
| |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| if (EltSize <= 32) { |
| if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { |
| int Lane = SVN->getSplatIndex(); |
| // If this is undef splat, generate it via "just" vdup, if possible. |
| if (Lane == -1) Lane = 0; |
| |
| // Test if V1 is a SCALAR_TO_VECTOR. |
| if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); |
| } |
| // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR |
| // (and probably will turn into a SCALAR_TO_VECTOR once legalization |
| // reaches it). |
| if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && |
| !isa<ConstantSDNode>(V1.getOperand(0))) { |
| bool IsScalarToVector = true; |
| for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) |
| if (V1.getOperand(i).getOpcode() != ISD::UNDEF) { |
| IsScalarToVector = false; |
| break; |
| } |
| if (IsScalarToVector) |
| return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); |
| } |
| return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, |
| DAG.getConstant(Lane, MVT::i32)); |
| } |
| |
| bool ReverseVEXT; |
| unsigned Imm; |
| if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { |
| if (ReverseVEXT) |
| std::swap(V1, V2); |
| return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, |
| DAG.getConstant(Imm, MVT::i32)); |
| } |
| |
| if (isVREVMask(ShuffleMask, VT, 64)) |
| return DAG.getNode(ARMISD::VREV64, dl, VT, V1); |
| if (isVREVMask(ShuffleMask, VT, 32)) |
| return DAG.getNode(ARMISD::VREV32, dl, VT, V1); |
| if (isVREVMask(ShuffleMask, VT, 16)) |
| return DAG.getNode(ARMISD::VREV16, dl, VT, V1); |
| |
| if (V2->getOpcode() == ISD::UNDEF && |
| isSingletonVEXTMask(ShuffleMask, VT, Imm)) { |
| return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, |
| DAG.getConstant(Imm, MVT::i32)); |
| } |
| |
| // Check for Neon shuffles that modify both input vectors in place. |
| // If both results are used, i.e., if there are two shuffles with the same |
| // source operands and with masks corresponding to both results of one of |
| // these operations, DAG memoization will ensure that a single node is |
| // used for both shuffles. |
| unsigned WhichResult; |
| if (isVTRNMask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), |
| V1, V2).getValue(WhichResult); |
| if (isVUZPMask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), |
| V1, V2).getValue(WhichResult); |
| if (isVZIPMask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), |
| V1, V2).getValue(WhichResult); |
| |
| if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), |
| V1, V1).getValue(WhichResult); |
| if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), |
| V1, V1).getValue(WhichResult); |
| if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), |
| V1, V1).getValue(WhichResult); |
| } |
| |
| // If the shuffle is not directly supported and it has 4 elements, use |
| // the PerfectShuffle-generated table to synthesize it from other shuffles. |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (NumElts == 4) { |
| unsigned PFIndexes[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (ShuffleMask[i] < 0) |
| PFIndexes[i] = 8; |
| else |
| PFIndexes[i] = ShuffleMask[i]; |
| } |
| |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = |
| PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| if (Cost <= 4) |
| return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); |
| } |
| |
| // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. |
| if (EltSize >= 32) { |
| // Do the expansion with floating-point types, since that is what the VFP |
| // registers are defined to use, and since i64 is not legal. |
| EVT EltVT = EVT::getFloatingPointVT(EltSize); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); |
| V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); |
| V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if (ShuffleMask[i] < 0) |
| Ops.push_back(DAG.getUNDEF(EltVT)); |
| else |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, |
| ShuffleMask[i] < (int)NumElts ? V1 : V2, |
| DAG.getConstant(ShuffleMask[i] & (NumElts-1), |
| MVT::i32))); |
| } |
| SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Val); |
| } |
| |
| if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT)) |
| return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG); |
| |
| if (VT == MVT::v8i8) { |
| SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG); |
| if (NewOp.getNode()) |
| return NewOp; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { |
| // INSERT_VECTOR_ELT is legal only for immediate indexes. |
| SDValue Lane = Op.getOperand(2); |
| if (!isa<ConstantSDNode>(Lane)) |
| return SDValue(); |
| |
| return Op; |
| } |
| |
| static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { |
| // EXTRACT_VECTOR_ELT is legal only for immediate indexes. |
| SDValue Lane = Op.getOperand(1); |
| if (!isa<ConstantSDNode>(Lane)) |
| return SDValue(); |
| |
| SDValue Vec = Op.getOperand(0); |
| if (Op.getValueType() == MVT::i32 && |
| Vec.getValueType().getVectorElementType().getSizeInBits() < 32) { |
| DebugLoc dl = Op.getDebugLoc(); |
| return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); |
| } |
| |
| return Op; |
| } |
| |
| static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { |
| // The only time a CONCAT_VECTORS operation can have legal types is when |
| // two 64-bit vectors are concatenated to a 128-bit vector. |
| assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && |
| "unexpected CONCAT_VECTORS"); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Val = DAG.getUNDEF(MVT::v2f64); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| if (Op0.getOpcode() != ISD::UNDEF) |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, |
| DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), |
| DAG.getIntPtrConstant(0)); |
| if (Op1.getOpcode() != ISD::UNDEF) |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, |
| DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), |
| DAG.getIntPtrConstant(1)); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); |
| } |
| |
| /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each |
| /// element has been zero/sign-extended, depending on the isSigned parameter, |
| /// from an integer type half its size. |
| static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, |
| bool isSigned) { |
| // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { |
| SDNode *BVN = N->getOperand(0).getNode(); |
| if (BVN->getValueType(0) != MVT::v4i32 || |
| BVN->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; |
| unsigned HiElt = 1 - LoElt; |
| ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt)); |
| ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt)); |
| ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2)); |
| ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2)); |
| if (!Lo0 || !Hi0 || !Lo1 || !Hi1) |
| return false; |
| if (isSigned) { |
| if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && |
| Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) |
| return true; |
| } else { |
| if (Hi0->isNullValue() && Hi1->isNullValue()) |
| return true; |
| } |
| return false; |
| } |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDNode *Elt = N->getOperand(i).getNode(); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| unsigned HalfSize = EltSize / 2; |
| if (isSigned) { |
| if (!isIntN(HalfSize, C->getSExtValue())) |
| return false; |
| } else { |
| if (!isUIntN(HalfSize, C->getZExtValue())) |
| return false; |
| } |
| continue; |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isSignExtended - Check if a node is a vector value that is sign-extended |
| /// or a constant BUILD_VECTOR with sign-extended elements. |
| static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { |
| if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) |
| return true; |
| if (isExtendedBUILD_VECTOR(N, DAG, true)) |
| return true; |
| return false; |
| } |
| |
| /// isZeroExtended - Check if a node is a vector value that is zero-extended |
| /// or a constant BUILD_VECTOR with zero-extended elements. |
| static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { |
| if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) |
| return true; |
| if (isExtendedBUILD_VECTOR(N, DAG, false)) |
| return true; |
| return false; |
| } |
| |
| /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total |
| /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. |
| /// We insert the required extension here to get the vector to fill a D register. |
| static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, |
| const EVT &OrigTy, |
| const EVT &ExtTy, |
| unsigned ExtOpcode) { |
| // The vector originally had a size of OrigTy. It was then extended to ExtTy. |
| // We expect the ExtTy to be 128-bits total. If the OrigTy is less than |
| // 64-bits we need to insert a new extension so that it will be 64-bits. |
| assert(ExtTy.is128BitVector() && "Unexpected extension size"); |
| if (OrigTy.getSizeInBits() >= 64) |
| return N; |
| |
| // Must extend size to at least 64 bits to be used as an operand for VMULL. |
| MVT::SimpleValueType OrigSimpleTy = OrigTy.getSimpleVT().SimpleTy; |
| EVT NewVT; |
| switch (OrigSimpleTy) { |
| default: llvm_unreachable("Unexpected Orig Vector Type"); |
| case MVT::v2i8: |
| case MVT::v2i16: |
| NewVT = MVT::v2i32; |
| break; |
| case MVT::v4i8: |
| NewVT = MVT::v4i16; |
| break; |
| } |
| return DAG.getNode(ExtOpcode, N->getDebugLoc(), NewVT, N); |
| } |
| |
| /// SkipLoadExtensionForVMULL - return a load of the original vector size that |
| /// does not do any sign/zero extension. If the original vector is less |
| /// than 64 bits, an appropriate extension will be added after the load to |
| /// reach a total size of 64 bits. We have to add the extension separately |
| /// because ARM does not have a sign/zero extending load for vectors. |
| static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { |
| SDValue NonExtendingLoad = |
| DAG.getLoad(LD->getMemoryVT(), LD->getDebugLoc(), LD->getChain(), |
| LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(), |
| LD->isNonTemporal(), LD->isInvariant(), |
| LD->getAlignment()); |
| unsigned ExtOp = 0; |
| switch (LD->getExtensionType()) { |
| default: llvm_unreachable("Unexpected LoadExtType"); |
| case ISD::EXTLOAD: |
| case ISD::SEXTLOAD: ExtOp = ISD::SIGN_EXTEND; break; |
| case ISD::ZEXTLOAD: ExtOp = ISD::ZERO_EXTEND; break; |
| } |
| MVT::SimpleValueType MemType = LD->getMemoryVT().getSimpleVT().SimpleTy; |
| MVT::SimpleValueType ExtType = LD->getValueType(0).getSimpleVT().SimpleTy; |
| return AddRequiredExtensionForVMULL(NonExtendingLoad, DAG, |
| MemType, ExtType, ExtOp); |
| } |
| |
| /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, |
| /// extending load, or BUILD_VECTOR with extended elements, return the |
| /// unextended value. The unextended vector should be 64 bits so that it can |
| /// be used as an operand to a VMULL instruction. If the original vector size |
| /// before extension is less than 64 bits we add a an extension to resize |
| /// the vector to 64 bits. |
| static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { |
| if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) |
| return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, |
| N->getOperand(0)->getValueType(0), |
| N->getValueType(0), |
| N->getOpcode()); |
| |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) |
| return SkipLoadExtensionForVMULL(LD, DAG); |
| |
| // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will |
| // have been legalized as a BITCAST from v4i32. |
| if (N->getOpcode() == ISD::BITCAST) { |
| SDNode *BVN = N->getOperand(0).getNode(); |
| assert(BVN->getOpcode() == ISD::BUILD_VECTOR && |
| BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); |
| unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; |
| return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32, |
| BVN->getOperand(LowElt), BVN->getOperand(LowElt+2)); |
| } |
| // Construct a new BUILD_VECTOR with elements truncated to half the size. |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); |
| EVT VT = N->getValueType(0); |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2; |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT TruncVT = MVT::getIntegerVT(EltSize); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); |
| const APInt &CInt = C->getAPIntValue(); |
| // Element types smaller than 32 bits are not legal, so use i32 elements. |
| // The values are implicitly truncated so sext vs. zext doesn't matter. |
| Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), |
| MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts); |
| } |
| |
| static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { |
| unsigned Opcode = N->getOpcode(); |
| if (Opcode == ISD::ADD || Opcode == ISD::SUB) { |
| SDNode *N0 = N->getOperand(0).getNode(); |
| SDNode *N1 = N->getOperand(1).getNode(); |
| return N0->hasOneUse() && N1->hasOneUse() && |
| isSignExtended(N0, DAG) && isSignExtended(N1, DAG); |
| } |
| return false; |
| } |
| |
| static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { |
| unsigned Opcode = N->getOpcode(); |
| if (Opcode == ISD::ADD || Opcode == ISD::SUB) { |
| SDNode *N0 = N->getOperand(0).getNode(); |
| SDNode *N1 = N->getOperand(1).getNode(); |
| return N0->hasOneUse() && N1->hasOneUse() && |
| isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); |
| } |
| return false; |
| } |
| |
| static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { |
| // Multiplications are only custom-lowered for 128-bit vectors so that |
| // VMULL can be detected. Otherwise v2i64 multiplications are not legal. |
| EVT VT = Op.getValueType(); |
| assert(VT.is128BitVector() && VT.isInteger() && |
| "unexpected type for custom-lowering ISD::MUL"); |
| SDNode *N0 = Op.getOperand(0).getNode(); |
| SDNode *N1 = Op.getOperand(1).getNode(); |
| unsigned NewOpc = 0; |
| bool isMLA = false; |
| bool isN0SExt = isSignExtended(N0, DAG); |
| bool isN1SExt = isSignExtended(N1, DAG); |
| if (isN0SExt && isN1SExt) |
| NewOpc = ARMISD::VMULLs; |
| else { |
| bool isN0ZExt = isZeroExtended(N0, DAG); |
| bool isN1ZExt = isZeroExtended(N1, DAG); |
| if (isN0ZExt && isN1ZExt) |
| NewOpc = ARMISD::VMULLu; |
| else if (isN1SExt || isN1ZExt) { |
| // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these |
| // into (s/zext A * s/zext C) + (s/zext B * s/zext C) |
| if (isN1SExt && isAddSubSExt(N0, DAG)) { |
| NewOpc = ARMISD::VMULLs; |
| isMLA = true; |
| } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { |
| NewOpc = ARMISD::VMULLu; |
| isMLA = true; |
| } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { |
| std::swap(N0, N1); |
| NewOpc = ARMISD::VMULLu; |
| isMLA = true; |
| } |
| } |
| |
| if (!NewOpc) { |
| if (VT == MVT::v2i64) |
| // Fall through to expand this. It is not legal. |
| return SDValue(); |
| else |
| // Other vector multiplications are legal. |
| return Op; |
| } |
| } |
| |
| // Legalize to a VMULL instruction. |
| DebugLoc DL = Op.getDebugLoc(); |
| SDValue Op0; |
| SDValue Op1 = SkipExtensionForVMULL(N1, DAG); |
| if (!isMLA) { |
| Op0 = SkipExtensionForVMULL(N0, DAG); |
| assert(Op0.getValueType().is64BitVector() && |
| Op1.getValueType().is64BitVector() && |
| "unexpected types for extended operands to VMULL"); |
| return DAG.getNode(NewOpc, DL, VT, Op0, Op1); |
| } |
| |
| // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during |
| // isel lowering to take advantage of no-stall back to back vmul + vmla. |
| // vmull q0, d4, d6 |
| // vmlal q0, d5, d6 |
| // is faster than |
| // vaddl q0, d4, d5 |
| // vmovl q1, d6 |
| // vmul q0, q0, q1 |
| SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); |
| SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); |
| EVT Op1VT = Op1.getValueType(); |
| return DAG.getNode(N0->getOpcode(), DL, VT, |
| DAG.getNode(NewOpc, DL, VT, |
| DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), |
| DAG.getNode(NewOpc, DL, VT, |
| DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); |
| } |
| |
| static SDValue |
| LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) { |
| // Convert to float |
| // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); |
| // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); |
| X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); |
| Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); |
| X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); |
| Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); |
| // Get reciprocal estimate. |
| // float4 recip = vrecpeq_f32(yf); |
| Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y); |
| // Because char has a smaller range than uchar, we can actually get away |
| // without any newton steps. This requires that we use a weird bias |
| // of 0xb000, however (again, this has been exhaustively tested). |
| // float4 result = as_float4(as_int4(xf*recip) + 0xb000); |
| X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); |
| X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); |
| Y = DAG.getConstant(0xb000, MVT::i32); |
| Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y); |
| X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); |
| X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); |
| // Convert back to short. |
| X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); |
| X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); |
| return X; |
| } |
| |
| static SDValue |
| LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) { |
| SDValue N2; |
| // Convert to float. |
| // float4 yf = vcvt_f32_s32(vmovl_s16(y)); |
| // float4 xf = vcvt_f32_s32(vmovl_s16(x)); |
| N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); |
| N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); |
| N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); |
| N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); |
| |
| // Use reciprocal estimate and one refinement step. |
| // float4 recip = vrecpeq_f32(yf); |
| // recip *= vrecpsq_f32(yf, recip); |
| N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1); |
| N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), |
| N1, N2); |
| N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); |
| // Because short has a smaller range than ushort, we can actually get away |
| // with only a single newton step. This requires that we use a weird bias |
| // of 89, however (again, this has been exhaustively tested). |
| // float4 result = as_float4(as_int4(xf*recip) + 0x89); |
| N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); |
| N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); |
| N1 = DAG.getConstant(0x89, MVT::i32); |
| N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); |
| N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); |
| N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); |
| // Convert back to integer and return. |
| // return vmovn_s32(vcvt_s32_f32(result)); |
| N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); |
| N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); |
| return N0; |
| } |
| |
| static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| assert((VT == MVT::v4i16 || VT == MVT::v8i8) && |
| "unexpected type for custom-lowering ISD::SDIV"); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2, N3; |
| |
| if (VT == MVT::v8i8) { |
| N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); |
| N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); |
| |
| N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, |
| DAG.getIntPtrConstant(4)); |
| N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, |
| DAG.getIntPtrConstant(4)); |
| N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, |
| DAG.getIntPtrConstant(0)); |
| N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, |
| DAG.getIntPtrConstant(0)); |
| |
| N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 |
| N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 |
| |
| N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); |
| N0 = LowerCONCAT_VECTORS(N0, DAG); |
| |
| N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); |
| return N0; |
| } |
| return LowerSDIV_v4i16(N0, N1, dl, DAG); |
| } |
| |
| static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| assert((VT == MVT::v4i16 || VT == MVT::v8i8) && |
| "unexpected type for custom-lowering ISD::UDIV"); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2, N3; |
| |
| if (VT == MVT::v8i8) { |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); |
| |
| N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, |
| DAG.getIntPtrConstant(4)); |
| N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, |
| DAG.getIntPtrConstant(4)); |
| N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, |
| DAG.getIntPtrConstant(0)); |
| N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, |
| DAG.getIntPtrConstant(0)); |
| |
| N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 |
| N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 |
| |
| N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); |
| N0 = LowerCONCAT_VECTORS(N0, DAG); |
| |
| N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, |
| DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32), |
| N0); |
| return N0; |
| } |
| |
| // v4i16 sdiv ... Convert to float. |
| // float4 yf = vcvt_f32_s32(vmovl_u16(y)); |
