| //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the pass which converts floating point instructions from |
| // pseudo registers into register stack instructions. This pass uses live |
| // variable information to indicate where the FPn registers are used and their |
| // lifetimes. |
| // |
| // The x87 hardware tracks liveness of the stack registers, so it is necessary |
| // to implement exact liveness tracking between basic blocks. The CFG edges are |
| // partitioned into bundles where the same FP registers must be live in |
| // identical stack positions. Instructions are inserted at the end of each basic |
| // block to rearrange the live registers to match the outgoing bundle. |
| // |
| // This approach avoids splitting critical edges at the potential cost of more |
| // live register shuffling instructions when critical edges are present. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-codegen" |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/EdgeBundles.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumFXCH, "Number of fxch instructions inserted"); |
| STATISTIC(NumFP , "Number of floating point instructions"); |
| |
| namespace { |
| struct FPS : public MachineFunctionPass { |
| static char ID; |
| FPS() : MachineFunctionPass(ID) { |
| initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); |
| // This is really only to keep valgrind quiet. |
| // The logic in isLive() is too much for it. |
| memset(Stack, 0, sizeof(Stack)); |
| memset(RegMap, 0, sizeof(RegMap)); |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<EdgeBundles>(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addPreservedID(MachineDominatorsID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { return "X86 FP Stackifier"; } |
| |
| private: |
| const TargetInstrInfo *TII; // Machine instruction info. |
| |
| // Two CFG edges are related if they leave the same block, or enter the same |
| // block. The transitive closure of an edge under this relation is a |
| // LiveBundle. It represents a set of CFG edges where the live FP stack |
| // registers must be allocated identically in the x87 stack. |
| // |
| // A LiveBundle is usually all the edges leaving a block, or all the edges |
| // entering a block, but it can contain more edges if critical edges are |
| // present. |
| // |
| // The set of live FP registers in a LiveBundle is calculated by bundleCFG, |
| // but the exact mapping of FP registers to stack slots is fixed later. |
| struct LiveBundle { |
| // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. |
| unsigned Mask; |
| |
| // Number of pre-assigned live registers in FixStack. This is 0 when the |
| // stack order has not yet been fixed. |
| unsigned FixCount; |
| |
| // Assigned stack order for live-in registers. |
| // FixStack[i] == getStackEntry(i) for all i < FixCount. |
| unsigned char FixStack[8]; |
| |
| LiveBundle() : Mask(0), FixCount(0) {} |
| |
| // Have the live registers been assigned a stack order yet? |
| bool isFixed() const { return !Mask || FixCount; } |
| }; |
| |
| // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges |
| // with no live FP registers. |
| SmallVector<LiveBundle, 8> LiveBundles; |
| |
| // The edge bundle analysis provides indices into the LiveBundles vector. |
| EdgeBundles *Bundles; |
| |
| // Return a bitmask of FP registers in block's live-in list. |
| static unsigned calcLiveInMask(MachineBasicBlock *MBB) { |
| unsigned Mask = 0; |
| for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), |
| E = MBB->livein_end(); I != E; ++I) { |
| unsigned Reg = *I - X86::FP0; |
| if (Reg < 8) |
| Mask |= 1 << Reg; |
| } |
| return Mask; |
| } |
| |
| // Partition all the CFG edges into LiveBundles. |
| void bundleCFG(MachineFunction &MF); |
| |
| MachineBasicBlock *MBB; // Current basic block |
| |
| // The hardware keeps track of how many FP registers are live, so we have |
| // to model that exactly. Usually, each live register corresponds to an |
| // FP<n> register, but when dealing with calls, returns, and inline |
| // assembly, it is sometimes necessary to have live scratch registers. |
| unsigned Stack[8]; // FP<n> Registers in each stack slot... |
| unsigned StackTop; // The current top of the FP stack. |
| |
| enum { |
| NumFPRegs = 16 // Including scratch pseudo-registers. |
| }; |
| |
| // For each live FP<n> register, point to its Stack[] entry. |
| // The first entries correspond to FP0-FP6, the rest are scratch registers |
| // used when we need slightly different live registers than what the |
| // register allocator thinks. |
| unsigned RegMap[NumFPRegs]; |
| |
| // Pending fixed registers - Inline assembly needs FP registers to appear |
| // in fixed stack slot positions. This is handled by copying FP registers |
| // to ST registers before the instruction, and copying back after the |
| // instruction. |
| // |
| // This is modeled with pending ST registers. NumPendingSTs is the number |
| // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP |
| // register that holds the ST value. The ST registers are not moved into |
| // place until immediately before the instruction that needs them. |
| // |
| // It can happen that we need an ST register to be live when no FP register |
| // holds the value: |
| // |
| // %ST0 = COPY %FP4<kill> |
| // |
| // When that happens, we allocate a scratch FP register to hold the ST |
| // value. That means every register in PendingST must be live. |
| |
| unsigned NumPendingSTs; |
| unsigned char PendingST[8]; |
| |
| // Set up our stack model to match the incoming registers to MBB. |
| void setupBlockStack(); |
| |
| // Shuffle live registers to match the expectations of successor blocks. |
| void finishBlockStack(); |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void dumpStack() const { |
| dbgs() << "Stack contents:"; |
| for (unsigned i = 0; i != StackTop; ++i) { |
| dbgs() << " FP" << Stack[i]; |
| assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); |
| } |
| for (unsigned i = 0; i != NumPendingSTs; ++i) |
| dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]); |
| dbgs() << "\n"; |
| } |
| #endif |
| |
| /// getSlot - Return the stack slot number a particular register number is |
| /// in. |
| unsigned getSlot(unsigned RegNo) const { |
| assert(RegNo < NumFPRegs && "Regno out of range!"); |
| return RegMap[RegNo]; |
| } |
| |
| /// isLive - Is RegNo currently live in the stack? |
| bool isLive(unsigned RegNo) const { |
| unsigned Slot = getSlot(RegNo); |
| return Slot < StackTop && Stack[Slot] == RegNo; |
| } |
| |
| /// getScratchReg - Return an FP register that is not currently in use. |
| unsigned getScratchReg() const { |
| for (int i = NumFPRegs - 1; i >= 8; --i) |
| if (!isLive(i)) |
| return i; |
| llvm_unreachable("Ran out of scratch FP registers"); |
| } |
| |
| /// isScratchReg - Returns trus if RegNo is a scratch FP register. |
| static bool isScratchReg(unsigned RegNo) { |
| return RegNo > 8 && RegNo < NumFPRegs; |
| } |
| |
| /// getStackEntry - Return the X86::FP<n> register in register ST(i). |
| unsigned getStackEntry(unsigned STi) const { |
| if (STi >= StackTop) |
| report_fatal_error("Access past stack top!"); |
| return Stack[StackTop-1-STi]; |
| } |
| |
| /// getSTReg - Return the X86::ST(i) register which contains the specified |
| /// FP<RegNo> register. |
| unsigned getSTReg(unsigned RegNo) const { |
| return StackTop - 1 - getSlot(RegNo) + X86::ST0; |
| } |
| |
| // pushReg - Push the specified FP<n> register onto the stack. |
| void pushReg(unsigned Reg) { |