| // float4 xf = vcvt_f32_s32(vmovl_u16(x)); |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); |
| N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); |
| SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); |
| |
| // Use reciprocal estimate and two refinement steps. |
| // float4 recip = vrecpeq_f32(yf); |
| // recip *= vrecpsq_f32(yf, recip); |
| // recip *= vrecpsq_f32(yf, recip); |
| N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1); |
| N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), |
| BN1, N2); |
| N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); |
| N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, |
| DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), |
| BN1, N2); |
| N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); |
| // Simply multiplying by the reciprocal estimate can leave us a few ulps |
| // too low, so we add 2 ulps (exhaustive testing shows that this is enough, |
| // and that it will never cause us to return an answer too large). |
| // float4 result = as_float4(as_int4(xf*recip) + 2); |
| N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); |
| N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); |
| N1 = DAG.getConstant(2, MVT::i32); |
| N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); |
| N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); |
| N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); |
| // Convert back to integer and return. |
| // return vmovn_u32(vcvt_s32_f32(result)); |
| N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); |
| N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); |
| return N0; |
| } |
| |
| static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getNode()->getValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| |
| unsigned Opc; |
| bool ExtraOp = false; |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Invalid code"); |
| case ISD::ADDC: Opc = ARMISD::ADDC; break; |
| case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break; |
| case ISD::SUBC: Opc = ARMISD::SUBC; break; |
| case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break; |
| } |
| |
| if (!ExtraOp) |
| return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), |
| Op.getOperand(1)); |
| return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { |
| // Monotonic load/store is legal for all targets |
| if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic) |
| return Op; |
| |
| // Aquire/Release load/store is not legal for targets without a |
| // dmb or equivalent available. |
| return SDValue(); |
| } |
| |
| |
| static void |
| ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results, |
| SelectionDAG &DAG, unsigned NewOp) { |
| DebugLoc dl = Node->getDebugLoc(); |
| assert (Node->getValueType(0) == MVT::i64 && |
| "Only know how to expand i64 atomics"); |
| |
| SmallVector<SDValue, 6> Ops; |
| Ops.push_back(Node->getOperand(0)); // Chain |
| Ops.push_back(Node->getOperand(1)); // Ptr |
| // Low part of Val1 |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Node->getOperand(2), DAG.getIntPtrConstant(0))); |
| // High part of Val1 |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Node->getOperand(2), DAG.getIntPtrConstant(1))); |
| if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) { |
| // High part of Val1 |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Node->getOperand(3), DAG.getIntPtrConstant(0))); |
| // High part of Val2 |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Node->getOperand(3), DAG.getIntPtrConstant(1))); |
| } |
| SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); |
| SDValue Result = |
| DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64, |
| cast<MemSDNode>(Node)->getMemOperand()); |
| SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) }; |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); |
| Results.push_back(Result.getValue(2)); |
| } |
| |
| SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Don't know how to custom lower this!"); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::GlobalAddress: |
| return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : |
| LowerGlobalAddressELF(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::BR_CC: return LowerBR_CC(Op, DAG); |
| case ISD::BR_JT: return LowerBR_JT(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget); |
| case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); |
| case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); |
| case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); |
| case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, |
| Subtarget); |
| case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG); |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); |
| case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); |
| case ISD::SRL_PARTS: |
| case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); |
| case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget); |
| case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); |
| case ISD::SETCC: return LowerVSETCC(Op, DAG); |
| case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); |
| case ISD::MUL: return LowerMUL(Op, DAG); |
| case ISD::SDIV: return LowerSDIV(Op, DAG); |
| case ISD::UDIV: return LowerUDIV(Op, DAG); |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUBC: |
| case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); |
| case ISD::ATOMIC_LOAD: |
| case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); |
| } |
| } |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| void ARMTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const { |
| SDValue Res; |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Don't know how to custom expand this!"); |
| case ISD::BITCAST: |
| Res = ExpandBITCAST(N, DAG); |
| break; |
| case ISD::SRL: |
| case ISD::SRA: |
| Res = Expand64BitShift(N, DAG, Subtarget); |
| break; |
| case ISD::ATOMIC_LOAD_ADD: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_AND: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_NAND: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_OR: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_SUB: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_XOR: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG); |
| return; |
| case ISD::ATOMIC_SWAP: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG); |
| return; |
| case ISD::ATOMIC_CMP_SWAP: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_MIN: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_UMIN: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_MAX: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_UMAX: |
| ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG); |
| return; |
| } |
| if (Res.getNode()) |
| Results.push_back(Res); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| unsigned Size) const { |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptr = MI->getOperand(1).getReg(); |
| unsigned oldval = MI->getOperand(2).getReg(); |
| unsigned newval = MI->getOperand(3).getReg(); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| unsigned scratch = MRI.createVirtualRegister(isThumb2 ? |
| (const TargetRegisterClass*)&ARM::rGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRRegClass); |
| |
| if (isThumb2) { |
| MRI.constrainRegClass(dest, &ARM::rGPRRegClass); |
| MRI.constrainRegClass(oldval, &ARM::rGPRRegClass); |
| MRI.constrainRegClass(newval, &ARM::rGPRRegClass); |
| } |
| |
| unsigned ldrOpc, strOpc; |
| switch (Size) { |
| default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); |
| case 1: |
| ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; |
| strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; |
| break; |
| case 2: |
| ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; |
| strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; |
| break; |
| case 4: |
| ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; |
| strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; |
| break; |
| } |
| |
| MachineFunction *MF = BB->getParent(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; // insert the new blocks after the current block |
| |
| MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loop1MBB); |
| MF->insert(It, loop2MBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loop1MBB |
| BB->addSuccessor(loop1MBB); |
| |
| // loop1MBB: |
| // ldrex dest, [ptr] |
| // cmp dest, oldval |
| // bne exitMBB |
| BB = loop1MBB; |
| MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| if (ldrOpc == ARM::t2LDREX) |
| MIB.addImm(0); |
| AddDefaultPred(MIB); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) |
| .addReg(dest).addReg(oldval)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(exitMBB); |
| |
| // loop2MBB: |
| // strex scratch, newval, [ptr] |
| // cmp scratch, #0 |
| // bne loop1MBB |
| BB = loop2MBB; |
| MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr); |
| if (strOpc == ARM::t2STREX) |
| MIB.addImm(0); |
| AddDefaultPred(MIB); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(scratch).addImm(0)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| BB->addSuccessor(loop1MBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, |
| unsigned Size, unsigned BinOpcode) const { |
| // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *MF = BB->getParent(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptr = MI->getOperand(1).getReg(); |
| unsigned incr = MI->getOperand(2).getReg(); |
| DebugLoc dl = MI->getDebugLoc(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| if (isThumb2) { |
| MRI.constrainRegClass(dest, &ARM::rGPRRegClass); |
| MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); |
| } |
| |
| unsigned ldrOpc, strOpc; |
| switch (Size) { |
| default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); |
| case 1: |
| ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; |
| strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; |
| break; |
| case 2: |
| ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; |
| strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; |
| break; |
| case 4: |
| ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; |
| strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; |
| break; |
| } |
| |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loopMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| const TargetRegisterClass *TRC = isThumb2 ? |
| (const TargetRegisterClass*)&ARM::rGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRRegClass; |
| unsigned scratch = MRI.createVirtualRegister(TRC); |
| unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // loopMBB: |
| // ldrex dest, ptr |
| // <binop> scratch2, dest, incr |
| // strex scratch, scratch2, ptr |
| // cmp scratch, #0 |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| BB = loopMBB; |
| MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| if (ldrOpc == ARM::t2LDREX) |
| MIB.addImm(0); |
| AddDefaultPred(MIB); |
| if (BinOpcode) { |
| // operand order needs to go the other way for NAND |
| if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr) |
| AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). |
| addReg(incr).addReg(dest)).addReg(0); |
| else |
| AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). |
| addReg(dest).addReg(incr)).addReg(0); |
| } |
| |
| MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr); |
| if (strOpc == ARM::t2STREX) |
| MIB.addImm(0); |
| AddDefaultPred(MIB); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(scratch).addImm(0)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| unsigned Size, |
| bool signExtend, |
| ARMCC::CondCodes Cond) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *MF = BB->getParent(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptr = MI->getOperand(1).getReg(); |
| unsigned incr = MI->getOperand(2).getReg(); |
| unsigned oldval = dest; |
| DebugLoc dl = MI->getDebugLoc(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| if (isThumb2) { |
| MRI.constrainRegClass(dest, &ARM::rGPRRegClass); |
| MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); |
| } |
| |
| unsigned ldrOpc, strOpc, extendOpc; |
| switch (Size) { |
| default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); |
| case 1: |
| ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; |
| strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; |
| extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB; |
| break; |
| case 2: |
| ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; |
| strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; |
| extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH; |
| break; |
| case 4: |
| ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; |
| strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; |
| extendOpc = 0; |
| break; |
| } |
| |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loopMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| const TargetRegisterClass *TRC = isThumb2 ? |
| (const TargetRegisterClass*)&ARM::rGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRRegClass; |
| unsigned scratch = MRI.createVirtualRegister(TRC); |
| unsigned scratch2 = MRI.createVirtualRegister(TRC); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // loopMBB: |
| // ldrex dest, ptr |
| // (sign extend dest, if required) |
| // cmp dest, incr |
| // cmov.cond scratch2, incr, dest |
| // strex scratch, scratch2, ptr |
| // cmp scratch, #0 |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| BB = loopMBB; |
| MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| if (ldrOpc == ARM::t2LDREX) |
| MIB.addImm(0); |
| AddDefaultPred(MIB); |
| |
| // Sign extend the value, if necessary. |
| if (signExtend && extendOpc) { |
| oldval = MRI.createVirtualRegister(&ARM::GPRRegClass); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval) |
| .addReg(dest) |
| .addImm(0)); |
| } |
| |
| // Build compare and cmov instructions. |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) |
| .addReg(oldval).addReg(incr)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2) |
| .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR); |
| |
| MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr); |
| if (strOpc == ARM::t2STREX) |
| MIB.addImm(0); |
| AddDefaultPred(MIB); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(scratch).addImm(0)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB, |
| unsigned Op1, unsigned Op2, |
| bool NeedsCarry, bool IsCmpxchg, |
| bool IsMinMax, ARMCC::CondCodes CC) const { |
| // This also handles ATOMIC_SWAP, indicated by Op1==0. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *MF = BB->getParent(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned destlo = MI->getOperand(0).getReg(); |
| unsigned desthi = MI->getOperand(1).getReg(); |
| unsigned ptr = MI->getOperand(2).getReg(); |
| unsigned vallo = MI->getOperand(3).getReg(); |
| unsigned valhi = MI->getOperand(4).getReg(); |
| DebugLoc dl = MI->getDebugLoc(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| if (isThumb2) { |
| MRI.constrainRegClass(destlo, &ARM::rGPRRegClass); |
| MRI.constrainRegClass(desthi, &ARM::rGPRRegClass); |
| MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); |
| } |
| |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *contBB = 0, *cont2BB = 0; |
| if (IsCmpxchg || IsMinMax) |
| contBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| if (IsCmpxchg) |
| cont2BB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| |
| MF->insert(It, loopMBB); |
| if (IsCmpxchg || IsMinMax) MF->insert(It, contBB); |
| if (IsCmpxchg) MF->insert(It, cont2BB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| const TargetRegisterClass *TRC = isThumb2 ? |
| (const TargetRegisterClass*)&ARM::tGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRRegClass; |
| unsigned storesuccess = MRI.createVirtualRegister(TRC); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // loopMBB: |
| // ldrexd r2, r3, ptr |
| // <binopa> r0, r2, incr |
| // <binopb> r1, r3, incr |
| // strexd storesuccess, r0, r1, ptr |
| // cmp storesuccess, #0 |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| BB = loopMBB; |
| |
| // Load |
| if (isThumb2) { |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2LDREXD)) |
| .addReg(destlo, RegState::Define) |
| .addReg(desthi, RegState::Define) |
| .addReg(ptr)); |
| } else { |
| unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDREXD)) |
| .addReg(GPRPair0, RegState::Define).addReg(ptr)); |
| // Copy r2/r3 into dest. (This copy will normally be coalesced.) |
| BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo) |
| .addReg(GPRPair0, 0, ARM::gsub_0); |
| BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi) |
| .addReg(GPRPair0, 0, ARM::gsub_1); |
| } |
| |
| unsigned StoreLo, StoreHi; |
| if (IsCmpxchg) { |
| // Add early exit |
| for (unsigned i = 0; i < 2; i++) { |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : |
| ARM::CMPrr)) |
| .addReg(i == 0 ? destlo : desthi) |
| .addReg(i == 0 ? vallo : valhi)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| BB->addSuccessor(exitMBB); |
| BB->addSuccessor(i == 0 ? contBB : cont2BB); |
| BB = (i == 0 ? contBB : cont2BB); |
| } |
| |
| // Copy to physregs for strexd |
| StoreLo = MI->getOperand(5).getReg(); |
| StoreHi = MI->getOperand(6).getReg(); |
| } else if (Op1) { |
| // Perform binary operation |
| unsigned tmpRegLo = MRI.createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo) |
| .addReg(destlo).addReg(vallo)) |
| .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry)); |
| unsigned tmpRegHi = MRI.createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi) |
| .addReg(desthi).addReg(valhi)) |
| .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax)); |
| |
| StoreLo = tmpRegLo; |
| StoreHi = tmpRegHi; |
| } else { |
| // Copy to physregs for strexd |
| StoreLo = vallo; |
| StoreHi = valhi; |
| } |
| if (IsMinMax) { |
| // Compare and branch to exit block. |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR); |
| BB->addSuccessor(exitMBB); |
| BB->addSuccessor(contBB); |
| BB = contBB; |
| StoreLo = vallo; |
| StoreHi = valhi; |
| } |
| |
| // Store |
| if (isThumb2) { |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2STREXD), storesuccess) |
| .addReg(StoreLo).addReg(StoreHi).addReg(ptr)); |
| } else { |
| // Marshal a pair... |
| unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass); |
| unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass); |
| unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass); |
| BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair); |
| BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1) |
| .addReg(UndefPair) |
| .addReg(StoreLo) |
| .addImm(ARM::gsub_0); |
| BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair) |
| .addReg(r1) |
| .addReg(StoreHi) |
| .addImm(ARM::gsub_1); |
| |
| // ...and store it |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::STREXD), storesuccess) |
| .addReg(StorePair).addReg(ptr)); |
| } |
| // Cmp+jump |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(storesuccess).addImm(0)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and |
| /// registers the function context. |
| void ARMTargetLowering:: |
| SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB, |
| MachineBasicBlock *DispatchBB, int FI) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| MachineConstantPool *MCP = MF->getConstantPool(); |
| ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); |
| const Function *F = MF->getFunction(); |
| |
| bool isThumb = Subtarget->isThumb(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| |
| unsigned PCLabelId = AFI->createPICLabelUId(); |
| unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj); |
| unsigned CPI = MCP->getConstantPoolIndex(CPV, 4); |
| |
| const TargetRegisterClass *TRC = isThumb ? |
| (const TargetRegisterClass*)&ARM::tGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRRegClass; |
| |
| // Grab constant pool and fixed stack memory operands. |
| MachineMemOperand *CPMMO = |
| MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(), |
| MachineMemOperand::MOLoad, 4, 4); |
| |
| MachineMemOperand *FIMMOSt = |
| MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), |
| MachineMemOperand::MOStore, 4, 4); |
| |
| // Load the address of the dispatch MBB into the jump buffer. |
| if (isThumb2) { |
| // Incoming value: jbuf |
| // ldr.n r5, LCPI1_1 |
| // orr r5, r5, #1 |
| // add r5, pc |
| // str r5, [$jbuf, #+4] ; &jbuf[1] |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) |
| .addConstantPoolIndex(CPI) |
| .addMemOperand(CPMMO)); |
| // Set the low bit because of thumb mode. |
| unsigned NewVReg2 = MRI->createVirtualRegister(TRC); |
| AddDefaultCC( |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) |
| .addReg(NewVReg1, RegState::Kill) |
| .addImm(0x01))); |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) |
| .addReg(NewVReg2, RegState::Kill) |
| .addImm(PCLabelId); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) |
| .addReg(NewVReg3, RegState::Kill) |
| .addFrameIndex(FI) |
| .addImm(36) // &jbuf[1] :: pc |
| .addMemOperand(FIMMOSt)); |
| } else if (isThumb) { |
| // Incoming value: jbuf |
| // ldr.n r1, LCPI1_4 |
| // add r1, pc |
| // mov r2, #1 |
| // orrs r1, r2 |
| // add r2, $jbuf, #+4 ; &jbuf[1] |
| // str r1, [r2] |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) |
| .addConstantPoolIndex(CPI) |