| assert(Reg < NumFPRegs && "Register number out of range!"); |
| if (StackTop >= 8) |
| report_fatal_error("Stack overflow!"); |
| Stack[StackTop] = Reg; |
| RegMap[Reg] = StackTop++; |
| } |
| |
| bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } |
| void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { |
| DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); |
| if (isAtTop(RegNo)) return; |
| |
| unsigned STReg = getSTReg(RegNo); |
| unsigned RegOnTop = getStackEntry(0); |
| |
| // Swap the slots the regs are in. |
| std::swap(RegMap[RegNo], RegMap[RegOnTop]); |
| |
| // Swap stack slot contents. |
| if (RegMap[RegOnTop] >= StackTop) |
| report_fatal_error("Access past stack top!"); |
| std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); |
| |
| // Emit an fxch to update the runtime processors version of the state. |
| BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); |
| ++NumFXCH; |
| } |
| |
| void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { |
| DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); |
| unsigned STReg = getSTReg(RegNo); |
| pushReg(AsReg); // New register on top of stack |
| |
| BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); |
| } |
| |
| /// duplicatePendingSTBeforeKill - The instruction at I is about to kill |
| /// RegNo. If any PendingST registers still need the RegNo value, duplicate |
| /// them to new scratch registers. |
| void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) { |
| for (unsigned i = 0; i != NumPendingSTs; ++i) { |
| if (PendingST[i] != RegNo) |
| continue; |
| unsigned SR = getScratchReg(); |
| DEBUG(dbgs() << "Duplicating pending ST" << i |
| << " in FP" << RegNo << " to FP" << SR << '\n'); |
| duplicateToTop(RegNo, SR, I); |
| PendingST[i] = SR; |
| } |
| } |
| |
| /// popStackAfter - Pop the current value off of the top of the FP stack |
| /// after the specified instruction. |
| void popStackAfter(MachineBasicBlock::iterator &I); |
| |
| /// freeStackSlotAfter - Free the specified register from the register |
| /// stack, so that it is no longer in a register. If the register is |
| /// currently at the top of the stack, we just pop the current instruction, |
| /// otherwise we store the current top-of-stack into the specified slot, |
| /// then pop the top of stack. |
| void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); |
| |
| /// freeStackSlotBefore - Just the pop, no folding. Return the inserted |
| /// instruction. |
| MachineBasicBlock::iterator |
| freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); |
| |
| /// Adjust the live registers to be the set in Mask. |
| void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); |
| |
| /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is |
| /// st(0), FP reg FixStack[1] is st(1) etc. |
| void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, |
| MachineBasicBlock::iterator I); |
| |
| bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); |
| |
| void handleZeroArgFP(MachineBasicBlock::iterator &I); |
| void handleOneArgFP(MachineBasicBlock::iterator &I); |
| void handleOneArgFPRW(MachineBasicBlock::iterator &I); |
| void handleTwoArgFP(MachineBasicBlock::iterator &I); |
| void handleCompareFP(MachineBasicBlock::iterator &I); |
| void handleCondMovFP(MachineBasicBlock::iterator &I); |
| void handleSpecialFP(MachineBasicBlock::iterator &I); |
| |
| // Check if a COPY instruction is using FP registers. |
| static bool isFPCopy(MachineInstr *MI) { |
| unsigned DstReg = MI->getOperand(0).getReg(); |
| unsigned SrcReg = MI->getOperand(1).getReg(); |
| |
| return X86::RFP80RegClass.contains(DstReg) || |
| X86::RFP80RegClass.contains(SrcReg); |
| } |
| }; |
| char FPS::ID = 0; |
| } |
| |
| FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } |
| |
| /// getFPReg - Return the X86::FPx register number for the specified operand. |
| /// For example, this returns 3 for X86::FP3. |
| static unsigned getFPReg(const MachineOperand &MO) { |
| assert(MO.isReg() && "Expected an FP register!"); |
| unsigned Reg = MO.getReg(); |
| assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); |
| return Reg - X86::FP0; |
| } |
| |
| /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP |
| /// register references into FP stack references. |
| /// |
| bool FPS::runOnMachineFunction(MachineFunction &MF) { |
| // We only need to run this pass if there are any FP registers used in this |
| // function. If it is all integer, there is nothing for us to do! |
| bool FPIsUsed = false; |
| |
| assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!"); |
| for (unsigned i = 0; i <= 6; ++i) |
| if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) { |
| FPIsUsed = true; |
| break; |
| } |
| |
| // Early exit. |
| if (!FPIsUsed) return false; |
| |
| Bundles = &getAnalysis<EdgeBundles>(); |
| TII = MF.getTarget().getInstrInfo(); |
| |
| // Prepare cross-MBB liveness. |
| bundleCFG(MF); |
| |
| StackTop = 0; |
| |
| // Process the function in depth first order so that we process at least one |
| // of the predecessors for every reachable block in the function. |
| SmallPtrSet<MachineBasicBlock*, 8> Processed; |
| MachineBasicBlock *Entry = MF.begin(); |
| |
| bool Changed = false; |
| for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> > |
| I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); |
| I != E; ++I) |
| Changed |= processBasicBlock(MF, **I); |
| |
| // Process any unreachable blocks in arbitrary order now. |
| if (MF.size() != Processed.size()) |
| for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) |
| if (Processed.insert(BB)) |
| Changed |= processBasicBlock(MF, *BB); |
| |
| LiveBundles.clear(); |
| |
| return Changed; |
| } |
| |
| /// bundleCFG - Scan all the basic blocks to determine consistent live-in and |
| /// live-out sets for the FP registers. Consistent means that the set of |
| /// registers live-out from a block is identical to the live-in set of all |
| /// successors. This is not enforced by the normal live-in lists since |
| /// registers may be implicitly defined, or not used by all successors. |
| void FPS::bundleCFG(MachineFunction &MF) { |
| assert(LiveBundles.empty() && "Stale data in LiveBundles"); |
| LiveBundles.resize(Bundles->getNumBundles()); |
| |
| // Gather the actual live-in masks for all MBBs. |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { |
| MachineBasicBlock *MBB = I; |
| const unsigned Mask = calcLiveInMask(MBB); |
| if (!Mask) |
| continue; |
| // Update MBB ingoing bundle mask. |
| LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask; |
| } |
| } |
| |
| /// processBasicBlock - Loop over all of the instructions in the basic block, |
| /// transforming FP instructions into their stack form. |
| /// |
| bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { |
| bool Changed = false; |
| MBB = &BB; |
| NumPendingSTs = 0; |
| |
| setupBlockStack(); |
| |
| for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { |
| MachineInstr *MI = I; |
| uint64_t Flags = MI->getDesc().TSFlags; |
| |
| unsigned FPInstClass = Flags & X86II::FPTypeMask; |
| if (MI->isInlineAsm()) |
| FPInstClass = X86II::SpecialFP; |
| |
| if (MI->isCopy() && isFPCopy(MI)) |
| FPInstClass = X86II::SpecialFP; |
| |
| if (MI->isImplicitDef() && |
| X86::RFP80RegClass.contains(MI->getOperand(0).getReg())) |
| FPInstClass = X86II::SpecialFP; |
| |
| if (FPInstClass == X86II::NotFP) |
| continue; // Efficiently ignore non-fp insts! |
| |
| MachineInstr *PrevMI = 0; |
| if (I != BB.begin()) |
| PrevMI = prior(I); |
| |
| ++NumFP; // Keep track of # of pseudo instrs |
| DEBUG(dbgs() << "\nFPInst:\t" << *MI); |
| |
| // Get dead variables list now because the MI pointer may be deleted as part |
| // of processing! |
| SmallVector<unsigned, 8> DeadRegs; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDead()) |
| DeadRegs.push_back(MO.getReg()); |
| } |
| |
| switch (FPInstClass) { |
| case X86II::ZeroArgFP: handleZeroArgFP(I); break; |
| case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) |
| case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) |
| case X86II::TwoArgFP: handleTwoArgFP(I); break; |
| case X86II::CompareFP: handleCompareFP(I); break; |
| case X86II::CondMovFP: handleCondMovFP(I); break; |
| case X86II::SpecialFP: handleSpecialFP(I); break; |
| default: llvm_unreachable("Unknown FP Type!"); |
| } |
| |
| // Check to see if any of the values defined by this instruction are dead |
| // after definition. If so, pop them. |
| for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { |
| unsigned Reg = DeadRegs[i]; |
| if (Reg >= X86::FP0 && Reg <= X86::FP6) { |
| DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); |
| freeStackSlotAfter(I, Reg-X86::FP0); |
| } |
| } |
| |
| // Print out all of the instructions expanded to if -debug |
| DEBUG( |
| MachineBasicBlock::iterator PrevI(PrevMI); |
| if (I == PrevI) { |
| dbgs() << "Just deleted pseudo instruction\n"; |
| } else { |
| MachineBasicBlock::iterator Start = I; |
| // Rewind to first instruction newly inserted. |
| while (Start != BB.begin() && prior(Start) != PrevI) --Start; |
| dbgs() << "Inserted instructions:\n\t"; |
| Start->print(dbgs(), &MF.getTarget()); |
| while (++Start != llvm::next(I)) {} |
| } |
| dumpStack(); |
| ); |
| (void)PrevMI; |
| |
| Changed = true; |
| } |
| |
| finishBlockStack(); |
| |
| return Changed; |
| } |
| |
| /// setupBlockStack - Use the live bundles to set up our model of the stack |
| /// to match predecessors' live out stack. |
| void FPS::setupBlockStack() { |
| DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber() |
| << " derived from " << MBB->getName() << ".\n"); |
| StackTop = 0; |
| // Get the live-in bundle for MBB. |
| const LiveBundle &Bundle = |
| LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; |
| |
| if (!Bundle.Mask) { |
| DEBUG(dbgs() << "Block has no FP live-ins.\n"); |
| return; |
| } |
| |
| // Depth-first iteration should ensure that we always have an assigned stack. |
| assert(Bundle.isFixed() && "Reached block before any predecessors"); |
| |
| // Push the fixed live-in registers. |
| for (unsigned i = Bundle.FixCount; i > 0; --i) { |
| MBB->addLiveIn(X86::ST0+i-1); |
| DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP" |
| << unsigned(Bundle.FixStack[i-1]) << '\n'); |
| pushReg(Bundle.FixStack[i-1]); |
| } |
| |
| // Kill off unwanted live-ins. This can happen with a critical edge. |
| // FIXME: We could keep these live registers around as zombies. They may need |
| // to be revived at the end of a short block. It might save a few instrs. |
| adjustLiveRegs(calcLiveInMask(MBB), MBB->begin()); |
| DEBUG(MBB->dump()); |
| } |
| |
| /// finishBlockStack - Revive live-outs that are implicitly defined out of |
| /// MBB. Shuffle live registers to match the expected fixed stack of any |
| /// predecessors, and ensure that all predecessors are expecting the same |
| /// stack. |
| void FPS::finishBlockStack() { |
| // The RET handling below takes care of return blocks for us. |
| if (MBB->succ_empty()) |
| return; |
| |
| DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber() |
| << " derived from " << MBB->getName() << ".\n"); |
| |
| // Get MBB's live-out bundle. |
| unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); |
| LiveBundle &Bundle = LiveBundles[BundleIdx]; |
| |
| // We may need to kill and define some registers to match successors. |
| // FIXME: This can probably be combined with the shuffle below. |
| MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); |
| adjustLiveRegs(Bundle.Mask, Term); |
| |
| if (!Bundle.Mask) { |
| DEBUG(dbgs() << "No live-outs.\n"); |
| return; |
| } |
| |
| // Has the stack order been fixed yet? |
| DEBUG(dbgs() << "LB#" << BundleIdx << ": "); |
| if (Bundle.isFixed()) { |
| DEBUG(dbgs() << "Shuffling stack to match.\n"); |
| shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); |
| } else { |
| // Not fixed yet, we get to choose. |
| DEBUG(dbgs() << "Fixing stack order now.\n"); |
| Bundle.FixCount = StackTop; |
| for (unsigned i = 0; i < StackTop; ++i) |
| Bundle.FixStack[i] = getStackEntry(i); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Efficient Lookup Table Support |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| struct TableEntry { |
| uint16_t from; |
| uint16_t to; |
| bool operator<(const TableEntry &TE) const { return from < TE.from; } |
| friend bool operator<(const TableEntry &TE, unsigned V) { |
| return TE.from < V; |
| } |
| friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, |
| const TableEntry &TE) { |
| return V < TE.from; |
| } |
| }; |
| } |
| |
| #ifndef NDEBUG |
| static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { |
| for (unsigned i = 0; i != NumEntries-1; ++i) |
| if (!(Table[i] < Table[i+1])) return false; |
| return true; |
| } |
| #endif |
| |
| static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { |
| const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); |
| if (I != Table+N && I->from == Opcode) |
| return I->to; |
| return -1; |
| } |
| |
| #ifdef NDEBUG |
| #define ASSERT_SORTED(TABLE) |
| #else |
| #define ASSERT_SORTED(TABLE) \ |
| { static bool TABLE##Checked = false; \ |
| if (!TABLE##Checked) { \ |
| assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \ |
| "All lookup tables must be sorted for efficient access!"); \ |
| TABLE##Checked = true; \ |
| } \ |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // Register File -> Register Stack Mapping Methods |
| //===----------------------------------------------------------------------===// |
| |
| // OpcodeTable - Sorted map of register instructions to their stack version. |
| // The first element is an register file pseudo instruction, the second is the |
| // concrete X86 instruction which uses the register stack. |
| // |
| static const TableEntry OpcodeTable[] = { |
| { X86::ABS_Fp32 , X86::ABS_F }, |
| { X86::ABS_Fp64 , X86::ABS_F }, |
| { X86::ABS_Fp80 , X86::ABS_F }, |
| { X86::ADD_Fp32m , X86::ADD_F32m }, |
| { X86::ADD_Fp64m , X86::ADD_F64m }, |
| { X86::ADD_Fp64m32 , X86::ADD_F32m }, |
| { X86::ADD_Fp80m32 , X86::ADD_F32m }, |
| { X86::ADD_Fp80m64 , X86::ADD_F64m }, |
| { X86::ADD_FpI16m32 , X86::ADD_FI16m }, |
| { X86::ADD_FpI16m64 , X86::ADD_FI16m }, |
| { X86::ADD_FpI16m80 , X86::ADD_FI16m }, |
| { X86::ADD_FpI32m32 , X86::ADD_FI32m }, |
| { X86::ADD_FpI32m64 , X86::ADD_FI32m }, |
| { X86::ADD_FpI32m80 , X86::ADD_FI32m }, |
| { X86::CHS_Fp32 , X86::CHS_F }, |
| { X86::CHS_Fp64 , X86::CHS_F }, |
| { X86::CHS_Fp80 , X86::CHS_F }, |
| { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, |
| { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, |
| { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, |
| { X86::CMOVB_Fp32 , X86::CMOVB_F }, |
| { X86::CMOVB_Fp64 , X86::CMOVB_F }, |
| { X86::CMOVB_Fp80 , X86::CMOVB_F }, |
| { X86::CMOVE_Fp32 , X86::CMOVE_F }, |
| { X86::CMOVE_Fp64 , X86::CMOVE_F }, |
| { X86::CMOVE_Fp80 , X86::CMOVE_F }, |
| { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, |
| { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, |
| { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, |
| { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, |
| { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, |
| { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, |
| { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, |
| { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, |
| { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, |
| { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, |
| { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, |
| { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, |
| { X86::CMOVP_Fp32 , X86::CMOVP_F }, |
| { X86::CMOVP_Fp64 , X86::CMOVP_F }, |
| { X86::CMOVP_Fp80 , X86::CMOVP_F }, |
| { X86::COS_Fp32 , X86::COS_F }, |
| { X86::COS_Fp64 , X86::COS_F }, |
| { X86::COS_Fp80 , X86::COS_F }, |
| { X86::DIVR_Fp32m , X86::DIVR_F32m }, |
| { X86::DIVR_Fp64m , X86::DIVR_F64m }, |
| { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, |
| { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, |
| { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, |
| { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, |
| { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, |
| { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, |
| { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, |
| { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, |
| { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, |
| { X86::DIV_Fp32m , X86::DIV_F32m }, |
| { X86::DIV_Fp64m , X86::DIV_F64m }, |
| { X86::DIV_Fp64m32 , X86::DIV_F32m }, |
| { X86::DIV_Fp80m32 , X86::DIV_F32m }, |
| { X86::DIV_Fp80m64 , X86::DIV_F64m }, |
| { X86::DIV_FpI16m32 , X86::DIV_FI16m }, |
| { X86::DIV_FpI16m64 , X86::DIV_FI16m }, |
| { X86::DIV_FpI16m80 , X86::DIV_FI16m }, |
| { X86::DIV_FpI32m32 , X86::DIV_FI32m }, |
| { X86::DIV_FpI32m64 , X86::DIV_FI32m }, |
| { X86::DIV_FpI32m80 , X86::DIV_FI32m }, |
| { X86::ILD_Fp16m32 , X86::ILD_F16m }, |
| { X86::ILD_Fp16m64 , X86::ILD_F16m }, |
| { X86::ILD_Fp16m80 , X86::ILD_F16m }, |
| { X86::ILD_Fp32m32 , X86::ILD_F32m }, |
| { X86::ILD_Fp32m64 , X86::ILD_F32m }, |
| { X86::ILD_Fp32m80 , X86::ILD_F32m }, |
| { X86::ILD_Fp64m32 , X86::ILD_F64m }, |
| { X86::ILD_Fp64m64 , X86::ILD_F64m }, |
| { X86::ILD_Fp64m80 , X86::ILD_F64m }, |
| { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, |
| { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, |
| { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, |
| { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, |
| { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, |
| { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, |
| { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, |
| { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, |
| { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, |
| { X86::IST_Fp16m32 , X86::IST_F16m }, |
| { X86::IST_Fp16m64 , X86::IST_F16m }, |
| { X86::IST_Fp16m80 , X86::IST_F16m }, |
| { X86::IST_Fp32m32 , X86::IST_F32m }, |
| { X86::IST_Fp32m64 , X86::IST_F32m }, |
| { X86::IST_Fp32m80 , X86::IST_F32m }, |
| { X86::IST_Fp64m32 , X86::IST_FP64m }, |
| { X86::IST_Fp64m64 , X86::IST_FP64m }, |
| { X86::IST_Fp64m80 , X86::IST_FP64m }, |
| { X86::LD_Fp032 , X86::LD_F0 }, |
| { X86::LD_Fp064 , X86::LD_F0 }, |
| { X86::LD_Fp080 , X86::LD_F0 }, |
| { X86::LD_Fp132 , X86::LD_F1 }, |
| { X86::LD_Fp164 , X86::LD_F1 }, |
| { X86::LD_Fp180 , X86::LD_F1 }, |
| { X86::LD_Fp32m , X86::LD_F32m }, |
| { X86::LD_Fp32m64 , X86::LD_F32m }, |
| { X86::LD_Fp32m80 , X86::LD_F32m }, |
| { X86::LD_Fp64m , X86::LD_F64m }, |
| { X86::LD_Fp64m80 , X86::LD_F64m }, |
| { X86::LD_Fp80m , X86::LD_F80m }, |
| { X86::MUL_Fp32m , X86::MUL_F32m }, |
| { X86::MUL_Fp64m , X86::MUL_F64m }, |
| { X86::MUL_Fp64m32 , X86::MUL_F32m }, |
| { X86::MUL_Fp80m32 , X86::MUL_F32m }, |
| { X86::MUL_Fp80m64 , X86::MUL_F64m }, |
| { X86::MUL_FpI16m32 , X86::MUL_FI16m }, |
| { X86::MUL_FpI16m64 , X86::MUL_FI16m }, |
| { X86::MUL_FpI16m80 , X86::MUL_FI16m }, |
| { X86::MUL_FpI32m32 , X86::MUL_FI32m }, |
| { X86::MUL_FpI32m64 , X86::MUL_FI32m }, |
| { X86::MUL_FpI32m80 , X86::MUL_FI32m }, |
| { X86::SIN_Fp32 , X86::SIN_F }, |
| { X86::SIN_Fp64 , X86::SIN_F }, |
| { X86::SIN_Fp80 , X86::SIN_F }, |
| { X86::SQRT_Fp32 , X86::SQRT_F }, |
| { X86::SQRT_Fp64 , X86::SQRT_F }, |
| { X86::SQRT_Fp80 , X86::SQRT_F }, |
| { X86::ST_Fp32m , X86::ST_F32m }, |
| { X86::ST_Fp64m , X86::ST_F64m }, |
| { X86::ST_Fp64m32 , X86::ST_F32m }, |
| { X86::ST_Fp80m32 , X86::ST_F32m }, |
| { X86::ST_Fp80m64 , X86::ST_F64m }, |
| { X86::ST_FpP80m , X86::ST_FP80m }, |
| { X86::SUBR_Fp32m , X86::SUBR_F32m }, |
| { X86::SUBR_Fp64m , X86::SUBR_F64m }, |
| { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, |
| { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, |
| { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, |
| { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, |
| { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, |
| { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, |
| { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, |
| { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, |
| { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, |
| { X86::SUB_Fp32m , X86::SUB_F32m }, |
| { X86::SUB_Fp64m , X86::SUB_F64m }, |
| { X86::SUB_Fp64m32 , X86::SUB_F32m }, |
| { X86::SUB_Fp80m32 , X86::SUB_F32m }, |
| { X86::SUB_Fp80m64 , X86::SUB_F64m }, |
| { X86::SUB_FpI16m32 , X86::SUB_FI16m }, |
| { X86::SUB_FpI16m64 , X86::SUB_FI16m }, |
| { X86::SUB_FpI16m80 , X86::SUB_FI16m }, |
| { X86::SUB_FpI32m32 , X86::SUB_FI32m }, |
| { X86::SUB_FpI32m64 , X86::SUB_FI32m }, |
| { X86::SUB_FpI32m80 , X86::SUB_FI32m }, |
| { X86::TST_Fp32 , X86::TST_F }, |
| { X86::TST_Fp64 , X86::TST_F }, |
| { X86::TST_Fp80 , X86::TST_F }, |
| { X86::UCOM_FpIr32 , X86::UCOM_FIr }, |
| { X86::UCOM_FpIr64 , X86::UCOM_FIr }, |
| { X86::UCOM_FpIr80 , X86::UCOM_FIr }, |
| { X86::UCOM_Fpr32 , X86::UCOM_Fr }, |
| { X86::UCOM_Fpr64 , X86::UCOM_Fr }, |
| { X86::UCOM_Fpr80 , X86::UCOM_Fr }, |
| }; |
| |
| static unsigned getConcreteOpcode(unsigned Opcode) { |
| ASSERT_SORTED(OpcodeTable); |
| int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode); |
| assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); |
| return Opc; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Methods |
| //===----------------------------------------------------------------------===// |
| |
| // PopTable - Sorted map of instructions to their popping version. The first |
| // element is an instruction, the second is the version which pops. |
| // |
| static const TableEntry PopTable[] = { |
| { X86::ADD_FrST0 , X86::ADD_FPrST0 }, |
| |
| { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, |
| { X86::DIV_FrST0 , X86::DIV_FPrST0 }, |
| |
| { X86::IST_F16m , X86::IST_FP16m }, |
| { X86::IST_F32m , X86::IST_FP32m }, |
| |
| { X86::MUL_FrST0 , X86::MUL_FPrST0 }, |
| |
| { X86::ST_F32m , X86::ST_FP32m }, |
| { X86::ST_F64m , X86::ST_FP64m }, |
| { X86::ST_Frr , X86::ST_FPrr }, |
| |
| { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, |
| { X86::SUB_FrST0 , X86::SUB_FPrST0 }, |
| |
| { X86::UCOM_FIr , X86::UCOM_FIPr }, |
| |
| { X86::UCOM_FPr , X86::UCOM_FPPr }, |
| { X86::UCOM_Fr , X86::UCOM_FPr }, |
| }; |
| |
| /// popStackAfter - Pop the current value off of the top of the FP stack after |
| /// the specified instruction. This attempts to be sneaky and combine the pop |
| /// into the instruction itself if possible. The iterator is left pointing to |
| /// the last instruction, be it a new pop instruction inserted, or the old |