| .addMemOperand(CPMMO)); |
| unsigned NewVReg2 = MRI->createVirtualRegister(TRC); |
| BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) |
| .addReg(NewVReg1, RegState::Kill) |
| .addImm(PCLabelId); |
| // Set the low bit because of thumb mode. |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addImm(1)); |
| unsigned NewVReg4 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addReg(NewVReg2, RegState::Kill) |
| .addReg(NewVReg3, RegState::Kill)); |
| unsigned NewVReg5 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5) |
| .addFrameIndex(FI) |
| .addImm(36)); // &jbuf[1] :: pc |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) |
| .addReg(NewVReg4, RegState::Kill) |
| .addReg(NewVReg5, RegState::Kill) |
| .addImm(0) |
| .addMemOperand(FIMMOSt)); |
| } else { |
| // Incoming value: jbuf |
| // ldr r1, LCPI1_1 |
| // add r1, pc, r1 |
| // str r1, [$jbuf, #+4] ; &jbuf[1] |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) |
| .addConstantPoolIndex(CPI) |
| .addImm(0) |
| .addMemOperand(CPMMO)); |
| unsigned NewVReg2 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) |
| .addReg(NewVReg1, RegState::Kill) |
| .addImm(PCLabelId)); |
| AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) |
| .addReg(NewVReg2, RegState::Kill) |
| .addFrameIndex(FI) |
| .addImm(36) // &jbuf[1] :: pc |
| .addMemOperand(FIMMOSt)); |
| } |
| } |
| |
| MachineBasicBlock *ARMTargetLowering:: |
| EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); |
| MachineFrameInfo *MFI = MF->getFrameInfo(); |
| int FI = MFI->getFunctionContextIndex(); |
| |
| const TargetRegisterClass *TRC = Subtarget->isThumb() ? |
| (const TargetRegisterClass*)&ARM::tGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRnopcRegClass; |
| |
| // Get a mapping of the call site numbers to all of the landing pads they're |
| // associated with. |
| DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad; |
| unsigned MaxCSNum = 0; |
| MachineModuleInfo &MMI = MF->getMMI(); |
| for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; |
| ++BB) { |
| if (!BB->isLandingPad()) continue; |
| |
| // FIXME: We should assert that the EH_LABEL is the first MI in the landing |
| // pad. |
| for (MachineBasicBlock::iterator |
| II = BB->begin(), IE = BB->end(); II != IE; ++II) { |
| if (!II->isEHLabel()) continue; |
| |
| MCSymbol *Sym = II->getOperand(0).getMCSymbol(); |
| if (!MMI.hasCallSiteLandingPad(Sym)) continue; |
| |
| SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym); |
| for (SmallVectorImpl<unsigned>::iterator |
| CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end(); |
| CSI != CSE; ++CSI) { |
| CallSiteNumToLPad[*CSI].push_back(BB); |
| MaxCSNum = std::max(MaxCSNum, *CSI); |
| } |
| break; |
| } |
| } |
| |
| // Get an ordered list of the machine basic blocks for the jump table. |
| std::vector<MachineBasicBlock*> LPadList; |
| SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs; |
| LPadList.reserve(CallSiteNumToLPad.size()); |
| for (unsigned I = 1; I <= MaxCSNum; ++I) { |
| SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I]; |
| for (SmallVectorImpl<MachineBasicBlock*>::iterator |
| II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) { |
| LPadList.push_back(*II); |
| InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end()); |
| } |
| } |
| |
| assert(!LPadList.empty() && |
| "No landing pad destinations for the dispatch jump table!"); |
| |
| // Create the jump table and associated information. |
| MachineJumpTableInfo *JTI = |
| MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); |
| unsigned MJTI = JTI->createJumpTableIndex(LPadList); |
| unsigned UId = AFI->createJumpTableUId(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| |
| // Create the MBBs for the dispatch code. |
| |
| // Shove the dispatch's address into the return slot in the function context. |
| MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); |
| DispatchBB->setIsLandingPad(); |
| |
| MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); |
| unsigned trap_opcode; |
| if (Subtarget->isThumb()) |
| trap_opcode = ARM::tTRAP; |
| else |
| trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; |
| |
| BuildMI(TrapBB, dl, TII->get(trap_opcode)); |
| DispatchBB->addSuccessor(TrapBB); |
| |
| MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); |
| DispatchBB->addSuccessor(DispContBB); |
| |
| // Insert and MBBs. |
| MF->insert(MF->end(), DispatchBB); |
| MF->insert(MF->end(), DispContBB); |
| MF->insert(MF->end(), TrapBB); |
| |
| // Insert code into the entry block that creates and registers the function |
| // context. |
| SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); |
| |
| MachineMemOperand *FIMMOLd = |
| MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), |
| MachineMemOperand::MOLoad | |
| MachineMemOperand::MOVolatile, 4, 4); |
| |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); |
| |
| const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII); |
| const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); |
| |
| // Add a register mask with no preserved registers. This results in all |
| // registers being marked as clobbered. |
| MIB.addRegMask(RI.getNoPreservedMask()); |
| |
| unsigned NumLPads = LPadList.size(); |
| if (Subtarget->isThumb2()) { |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) |
| .addFrameIndex(FI) |
| .addImm(4) |
| .addMemOperand(FIMMOLd)); |
| |
| if (NumLPads < 256) { |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) |
| .addReg(NewVReg1) |
| .addImm(LPadList.size())); |
| } else { |
| unsigned VReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) |
| .addImm(NumLPads & 0xFFFF)); |
| |
| unsigned VReg2 = VReg1; |
| if ((NumLPads & 0xFFFF0000) != 0) { |
| VReg2 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) |
| .addReg(VReg1) |
| .addImm(NumLPads >> 16)); |
| } |
| |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) |
| .addReg(NewVReg1) |
| .addReg(VReg2)); |
| } |
| |
| BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) |
| .addMBB(TrapBB) |
| .addImm(ARMCC::HI) |
| .addReg(ARM::CPSR); |
| |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3) |
| .addJumpTableIndex(MJTI) |
| .addImm(UId)); |
| |
| unsigned NewVReg4 = MRI->createVirtualRegister(TRC); |
| AddDefaultCC( |
| AddDefaultPred( |
| BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) |
| .addReg(NewVReg3, RegState::Kill) |
| .addReg(NewVReg1) |
| .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); |
| |
| BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) |
| .addReg(NewVReg4, RegState::Kill) |
| .addReg(NewVReg1) |
| .addJumpTableIndex(MJTI) |
| .addImm(UId); |
| } else if (Subtarget->isThumb()) { |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) |
| .addFrameIndex(FI) |
| .addImm(1) |
| .addMemOperand(FIMMOLd)); |
| |
| if (NumLPads < 256) { |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) |
| .addReg(NewVReg1) |
| .addImm(NumLPads)); |
| } else { |
| MachineConstantPool *ConstantPool = MF->getConstantPool(); |
| Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); |
| const Constant *C = ConstantInt::get(Int32Ty, NumLPads); |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); |
| if (Align == 0) |
| Align = getDataLayout()->getTypeAllocSize(C->getType()); |
| unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); |
| |
| unsigned VReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) |
| .addReg(VReg1, RegState::Define) |
| .addConstantPoolIndex(Idx)); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) |
| .addReg(NewVReg1) |
| .addReg(VReg1)); |
| } |
| |
| BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) |
| .addMBB(TrapBB) |
| .addImm(ARMCC::HI) |
| .addReg(ARM::CPSR); |
| |
| unsigned NewVReg2 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addReg(NewVReg1) |
| .addImm(2)); |
| |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) |
| .addJumpTableIndex(MJTI) |
| .addImm(UId)); |
| |
| unsigned NewVReg4 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addReg(NewVReg2, RegState::Kill) |
| .addReg(NewVReg3)); |
| |
| MachineMemOperand *JTMMOLd = |
| MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(), |
| MachineMemOperand::MOLoad, 4, 4); |
| |
| unsigned NewVReg5 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) |
| .addReg(NewVReg4, RegState::Kill) |
| .addImm(0) |
| .addMemOperand(JTMMOLd)); |
| |
| unsigned NewVReg6 = NewVReg5; |
| if (RelocM == Reloc::PIC_) { |
| NewVReg6 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) |
| .addReg(ARM::CPSR, RegState::Define) |
| .addReg(NewVReg5, RegState::Kill) |
| .addReg(NewVReg3)); |
| } |
| |
| BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) |
| .addReg(NewVReg6, RegState::Kill) |
| .addJumpTableIndex(MJTI) |
| .addImm(UId); |
| } else { |
| unsigned NewVReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) |
| .addFrameIndex(FI) |
| .addImm(4) |
| .addMemOperand(FIMMOLd)); |
| |
| if (NumLPads < 256) { |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) |
| .addReg(NewVReg1) |
| .addImm(NumLPads)); |
| } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { |
| unsigned VReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) |
| .addImm(NumLPads & 0xFFFF)); |
| |
| unsigned VReg2 = VReg1; |
| if ((NumLPads & 0xFFFF0000) != 0) { |
| VReg2 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) |
| .addReg(VReg1) |
| .addImm(NumLPads >> 16)); |
| } |
| |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) |
| .addReg(NewVReg1) |
| .addReg(VReg2)); |
| } else { |
| MachineConstantPool *ConstantPool = MF->getConstantPool(); |
| Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); |
| const Constant *C = ConstantInt::get(Int32Ty, NumLPads); |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); |
| if (Align == 0) |
| Align = getDataLayout()->getTypeAllocSize(C->getType()); |
| unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); |
| |
| unsigned VReg1 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) |
| .addReg(VReg1, RegState::Define) |
| .addConstantPoolIndex(Idx) |
| .addImm(0)); |
| AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) |
| .addReg(NewVReg1) |
| .addReg(VReg1, RegState::Kill)); |
| } |
| |
| BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) |
| .addMBB(TrapBB) |
| .addImm(ARMCC::HI) |
| .addReg(ARM::CPSR); |
| |
| unsigned NewVReg3 = MRI->createVirtualRegister(TRC); |
| AddDefaultCC( |
| AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) |
| .addReg(NewVReg1) |
| .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); |
| unsigned NewVReg4 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) |
| .addJumpTableIndex(MJTI) |
| .addImm(UId)); |
| |
| MachineMemOperand *JTMMOLd = |
| MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(), |
| MachineMemOperand::MOLoad, 4, 4); |
| unsigned NewVReg5 = MRI->createVirtualRegister(TRC); |
| AddDefaultPred( |
| BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) |
| .addReg(NewVReg3, RegState::Kill) |
| .addReg(NewVReg4) |
| .addImm(0) |
| .addMemOperand(JTMMOLd)); |
| |
| if (RelocM == Reloc::PIC_) { |
| BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) |
| .addReg(NewVReg5, RegState::Kill) |
| .addReg(NewVReg4) |
| .addJumpTableIndex(MJTI) |
| .addImm(UId); |
| } else { |
| BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) |
| .addReg(NewVReg5, RegState::Kill) |
| .addJumpTableIndex(MJTI) |
| .addImm(UId); |
| } |
| } |
| |
| // Add the jump table entries as successors to the MBB. |
| SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs; |
| for (std::vector<MachineBasicBlock*>::iterator |
| I = LPadList.begin(), E = LPadList.end(); I != E; ++I) { |
| MachineBasicBlock *CurMBB = *I; |
| if (SeenMBBs.insert(CurMBB)) |
| DispContBB->addSuccessor(CurMBB); |
| } |
| |
| // N.B. the order the invoke BBs are processed in doesn't matter here. |
| const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF); |
| SmallVector<MachineBasicBlock*, 64> MBBLPads; |
| for (SmallPtrSet<MachineBasicBlock*, 64>::iterator |
| I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) { |
| MachineBasicBlock *BB = *I; |
| |
| // Remove the landing pad successor from the invoke block and replace it |
| // with the new dispatch block. |
| SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(), |
| BB->succ_end()); |
| while (!Successors.empty()) { |
| MachineBasicBlock *SMBB = Successors.pop_back_val(); |
| if (SMBB->isLandingPad()) { |
| BB->removeSuccessor(SMBB); |
| MBBLPads.push_back(SMBB); |
| } |
| } |
| |
| BB->addSuccessor(DispatchBB); |
| |
| // Find the invoke call and mark all of the callee-saved registers as |
| // 'implicit defined' so that they're spilled. This prevents code from |
| // moving instructions to before the EH block, where they will never be |
| // executed. |
| for (MachineBasicBlock::reverse_iterator |
| II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { |
| if (!II->isCall()) continue; |
| |
| DenseMap<unsigned, bool> DefRegs; |
| for (MachineInstr::mop_iterator |
| OI = II->operands_begin(), OE = II->operands_end(); |
| OI != OE; ++OI) { |
| if (!OI->isReg()) continue; |
| DefRegs[OI->getReg()] = true; |
| } |
| |
| MachineInstrBuilder MIB(*MF, &*II); |
| |
| for (unsigned i = 0; SavedRegs[i] != 0; ++i) { |
| unsigned Reg = SavedRegs[i]; |
| if (Subtarget->isThumb2() && |
| !ARM::tGPRRegClass.contains(Reg) && |
| !ARM::hGPRRegClass.contains(Reg)) |
| continue; |
| if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) |
| continue; |
| if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) |
| continue; |
| if (!DefRegs[Reg]) |
| MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); |
| } |
| |
| break; |
| } |
| } |
| |
| // Mark all former landing pads as non-landing pads. The dispatch is the only |
| // landing pad now. |
| for (SmallVectorImpl<MachineBasicBlock*>::iterator |
| I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I) |
| (*I)->setIsLandingPad(false); |
| |
| // The instruction is gone now. |
| MI->eraseFromParent(); |
| |
| return MBB; |
| } |
| |
| static |
| MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { |
| for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), |
| E = MBB->succ_end(); I != E; ++I) |
| if (*I != Succ) |
| return *I; |
| llvm_unreachable("Expecting a BB with two successors!"); |
| } |
| |
| MachineBasicBlock *ARMTargetLowering:: |
| EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const { |
| // This pseudo instruction has 3 operands: dst, src, size |
| // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). |
| // Otherwise, we will generate unrolled scalar copies. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned src = MI->getOperand(1).getReg(); |
| unsigned SizeVal = MI->getOperand(2).getImm(); |
| unsigned Align = MI->getOperand(3).getImm(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| bool isThumb2 = Subtarget->isThumb2(); |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| unsigned ldrOpc, strOpc, UnitSize = 0; |
| |
| const TargetRegisterClass *TRC = isThumb2 ? |
| (const TargetRegisterClass*)&ARM::tGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRRegClass; |
| const TargetRegisterClass *TRC_Vec = 0; |
| |
| if (Align & 1) { |
| ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; |
| strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; |
| UnitSize = 1; |
| } else if (Align & 2) { |
| ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST; |
| strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST; |
| UnitSize = 2; |
| } else { |
| // Check whether we can use NEON instructions. |
| if (!MF->getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::NoImplicitFloat) && |
| Subtarget->hasNEON()) { |
| if ((Align % 16 == 0) && SizeVal >= 16) { |
| ldrOpc = ARM::VLD1q32wb_fixed; |
| strOpc = ARM::VST1q32wb_fixed; |
| UnitSize = 16; |
| TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass; |
| } |
| else if ((Align % 8 == 0) && SizeVal >= 8) { |
| ldrOpc = ARM::VLD1d32wb_fixed; |
| strOpc = ARM::VST1d32wb_fixed; |
| UnitSize = 8; |
| TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass; |
| } |
| } |
| // Can't use NEON instructions. |
| if (UnitSize == 0) { |
| ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; |
| strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM; |
| UnitSize = 4; |
| } |
| } |
| |
| unsigned BytesLeft = SizeVal % UnitSize; |
| unsigned LoopSize = SizeVal - BytesLeft; |
| |
| if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { |
| // Use LDR and STR to copy. |
| // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) |
| // [destOut] = STR_POST(scratch, destIn, UnitSize) |
| unsigned srcIn = src; |
| unsigned destIn = dest; |
| for (unsigned i = 0; i < LoopSize; i+=UnitSize) { |
| unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC); |
| unsigned srcOut = MRI.createVirtualRegister(TRC); |
| unsigned destOut = MRI.createVirtualRegister(TRC); |
| if (UnitSize >= 8) { |
| AddDefaultPred(BuildMI(*BB, MI, dl, |
| TII->get(ldrOpc), scratch) |
| .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0)); |
| |
| AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) |
| .addReg(destIn).addImm(0).addReg(scratch)); |
| } else if (isThumb2) { |
| AddDefaultPred(BuildMI(*BB, MI, dl, |
| TII->get(ldrOpc), scratch) |
| .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize)); |
| |
| AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) |
| .addReg(scratch).addReg(destIn) |
| .addImm(UnitSize)); |
| } else { |
| AddDefaultPred(BuildMI(*BB, MI, dl, |
| TII->get(ldrOpc), scratch) |
| .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0) |
| .addImm(UnitSize)); |
| |
| AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) |
| .addReg(scratch).addReg(destIn) |
| .addReg(0).addImm(UnitSize)); |
| } |
| srcIn = srcOut; |
| destIn = destOut; |
| } |
| |
| // Handle the leftover bytes with LDRB and STRB. |
| // [scratch, srcOut] = LDRB_POST(srcIn, 1) |
| // [destOut] = STRB_POST(scratch, destIn, 1) |
| ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; |
| strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; |
| for (unsigned i = 0; i < BytesLeft; i++) { |
| unsigned scratch = MRI.createVirtualRegister(TRC); |
| unsigned srcOut = MRI.createVirtualRegister(TRC); |
| unsigned destOut = MRI.createVirtualRegister(TRC); |
| if (isThumb2) { |
| AddDefaultPred(BuildMI(*BB, MI, dl, |
| TII->get(ldrOpc),scratch) |
| .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1)); |
| |
| AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) |
| .addReg(scratch).addReg(destIn) |
| .addReg(0).addImm(1)); |
| } else { |
| AddDefaultPred(BuildMI(*BB, MI, dl, |
| TII->get(ldrOpc),scratch) |
| .addReg(srcOut, RegState::Define).addReg(srcIn) |
| .addReg(0).addImm(1)); |
| |
| AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) |
| .addReg(scratch).addReg(destIn) |
| .addReg(0).addImm(1)); |
| } |
| srcIn = srcOut; |
| destIn = destOut; |
| } |
| MI->eraseFromParent(); // The instruction is gone now. |
| return BB; |
| } |
| |
| // Expand the pseudo op to a loop. |
| // thisMBB: |
| // ... |
| // movw varEnd, # --> with thumb2 |
| // movt varEnd, # |
| // ldrcp varEnd, idx --> without thumb2 |
| // fallthrough --> loopMBB |
| // loopMBB: |
| // PHI varPhi, varEnd, varLoop |
| // PHI srcPhi, src, srcLoop |
| // PHI destPhi, dst, destLoop |
| // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) |
| // [destLoop] = STR_POST(scratch, destPhi, UnitSize) |
| // subs varLoop, varPhi, #UnitSize |
| // bne loopMBB |
| // fallthrough --> exitMBB |
| // exitMBB: |
| // epilogue to handle left-over bytes |
| // [scratch, srcOut] = LDRB_POST(srcLoop, 1) |
| // [destOut] = STRB_POST(scratch, destLoop, 1) |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loopMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Load an immediate to varEnd. |
| unsigned varEnd = MRI.createVirtualRegister(TRC); |
| if (isThumb2) { |
| unsigned VReg1 = varEnd; |
| if ((LoopSize & 0xFFFF0000) != 0) |
| VReg1 = MRI.createVirtualRegister(TRC); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1) |
| .addImm(LoopSize & 0xFFFF)); |
| |
| if ((LoopSize & 0xFFFF0000) != 0) |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd) |
| .addReg(VReg1) |
| .addImm(LoopSize >> 16)); |
| } else { |
| MachineConstantPool *ConstantPool = MF->getConstantPool(); |
| Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); |
| const Constant *C = ConstantInt::get(Int32Ty, LoopSize); |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); |
| if (Align == 0) |
| Align = getDataLayout()->getTypeAllocSize(C->getType()); |
| unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); |
| |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp)) |
| .addReg(varEnd, RegState::Define) |
| .addConstantPoolIndex(Idx) |
| .addImm(0)); |
| } |
| BB->addSuccessor(loopMBB); |
| |
| // Generate the loop body: |
| // varPhi = PHI(varLoop, varEnd) |
| // srcPhi = PHI(srcLoop, src) |
| // destPhi = PHI(destLoop, dst) |
| MachineBasicBlock *entryBB = BB; |
| BB = loopMBB; |
| unsigned varLoop = MRI.createVirtualRegister(TRC); |
| unsigned varPhi = MRI.createVirtualRegister(TRC); |
| unsigned srcLoop = MRI.createVirtualRegister(TRC); |
| unsigned srcPhi = MRI.createVirtualRegister(TRC); |
| unsigned destLoop = MRI.createVirtualRegister(TRC); |
| unsigned destPhi = MRI.createVirtualRegister(TRC); |
| |
| BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) |