| /// instruction if it was modified in place. |
| /// |
| void FPS::popStackAfter(MachineBasicBlock::iterator &I) { |
| MachineInstr* MI = I; |
| DebugLoc dl = MI->getDebugLoc(); |
| ASSERT_SORTED(PopTable); |
| if (StackTop == 0) |
| report_fatal_error("Cannot pop empty stack!"); |
| RegMap[Stack[--StackTop]] = ~0; // Update state |
| |
| // Check to see if there is a popping version of this instruction... |
| int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode()); |
| if (Opcode != -1) { |
| I->setDesc(TII->get(Opcode)); |
| if (Opcode == X86::UCOM_FPPr) |
| I->RemoveOperand(0); |
| } else { // Insert an explicit pop |
| I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); |
| } |
| } |
| |
| /// freeStackSlotAfter - Free the specified register from the register stack, so |
| /// that it is no longer in a register. If the register is currently at the top |
| /// of the stack, we just pop the current instruction, otherwise we store the |
| /// current top-of-stack into the specified slot, then pop the top of stack. |
| void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { |
| if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. |
| popStackAfter(I); |
| return; |
| } |
| |
| // Otherwise, store the top of stack into the dead slot, killing the operand |
| // without having to add in an explicit xchg then pop. |
| // |
| I = freeStackSlotBefore(++I, FPRegNo); |
| } |
| |
| /// freeStackSlotBefore - Free the specified register without trying any |
| /// folding. |
| MachineBasicBlock::iterator |
| FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { |
| unsigned STReg = getSTReg(FPRegNo); |
| unsigned OldSlot = getSlot(FPRegNo); |
| unsigned TopReg = Stack[StackTop-1]; |
| Stack[OldSlot] = TopReg; |
| RegMap[TopReg] = OldSlot; |
| RegMap[FPRegNo] = ~0; |
| Stack[--StackTop] = ~0; |
| return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg); |
| } |
| |
| /// adjustLiveRegs - Kill and revive registers such that exactly the FP |
| /// registers with a bit in Mask are live. |
| void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { |
| unsigned Defs = Mask; |
| unsigned Kills = 0; |
| for (unsigned i = 0; i < StackTop; ++i) { |
| unsigned RegNo = Stack[i]; |
| if (!(Defs & (1 << RegNo))) |
| // This register is live, but we don't want it. |
| Kills |= (1 << RegNo); |
| else |
| // We don't need to imp-def this live register. |
| Defs &= ~(1 << RegNo); |
| } |
| assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); |
| |
| // Produce implicit-defs for free by using killed registers. |
| while (Kills && Defs) { |
| unsigned KReg = CountTrailingZeros_32(Kills); |
| unsigned DReg = CountTrailingZeros_32(Defs); |
| DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n"); |
| std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); |
| std::swap(RegMap[KReg], RegMap[DReg]); |
| Kills &= ~(1 << KReg); |
| Defs &= ~(1 << DReg); |
| } |
| |
| // Kill registers by popping. |
| if (Kills && I != MBB->begin()) { |
| MachineBasicBlock::iterator I2 = llvm::prior(I); |
| while (StackTop) { |
| unsigned KReg = getStackEntry(0); |
| if (!(Kills & (1 << KReg))) |
| break; |
| DEBUG(dbgs() << "Popping %FP" << KReg << "\n"); |
| popStackAfter(I2); |
| Kills &= ~(1 << KReg); |
| } |
| } |
| |
| // Manually kill the rest. |
| while (Kills) { |
| unsigned KReg = CountTrailingZeros_32(Kills); |
| DEBUG(dbgs() << "Killing %FP" << KReg << "\n"); |
| freeStackSlotBefore(I, KReg); |
| Kills &= ~(1 << KReg); |
| } |
| |
| // Load zeros for all the imp-defs. |
| while(Defs) { |
| unsigned DReg = CountTrailingZeros_32(Defs); |
| DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n"); |
| BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); |
| pushReg(DReg); |
| Defs &= ~(1 << DReg); |
| } |
| |
| // Now we should have the correct registers live. |
| DEBUG(dumpStack()); |
| assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch"); |
| } |
| |
| /// shuffleStackTop - emit fxch instructions before I to shuffle the top |
| /// FixCount entries into the order given by FixStack. |
| /// FIXME: Is there a better algorithm than insertion sort? |
| void FPS::shuffleStackTop(const unsigned char *FixStack, |
| unsigned FixCount, |
| MachineBasicBlock::iterator I) { |
| // Move items into place, starting from the desired stack bottom. |
| while (FixCount--) { |
| // Old register at position FixCount. |
| unsigned OldReg = getStackEntry(FixCount); |
| // Desired register at position FixCount. |
| unsigned Reg = FixStack[FixCount]; |
| if (Reg == OldReg) |
| continue; |
| // (Reg st0) (OldReg st0) = (Reg OldReg st0) |
| moveToTop(Reg, I); |
| if (FixCount > 0) |
| moveToTop(OldReg, I); |
| } |
| DEBUG(dumpStack()); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction transformation implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> |
| /// |
| void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| unsigned DestReg = getFPReg(MI->getOperand(0)); |
| |
| // Change from the pseudo instruction to the concrete instruction. |
| MI->RemoveOperand(0); // Remove the explicit ST(0) operand |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| |
| // Result gets pushed on the stack. |
| pushReg(DestReg); |
| } |
| |
| /// handleOneArgFP - fst <mem>, ST(0) |
| /// |
| void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| unsigned NumOps = MI->getDesc().getNumOperands(); |
| assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && |
| "Can only handle fst* & ftst instructions!"); |
| |
| // Is this the last use of the source register? |
| unsigned Reg = getFPReg(MI->getOperand(NumOps-1)); |
| bool KillsSrc = MI->killsRegister(X86::FP0+Reg); |
| |
| if (KillsSrc) |
| duplicatePendingSTBeforeKill(Reg, I); |
| |
| // FISTP64m is strange because there isn't a non-popping versions. |
| // If we have one _and_ we don't want to pop the operand, duplicate the value |
| // on the stack instead of moving it. This ensure that popping the value is |
| // always ok. |
| // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. |
| // |
| if (!KillsSrc && |
| (MI->getOpcode() == X86::IST_Fp64m32 || |
| MI->getOpcode() == X86::ISTT_Fp16m32 || |
| MI->getOpcode() == X86::ISTT_Fp32m32 || |
| MI->getOpcode() == X86::ISTT_Fp64m32 || |
| MI->getOpcode() == X86::IST_Fp64m64 || |
| MI->getOpcode() == X86::ISTT_Fp16m64 || |
| MI->getOpcode() == X86::ISTT_Fp32m64 || |
| MI->getOpcode() == X86::ISTT_Fp64m64 || |
| MI->getOpcode() == X86::IST_Fp64m80 || |
| MI->getOpcode() == X86::ISTT_Fp16m80 || |
| MI->getOpcode() == X86::ISTT_Fp32m80 || |
| MI->getOpcode() == X86::ISTT_Fp64m80 || |
| MI->getOpcode() == X86::ST_FpP80m)) { |
| duplicateToTop(Reg, getScratchReg(), I); |
| } else { |
| moveToTop(Reg, I); // Move to the top of the stack... |
| } |
| |
| // Convert from the pseudo instruction to the concrete instruction. |
| MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| |
| if (MI->getOpcode() == X86::IST_FP64m || |
| MI->getOpcode() == X86::ISTT_FP16m || |
| MI->getOpcode() == X86::ISTT_FP32m || |
| MI->getOpcode() == X86::ISTT_FP64m || |
| MI->getOpcode() == X86::ST_FP80m) { |
| if (StackTop == 0) |
| report_fatal_error("Stack empty??"); |
| --StackTop; |
| } else if (KillsSrc) { // Last use of operand? |
| popStackAfter(I); |
| } |
| } |
| |
| |
| /// handleOneArgFPRW: Handle instructions that read from the top of stack and |
| /// replace the value with a newly computed value. These instructions may have |
| /// non-fp operands after their FP operands. |
| /// |
| /// Examples: |
| /// R1 = fchs R2 |
| /// R1 = fadd R2, [mem] |
| /// |