| .addReg(varLoop).addMBB(loopMBB) |
| .addReg(varEnd).addMBB(entryBB); |
| BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) |
| .addReg(srcLoop).addMBB(loopMBB) |
| .addReg(src).addMBB(entryBB); |
| BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) |
| .addReg(destLoop).addMBB(loopMBB) |
| .addReg(dest).addMBB(entryBB); |
| |
| // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) |
| // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) |
| unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC); |
| if (UnitSize >= 8) { |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) |
| .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0)); |
| |
| AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) |
| .addReg(destPhi).addImm(0).addReg(scratch)); |
| } else if (isThumb2) { |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) |
| .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize)); |
| |
| AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) |
| .addReg(scratch).addReg(destPhi) |
| .addImm(UnitSize)); |
| } else { |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) |
| .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0) |
| .addImm(UnitSize)); |
| |
| AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) |
| .addReg(scratch).addReg(destPhi) |
| .addReg(0).addImm(UnitSize)); |
| } |
| |
| // Decrement loop variable by UnitSize. |
| MachineInstrBuilder MIB = BuildMI(BB, dl, |
| TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); |
| AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize))); |
| MIB->getOperand(5).setReg(ARM::CPSR); |
| MIB->getOperand(5).setIsDef(true); |
| |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| |
| // loopMBB can loop back to loopMBB or fall through to exitMBB. |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // Add epilogue to handle BytesLeft. |
| BB = exitMBB; |
| MachineInstr *StartOfExit = exitMBB->begin(); |
| ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; |
| strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; |
| |
| // [scratch, srcOut] = LDRB_POST(srcLoop, 1) |
| // [destOut] = STRB_POST(scratch, destLoop, 1) |
| unsigned srcIn = srcLoop; |
| unsigned destIn = destLoop; |
| for (unsigned i = 0; i < BytesLeft; i++) { |
| unsigned scratch = MRI.createVirtualRegister(TRC); |
| unsigned srcOut = MRI.createVirtualRegister(TRC); |
| unsigned destOut = MRI.createVirtualRegister(TRC); |
| if (isThumb2) { |
| AddDefaultPred(BuildMI(*BB, StartOfExit, dl, |
| TII->get(ldrOpc),scratch) |
| .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1)); |
| |
| AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut) |
| .addReg(scratch).addReg(destIn) |
| .addImm(1)); |
| } else { |
| AddDefaultPred(BuildMI(*BB, StartOfExit, dl, |
| TII->get(ldrOpc),scratch) |
| .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1)); |
| |
| AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut) |
| .addReg(scratch).addReg(destIn) |
| .addReg(0).addImm(1)); |
| } |
| srcIn = srcOut; |
| destIn = destOut; |
| } |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| switch (MI->getOpcode()) { |
| default: { |
| MI->dump(); |
| llvm_unreachable("Unexpected instr type to insert"); |
| } |
| // The Thumb2 pre-indexed stores have the same MI operands, they just |
| // define them differently in the .td files from the isel patterns, so |
| // they need pseudos. |
| case ARM::t2STR_preidx: |
| MI->setDesc(TII->get(ARM::t2STR_PRE)); |
| return BB; |
| case ARM::t2STRB_preidx: |
| MI->setDesc(TII->get(ARM::t2STRB_PRE)); |
| return BB; |
| case ARM::t2STRH_preidx: |
| MI->setDesc(TII->get(ARM::t2STRH_PRE)); |
| return BB; |
| |
| case ARM::STRi_preidx: |
| case ARM::STRBi_preidx: { |
| unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ? |
| ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM; |
| // Decode the offset. |
| unsigned Offset = MI->getOperand(4).getImm(); |
| bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; |
| Offset = ARM_AM::getAM2Offset(Offset); |
| if (isSub) |
| Offset = -Offset; |
| |
| MachineMemOperand *MMO = *MI->memoperands_begin(); |
| BuildMI(*BB, MI, dl, TII->get(NewOpc)) |
| .addOperand(MI->getOperand(0)) // Rn_wb |
| .addOperand(MI->getOperand(1)) // Rt |
| .addOperand(MI->getOperand(2)) // Rn |
| .addImm(Offset) // offset (skip GPR==zero_reg) |
| .addOperand(MI->getOperand(5)) // pred |
| .addOperand(MI->getOperand(6)) |
| .addMemOperand(MMO); |
| MI->eraseFromParent(); |
| return BB; |
| } |
| case ARM::STRr_preidx: |
| case ARM::STRBr_preidx: |
| case ARM::STRH_preidx: { |
| unsigned NewOpc; |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; |
| case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; |
| case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; |
| } |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); |
| for (unsigned i = 0; i < MI->getNumOperands(); ++i) |
| MIB.addOperand(MI->getOperand(i)); |
| MI->eraseFromParent(); |
| return BB; |
| } |
| case ARM::ATOMIC_LOAD_ADD_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); |
| case ARM::ATOMIC_LOAD_ADD_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); |
| case ARM::ATOMIC_LOAD_ADD_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); |
| |
| case ARM::ATOMIC_LOAD_AND_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); |
| case ARM::ATOMIC_LOAD_AND_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); |
| case ARM::ATOMIC_LOAD_AND_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); |
| |
| case ARM::ATOMIC_LOAD_OR_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); |
| case ARM::ATOMIC_LOAD_OR_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); |
| case ARM::ATOMIC_LOAD_OR_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); |
| |
| case ARM::ATOMIC_LOAD_XOR_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr); |
| case ARM::ATOMIC_LOAD_XOR_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr); |
| case ARM::ATOMIC_LOAD_XOR_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr); |
| |
| case ARM::ATOMIC_LOAD_NAND_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr); |
| case ARM::ATOMIC_LOAD_NAND_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr); |
| case ARM::ATOMIC_LOAD_NAND_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr); |
| |
| case ARM::ATOMIC_LOAD_SUB_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); |
| case ARM::ATOMIC_LOAD_SUB_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); |
| case ARM::ATOMIC_LOAD_SUB_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); |
| |
| case ARM::ATOMIC_LOAD_MIN_I8: |
| return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT); |
| case ARM::ATOMIC_LOAD_MIN_I16: |
| return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT); |
| case ARM::ATOMIC_LOAD_MIN_I32: |
| return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT); |
| |
| case ARM::ATOMIC_LOAD_MAX_I8: |
| return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT); |
| case ARM::ATOMIC_LOAD_MAX_I16: |
| return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT); |
| case ARM::ATOMIC_LOAD_MAX_I32: |
| return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT); |
| |
| case ARM::ATOMIC_LOAD_UMIN_I8: |
| return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO); |
| case ARM::ATOMIC_LOAD_UMIN_I16: |
| return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO); |
| case ARM::ATOMIC_LOAD_UMIN_I32: |
| return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO); |
| |
| case ARM::ATOMIC_LOAD_UMAX_I8: |
| return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI); |
| case ARM::ATOMIC_LOAD_UMAX_I16: |
| return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI); |
| case ARM::ATOMIC_LOAD_UMAX_I32: |
| return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI); |
| |
| case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0); |
| case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0); |
| case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0); |
| |
| case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1); |
| case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2); |
| case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4); |
| |
| |
| case ARM::ATOMADD6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr, |
| isThumb2 ? ARM::t2ADCrr : ARM::ADCrr, |
| /*NeedsCarry*/ true); |
| case ARM::ATOMSUB6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, |
| isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, |
| /*NeedsCarry*/ true); |
| case ARM::ATOMOR6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr, |
| isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); |
| case ARM::ATOMXOR6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr, |
| isThumb2 ? ARM::t2EORrr : ARM::EORrr); |
| case ARM::ATOMAND6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr, |
| isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); |
| case ARM::ATOMSWAP6432: |
| return EmitAtomicBinary64(MI, BB, 0, 0, false); |
| case ARM::ATOMCMPXCHG6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, |
| isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, |
| /*NeedsCarry*/ false, /*IsCmpxchg*/true); |
| case ARM::ATOMMIN6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, |
| isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, |
| /*NeedsCarry*/ true, /*IsCmpxchg*/false, |
| /*IsMinMax*/ true, ARMCC::LT); |
| case ARM::ATOMMAX6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, |
| isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, |
| /*NeedsCarry*/ true, /*IsCmpxchg*/false, |
| /*IsMinMax*/ true, ARMCC::GE); |
| case ARM::ATOMUMIN6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, |
| isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, |
| /*NeedsCarry*/ true, /*IsCmpxchg*/false, |
| /*IsMinMax*/ true, ARMCC::LO); |
| case ARM::ATOMUMAX6432: |
| return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, |
| isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, |
| /*NeedsCarry*/ true, /*IsCmpxchg*/false, |
| /*IsMinMax*/ true, ARMCC::HS); |
| |
| case ARM::tMOVCCr_pseudo: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) |
| .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(*BB, BB->begin(), dl, |
| TII->get(ARM::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case ARM::BCCi64: |
| case ARM::BCCZi64: { |
| // If there is an unconditional branch to the other successor, remove it. |
| BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| |
| // Compare both parts that make up the double comparison separately for |
| // equality. |
| bool RHSisZero = MI->getOpcode() == ARM::BCCZi64; |
| |
| unsigned LHS1 = MI->getOperand(1).getReg(); |
| unsigned LHS2 = MI->getOperand(2).getReg(); |
| if (RHSisZero) { |
| AddDefaultPred(BuildMI(BB, dl, |
| TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(LHS1).addImm(0)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(LHS2).addImm(0) |
| .addImm(ARMCC::EQ).addReg(ARM::CPSR); |
| } else { |
| unsigned RHS1 = MI->getOperand(3).getReg(); |
| unsigned RHS2 = MI->getOperand(4).getReg(); |
| AddDefaultPred(BuildMI(BB, dl, |
| TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) |
| .addReg(LHS1).addReg(RHS1)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) |
| .addReg(LHS2).addReg(RHS2) |
| .addImm(ARMCC::EQ).addReg(ARM::CPSR); |
| } |
| |
| MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB(); |
| MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); |
| if (MI->getOperand(0).getImm() == ARMCC::NE) |
| std::swap(destMBB, exitMBB); |
| |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); |
| if (isThumb2) |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB)); |
| else |
| BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case ARM::Int_eh_sjlj_setjmp: |
| case ARM::Int_eh_sjlj_setjmp_nofp: |
| case ARM::tInt_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp_nofp: |
| EmitSjLjDispatchBlock(MI, BB); |
| return BB; |
| |
| case ARM::ABS: |
| case ARM::t2ABS: { |
| // To insert an ABS instruction, we have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // source vreg to test against 0, the destination vreg to set, |
| // the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| // It transforms |
| // V1 = ABS V0 |
| // into |
| // V2 = MOVS V0 |
| // BCC (branch to SinkBB if V0 >= 0) |
| // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) |
| // SinkBB: V1 = PHI(V2, V3) |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator BBI = BB; |
| ++BBI; |
| MachineFunction *Fn = BB->getParent(); |
| MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); |
| Fn->insert(BBI, RSBBB); |
| Fn->insert(BBI, SinkBB); |
| |
| unsigned int ABSSrcReg = MI->getOperand(1).getReg(); |
| unsigned int ABSDstReg = MI->getOperand(0).getReg(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| MachineRegisterInfo &MRI = Fn->getRegInfo(); |
| // In Thumb mode S must not be specified if source register is the SP or |
| // PC and if destination register is the SP, so restrict register class |
| unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ? |
| (const TargetRegisterClass*)&ARM::rGPRRegClass : |
| (const TargetRegisterClass*)&ARM::GPRRegClass); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| SinkBB->splice(SinkBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| SinkBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(RSBBB); |
| BB->addSuccessor(SinkBB); |
| |
| // fall through to SinkMBB |
| RSBBB->addSuccessor(SinkBB); |
| |
| // insert a cmp at the end of BB |
| AddDefaultPred(BuildMI(BB, dl, |
| TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(ABSSrcReg).addImm(0)); |
| |
| // insert a bcc with opposite CC to ARMCC::MI at the end of BB |
| BuildMI(BB, dl, |
| TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) |
| .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); |
| |
| // insert rsbri in RSBBB |
| // Note: BCC and rsbri will be converted into predicated rsbmi |
| // by if-conversion pass |
| BuildMI(*RSBBB, RSBBB->begin(), dl, |
| TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) |
| .addReg(ABSSrcReg, RegState::Kill) |
| .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); |
| |
| // insert PHI in SinkBB, |
| // reuse ABSDstReg to not change uses of ABS instruction |
| BuildMI(*SinkBB, SinkBB->begin(), dl, |
| TII->get(ARM::PHI), ABSDstReg) |
| .addReg(NewRsbDstReg).addMBB(RSBBB) |
| .addReg(ABSSrcReg).addMBB(BB); |
| |
| // remove ABS instruction |
| MI->eraseFromParent(); |
| |
| // return last added BB |
| return SinkBB; |
| } |
| case ARM::COPY_STRUCT_BYVAL_I32: |
| ++NumLoopByVals; |
| return EmitStructByval(MI, BB); |
| } |
| } |
| |
| void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, |
| SDNode *Node) const { |
| if (!MI->hasPostISelHook()) { |
| assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && |
| "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'"); |
| return; |
| } |
| |
| const MCInstrDesc *MCID = &MI->getDesc(); |
| // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, |
| // RSC. Coming out of isel, they have an implicit CPSR def, but the optional |
| // operand is still set to noreg. If needed, set the optional operand's |
| // register to CPSR, and remove the redundant implicit def. |
| // |
| // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>). |
| |
| // Rename pseudo opcodes. |
| unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode()); |
| if (NewOpc) { |
| const ARMBaseInstrInfo *TII = |
| static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo()); |
| MCID = &TII->get(NewOpc); |
| |
| assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 && |
| "converted opcode should be the same except for cc_out"); |
| |
| MI->setDesc(*MCID); |
| |
| // Add the optional cc_out operand |
| MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); |
| } |
| unsigned ccOutIdx = MCID->getNumOperands() - 1; |
| |
| // Any ARM instruction that sets the 's' bit should specify an optional |
| // "cc_out" operand in the last operand position. |
| if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) { |
| assert(!NewOpc && "Optional cc_out operand required"); |
| return; |
| } |
| // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it |
| // since we already have an optional CPSR def. |
| bool definesCPSR = false; |
| bool deadCPSR = false; |
| for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands(); |
| i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { |
| definesCPSR = true; |
| if (MO.isDead()) |
| deadCPSR = true; |
| MI->RemoveOperand(i); |
| break; |
| } |
| } |
| if (!definesCPSR) { |
| assert(!NewOpc && "Optional cc_out operand required"); |
| return; |
| } |
| assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); |
| if (deadCPSR) { |
| assert(!MI->getOperand(ccOutIdx).getReg() && |
| "expect uninitialized optional cc_out operand"); |
| return; |
| } |
| |
| // If this instruction was defined with an optional CPSR def and its dag node |
| // had a live implicit CPSR def, then activate the optional CPSR def. |
| MachineOperand &MO = MI->getOperand(ccOutIdx); |
| MO.setReg(ARM::CPSR); |
| MO.setIsDef(true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| // Helper function that checks if N is a null or all ones constant. |
| static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); |
| if (!C) |
| return false; |
| return AllOnes ? C->isAllOnesValue() : C->isNullValue(); |
| } |
| |
| // Return true if N is conditionally 0 or all ones. |
| // Detects these expressions where cc is an i1 value: |
| // |
| // (select cc 0, y) [AllOnes=0] |
| // (select cc y, 0) [AllOnes=0] |
| // (zext cc) [AllOnes=0] |
| // (sext cc) [AllOnes=0/1] |
| // (select cc -1, y) [AllOnes=1] |
| // (select cc y, -1) [AllOnes=1] |
| // |
| // Invert is set when N is the null/all ones constant when CC is false. |
| // OtherOp is set to the alternative value of N. |
| static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, |
| SDValue &CC, bool &Invert, |
| SDValue &OtherOp, |
| SelectionDAG &DAG) { |
| switch (N->getOpcode()) { |
| default: return false; |
| case ISD::SELECT: { |
| CC = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| if (isZeroOrAllOnes(N1, AllOnes)) { |
| Invert = false; |
| OtherOp = N2; |
| return true; |
| } |
| if (isZeroOrAllOnes(N2, AllOnes)) { |
| Invert = true; |
| OtherOp = N1; |
| return true; |
| } |
| return false; |
| } |
| case ISD::ZERO_EXTEND: |
| // (zext cc) can never be the all ones value. |
| if (AllOnes) |
| return false; |
| // Fall through. |
| case ISD::SIGN_EXTEND: { |
| EVT VT = N->getValueType(0); |
| CC = N->getOperand(0); |
| if (CC.getValueType() != MVT::i1) |
| return false; |
| Invert = !AllOnes; |
| if (AllOnes) |
| // When looking for an AllOnes constant, N is an sext, and the 'other' |
| // value is 0. |
| OtherOp = DAG.getConstant(0, VT); |
| else if (N->getOpcode() == ISD::ZERO_EXTEND) |
| // When looking for a 0 constant, N can be zext or sext. |
| OtherOp = DAG.getConstant(1, VT); |
| else |
| OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT); |
| return true; |
| } |
| } |
| } |
| |
| // Combine a constant select operand into its use: |
| // |
| // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) |
| // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] |
| // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) |
| // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) |
| // |
| // The transform is rejected if the select doesn't have a constant operand that |
| // is null, or all ones when AllOnes is set. |
| // |
| // Also recognize sext/zext from i1: |
| // |
| // (add (zext cc), x) -> (select cc (add x, 1), x) |
| // (add (sext cc), x) -> (select cc (add x, -1), x) |
| // |
| // These transformations eventually create predicated instructions. |
| // |
| // @param N The node to transform. |
| // @param Slct The N operand that is a select. |
| // @param OtherOp The other N operand (x above). |
| // @param DCI Context. |
| // @param AllOnes Require the select constant to be all ones instead of null. |
| // @returns The new node, or SDValue() on failure. |
| static |
| SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, |
| TargetLowering::DAGCombinerInfo &DCI, |
| bool AllOnes = false) { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDValue NonConstantVal; |
| SDValue CCOp; |
| bool SwapSelectOps; |
| if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, |
| NonConstantVal, DAG)) |
| return SDValue(); |
| |
| // Slct is now know to be the desired identity constant when CC is true. |
| SDValue TrueVal = OtherOp; |
| SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT, |
| OtherOp, NonConstantVal); |
| // Unless SwapSelectOps says CC should be false. |
| if (SwapSelectOps) |
| std::swap(TrueVal, FalseVal); |
| |
| return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, |
| CCOp, TrueVal, FalseVal); |
| } |
| |
| // Attempt combineSelectAndUse on each operand of a commutative operator N. |
| static |
| SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (N0.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes); |
| if (Result.getNode()) |
| return Result; |
| } |
| if (N1.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes); |
| if (Result.getNode()) |
| return Result; |
| } |
| return SDValue(); |
| } |
| |
| // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction |
| // (only after legalization). |