| void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| #ifndef NDEBUG |
| unsigned NumOps = MI->getDesc().getNumOperands(); |
| assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); |
| #endif |
| |
| // Is this the last use of the source register? |
| unsigned Reg = getFPReg(MI->getOperand(1)); |
| bool KillsSrc = MI->killsRegister(X86::FP0+Reg); |
| |
| if (KillsSrc) { |
| duplicatePendingSTBeforeKill(Reg, I); |
| // If this is the last use of the source register, just make sure it's on |
| // the top of the stack. |
| moveToTop(Reg, I); |
| if (StackTop == 0) |
| report_fatal_error("Stack cannot be empty!"); |
| --StackTop; |
| pushReg(getFPReg(MI->getOperand(0))); |
| } else { |
| // If this is not the last use of the source register, _copy_ it to the top |
| // of the stack. |
| duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); |
| } |
| |
| // Change from the pseudo instruction to the concrete instruction. |
| MI->RemoveOperand(1); // Drop the source operand. |
| MI->RemoveOperand(0); // Drop the destination operand. |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Define tables of various ways to map pseudo instructions |
| // |
| |
| // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) |
| static const TableEntry ForwardST0Table[] = { |
| { X86::ADD_Fp32 , X86::ADD_FST0r }, |
| { X86::ADD_Fp64 , X86::ADD_FST0r }, |
| { X86::ADD_Fp80 , X86::ADD_FST0r }, |
| { X86::DIV_Fp32 , X86::DIV_FST0r }, |
| { X86::DIV_Fp64 , X86::DIV_FST0r }, |
| { X86::DIV_Fp80 , X86::DIV_FST0r }, |
| { X86::MUL_Fp32 , X86::MUL_FST0r }, |
| { X86::MUL_Fp64 , X86::MUL_FST0r }, |
| { X86::MUL_Fp80 , X86::MUL_FST0r }, |
| { X86::SUB_Fp32 , X86::SUB_FST0r }, |
| { X86::SUB_Fp64 , X86::SUB_FST0r }, |
| { X86::SUB_Fp80 , X86::SUB_FST0r }, |
| }; |
| |
| // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) |
| static const TableEntry ReverseST0Table[] = { |
| { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative |
| { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative |
| { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative |
| { X86::DIV_Fp32 , X86::DIVR_FST0r }, |
| { X86::DIV_Fp64 , X86::DIVR_FST0r }, |
| { X86::DIV_Fp80 , X86::DIVR_FST0r }, |
| { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative |
| { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative |
| { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative |
| { X86::SUB_Fp32 , X86::SUBR_FST0r }, |
| { X86::SUB_Fp64 , X86::SUBR_FST0r }, |
| { X86::SUB_Fp80 , X86::SUBR_FST0r }, |
| }; |
| |
| // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) |
| static const TableEntry ForwardSTiTable[] = { |
| { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative |
| { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative |
| { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative |
| { X86::DIV_Fp32 , X86::DIVR_FrST0 }, |
| { X86::DIV_Fp64 , X86::DIVR_FrST0 }, |
| { X86::DIV_Fp80 , X86::DIVR_FrST0 }, |
| { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative |
| { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative |
| { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative |
| { X86::SUB_Fp32 , X86::SUBR_FrST0 }, |
| { X86::SUB_Fp64 , X86::SUBR_FrST0 }, |
| { X86::SUB_Fp80 , X86::SUBR_FrST0 }, |
| }; |
| |
| // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) |
| static const TableEntry ReverseSTiTable[] = { |
| { X86::ADD_Fp32 , X86::ADD_FrST0 }, |
| { X86::ADD_Fp64 , X86::ADD_FrST0 }, |
| { X86::ADD_Fp80 , X86::ADD_FrST0 }, |
| { X86::DIV_Fp32 , X86::DIV_FrST0 }, |
| { X86::DIV_Fp64 , X86::DIV_FrST0 }, |
| { X86::DIV_Fp80 , X86::DIV_FrST0 }, |
| { X86::MUL_Fp32 , X86::MUL_FrST0 }, |
| { X86::MUL_Fp64 , X86::MUL_FrST0 }, |
| { X86::MUL_Fp80 , X86::MUL_FrST0 }, |
| { X86::SUB_Fp32 , X86::SUB_FrST0 }, |
| { X86::SUB_Fp64 , X86::SUB_FrST0 }, |
| { X86::SUB_Fp80 , X86::SUB_FrST0 }, |
| }; |
| |
| |
| /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual |
| /// instructions which need to be simplified and possibly transformed. |
| /// |
| /// Result: ST(0) = fsub ST(0), ST(i) |
| /// ST(i) = fsub ST(0), ST(i) |
| /// ST(0) = fsubr ST(0), ST(i) |
| /// ST(i) = fsubr ST(0), ST(i) |
| /// |
| void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { |
| ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); |
| ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); |
| MachineInstr *MI = I; |
| |
| unsigned NumOperands = MI->getDesc().getNumOperands(); |
| assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); |
| unsigned Dest = getFPReg(MI->getOperand(0)); |
| unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); |
| unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); |
| bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); |
| bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| unsigned TOS = getStackEntry(0); |
| |
| // One of our operands must be on the top of the stack. If neither is yet, we |
| // need to move one. |
| if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? |
| // We can choose to move either operand to the top of the stack. If one of |
| // the operands is killed by this instruction, we want that one so that we |
| // can update right on top of the old version. |
| if (KillsOp0) { |
| moveToTop(Op0, I); // Move dead operand to TOS. |
| TOS = Op0; |
| } else if (KillsOp1) { |
| moveToTop(Op1, I); |
| TOS = Op1; |
| } else { |
| // All of the operands are live after this instruction executes, so we |
| // cannot update on top of any operand. Because of this, we must |
| // duplicate one of the stack elements to the top. It doesn't matter |
| // which one we pick. |
| // |
| duplicateToTop(Op0, Dest, I); |
| Op0 = TOS = Dest; |
| KillsOp0 = true; |
| } |
| } else if (!KillsOp0 && !KillsOp1) { |
| // If we DO have one of our operands at the top of the stack, but we don't |
| // have a dead operand, we must duplicate one of the operands to a new slot |
| // on the stack. |
| duplicateToTop(Op0, Dest, I); |
| Op0 = TOS = Dest; |
| KillsOp0 = true; |
| } |
| |
| // Now we know that one of our operands is on the top of the stack, and at |
| // least one of our operands is killed by this instruction. |
| assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && |
| "Stack conditions not set up right!"); |
| |
| // We decide which form to use based on what is on the top of the stack, and |
| // which operand is killed by this instruction. |
| const TableEntry *InstTable; |
| bool isForward = TOS == Op0; |
| bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); |
| if (updateST0) { |
| if (isForward) |
| InstTable = ForwardST0Table; |
| else |
| InstTable = ReverseST0Table; |
| } else { |
| if (isForward) |
| InstTable = ForwardSTiTable; |
| else |
| InstTable = ReverseSTiTable; |
| } |
| |
| int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table), |
| MI->getOpcode()); |
| assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); |
| |
| // NotTOS - The register which is not on the top of stack... |
| unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; |
| |
| // Replace the old instruction with a new instruction |
| MBB->remove(I++); |
| I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); |
| |
| // If both operands are killed, pop one off of the stack in addition to |
| // overwriting the other one. |
| if (KillsOp0 && KillsOp1 && Op0 != Op1) { |
| assert(!updateST0 && "Should have updated other operand!"); |
| popStackAfter(I); // Pop the top of stack |
| } |
| |
| // Update stack information so that we know the destination register is now on |
| // the stack. |
| unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); |
| assert(UpdatedSlot < StackTop && Dest < 7); |
| Stack[UpdatedSlot] = Dest; |
| RegMap[Dest] = UpdatedSlot; |
| MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction |
| } |
| |
| /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP |
| /// register arguments and no explicit destinations. |
| /// |
| void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { |
| ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); |
| ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); |
| MachineInstr *MI = I; |
| |
| unsigned NumOperands = MI->getDesc().getNumOperands(); |
| assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); |
| unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); |
| unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); |
| bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); |
| bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); |
| |
| // Make sure the first operand is on the top of stack, the other one can be |
| // anywhere. |
| moveToTop(Op0, I); |
| |
| // Change from the pseudo instruction to the concrete instruction. |
| MI->getOperand(0).setReg(getSTReg(Op1)); |
| MI->RemoveOperand(1); |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| |
| // If any of the operands are killed by this instruction, free them. |
| if (KillsOp0) freeStackSlotAfter(I, Op0); |
| if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); |
| } |
| |
| /// handleCondMovFP - Handle two address conditional move instructions. These |
| /// instructions move a st(i) register to st(0) iff a condition is true. These |
| /// instructions require that the first operand is at the top of the stack, but |
| /// otherwise don't modify the stack at all. |
| void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| |
| unsigned Op0 = getFPReg(MI->getOperand(0)); |
| unsigned Op1 = getFPReg(MI->getOperand(2)); |
| bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); |
| |
| // The first operand *must* be on the top of the stack. |
| moveToTop(Op0, I); |
| |
| // Change the second operand to the stack register that the operand is in. |
| // Change from the pseudo instruction to the concrete instruction. |
| MI->RemoveOperand(0); |
| MI->RemoveOperand(1); |
| MI->getOperand(0).setReg(getSTReg(Op1)); |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| |
| // If we kill the second operand, make sure to pop it from the stack. |
| if (Op0 != Op1 && KillsOp1) { |
| // Get this value off of the register stack. |
| freeStackSlotAfter(I, Op1); |
| } |
| } |
| |
| |
| /// handleSpecialFP - Handle special instructions which behave unlike other |
| /// floating point instructions. This is primarily intended for use by pseudo |
| /// instructions. |
| /// |
| void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("Unknown SpecialFP instruction!"); |
| case TargetOpcode::COPY: { |
| // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. |
| const MachineOperand &MO1 = MI->getOperand(1); |
| const MachineOperand &MO0 = MI->getOperand(0); |
| unsigned DstST = MO0.getReg() - X86::ST0; |
| unsigned SrcST = MO1.getReg() - X86::ST0; |
| bool KillsSrc = MI->killsRegister(MO1.getReg()); |
| |
| // ST = COPY FP. Set up a pending ST register. |
| if (DstST < 8) { |
| unsigned SrcFP = getFPReg(MO1); |
| assert(isLive(SrcFP) && "Cannot copy dead register"); |
| assert(!MO0.isDead() && "Cannot copy to dead ST register"); |
| |
| // Unallocated STs are marked as the nonexistent FP255. |
| while (NumPendingSTs <= DstST) |
| PendingST[NumPendingSTs++] = NumFPRegs; |
| |
| // STi could still be live from a previous inline asm. |
| if (isScratchReg(PendingST[DstST])) { |
| DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST]) |
| << '\n'); |
| freeStackSlotBefore(MI, PendingST[DstST]); |
| } |
| |
| // When the source is killed, allocate a scratch FP register. |
| if (KillsSrc) { |
| duplicatePendingSTBeforeKill(SrcFP, I); |
| unsigned Slot = getSlot(SrcFP); |
| unsigned SR = getScratchReg(); |
| PendingST[DstST] = SR; |
| Stack[Slot] = SR; |
| RegMap[SR] = Slot; |
| } else |
| PendingST[DstST] = SrcFP; |
| break; |
| } |
| |
| // FP = COPY ST. Extract fixed stack value. |
| // Any instruction defining ST registers must have assigned them to a |
| // scratch register. |
| if (SrcST < 8) { |
| unsigned DstFP = getFPReg(MO0); |
| assert(!isLive(DstFP) && "Cannot copy ST to live FP register"); |
| assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register"); |
| unsigned SrcFP = PendingST[SrcST]; |
| assert(isScratchReg(SrcFP) && "Expected ST in a scratch register"); |
| assert(isLive(SrcFP) && "Scratch holding ST is dead"); |
| |
| // DstFP steals the stack slot from SrcFP. |
| unsigned Slot = getSlot(SrcFP); |
| Stack[Slot] = DstFP; |
| RegMap[DstFP] = Slot; |
| |
| // Always treat the ST as killed. |
| PendingST[SrcST] = NumFPRegs; |
| while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs) |
| --NumPendingSTs; |
| break; |
| } |
| |
| // FP <- FP copy. |
| unsigned DstFP = getFPReg(MO0); |
| unsigned SrcFP = getFPReg(MO1); |
| assert(isLive(SrcFP) && "Cannot copy dead register"); |
| if (KillsSrc) { |
| // If the input operand is killed, we can just change the owner of the |
| // incoming stack slot into the result. |
| unsigned Slot = getSlot(SrcFP); |
| Stack[Slot] = DstFP; |
| RegMap[DstFP] = Slot; |
| } else { |
| // For COPY we just duplicate the specified value to a new stack slot. |
| // This could be made better, but would require substantial changes. |
| duplicateToTop(SrcFP, DstFP, I); |
| } |
| break; |
| } |
| |
| case TargetOpcode::IMPLICIT_DEF: { |
| // All FP registers must be explicitly defined, so load a 0 instead. |
| unsigned Reg = MI->getOperand(0).getReg() - X86::FP0; |
| DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); |
| BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0)); |
| pushReg(Reg); |
| break; |
| } |
| |
| case X86::FpPOP_RETVAL: { |
| // The FpPOP_RETVAL instruction is used after calls that return a value on |
| // the floating point stack. We cannot model this with ST defs since CALL |
| // instructions have fixed clobber lists. This instruction is interpreted |
| // to mean that there is one more live register on the stack than we |
| // thought. |
| // |
| // This means that StackTop does not match the hardware stack between a |
| // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions |
| // between CALL and FpPOP_RETVAL as long as they don't overflow the |
| // hardware stack. |
| unsigned DstFP = getFPReg(MI->getOperand(0)); |
| |
| // Move existing stack elements up to reflect reality. |
| assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL"); |
| if (StackTop) { |
| std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1); |
| for (unsigned i = 0; i != NumFPRegs; ++i) |
| ++RegMap[i]; |
| } |
| ++StackTop; |
| |
| // DstFP is the new bottom of the stack. |
| Stack[0] = DstFP; |
| RegMap[DstFP] = 0; |
| |
| // DstFP will be killed by processBasicBlock if this was a dead def. |
| break; |
| } |
| |
| case TargetOpcode::INLINEASM: { |
| // The inline asm MachineInstr currently only *uses* FP registers for the |
| // 'f' constraint. These should be turned into the current ST(x) register |
| // in the machine instr. |
| // |
| // There are special rules for x87 inline assembly. The compiler must know |
| // exactly how many registers are popped and pushed implicitly by the asm. |
| // Otherwise it is not possible to restore the stack state after the inline |
| // asm. |
| // |