| static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| |
| // Only perform optimization if after legalize, and if NEON is available. We |
| // also expected both operands to be BUILD_VECTORs. |
| if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() |
| || N0.getOpcode() != ISD::BUILD_VECTOR |
| || N1.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| // Check output type since VPADDL operand elements can only be 8, 16, or 32. |
| EVT VT = N->getValueType(0); |
| if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) |
| return SDValue(); |
| |
| // Check that the vector operands are of the right form. |
| // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR |
| // operands, where N is the size of the formed vector. |
| // Each EXTRACT_VECTOR should have the same input vector and odd or even |
| // index such that we have a pair wise add pattern. |
| |
| // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. |
| if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| SDValue Vec = N0->getOperand(0)->getOperand(0); |
| SDNode *V = Vec.getNode(); |
| unsigned nextIndex = 0; |
| |
| // For each operands to the ADD which are BUILD_VECTORs, |
| // check to see if each of their operands are an EXTRACT_VECTOR with |
| // the same vector and appropriate index. |
| for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { |
| if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT |
| && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| |
| SDValue ExtVec0 = N0->getOperand(i); |
| SDValue ExtVec1 = N1->getOperand(i); |
| |
| // First operand is the vector, verify its the same. |
| if (V != ExtVec0->getOperand(0).getNode() || |
| V != ExtVec1->getOperand(0).getNode()) |
| return SDValue(); |
| |
| // Second is the constant, verify its correct. |
| ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1)); |
| ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1)); |
| |
| // For the constant, we want to see all the even or all the odd. |
| if (!C0 || !C1 || C0->getZExtValue() != nextIndex |
| || C1->getZExtValue() != nextIndex+1) |
| return SDValue(); |
| |
| // Increment index. |
| nextIndex+=2; |
| } else |
| return SDValue(); |
| } |
| |
| // Create VPADDL node. |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Build operand list. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, |
| TLI.getPointerTy())); |
| |
| // Input is the vector. |
| Ops.push_back(Vec); |
| |
| // Get widened type and narrowed type. |
| MVT widenType; |
| unsigned numElem = VT.getVectorNumElements(); |
| switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { |
| case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; |
| case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; |
| case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; |
| default: |
| llvm_unreachable("Invalid vector element type for padd optimization."); |
| } |
| |
| SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), |
| widenType, &Ops[0], Ops.size()); |
| return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp); |
| } |
| |
| static SDValue findMUL_LOHI(SDValue V) { |
| if (V->getOpcode() == ISD::UMUL_LOHI || |
| V->getOpcode() == ISD::SMUL_LOHI) |
| return V; |
| return SDValue(); |
| } |
| |
| static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| |
| if (Subtarget->isThumb1Only()) return SDValue(); |
| |
| // Only perform the checks after legalize when the pattern is available. |
| if (DCI.isBeforeLegalize()) return SDValue(); |
| |
| // Look for multiply add opportunities. |
| // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where |
| // each add nodes consumes a value from ISD::UMUL_LOHI and there is |
| // a glue link from the first add to the second add. |
| // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by |
| // a S/UMLAL instruction. |
| // loAdd UMUL_LOHI |
| // \ / :lo \ :hi |
| // \ / \ [no multiline comment] |
| // ADDC | hiAdd |
| // \ :glue / / |
| // \ / / |
| // ADDE |
| // |
| assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC"); |
| SDValue AddcOp0 = AddcNode->getOperand(0); |
| SDValue AddcOp1 = AddcNode->getOperand(1); |
| |
| // Check if the two operands are from the same mul_lohi node. |
| if (AddcOp0.getNode() == AddcOp1.getNode()) |
| return SDValue(); |
| |
| assert(AddcNode->getNumValues() == 2 && |
| AddcNode->getValueType(0) == MVT::i32 && |
| AddcNode->getValueType(1) == MVT::Glue && |
| "Expect ADDC with two result values: i32, glue"); |
| |
| // Check that the ADDC adds the low result of the S/UMUL_LOHI. |
| if (AddcOp0->getOpcode() != ISD::UMUL_LOHI && |
| AddcOp0->getOpcode() != ISD::SMUL_LOHI && |
| AddcOp1->getOpcode() != ISD::UMUL_LOHI && |
| AddcOp1->getOpcode() != ISD::SMUL_LOHI) |
| return SDValue(); |
| |
| // Look for the glued ADDE. |
| SDNode* AddeNode = AddcNode->getGluedUser(); |
| if (AddeNode == NULL) |
| return SDValue(); |
| |
| // Make sure it is really an ADDE. |
| if (AddeNode->getOpcode() != ISD::ADDE) |
| return SDValue(); |
| |
| assert(AddeNode->getNumOperands() == 3 && |
| AddeNode->getOperand(2).getValueType() == MVT::Glue && |
| "ADDE node has the wrong inputs"); |
| |
| // Check for the triangle shape. |
| SDValue AddeOp0 = AddeNode->getOperand(0); |
| SDValue AddeOp1 = AddeNode->getOperand(1); |
| |
| // Make sure that the ADDE operands are not coming from the same node. |
| if (AddeOp0.getNode() == AddeOp1.getNode()) |
| return SDValue(); |
| |
| // Find the MUL_LOHI node walking up ADDE's operands. |
| bool IsLeftOperandMUL = false; |
| SDValue MULOp = findMUL_LOHI(AddeOp0); |
| if (MULOp == SDValue()) |
| MULOp = findMUL_LOHI(AddeOp1); |
| else |
| IsLeftOperandMUL = true; |
| if (MULOp == SDValue()) |
| return SDValue(); |
| |
| // Figure out the right opcode. |
| unsigned Opc = MULOp->getOpcode(); |
| unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; |
| |
| // Figure out the high and low input values to the MLAL node. |
| SDValue* HiMul = &MULOp; |
| SDValue* HiAdd = NULL; |
| SDValue* LoMul = NULL; |
| SDValue* LowAdd = NULL; |
| |
| if (IsLeftOperandMUL) |
| HiAdd = &AddeOp1; |
| else |
| HiAdd = &AddeOp0; |
| |
| |
| if (AddcOp0->getOpcode() == Opc) { |
| LoMul = &AddcOp0; |
| LowAdd = &AddcOp1; |
| } |
| if (AddcOp1->getOpcode() == Opc) { |
| LoMul = &AddcOp1; |
| LowAdd = &AddcOp0; |
| } |
| |
| if (LoMul == NULL) |
| return SDValue(); |
| |
| if (LoMul->getNode() != HiMul->getNode()) |
| return SDValue(); |
| |
| // Create the merged node. |
| SelectionDAG &DAG = DCI.DAG; |
| |
| // Build operand list. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(LoMul->getOperand(0)); |
| Ops.push_back(LoMul->getOperand(1)); |
| Ops.push_back(*LowAdd); |
| Ops.push_back(*HiAdd); |
| |
| SDValue MLALNode = DAG.getNode(FinalOpc, AddcNode->getDebugLoc(), |
| DAG.getVTList(MVT::i32, MVT::i32), |
| &Ops[0], Ops.size()); |
| |
| // Replace the ADDs' nodes uses by the MLA node's values. |
| SDValue HiMLALResult(MLALNode.getNode(), 1); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); |
| |
| SDValue LoMLALResult(MLALNode.getNode(), 0); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); |
| |
| // Return original node to notify the driver to stop replacing. |
| SDValue resNode(AddcNode, 0); |
| return resNode; |
| } |
| |
| /// PerformADDCCombine - Target-specific dag combine transform from |
| /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL. |
| static SDValue PerformADDCCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| |
| return AddCombineTo64bitMLAL(N, DCI, Subtarget); |
| |
| } |
| |
| /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with |
| /// operands N0 and N1. This is a helper for PerformADDCombine that is |
| /// called with the default operands, and if that fails, with commuted |
| /// operands. |
| static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget){ |
| |
| // Attempt to create vpaddl for this add. |
| SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget); |
| if (Result.getNode()) |
| return Result; |
| |
| // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) |
| if (N0.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N0, N1, DCI); |
| if (Result.getNode()) return Result; |
| } |
| return SDValue(); |
| } |
| |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. |
| /// |
| static SDValue PerformADDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // First try with the default operand order. |
| SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget); |
| if (Result.getNode()) |
| return Result; |
| |
| // If that didn't work, try again with the operands commuted. |
| return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); |
| } |
| |
| /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. |
| /// |
| static SDValue PerformSUBCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| if (N1.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N1, N0, DCI); |
| if (Result.getNode()) return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformVMULCombine |
| /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the |
| /// special multiplier accumulator forwarding. |
| /// vmul d3, d0, d2 |
| /// vmla d3, d1, d2 |
| /// is faster than |
| /// vadd d3, d0, d1 |
| /// vmul d3, d3, d2 |
| static SDValue PerformVMULCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| if (!Subtarget->hasVMLxForwarding()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| unsigned Opcode = N0.getOpcode(); |
| if (Opcode != ISD::ADD && Opcode != ISD::SUB && |
| Opcode != ISD::FADD && Opcode != ISD::FSUB) { |
| Opcode = N1.getOpcode(); |
| if (Opcode != ISD::ADD && Opcode != ISD::SUB && |
| Opcode != ISD::FADD && Opcode != ISD::FSUB) |
| return SDValue(); |
| std::swap(N0, N1); |
| } |
| |
| EVT VT = N->getValueType(0); |
| DebugLoc DL = N->getDebugLoc(); |
| SDValue N00 = N0->getOperand(0); |
| SDValue N01 = N0->getOperand(1); |
| return DAG.getNode(Opcode, DL, VT, |
| DAG.getNode(ISD::MUL, DL, VT, N00, N1), |
| DAG.getNode(ISD::MUL, DL, VT, N01, N1)); |
| } |
| |
| static SDValue PerformMULCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if (Subtarget->isThumb1Only()) |
| return SDValue(); |
| |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT.is64BitVector() || VT.is128BitVector()) |
| return PerformVMULCombine(N, DCI, Subtarget); |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| int64_t MulAmt = C->getSExtValue(); |
| unsigned ShiftAmt = CountTrailingZeros_64(MulAmt); |
| |
| ShiftAmt = ShiftAmt & (32 - 1); |
| SDValue V = N->getOperand(0); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| SDValue Res; |
| MulAmt >>= ShiftAmt; |
| |
| if (MulAmt >= 0) { |
| if (isPowerOf2_32(MulAmt - 1)) { |
| // (mul x, 2^N + 1) => (add (shl x, N), x) |
| Res = DAG.getNode(ISD::ADD, DL, VT, |
| V, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, |
| DAG.getConstant(Log2_32(MulAmt - 1), |
| MVT::i32))); |
| } else if (isPowerOf2_32(MulAmt + 1)) { |
| // (mul x, 2^N - 1) => (sub (shl x, N), x) |
| Res = DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, |
| DAG.getConstant(Log2_32(MulAmt + 1), |
| MVT::i32)), |
| V); |
| } else |
| return SDValue(); |
| } else { |
| uint64_t MulAmtAbs = -MulAmt; |
| if (isPowerOf2_32(MulAmtAbs + 1)) { |
| // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) |
| Res = DAG.getNode(ISD::SUB, DL, VT, |
| V, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, |
| DAG.getConstant(Log2_32(MulAmtAbs + 1), |
| MVT::i32))); |
| } else if (isPowerOf2_32(MulAmtAbs - 1)) { |
| // (mul x, -(2^N + 1)) => - (add (shl x, N), x) |
| Res = DAG.getNode(ISD::ADD, DL, VT, |
| V, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, |
| DAG.getConstant(Log2_32(MulAmtAbs-1), |
| MVT::i32))); |
| Res = DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getConstant(0, MVT::i32),Res); |
| |
| } else |
| return SDValue(); |
| } |
| |
| if (ShiftAmt != 0) |
| Res = DAG.getNode(ISD::SHL, DL, VT, |
| Res, DAG.getConstant(ShiftAmt, MVT::i32)); |
| |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, Res, false); |
| return SDValue(); |
| } |
| |
| static SDValue PerformANDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| |
| // Attempt to use immediate-form VBIC |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); |
| DebugLoc dl = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (BVN && |
| BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| if (SplatBitSize <= 64) { |
| EVT VbicVT; |
| SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(), |
| SplatUndef.getZExtValue(), SplatBitSize, |
| DAG, VbicVT, VT.is128BitVector(), |
| OtherModImm); |
| if (Val.getNode()) { |
| SDValue Input = |
| DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); |
| SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); |
| } |
| } |
| } |
| |
| if (!Subtarget->isThumb1Only()) { |
| // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) |
| SDValue Result = combineSelectAndUseCommutative(N, true, DCI); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformORCombine - Target-specific dag combine xforms for ISD::OR |
| static SDValue PerformORCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| // Attempt to use immediate-form VORR |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); |
| DebugLoc dl = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (BVN && Subtarget->hasNEON() && |
| BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| if (SplatBitSize <= 64) { |
| EVT VorrVT; |
| SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), |
| SplatUndef.getZExtValue(), SplatBitSize, |
| DAG, VorrVT, VT.is128BitVector(), |
| OtherModImm); |
| if (Val.getNode()) { |
| SDValue Input = |
| DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); |
| SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); |
| } |
| } |
| } |
| |
| if (!Subtarget->isThumb1Only()) { |
| // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) |
| SDValue Result = combineSelectAndUseCommutative(N, false, DCI); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // The code below optimizes (or (and X, Y), Z). |
| // The AND operand needs to have a single user to make these optimizations |
| // profitable. |
| SDValue N0 = N->getOperand(0); |
| if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) |
| return SDValue(); |
| SDValue N1 = N->getOperand(1); |
| |
| // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. |
| if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && |
| DAG.getTargetLoweringInfo().isTypeLegal(VT)) { |
| APInt SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| |
| BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); |
| APInt SplatBits0; |
| if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, |
| HasAnyUndefs) && !HasAnyUndefs) { |
| BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); |
| APInt SplatBits1; |
| if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, |
| HasAnyUndefs) && !HasAnyUndefs && |
| SplatBits0 == ~SplatBits1) { |
| // Canonicalize the vector type to make instruction selection simpler. |
| EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; |
| SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT, |
| N0->getOperand(1), N0->getOperand(0), |
| N1->getOperand(0)); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Result); |
| } |
| } |
| } |
| |
| // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when |
| // reasonable. |
| |
| // BFI is only available on V6T2+ |
| if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) |
| return SDValue(); |
| |
| DebugLoc DL = N->getDebugLoc(); |
| // 1) or (and A, mask), val => ARMbfi A, val, mask |
| // iff (val & mask) == val |
| // |
| // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask |
| // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) |
| // && mask == ~mask2 |
| // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) |
| // && ~mask == mask2 |
| // (i.e., copy a bitfield value into another bitfield of the same width) |
| |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| SDValue N00 = N0.getOperand(0); |
| |
| // The value and the mask need to be constants so we can verify this is |
| // actually a bitfield set. If the mask is 0xffff, we can do better |
| // via a movt instruction, so don't use BFI in that case. |
| SDValue MaskOp = N0.getOperand(1); |
| ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp); |
| if (!MaskC) |
| return SDValue(); |
| unsigned Mask = MaskC->getZExtValue(); |
| if (Mask == 0xffff) |
| return SDValue(); |
| SDValue Res; |
| // Case (1): or (and A, mask), val => ARMbfi A, val, mask |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (N1C) { |
| unsigned Val = N1C->getZExtValue(); |
| if ((Val & ~Mask) != Val) |
| return SDValue(); |
| |
| if (ARM::isBitFieldInvertedMask(Mask)) { |
| Val >>= CountTrailingZeros_32(~Mask); |
| |
| Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, |
| DAG.getConstant(Val, MVT::i32), |
| DAG.getConstant(Mask, MVT::i32)); |
| |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, Res, false); |
| return SDValue(); |
| } |
| } else if (N1.getOpcode() == ISD::AND) { |
| // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N11C) |
| return SDValue(); |
| unsigned Mask2 = N11C->getZExtValue(); |
| |
| // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern |
| // as is to match. |
| if (ARM::isBitFieldInvertedMask(Mask) && |
| (Mask == ~Mask2)) { |
| // The pack halfword instruction works better for masks that fit it, |
| // so use that when it's available. |
| if (Subtarget->hasT2ExtractPack() && |
| (Mask == 0xffff || Mask == 0xffff0000)) |
| return SDValue(); |
| // 2a |
| unsigned amt = CountTrailingZeros_32(Mask2); |
| Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), |
| DAG.getConstant(amt, MVT::i32)); |
| Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, |
| DAG.getConstant(Mask, MVT::i32)); |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, Res, false); |
| return SDValue(); |
| } else if (ARM::isBitFieldInvertedMask(~Mask) && |
| (~Mask == Mask2)) { |
| // The pack halfword instruction works better for masks that fit it, |
| // so use that when it's available. |
| if (Subtarget->hasT2ExtractPack() && |
| (Mask2 == 0xffff || Mask2 == 0xffff0000)) |
| return SDValue(); |
| // 2b |
| unsigned lsb = CountTrailingZeros_32(Mask); |
| Res = DAG.getNode(ISD::SRL, DL, VT, N00, |
| DAG.getConstant(lsb, MVT::i32)); |
| Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, |
| DAG.getConstant(Mask2, MVT::i32)); |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, Res, false); |
| return SDValue(); |
| } |
| } |
| |
| if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && |
| N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) && |
| ARM::isBitFieldInvertedMask(~Mask)) { |
| // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask |
| // where lsb(mask) == #shamt and masked bits of B are known zero. |
| SDValue ShAmt = N00.getOperand(1); |
| unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue(); |
| unsigned LSB = CountTrailingZeros_32(Mask); |
| if (ShAmtC != LSB) |
| return SDValue(); |
| |
| Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), |
| DAG.getConstant(~Mask, MVT::i32)); |
| |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, Res, false); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformXORCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| if (!Subtarget->isThumb1Only()) { |
| // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) |
| SDValue Result = combineSelectAndUseCommutative(N, false, DCI); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff |
| /// the bits being cleared by the AND are not demanded by the BFI. |
| static SDValue PerformBFICombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue N1 = N->getOperand(1); |
| if (N1.getOpcode() == ISD::AND) { |
| ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); |
| if (!N11C) |
| return SDValue(); |
| unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); |
| unsigned LSB = CountTrailingZeros_32(~InvMask); |
| unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB; |
| unsigned Mask = (1 << Width)-1; |
| unsigned Mask2 = N11C->getZExtValue(); |
| if ((Mask & (~Mask2)) == 0) |
| return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0), |
| N->getOperand(0), N1.getOperand(0), |
| N->getOperand(2)); |
| } |
| return SDValue(); |
| } |
| |
| /// PerformVMOVRRDCombine - Target-specific dag combine xforms for |
| /// ARMISD::VMOVRRD. |
| static SDValue PerformVMOVRRDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // vmovrrd(vmovdrr x, y) -> x,y |
| SDValue InDouble = N->getOperand(0); |
| if (InDouble.getOpcode() == ARMISD::VMOVDRR) |
| return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); |
| |
| // vmovrrd(load f64) -> (load i32), (load i32) |
| SDNode *InNode = InDouble.getNode(); |
| if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && |
| InNode->getValueType(0) == MVT::f64 && |
| InNode->getOperand(1).getOpcode() == ISD::FrameIndex && |
| !cast<LoadSDNode>(InNode)->isVolatile()) { |
| // TODO: Should this be done for non-FrameIndex operands? |
| LoadSDNode *LD = cast<LoadSDNode>(InNode); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| DebugLoc DL = LD->getDebugLoc(); |
| SDValue BasePtr = LD->getBasePtr(); |
| SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, |
| LD->getPointerInfo(), LD->isVolatile(), |
| LD->isNonTemporal(), LD->isInvariant(), |
| LD->getAlignment()); |
| |
| SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, |
| DAG.getConstant(4, MVT::i32)); |
| SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, |
| LD->getPointerInfo(), LD->isVolatile(), |
| LD->isNonTemporal(), LD->isInvariant(), |
| std::min(4U, LD->getAlignment() / 2)); |
| |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); |
| SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); |
| DCI.RemoveFromWorklist(LD); |
| DAG.DeleteNode(LD); |
| return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformVMOVDRRCombine - Target-specific dag combine xforms for |
| /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. |
| static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { |
| // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| if (Op0.getOpcode() == ISD::BITCAST) |
| Op0 = Op0.getOperand(0); |
| if (Op1.getOpcode() == ISD::BITCAST) |
| Op1 = Op1.getOperand(0); |
| if (Op0.getOpcode() == ARMISD::VMOVRRD && |
| Op0.getNode() == Op1.getNode() && |
| Op0.getResNo() == 0 && Op1.getResNo() == 1) |
| return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), |
| N->getValueType(0), Op0.getOperand(0)); |
| return SDValue(); |
| } |
| |
| /// PerformSTORECombine - Target-specific dag combine xforms for |
| /// ISD::STORE. |
| static SDValue PerformSTORECombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| StoreSDNode *St = cast<StoreSDNode>(N); |
| if (St->isVolatile()) |
| return SDValue(); |
| |
| // Optimize trunc store (of multiple scalars) to shuffle and store. First, |
| // pack all of the elements in one place. Next, store to memory in fewer |
| // chunks. |
| SDValue StVal = St->getValue(); |
| EVT VT = StVal.getValueType(); |
| if (St->isTruncatingStore() && VT.isVector()) { |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT StVT = St->getMemoryVT(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| assert(StVT != VT && "Cannot truncate to the same type"); |
| unsigned FromEltSz = VT.getVectorElementType().getSizeInBits(); |
| unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits(); |
| |
| // From, To sizes and ElemCount must be pow of two |
| if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue(); |
| |
| // We are going to use the original vector elt for storing. |
| // Accumulated smaller vector elements must be a multiple of the store size. |
| if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue(); |
| |
| unsigned SizeRatio = FromEltSz / ToEltSz; |
| assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); |
| |
| // Create a type on which we perform the shuffle. |
| EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), |
| NumElems*SizeRatio); |
| assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); |
| |
| DebugLoc DL = St->getDebugLoc(); |
| SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); |
| SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio; |
| |
| // Can't shuffle using an illegal type. |
| if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); |
| |
| SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec, |
| DAG.getUNDEF(WideVec.getValueType()), |
| ShuffleVec.data()); |
| // At this point all of the data is stored at the bottom of the |
| // register. We now need to save it to mem. |
| |
| // Find the largest store unit |
| MVT StoreType = MVT::i8; |
| for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; |
| tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { |
| MVT Tp = (MVT::SimpleValueType)tp; |
| if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) |
| StoreType = Tp; |
| } |
| // Didn't find a legal store type. |
| if (!TLI.isTypeLegal(StoreType)) |
| return SDValue(); |
| |
| // Bitcast the original vector into a vector of store-size units |
| EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), |
| StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits()); |
| assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); |
| SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); |
| SmallVector<SDValue, 8> Chains; |
| SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, |
| TLI.getPointerTy()); |
| SDValue BasePtr = St->getBasePtr(); |
| |
| // Perform one or more big stores into memory. |
| unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits(); |
| for (unsigned I = 0; I < E; I++) { |
| SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, |
| StoreType, ShuffWide, |
| DAG.getIntPtrConstant(I)); |
| SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr, |
| St->getPointerInfo(), St->isVolatile(), |
| St->isNonTemporal(), St->getAlignment()); |
| BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, |
| Increment); |
| Chains.push_back(Ch); |
| } |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0], |
| Chains.size()); |
| } |
| |
| if (!ISD::isNormalStore(St)) |
| return SDValue(); |
| |
| // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and |
| // ARM stores of arguments in the same cache line. |
| if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && |
| StVal.getNode()->hasOneUse()) { |
| SelectionDAG &DAG = DCI.DAG; |
| DebugLoc DL = St->getDebugLoc(); |
| SDValue BasePtr = St->getBasePtr(); |
| SDValue NewST1 = DAG.getStore(St->getChain(), DL, |
| StVal.getNode()->getOperand(0), BasePtr, |
| St->getPointerInfo(), St->isVolatile(), |
| St->isNonTemporal(), St->getAlignment()); |
| |
| SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, |
| DAG.getConstant(4, MVT::i32)); |
| return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1), |
| OffsetPtr, St->getPointerInfo(), St->isVolatile(), |
| St->isNonTemporal(), |
| std::min(4U, St->getAlignment() / 2)); |
| } |
| |
| if (StVal.getValueType() != MVT::i64 || |
| StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| // Bitcast an i64 store extracted from a vector to f64. |
| // Otherwise, the i64 value will be legalized to a pair of i32 values. |
| SelectionDAG &DAG = DCI.DAG; |
| DebugLoc dl = StVal.getDebugLoc(); |
| SDValue IntVec = StVal.getOperand(0); |
| EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, |
| IntVec.getValueType().getVectorNumElements()); |
| SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); |
| SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| Vec, StVal.getOperand(1)); |
| dl = N->getDebugLoc(); |
| SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); |
| // Make the DAGCombiner fold the bitcasts. |
| DCI.AddToWorklist(Vec.getNode()); |
| DCI.AddToWorklist(ExtElt.getNode()); |
| DCI.AddToWorklist(V.getNode()); |
| return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), |
| St->getPointerInfo(), St->isVolatile(), |
| St->isNonTemporal(), St->getAlignment(), |
| St->getTBAAInfo()); |
| } |
| |
| /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node |
| /// are normal, non-volatile loads. If so, it is profitable to bitcast an |
| /// i64 vector to have f64 elements, since the value can then be loaded |
| /// directly into a VFP register. |
| static bool hasNormalLoadOperand(SDNode *N) { |
| unsigned NumElts = N->getValueType(0).getVectorNumElements(); |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDNode *Elt = N->getOperand(i).getNode(); |
| if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for |
| /// ISD::BUILD_VECTOR. |
| static SDValue PerformBUILD_VECTORCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI){ |
| // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): |
| // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value |
| // into a pair of GPRs, which is fine when the value is used as a scalar, |
| // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. |
| SelectionDAG &DAG = DCI.DAG; |
| if (N->getNumOperands() == 2) { |
| SDValue RV = PerformVMOVDRRCombine(N, DAG); |
| if (RV.getNode()) |
| return RV; |
| } |
| |
| // Load i64 elements as f64 values so that type legalization does not split |
| // them up into i32 values. |
| EVT VT = N->getValueType(0); |
| if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) |
| return SDValue(); |
| DebugLoc dl = N->getDebugLoc(); |
| SmallVector<SDValue, 8> Ops; |
| unsigned NumElts = VT.getVectorNumElements(); |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); |
| Ops.push_back(V); |
| // Make the DAGCombiner fold the bitcast. |
| DCI.AddToWorklist(V.getNode()); |
| } |
| EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); |
| SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts); |
| return DAG.getNode(ISD::BITCAST, dl, VT, BV); |
| } |
| |
| /// PerformInsertEltCombine - Target-specific dag combine xforms for |
| /// ISD::INSERT_VECTOR_ELT. |
| static SDValue PerformInsertEltCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // Bitcast an i64 load inserted into a vector to f64. |
| // Otherwise, the i64 value will be legalized to a pair of i32 values. |
| EVT VT = N->getValueType(0); |
| SDNode *Elt = N->getOperand(1).getNode(); |
| if (VT.getVectorElementType() != MVT::i64 || |
| !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| DebugLoc dl = N->getDebugLoc(); |
| EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, |
| VT.getVectorNumElements()); |
| SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); |
| SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); |
| // Make the DAGCombiner fold the bitcasts. |
| DCI.AddToWorklist(Vec.getNode()); |
| DCI.AddToWorklist(V.getNode()); |
| SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, |
| Vec, V, N->getOperand(2)); |
| return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); |
| } |
| |
| /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for |
| /// ISD::VECTOR_SHUFFLE. |
| static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { |
| // The LLVM shufflevector instruction does not require the shuffle mask |
| // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does |
| // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the |
| // operands do not match the mask length, they are extended by concatenating |
| // them with undef vectors. That is probably the right thing for other |
| // targets, but for NEON it is better to concatenate two double-register |
| // size vector operands into a single quad-register size vector. Do that |
| // transformation here: |
| // shuffle(concat(v1, undef), concat(v2, undef)) -> |
| // shuffle(concat(v1, v2), undef) |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| if (Op0.getOpcode() != ISD::CONCAT_VECTORS || |
| Op1.getOpcode() != ISD::CONCAT_VECTORS || |
| Op0.getNumOperands() != 2 || |
| Op1.getNumOperands() != 2) |
| return SDValue(); |
| SDValue Concat0Op1 = Op0.getOperand(1); |
| SDValue Concat1Op1 = Op1.getOperand(1); |
| if (Concat0Op1.getOpcode() != ISD::UNDEF || |
| Concat1Op1.getOpcode() != ISD::UNDEF) |
| return SDValue(); |
| // Skip the transformation if any of the types are illegal. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT VT = N->getValueType(0); |
| if (!TLI.isTypeLegal(VT) || |
| !TLI.isTypeLegal(Concat0Op1.getValueType()) || |
| !TLI.isTypeLegal(Concat1Op1.getValueType())) |
| return SDValue(); |
| |
| SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT, |
| Op0.getOperand(0), Op1.getOperand(0)); |
| // Translate the shuffle mask. |
| SmallVector<int, 16> NewMask; |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned HalfElts = NumElts/2; |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| for (unsigned n = 0; n < NumElts; ++n) { |
| int MaskElt = SVN->getMaskElt(n); |
| int NewElt = -1; |
| if (MaskElt < (int)HalfElts) |
| NewElt = MaskElt; |
| else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) |
| NewElt = HalfElts + MaskElt - NumElts; |
| NewMask.push_back(NewElt); |
| } |
| return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat, |
| DAG.getUNDEF(VT), NewMask.data()); |
| } |
| |
| /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and |
| /// NEON load/store intrinsics to merge base address updates. |
| static SDValue CombineBaseUpdate(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || |
| N->getOpcode() == ISD::INTRINSIC_W_CHAIN); |
| unsigned AddrOpIdx = (isIntrinsic ? 2 : 1); |
| SDValue Addr = N->getOperand(AddrOpIdx); |
| |
| // Search for a use of the address operand that is an increment. |
| for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), |
| UE = Addr.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User->getOpcode() != ISD::ADD || |
| UI.getUse().getResNo() != Addr.getResNo()) |
| continue; |
| |
| // Check that the add is independent of the load/store. Otherwise, folding |
| // it would create a cycle. |
| if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) |
| continue; |
| |
| // Find the new opcode for the updating load/store. |
| bool isLoad = true; |
| bool isLaneOp = false; |
| unsigned NewOpc = 0; |
| unsigned NumVecs = 0; |
| if (isIntrinsic) { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| default: llvm_unreachable("unexpected intrinsic for Neon base update"); |
| case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; |
| NumVecs = 1; break; |
| case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; |
| NumVecs = 2; break; |
| case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; |
| NumVecs = 3; break; |
| case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; |
| NumVecs = 4; break; |
| case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; |
| NumVecs = 2; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; |
| NumVecs = 3; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; |
| NumVecs = 4; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; |
| NumVecs = 1; isLoad = false; break; |
| case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; |
| NumVecs = 2; isLoad = false; break; |
| case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; |
| NumVecs = 3; isLoad = false; break; |
| case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; |
| NumVecs = 4; isLoad = false; break; |
| case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; |
| NumVecs = 2; isLoad = false; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; |
| NumVecs = 3; isLoad = false; isLaneOp = true; break; |
| case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; |
| NumVecs = 4; isLoad = false; isLaneOp = true; break; |
| } |
| } else { |
| isLaneOp = true; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unexpected opcode for Neon base update"); |
| case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; |
| case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; |
| case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; |
| } |
| } |
| |
| // Find the size of memory referenced by the load/store. |
| EVT VecTy; |
| if (isLoad) |
| VecTy = N->getValueType(0); |
| else |
| VecTy = N->getOperand(AddrOpIdx+1).getValueType(); |
| unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; |
| if (isLaneOp) |
| NumBytes /= VecTy.getVectorNumElements(); |
| |
| // If the increment is a constant, it must match the memory ref size. |
| SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); |
| if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { |
| uint64_t IncVal = CInc->getZExtValue(); |
| if (IncVal != NumBytes) |
| continue; |
| } else if (NumBytes >= 3 * 16) { |
| // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two |
| // separate instructions that make it harder to use a non-constant update. |
| continue; |
| } |
| |
| // Create the new updating load/store node. |
| EVT Tys[6]; |
| unsigned NumResultVecs = (isLoad ? NumVecs : 0); |
| unsigned n; |
| for (n = 0; n < NumResultVecs; ++n) |
| Tys[n] = VecTy; |
| Tys[n++] = MVT::i32; |
| Tys[n] = MVT::Other; |
| SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(N->getOperand(0)); // incoming chain |
| Ops.push_back(N->getOperand(AddrOpIdx)); |
| Ops.push_back(Inc); |
| for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) { |
| Ops.push_back(N->getOperand(i)); |
| } |
| MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); |
| SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys, |
| Ops.data(), Ops.size(), |
| MemInt->getMemoryVT(), |
| MemInt->getMemOperand()); |
| |
| // Update the uses. |
| std::vector<SDValue> NewResults; |
| for (unsigned i = 0; i < NumResultVecs; ++i) { |
| NewResults.push_back(SDValue(UpdN.getNode(), i)); |
| } |
| NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain |
| DCI.CombineTo(N, NewResults); |
| DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); |
| |
| break; |
| } |
| return SDValue(); |
| } |
| |
| /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a |
| /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic |
| /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and |
| /// return true. |
| static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| // vldN-dup instructions only support 64-bit vectors for N > 1. |
| if (!VT.is64BitVector()) |
| return false; |
| |
| // Check if the VDUPLANE operand is a vldN-dup intrinsic. |
| SDNode *VLD = N->getOperand(0).getNode(); |
| if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| return false; |
| unsigned NumVecs = 0; |
| unsigned NewOpc = 0; |
| unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue(); |
| if (IntNo == Intrinsic::arm_neon_vld2lane) { |
| NumVecs = 2; |
| NewOpc = ARMISD::VLD2DUP; |
| } else if (IntNo == Intrinsic::arm_neon_vld3lane) { |
| NumVecs = 3; |
| NewOpc = ARMISD::VLD3DUP; |
| } else if (IntNo == Intrinsic::arm_neon_vld4lane) { |
| NumVecs = 4; |
| NewOpc = ARMISD::VLD4DUP; |
| } else { |
| return false; |
| } |
| |
| // First check that all the vldN-lane uses are VDUPLANEs and that the lane |
| // numbers match the load. |
| unsigned VLDLaneNo = |
| cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue(); |
| for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); |
| UI != UE; ++UI) { |
| // Ignore uses of the chain result. |
| if (UI.getUse().getResNo() == NumVecs) |
| continue; |
| SDNode *User = *UI; |
| if (User->getOpcode() != ARMISD::VDUPLANE || |
| VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue()) |
| return false; |
| } |
| |
| // Create the vldN-dup node. |
| EVT Tys[5]; |
| unsigned n; |
| for (n = 0; n < NumVecs; ++n) |
| Tys[n] = VT; |
| Tys[n] = MVT::Other; |
| SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1); |
| SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; |
| MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); |
| SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys, |
| Ops, 2, VLDMemInt->getMemoryVT(), |
| VLDMemInt->getMemOperand()); |
| |
| // Update the uses. |
| for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); |
| UI != UE; ++UI) { |
| unsigned ResNo = UI.getUse().getResNo(); |
| // Ignore uses of the chain result. |
| if (ResNo == NumVecs) |
| continue; |
| SDNode *User = *UI; |
| DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); |
| } |
| |
| // Now the vldN-lane intrinsic is dead except for its chain result. |
| // Update uses of the chain. |
| std::vector<SDValue> VLDDupResults; |
| for (unsigned n = 0; n < NumVecs; ++n) |
| VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); |
| VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); |
| DCI.CombineTo(VLD, VLDDupResults); |
| |
| return true; |
| } |
| |
| /// PerformVDUPLANECombine - Target-specific dag combine xforms for |
| /// ARMISD::VDUPLANE. |
| static SDValue PerformVDUPLANECombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue Op = N->getOperand(0); |
| |
| // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses |
| // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. |
| if (CombineVLDDUP(N, DCI)) |
| return SDValue(N, 0); |
| |
| // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is |
| // redundant. Ignore bit_converts for now; element sizes are checked below. |
| while (Op.getOpcode() == ISD::BITCAST) |
| Op = Op.getOperand(0); |
| if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) |
| return SDValue(); |
| |
| // Make sure the VMOV element size is not bigger than the VDUPLANE elements. |
| unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits(); |
| // The canonical VMOV for a zero vector uses a 32-bit element size. |
| unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned EltBits; |
| if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0) |
| EltSize = 8; |
| EVT VT = N->getValueType(0); |
| if (EltSize > VT.getVectorElementType().getSizeInBits()) |
| return SDValue(); |
| |
| return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op); |
| } |
| |
| // isConstVecPow2 - Return true if each vector element is a power of 2, all |
| // elements are the same constant, C, and Log2(C) ranges from 1 to 32. |
| static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C) |
| { |
| integerPart cN; |
| integerPart c0 = 0; |
| for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements(); |
| I != E; I++) { |
| ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I)); |
| if (!C) |
| return false; |
| |
| bool isExact; |
| APFloat APF = C->getValueAPF(); |
| if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact) |
| != APFloat::opOK || !isExact) |
| return false; |
| |
| c0 = (I == 0) ? cN : c0; |
| if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32) |
| return false; |
| } |
| C = c0; |
| return true; |
| } |
| |
| /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) |
| /// can replace combinations of VMUL and VCVT (floating-point to integer) |
| /// when the VMUL has a constant operand that is a power of 2. |
| /// |
| /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): |
| /// vmul.f32 d16, d17, d16 |
| /// vcvt.s32.f32 d16, d16 |
| /// becomes: |
| /// vcvt.s32.f32 d16, d16, #3 |
| static SDValue PerformVCVTCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Op = N->getOperand(0); |
| |
| if (!Subtarget->hasNEON() || !Op.getValueType().isVector() || |
| Op.getOpcode() != ISD::FMUL) |
| return SDValue(); |
| |
| uint64_t C; |
| SDValue N0 = Op->getOperand(0); |
| SDValue ConstVec = Op->getOperand(1); |
| bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; |
| |
| if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || |
| !isConstVecPow2(ConstVec, isSigned, C)) |
| return SDValue(); |
| |
| unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : |
| Intrinsic::arm_neon_vcvtfp2fxu; |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), |
| N->getValueType(0), |
| DAG.getConstant(IntrinsicOpcode, MVT::i32), N0, |
| DAG.getConstant(Log2_64(C), MVT::i32)); |
| } |
| |
| /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) |
| /// can replace combinations of VCVT (integer to floating-point) and VDIV |
| /// when the VDIV has a constant operand that is a power of 2. |
| /// |
| /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): |
| /// vcvt.f32.s32 d16, d16 |
| /// vdiv.f32 d16, d17, d16 |
| /// becomes: |
| /// vcvt.f32.s32 d16, d16, #3 |
| static SDValue PerformVDIVCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Op = N->getOperand(0); |
| unsigned OpOpcode = Op.getNode()->getOpcode(); |
| |
| if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() || |
| (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) |
| return SDValue(); |
| |
| uint64_t C; |
| SDValue ConstVec = N->getOperand(1); |
| bool isSigned = OpOpcode == ISD::SINT_TO_FP; |
| |
| if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || |
| !isConstVecPow2(ConstVec, isSigned, C)) |
| return SDValue(); |
| |
| unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : |
| Intrinsic::arm_neon_vcvtfxu2fp; |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), |
| Op.getValueType(), |
| DAG.getConstant(IntrinsicOpcode, MVT::i32), |
| Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32)); |
| } |
| |
| /// Getvshiftimm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift operation, where all the elements of the |
| /// build_vector must have the same constant integer value. |
| static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { |
| // Ignore bit_converts. |
| while (Op.getOpcode() == ISD::BITCAST) |
| Op = Op.getOperand(0); |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, |
| HasAnyUndefs, ElementBits) || |
| SplatBitSize > ElementBits) |
| return false; |
| Cnt = SplatBits.getSExtValue(); |
| return true; |
| } |
| |
| /// isVShiftLImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift left operation. That value must be in the range: |
| /// 0 <= Value < ElementBits for a left shift; or |
| /// 0 <= Value <= ElementBits for a long left shift. |
| static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { |
| assert(VT.isVector() && "vector shift count is not a vector type"); |
| unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); |
| if (! getVShiftImm(Op, ElementBits, Cnt)) |
| return false; |
| return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); |
| } |
| |
| /// isVShiftRImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift right operation. For a shift opcode, the value |
| /// is positive, but for an intrinsic the value count must be negative. The |
| /// absolute value must be in the range: |
| /// 1 <= |Value| <= ElementBits for a right shift; or |
| /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. |
| static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, |
| int64_t &Cnt) { |
| assert(VT.isVector() && "vector shift count is not a vector type"); |
| unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); |
| if (! getVShiftImm(Op, ElementBits, Cnt)) |
| return false; |
| if (isIntrinsic) |
| Cnt = -Cnt; |
| return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); |
| } |
| |
| /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. |
| static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IntNo) { |
| default: |
| // Don't do anything for most intrinsics. |
| break; |
| |
| // Vector shifts: check for immediate versions and lower them. |
| // Note: This is done during DAG combining instead of DAG legalizing because |
| // the build_vectors for 64-bit vector element shift counts are generally |
| // not legal, and it is hard to see their values after they get legalized to |
| // loads from a constant pool. |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| case Intrinsic::arm_neon_vshiftls: |
| case Intrinsic::arm_neon_vshiftlu: |
| case Intrinsic::arm_neon_vshiftn: |
| case Intrinsic::arm_neon_vrshifts: |
| case Intrinsic::arm_neon_vrshiftu: |
| case Intrinsic::arm_neon_vrshiftn: |
| case Intrinsic::arm_neon_vqshifts: |
| case Intrinsic::arm_neon_vqshiftu: |
| case Intrinsic::arm_neon_vqshiftsu: |
| case Intrinsic::arm_neon_vqshiftns: |
| case Intrinsic::arm_neon_vqshiftnu: |
| case Intrinsic::arm_neon_vqshiftnsu: |
| case Intrinsic::arm_neon_vqrshiftns: |
| case Intrinsic::arm_neon_vqrshiftnu: |
| case Intrinsic::arm_neon_vqrshiftnsu: { |
| EVT VT = N->getOperand(1).getValueType(); |
| int64_t Cnt; |
| unsigned VShiftOpc = 0; |
| |
| switch (IntNo) { |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { |
| VShiftOpc = ARMISD::VSHL; |
| break; |
| } |
| if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { |
| VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? |
| ARMISD::VSHRs : ARMISD::VSHRu); |
| break; |
| } |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vshiftls: |
| case Intrinsic::arm_neon_vshiftlu: |
| if (isVShiftLImm(N->getOperand(2), VT, true, Cnt)) |
| break; |
| llvm_unreachable("invalid shift count for vshll intrinsic"); |
| |
| case Intrinsic::arm_neon_vrshifts: |
| case Intrinsic::arm_neon_vrshiftu: |
| if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) |
| break; |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vqshifts: |
| case Intrinsic::arm_neon_vqshiftu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) |
| break; |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vqshiftsu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) |
| break; |
| llvm_unreachable("invalid shift count for vqshlu intrinsic"); |
| |
| case Intrinsic::arm_neon_vshiftn: |
| case Intrinsic::arm_neon_vrshiftn: |
| case Intrinsic::arm_neon_vqshiftns: |
| case Intrinsic::arm_neon_vqshiftnu: |
| case Intrinsic::arm_neon_vqshiftnsu: |
| case Intrinsic::arm_neon_vqrshiftns: |
| case Intrinsic::arm_neon_vqrshiftnu: |
| case Intrinsic::arm_neon_vqrshiftnsu: |
| // Narrowing shifts require an immediate right shift. |
| if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) |
| break; |
| llvm_unreachable("invalid shift count for narrowing vector shift " |
| "intrinsic"); |
| |
| default: |
| llvm_unreachable("unhandled vector shift"); |
| } |
| |
| switch (IntNo) { |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| // Opcode already set above. |
| break; |
| case Intrinsic::arm_neon_vshiftls: |
| case Intrinsic::arm_neon_vshiftlu: |
| if (Cnt == VT.getVectorElementType().getSizeInBits()) |
| VShiftOpc = ARMISD::VSHLLi; |
| else |
| VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ? |
| ARMISD::VSHLLs : ARMISD::VSHLLu); |
| break; |
| case Intrinsic::arm_neon_vshiftn: |
| VShiftOpc = ARMISD::VSHRN; break; |
| case Intrinsic::arm_neon_vrshifts: |
| VShiftOpc = ARMISD::VRSHRs; break; |
| case Intrinsic::arm_neon_vrshiftu: |
| VShiftOpc = ARMISD::VRSHRu; break; |
| case Intrinsic::arm_neon_vrshiftn: |
| VShiftOpc = ARMISD::VRSHRN; break; |
| case Intrinsic::arm_neon_vqshifts: |
| VShiftOpc = ARMISD::VQSHLs; break; |
| case Intrinsic::arm_neon_vqshiftu: |
| VShiftOpc = ARMISD::VQSHLu; break; |
| case Intrinsic::arm_neon_vqshiftsu: |
| VShiftOpc = ARMISD::VQSHLsu; break; |
| case Intrinsic::arm_neon_vqshiftns: |
| VShiftOpc = ARMISD::VQSHRNs; break; |
| case Intrinsic::arm_neon_vqshiftnu: |
| VShiftOpc = ARMISD::VQSHRNu; break; |
| case Intrinsic::arm_neon_vqshiftnsu: |
| VShiftOpc = ARMISD::VQSHRNsu; break; |
| case Intrinsic::arm_neon_vqrshiftns: |
| VShiftOpc = ARMISD::VQRSHRNs; break; |
| case Intrinsic::arm_neon_vqrshiftnu: |
| VShiftOpc = ARMISD::VQRSHRNu; break; |
| case Intrinsic::arm_neon_vqrshiftnsu: |
| VShiftOpc = ARMISD::VQRSHRNsu; break; |
| } |
| |
| return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), |
| N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); |
| } |
| |
| case Intrinsic::arm_neon_vshiftins: { |
| EVT VT = N->getOperand(1).getValueType(); |
| int64_t Cnt; |
| unsigned VShiftOpc = 0; |
| |
| if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) |
| VShiftOpc = ARMISD::VSLI; |
| else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) |
| VShiftOpc = ARMISD::VSRI; |
| else { |
| llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); |
| } |
| |
| return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), |
| N->getOperand(1), N->getOperand(2), |
| DAG.getConstant(Cnt, MVT::i32)); |
| } |
| |
| case Intrinsic::arm_neon_vqrshifts: |
| case Intrinsic::arm_neon_vqrshiftu: |
| // No immediate versions of these to check for. |
| break; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformShiftCombine - Checks for immediate versions of vector shifts and |
| /// lowers them. As with the vector shift intrinsics, this is done during DAG |
| /// combining instead of DAG legalizing because the build_vectors for 64-bit |
| /// vector element shift counts are generally not legal, and it is hard to see |
| /// their values after they get legalized to loads from a constant pool. |
| static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) { |
| // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high |
| // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16. |
| SDValue N1 = N->getOperand(1); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { |
| SDValue N0 = N->getOperand(0); |
| if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP && |
| DAG.MaskedValueIsZero(N0.getOperand(0), |
| APInt::getHighBitsSet(32, 16))) |
| return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1); |
| } |
| } |
| |
| // Nothing to be done for scalar shifts. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!VT.isVector() || !TLI.isTypeLegal(VT)) |
| return SDValue(); |
| |
| assert(ST->hasNEON() && "unexpected vector shift"); |
| int64_t Cnt; |
| |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unexpected shift opcode"); |
| |
| case ISD::SHL: |
| if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) |
| return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0), |
| DAG.getConstant(Cnt, MVT::i32)); |
| break; |
| |
| case ISD::SRA: |
| case ISD::SRL: |
| if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { |
| unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? |
| ARMISD::VSHRs : ARMISD::VSHRu); |
| return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0), |
| DAG.getConstant(Cnt, MVT::i32)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, |
| /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. |
| static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| SDValue N0 = N->getOperand(0); |
| |
| // Check for sign- and zero-extensions of vector extract operations of 8- |
| // and 16-bit vector elements. NEON supports these directly. They are |
| // handled during DAG combining because type legalization will promote them |
| // to 32-bit types and it is messy to recognize the operations after that. |
| if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| SDValue Vec = N0.getOperand(0); |
| SDValue Lane = N0.getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT EltVT = N0.getValueType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (VT == MVT::i32 && |
| (EltVT == MVT::i8 || EltVT == MVT::i16) && |
| TLI.isTypeLegal(Vec.getValueType()) && |
| isa<ConstantSDNode>(Lane)) { |
| |
| unsigned Opc = 0; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ISD::SIGN_EXTEND: |
| Opc = ARMISD::VGETLANEs; |
| break; |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| Opc = ARMISD::VGETLANEu; |
| break; |
| } |
| return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC |
| /// to match f32 max/min patterns to use NEON vmax/vmin instructions. |
| static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| // If the target supports NEON, try to use vmax/vmin instructions for f32 |
| // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set, |
| // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is |
| // a NaN; only do the transformation when it matches that behavior. |
| |
| // For now only do this when using NEON for FP operations; if using VFP, it |
| // is not obvious that the benefit outweighs the cost of switching to the |
| // NEON pipeline. |
| if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() || |
| N->getValueType(0) != MVT::f32) |
| return SDValue(); |
| |
| SDValue CondLHS = N->getOperand(0); |
| SDValue CondRHS = N->getOperand(1); |
| SDValue LHS = N->getOperand(2); |
| SDValue RHS = N->getOperand(3); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); |
| |
| unsigned Opcode = 0; |
| bool IsReversed; |
| if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) { |
| IsReversed = false; // x CC y ? x : y |
| } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) { |
| IsReversed = true ; // x CC y ? y : x |
| } else { |
| return SDValue(); |
| } |
| |
| bool IsUnordered; |
| switch (CC) { |
| default: break; |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETULT: |
| case ISD::SETULE: |
| // If LHS is NaN, an ordered comparison will be false and the result will |
| // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS |
| // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. |
| IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE); |
| if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) |
| break; |
| // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin |
| // will return -0, so vmin can only be used for unsafe math or if one of |
| // the operands is known to be nonzero. |
| if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) && |
| !DAG.getTarget().Options.UnsafeFPMath && |
| !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) |
| break; |
| Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN; |
| break; |
| |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| // If LHS is NaN, an ordered comparison will be false and the result will |
| // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS |
| // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. |
| IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE); |
| if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) |
| break; |
| // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax |
| // will return +0, so vmax can only be used for unsafe math or if one of |
| // the operands is known to be nonzero. |
| if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) && |
| !DAG.getTarget().Options.UnsafeFPMath && |
| !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) |
| break; |
| Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX; |
| break; |
| } |
| |
| if (!Opcode) |
| return SDValue(); |
| return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS); |
| } |
| |
| /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. |
| SDValue |
| ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { |
| SDValue Cmp = N->getOperand(4); |
| if (Cmp.getOpcode() != ARMISD::CMPZ) |
| // Only looking at EQ and NE cases. |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue LHS = Cmp.getOperand(0); |
| SDValue RHS = Cmp.getOperand(1); |
| SDValue FalseVal = N->getOperand(0); |
| SDValue TrueVal = N->getOperand(1); |
| SDValue ARMcc = N->getOperand(2); |
| ARMCC::CondCodes CC = |
| (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); |
| |
| // Simplify |
| // mov r1, r0 |
| // cmp r1, x |
| // mov r0, y |
| // moveq r0, x |
| // to |
| // cmp r0, x |
| // movne r0, y |
| // |
| // mov r1, r0 |
| // cmp r1, x |
| // mov r0, x |
| // movne r0, y |
| // to |
| // cmp r0, x |
| // movne r0, y |
| /// FIXME: Turn this into a target neutral optimization? |
| SDValue Res; |
| if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { |
| Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, |
| N->getOperand(3), Cmp); |
| } else if (CC == ARMCC::EQ && TrueVal == RHS) { |
| SDValue ARMcc; |
| SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); |
| Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, |
| N->getOperand(3), NewCmp); |
| } |
| |
| if (Res.getNode()) { |
| APInt KnownZero, KnownOne; |
| DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne); |
| // Capture demanded bits information that would be otherwise lost. |
| if (KnownZero == 0xfffffffe) |
| Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, |
| DAG.getValueType(MVT::i1)); |
| else if (KnownZero == 0xffffff00) |
| Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, |
| DAG.getValueType(MVT::i8)); |
| else if (KnownZero == 0xffff0000) |
| Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, |
| DAG.getValueType(MVT::i16)); |
| } |
| |
| return Res; |
| } |
| |
| SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget); |
| case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); |
| case ISD::SUB: return PerformSUBCombine(N, DCI); |
| case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); |
| case ISD::OR: return PerformORCombine(N, DCI, Subtarget); |
| case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); |
| case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); |
| case ARMISD::BFI: return PerformBFICombine(N, DCI); |
| case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI); |
| case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); |
| case ISD::STORE: return PerformSTORECombine(N, DCI); |
| case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI); |
| case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); |
| case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); |
| case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget); |
| case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget); |
| case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); |
| case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget); |
| case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); |
| case ARMISD::VLD2DUP: |
| case ARMISD::VLD3DUP: |
| case ARMISD::VLD4DUP: |
| return CombineBaseUpdate(N, DCI); |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: |
| switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { |
| case Intrinsic::arm_neon_vld1: |
| case Intrinsic::arm_neon_vld2: |
| case Intrinsic::arm_neon_vld3: |
| case Intrinsic::arm_neon_vld4: |
| case Intrinsic::arm_neon_vld2lane: |
| case Intrinsic::arm_neon_vld3lane: |
| case Intrinsic::arm_neon_vld4lane: |
| case Intrinsic::arm_neon_vst1: |
| case Intrinsic::arm_neon_vst2: |
| case Intrinsic::arm_neon_vst3: |
| case Intrinsic::arm_neon_vst4: |
| case Intrinsic::arm_neon_vst2lane: |
| case Intrinsic::arm_neon_vst3lane: |
| case Intrinsic::arm_neon_vst4lane: |
| return CombineBaseUpdate(N, DCI); |
| default: break; |
| } |
| break; |
| } |
| return SDValue(); |
| } |
| |
| bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, |
| EVT VT) const { |
| return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); |
| } |
| |
| bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { |
| // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus |
| bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| return false; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: { |
| // Unaligned access can use (for example) LRDB, LRDH, LDR |
| if (AllowsUnaligned) { |
| if (Fast) |
| *Fast = Subtarget->hasV7Ops(); |
| return true; |
| } |
| return false; |
| } |
| case MVT::f64: |
| case MVT::v2f64: { |
| // For any little-endian targets with neon, we can support unaligned ld/st |
| // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. |
| // A big-endian target may also explictly support unaligned accesses |
| if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) { |
| if (Fast) |
| *Fast = true; |
| return true; |
| } |
| return false; |
| } |
| } |
| } |
| |
| static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, |
| unsigned AlignCheck) { |
| return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && |
| (DstAlign == 0 || DstAlign % AlignCheck == 0)); |
| } |
| |
| EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size, |
| unsigned DstAlign, unsigned SrcAlign, |
| bool IsMemset, bool ZeroMemset, |
| bool MemcpyStrSrc, |
| MachineFunction &MF) const { |
| const Function *F = MF.getFunction(); |
| |
| // See if we can use NEON instructions for this... |
| if ((!IsMemset || ZeroMemset) && |
| Subtarget->hasNEON() && |
| !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::NoImplicitFloat)) { |
| bool Fast; |
| if (Size >= 16 && |
| (memOpAlign(SrcAlign, DstAlign, 16) || |
| (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) { |
| return MVT::v2f64; |
| } else if (Size >= 8 && |
| (memOpAlign(SrcAlign, DstAlign, 8) || |
| (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) { |
| return MVT::f64; |
| } |
| } |
| |
| // Lowering to i32/i16 if the size permits. |
| if (Size >= 4) |
| return MVT::i32; |
| else if (Size >= 2) |
| return MVT::i16; |
| |
| // Let the target-independent logic figure it out. |
| return MVT::Other; |
| } |
| |
| bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| if (Val.getOpcode() != ISD::LOAD) |
| return false; |
| |
| EVT VT1 = Val.getValueType(); |
| if (!VT1.isSimple() || !VT1.isInteger() || |
| !VT2.isSimple() || !VT2.isInteger()) |
| return false; |
| |
| switch (VT1.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { |
| if (V < 0) |
| return false; |
| |
| unsigned Scale = 1; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| // Scale == 1; |
| break; |
| case MVT::i16: |
| // Scale == 2; |
| Scale = 2; |
| break; |
| case MVT::i32: |
| // Scale == 4; |
| Scale = 4; |
| break; |
| } |
| |
| if ((V & (Scale - 1)) != 0) |
| return false; |
| V /= Scale; |
| return V == (V & ((1LL << 5) - 1)); |
| } |
| |
| static bool isLegalT2AddressImmediate(int64_t V, EVT VT, |
| const ARMSubtarget *Subtarget) { |
| bool isNeg = false; |
| if (V < 0) { |
| isNeg = true; |
| V = - V; |
| } |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| // + imm12 or - imm8 |
| if (isNeg) |
| return V == (V & ((1LL << 8) - 1)); |
| return V == (V & ((1LL << 12) - 1)); |
| case MVT::f32: |
| case MVT::f64: |
| // Same as ARM mode. FIXME: NEON? |
| if (!Subtarget->hasVFP2()) |
| return false; |
| if ((V & 3) != 0) |
| return false; |
| V >>= 2; |
| return V == (V & ((1LL << 8) - 1)); |
| } |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode for load / store of the |
| /// given type. |
| static bool isLegalAddressImmediate(int64_t V, EVT VT, |
| const ARMSubtarget *Subtarget) { |
| if (V == 0) |
| return true; |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (Subtarget->isThumb1Only()) |
| return isLegalT1AddressImmediate(V, VT); |
| else if (Subtarget->isThumb2()) |
| return isLegalT2AddressImmediate(V, VT, Subtarget); |
| |
| // ARM mode. |
| if (V < 0) |
| V = - V; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| // +- imm12 |
| return V == (V & ((1LL << 12) - 1)); |
| case MVT::i16: |
| // +- imm8 |
| return V == (V & ((1LL << 8) - 1)); |
| case MVT::f32: |
| case MVT::f64: |
| if (!Subtarget->hasVFP2()) // FIXME: NEON? |
| return false; |
| if ((V & 3) != 0) |
| return false; |
| V >>= 2; |
| return V == (V & ((1LL << 8) - 1)); |
| } |
| } |
| |
| bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, |
| EVT VT) const { |
| int Scale = AM.Scale; |
| if (Scale < 0) |
| return false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (Scale == 1) |
| return true; |
| // r + r << imm |
| Scale = Scale & ~1; |
| return Scale == 2 || Scale == 4 || Scale == 8; |
| case MVT::i64: |
| // r + r |
| if (((unsigned)AM.HasBaseReg + Scale) <= 2) |
| return true; |
| return false; |
| case MVT::isVoid: |
| // Note, we allow "void" uses (basically, uses that aren't loads or |
| // stores), because arm allows folding a scale into many arithmetic |
| // operations. This should be made more precise and revisited later. |
| |
| // Allow r << imm, but the imm has to be a multiple of two. |
| if (Scale & 1) return false; |
| return isPowerOf2_32(Scale); |
| } |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| Type *Ty) const { |
| EVT VT = getValueType(Ty, true); |
| if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) |
| return false; |
| |
| // Can never fold addr of global into load/store. |
| if (AM.BaseGV) |
| return false; |
| |
| switch (AM.Scale) { |
| case 0: // no scale reg, must be "r+i" or "r", or "i". |
| break; |
| case 1: |
| if (Subtarget->isThumb1Only()) |
| return false; |
| // FALL THROUGH. |
| default: |
| // ARM doesn't support any R+R*scale+imm addr modes. |
| if (AM.BaseOffs) |
| return false; |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (Subtarget->isThumb2()) |
| return isLegalT2ScaledAddressingMode(AM, VT); |
| |
| int Scale = AM.Scale; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| if (Scale < 0) Scale = -Scale; |
| if (Scale == 1) |
| return true; |
| // r + r << imm |
| return isPowerOf2_32(Scale & ~1); |
| case MVT::i16: |
| case MVT::i64: |
| // r + r |
| if (((unsigned)AM.HasBaseReg + Scale) <= 2) |
| return true; |
| return false; |
| |
| case MVT::isVoid: |
| // Note, we allow "void" uses (basically, uses that aren't loads or |
| // stores), because arm allows folding a scale into many arithmetic |
| // operations. This should be made more precise and revisited later. |
| |
| // Allow r << imm, but the imm has to be a multiple of two. |
| if (Scale & 1) return false; |
| return isPowerOf2_32(Scale); |
| } |
| } |
| return true; |
| } |
| |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal |
| /// icmp immediate, that is the target has icmp instructions which can compare |
| /// a register against the immediate without having to materialize the |
| /// immediate into a register. |
| bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| // Thumb2 and ARM modes can use cmn for negative immediates. |
| if (!Subtarget->isThumb()) |
| return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1; |
| if (Subtarget->isThumb2()) |
| return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1; |
| // Thumb1 doesn't have cmn, and only 8-bit immediates. |
| return Imm >= 0 && Imm <= 255; |
| } |
| |
| /// isLegalAddImmediate - Return true if the specified immediate is a legal add |
| /// *or sub* immediate, that is the target has add or sub instructions which can |
| /// add a register with the immediate without having to materialize the |
| /// immediate into a register. |
| bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| // Same encoding for add/sub, just flip the sign. |
| int64_t AbsImm = llvm::abs64(Imm); |
| if (!Subtarget->isThumb()) |
| return ARM_AM::getSOImmVal(AbsImm) != -1; |
| if (Subtarget->isThumb2()) |
| return ARM_AM::getT2SOImmVal(AbsImm) != -1; |
| // Thumb1 only has 8-bit unsigned immediate. |
| return AbsImm >= 0 && AbsImm <= 255; |
| } |
| |
| static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, |
| bool isSEXTLoad, SDValue &Base, |
| SDValue &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) |
| return false; |
| |
| if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { |
| // AddressingMode 3 |
| Base = Ptr->getOperand(0); |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -256) { |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| return true; |
| } |
| } |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { |
| // AddressingMode 2 |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -0x1000) { |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| Base = Ptr->getOperand(0); |
| return true; |
| } |
| } |
| |
| if (Ptr->getOpcode() == ISD::ADD) { |
| isInc = true; |
| ARM_AM::ShiftOpc ShOpcVal= |
| ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); |
| if (ShOpcVal != ARM_AM::no_shift) { |
| Base = Ptr->getOperand(1); |
| Offset = Ptr->getOperand(0); |
| } else { |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| } |
| return true; |
| } |
| |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } |
| |
| // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. |
| return false; |
| } |
| |
| static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, |
| bool isSEXTLoad, SDValue &Base, |
| SDValue &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) |
| return false; |
| |
| Base = Ptr->getOperand(0); |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -0x100) { // 8 bits. |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| return true; |
| } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. |
| isInc = Ptr->getOpcode() == ISD::ADD; |
| Offset = DAG.getConstant(RHSC, RHS->getValueType(0)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool |
| ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (Subtarget->isThumb1Only()) |
| return false; |
| |
| EVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| VT = LD->getMemoryVT(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| Ptr = ST->getBasePtr(); |
| VT = ST->getMemoryVT(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = false; |
| if (Subtarget->isThumb2()) |
| isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, |
| Offset, isInc, DAG); |
| else |
| isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, |
| Offset, isInc, DAG); |
| if (!isLegal) |
| return false; |
| |
| AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; |
| return true; |
| } |
| |
| /// getPostIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (Subtarget->isThumb1Only()) |
| return false; |
| |
| EVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| Ptr = LD->getBasePtr(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| Ptr = ST->getBasePtr(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = false; |
| if (Subtarget->isThumb2()) |
| isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| else |
| isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| if (!isLegal) |
| return false; |
| |
| if (Ptr != Base) { |
| // Swap base ptr and offset to catch more post-index load / store when |
| // it's legal. In Thumb2 mode, offset must be an immediate. |
| if (Ptr == Offset && Op->getOpcode() == ISD::ADD && |
| !Subtarget->isThumb2()) |
| std::swap(Base, Offset); |
| |
| // Post-indexed load / store update the base pointer. |
| if (Ptr != Base) |
| return false; |
| } |
| |
| AM = isInc ? ISD::POST_INC : ISD::POST_DEC; |
| return true; |
| } |
| |
| void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); |
| switch (Op.getOpcode()) { |
| default: break; |
| case ARMISD::CMOV: { |
| // Bits are known zero/one if known on the LHS and RHS. |
| DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); |
| if (KnownZero == 0 && KnownOne == 0) return; |
| |
| APInt KnownZeroRHS, KnownOneRHS; |
| DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1); |
| KnownZero &= KnownZeroRHS; |
| KnownOne &= KnownOneRHS; |
| return; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { |
| // Looking for "rev" which is V6+. |
| if (!Subtarget->hasV6Ops()) |
| return false; |
| |
| InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); |
| std::string AsmStr = IA->getAsmString(); |
| SmallVector<StringRef, 4> AsmPieces; |
| SplitString(AsmStr, AsmPieces, ";\n"); |
| |
| switch (AsmPieces.size()) { |
| default: return false; |
| case 1: |
| AsmStr = AsmPieces[0]; |
| AsmPieces.clear(); |
| SplitString(AsmStr, AsmPieces, " \t,"); |
| |
| // rev $0, $1 |
| if (AsmPieces.size() == 3 && |
| AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && |
| IA->getConstraintString().compare(0, 4, "=l,l") == 0) { |
| IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); |
| if (Ty && Ty->getBitWidth() == 32) |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| ARMTargetLowering::ConstraintType |
| ARMTargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'l': return C_RegisterClass; |
| case 'w': return C_RegisterClass; |
| case 'h': return C_RegisterClass; |
| case 'x': return C_RegisterClass; |
| case 't': return C_RegisterClass; |
| case 'j': return C_Other; // Constant for movw. |
| // An address with a single base register. Due to the way we |
| // currently handle addresses it is the same as an 'r' memory constraint. |
| case 'Q': return C_Memory; |
| } |
| } else if (Constraint.size() == 2) { |
| switch (Constraint[0]) { |
| default: break; |
| // All 'U+' constraints are addresses. |
| case 'U': return C_Memory; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| ARMTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (CallOperandVal == NULL) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'l': |
| if (type->isIntegerTy()) { |
| if (Subtarget->isThumb()) |
| weight = CW_SpecificReg; |
| else |
| weight = CW_Register; |
| } |
| break; |
| case 'w': |
| if (type->isFloatingPointTy()) |
| weight = CW_Register; |
| break; |
| } |
| return weight; |
| } |
| |
| typedef std::pair<unsigned, const TargetRegisterClass*> RCPair; |
| RCPair |
| ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const { |
| if (Constraint.size() == 1) { |
| // GCC ARM Constraint Letters |
| switch (Constraint[0]) { |
| case 'l': // Low regs or general regs. |
| if (Subtarget->isThumb()) |
| return RCPair(0U, &ARM::tGPRRegClass); |
| return RCPair(0U, &ARM::GPRRegClass); |
| case 'h': // High regs or no regs. |
| if (Subtarget->isThumb()) |
| return RCPair(0U, &ARM::hGPRRegClass); |
| break; |
| case 'r': |
| return RCPair(0U, &ARM::GPRRegClass); |
| case 'w': |
| if (VT == MVT::f32) |
| return RCPair(0U, &ARM::SPRRegClass); |
| if (VT.getSizeInBits() == 64) |
| return RCPair(0U, &ARM::DPRRegClass); |
| if (VT.getSizeInBits() == 128) |
| return RCPair(0U, &ARM::QPRRegClass); |
| break; |
| case 'x': |
| if (VT == MVT::f32) |
| return RCPair(0U, &ARM::SPR_8RegClass); |
| if (VT.getSizeInBits() == 64) |
| return RCPair(0U, &ARM::DPR_8RegClass); |
| if (VT.getSizeInBits() == 128) |
| return RCPair(0U, &ARM::QPR_8RegClass); |
| break; |
| case 't': |
| if (VT == MVT::f32) |
| return RCPair(0U, &ARM::SPRRegClass); |
| break; |
| } |
| } |
| if (StringRef("{cc}").equals_lower(Constraint)) |
| return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); |
| |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(0, 0); |
| |
| // Currently only support length 1 constraints. |
| if (Constraint.length() != 1) return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: break; |
| case 'j': |
| case 'I': case 'J': case 'K': case 'L': |
| case 'M': case 'N': case 'O': |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) |
| return; |
| |
| int64_t CVal64 = C->getSExtValue(); |
| int CVal = (int) CVal64; |
| // None of these constraints allow values larger than 32 bits. Check |
| // that the value fits in an int. |
| if (CVal != CVal64) |
| return; |
| |
| switch (ConstraintLetter) { |
| case 'j': |
| // Constant suitable for movw, must be between 0 and |
| // 65535. |
| if (Subtarget->hasV6T2Ops()) |
| if (CVal >= 0 && CVal <= 65535) |
| break; |
| return; |
| case 'I': |
| if (Subtarget->isThumb1Only()) { |
| // This must be a constant between 0 and 255, for ADD |
| // immediates. |
| if (CVal >= 0 && CVal <= 255) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant that can be used as an immediate value in a |
| // data-processing instruction. |
| if (ARM_AM::getT2SOImmVal(CVal) != -1) |
| break; |
| } else { |
| // A constant that can be used as an immediate value in a |
| // data-processing instruction. |
| if (ARM_AM::getSOImmVal(CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'J': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a constant between -255 and -1, for negated ADD |
| // immediates. This can be used in GCC with an "n" modifier that |
| // prints the negated value, for use with SUB instructions. It is |
| // not useful otherwise but is implemented for compatibility. |
| if (CVal >= -255 && CVal <= -1) |
| break; |
| } else { |
| // This must be a constant between -4095 and 4095. It is not clear |
| // what this constraint is intended for. Implemented for |
| // compatibility with GCC. |
| if (CVal >= -4095 && CVal <= 4095) |
| break; |
| } |
| return; |
| |
| case 'K': |
| if (Subtarget->isThumb1Only()) { |
| // A 32-bit value where only one byte has a nonzero value. Exclude |
| // zero to match GCC. This constraint is used by GCC internally for |
| // constants that can be loaded with a move/shift combination. |
| // It is not useful otherwise but is implemented for compatibility. |
| if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant whose bitwise inverse can be used as an immediate |
| // value in a data-processing instruction. This can be used in GCC |
| // with a "B" modifier that prints the inverted value, for use with |
| // BIC and MVN instructions. It is not useful otherwise but is |
| // implemented for compatibility. |
| if (ARM_AM::getT2SOImmVal(~CVal) != -1) |
| break; |
| } else { |
| // A constant whose bitwise inverse can be used as an immediate |
| // value in a data-processing instruction. This can be used in GCC |
| // with a "B" modifier that prints the inverted value, for use with |
| // BIC and MVN instructions. It is not useful otherwise but is |
| // implemented for compatibility. |
| if (ARM_AM::getSOImmVal(~CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'L': |
| if (Subtarget->isThumb1Only()) { |
| // This must be a constant between -7 and 7, |
| // for 3-operand ADD/SUB immediate instructions. |
| if (CVal >= -7 && CVal < 7) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant whose negation can be used as an immediate value in a |
| // data-processing instruction. This can be used in GCC with an "n" |
| // modifier that prints the negated value, for use with SUB |
| // instructions. It is not useful otherwise but is implemented for |
| // compatibility. |
| if (ARM_AM::getT2SOImmVal(-CVal) != -1) |
| break; |
| } else { |
| // A constant whose negation can be used as an immediate value in a |
| // data-processing instruction. This can be used in GCC with an "n" |
| // modifier that prints the negated value, for use with SUB |
| // instructions. It is not useful otherwise but is implemented for |
| // compatibility. |
| if (ARM_AM::getSOImmVal(-CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'M': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a multiple of 4 between 0 and 1020, for |
| // ADD sp + immediate. |
| if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) |
| break; |
| } else { |
| // A power of two or a constant between 0 and 32. This is used in |
| // GCC for the shift amount on shifted register operands, but it is |
| // useful in general for any shift amounts. |
| if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) |
| break; |
| } |
| return; |
| |
| case 'N': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a constant between 0 and 31, for shift amounts. |
| if (CVal >= 0 && CVal <= 31) |
| break; |
| } |
| return; |
| |
| case 'O': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a multiple of 4 between -508 and 508, for |
| // ADD/SUB sp = sp + immediate. |
| if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) |
| break; |
| } |
| return; |
| } |
| Result = DAG.getTargetConstant(CVal, Op.getValueType()); |
| break; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| bool |
| ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The ARM target isn't yet aware of offsets. |
| return false; |
| } |
| |
| bool ARM::isBitFieldInvertedMask(unsigned v) { |
| if (v == 0xffffffff) |
| return 0; |
| // there can be 1's on either or both "outsides", all the "inside" |
| // bits must be 0's |
| unsigned int lsb = 0, msb = 31; |
| while (v & (1 << msb)) --msb; |
| while (v & (1 << lsb)) ++lsb; |
| for (unsigned int i = lsb; i <= msb; ++i) { |
| if (v & (1 << i)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| if (!Subtarget->hasVFP3()) |
| return false; |
| if (VT == MVT::f32) |
| return ARM_AM::getFP32Imm(Imm) != -1; |
| if (VT == MVT::f64) |
| return ARM_AM::getFP64Imm(Imm) != -1; |
| return false; |
| } |
| |
| /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as |
| /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment |
| /// specified in the intrinsic calls. |
| bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| unsigned Intrinsic) const { |
| switch (Intrinsic) { |
| case Intrinsic::arm_neon_vld1: |
| case Intrinsic::arm_neon_vld2: |
| case Intrinsic::arm_neon_vld3: |
| case Intrinsic::arm_neon_vld4: |
| case Intrinsic::arm_neon_vld2lane: |
| case Intrinsic::arm_neon_vld3lane: |
| case Intrinsic::arm_neon_vld4lane: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| // Conservatively set memVT to the entire set of vectors loaded. |
| uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; |
| Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); |
| Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); |
| Info.vol = false; // volatile loads with NEON intrinsics not supported |
| Info.readMem = true; |
| Info.writeMem = false; |
| return true; |
| } |
| case Intrinsic::arm_neon_vst1: |
| case Intrinsic::arm_neon_vst2: |
| case Intrinsic::arm_neon_vst3: |
| case Intrinsic::arm_neon_vst4: |
| case Intrinsic::arm_neon_vst2lane: |
| case Intrinsic::arm_neon_vst3lane: |
| case Intrinsic::arm_neon_vst4lane: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| // Conservatively set memVT to the entire set of vectors stored. |
| unsigned NumElts = 0; |
| for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { |
| Type *ArgTy = I.getArgOperand(ArgI)->getType(); |
| if (!ArgTy->isVectorTy()) |
| break; |
| NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; |
| } |
| Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); |
| Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); |
| Info.vol = false; // volatile stores with NEON intrinsics not supported |
| Info.readMem = false; |
| Info.writeMem = true; |
| return true; |
| } |
| case Intrinsic::arm_strexd: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i64; |
| Info.ptrVal = I.getArgOperand(2); |
| Info.offset = 0; |
| Info.align = 8; |
| Info.vol = true; |
| Info.readMem = false; |
| Info.writeMem = true; |
| return true; |
| } |
| case Intrinsic::arm_ldrexd: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = 8; |
| Info.vol = true; |
| Info.readMem = true; |
| Info.writeMem = false; |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| return false; |
| } |