| // There are 3 kinds of input operands: |
| // |
| // 1. Popped inputs. These must appear at the stack top in ST0-STn. A |
| // popped input operand must be in a fixed stack slot, and it is either |
| // tied to an output operand, or in the clobber list. The MI has ST use |
| // and def operands for these inputs. |
| // |
| // 2. Fixed inputs. These inputs appear in fixed stack slots, but are |
| // preserved by the inline asm. The fixed stack slots must be STn-STm |
| // following the popped inputs. A fixed input operand cannot be tied to |
| // an output or appear in the clobber list. The MI has ST use operands |
| // and no defs for these inputs. |
| // |
| // 3. Preserved inputs. These inputs use the "f" constraint which is |
| // represented as an FP register. The inline asm won't change these |
| // stack slots. |
| // |
| // Outputs must be in ST registers, FP outputs are not allowed. Clobbered |
| // registers do not count as output operands. The inline asm changes the |
| // stack as if it popped all the popped inputs and then pushed all the |
| // output operands. |
| |
| // Scan the assembly for ST registers used, defined and clobbered. We can |
| // only tell clobbers from defs by looking at the asm descriptor. |
| unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0; |
| unsigned NumOps = 0; |
| for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); |
| i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) { |
| unsigned Flags = MI->getOperand(i).getImm(); |
| NumOps = InlineAsm::getNumOperandRegisters(Flags); |
| if (NumOps != 1) |
| continue; |
| const MachineOperand &MO = MI->getOperand(i + 1); |
| if (!MO.isReg()) |
| continue; |
| unsigned STReg = MO.getReg() - X86::ST0; |
| if (STReg >= 8) |
| continue; |
| |
| switch (InlineAsm::getKind(Flags)) { |
| case InlineAsm::Kind_RegUse: |
| STUses |= (1u << STReg); |
| break; |
| case InlineAsm::Kind_RegDef: |
| case InlineAsm::Kind_RegDefEarlyClobber: |
| STDefs |= (1u << STReg); |
| if (MO.isDead()) |
| STDeadDefs |= (1u << STReg); |
| break; |
| case InlineAsm::Kind_Clobber: |
| STClobbers |= (1u << STReg); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (STUses && !isMask_32(STUses)) |
| MI->emitError("fixed input regs must be last on the x87 stack"); |
| unsigned NumSTUses = CountTrailingOnes_32(STUses); |
| |
| // Defs must be contiguous from the stack top. ST0-STn. |
| if (STDefs && !isMask_32(STDefs)) { |
| MI->emitError("output regs must be last on the x87 stack"); |
| STDefs = NextPowerOf2(STDefs) - 1; |
| } |
| unsigned NumSTDefs = CountTrailingOnes_32(STDefs); |
| |
| // So must the clobbered stack slots. ST0-STm, m >= n. |
| if (STClobbers && !isMask_32(STDefs | STClobbers)) |
| MI->emitError("clobbers must be last on the x87 stack"); |
| |
| // Popped inputs are the ones that are also clobbered or defined. |
| unsigned STPopped = STUses & (STDefs | STClobbers); |
| if (STPopped && !isMask_32(STPopped)) |
| MI->emitError("implicitly popped regs must be last on the x87 stack"); |
| unsigned NumSTPopped = CountTrailingOnes_32(STPopped); |
| |
| DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " |
| << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n"); |
| |
| // Scan the instruction for FP uses corresponding to "f" constraints. |
| // Collect FP registers to kill afer the instruction. |
| // Always kill all the scratch regs. |
| unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; |
| unsigned FPUsed = 0; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
| continue; |
| if (!Op.isUse()) |
| MI->emitError("illegal \"f\" output constraint"); |
| unsigned FPReg = getFPReg(Op); |
| FPUsed |= 1U << FPReg; |
| |
| // If we kill this operand, make sure to pop it from the stack after the |
| // asm. We just remember it for now, and pop them all off at the end in |
| // a batch. |
| if (Op.isKill()) |
| FPKills |= 1U << FPReg; |
| } |
| |
| // The popped inputs will be killed by the instruction, so duplicate them |
| // if the FP register needs to be live after the instruction, or if it is |
| // used in the instruction itself. We effectively treat the popped inputs |
| // as early clobbers. |
| for (unsigned i = 0; i < NumSTPopped; ++i) { |
| if ((FPKills & ~FPUsed) & (1u << PendingST[i])) |
| continue; |
| unsigned SR = getScratchReg(); |
| duplicateToTop(PendingST[i], SR, I); |
| DEBUG(dbgs() << "Duplicating ST" << i << " in FP" |
| << unsigned(PendingST[i]) << " to avoid clobbering it.\n"); |
| PendingST[i] = SR; |
| } |
| |
| // Make sure we have a unique live register for every fixed use. Some of |
| // them could be undef uses, and we need to emit LD_F0 instructions. |
| for (unsigned i = 0; i < NumSTUses; ++i) { |
| if (i < NumPendingSTs && PendingST[i] < NumFPRegs) { |
| // Check for shared assignments. |
| for (unsigned j = 0; j < i; ++j) { |
| if (PendingST[j] != PendingST[i]) |
| continue; |
| // STi and STj are inn the same register, create a copy. |
| unsigned SR = getScratchReg(); |
| duplicateToTop(PendingST[i], SR, I); |
| DEBUG(dbgs() << "Duplicating ST" << i << " in FP" |
| << unsigned(PendingST[i]) |
| << " to avoid collision with ST" << j << '\n'); |
| PendingST[i] = SR; |
| } |
| continue; |
| } |
| unsigned SR = getScratchReg(); |
| DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n'); |
| BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0)); |
| pushReg(SR); |
| PendingST[i] = SR; |
| if (NumPendingSTs == i) |
| ++NumPendingSTs; |
| } |
| assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned"); |
| |
| // Now we can rearrange the live registers to match what was requested. |
| shuffleStackTop(PendingST, NumPendingSTs, I); |
| DEBUG({dbgs() << "Before asm: "; dumpStack();}); |
| |
| // With the stack layout fixed, rewrite the FP registers. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
| continue; |
| unsigned FPReg = getFPReg(Op); |
| Op.setReg(getSTReg(FPReg)); |
| } |
| |
| // Simulate the inline asm popping its inputs and pushing its outputs. |
| StackTop -= NumSTPopped; |
| |
| // Hold the fixed output registers in scratch FP registers. They will be |
| // transferred to real FP registers by copies. |
| NumPendingSTs = 0; |
| for (unsigned i = 0; i < NumSTDefs; ++i) { |
| unsigned SR = getScratchReg(); |
| pushReg(SR); |
| FPKills &= ~(1u << SR); |
| } |
| for (unsigned i = 0; i < NumSTDefs; ++i) |
| PendingST[NumPendingSTs++] = getStackEntry(i); |
| DEBUG({dbgs() << "After asm: "; dumpStack();}); |
| |
| // If any of the ST defs were dead, pop them immediately. Our caller only |
| // handles dead FP defs. |
| MachineBasicBlock::iterator InsertPt = MI; |
| for (unsigned i = 0; STDefs & (1u << i); ++i) { |
| if (!(STDeadDefs & (1u << i))) |
| continue; |
| freeStackSlotAfter(InsertPt, PendingST[i]); |
| PendingST[i] = NumFPRegs; |
| } |
| while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs) |
| --NumPendingSTs; |
| |
| // If this asm kills any FP registers (is the last use of them) we must |
| // explicitly emit pop instructions for them. Do this now after the asm has |
| // executed so that the ST(x) numbers are not off (which would happen if we |
| // did this inline with operand rewriting). |
| // |
| // Note: this might be a non-optimal pop sequence. We might be able to do |
| // better by trying to pop in stack order or something. |
| while (FPKills) { |
| unsigned FPReg = CountTrailingZeros_32(FPKills); |
| if (isLive(FPReg)) |
| freeStackSlotAfter(InsertPt, FPReg); |
| FPKills &= ~(1U << FPReg); |
| } |
| // Don't delete the inline asm! |
| return; |
| } |
| |
| case X86::WIN_FTOL_32: |
| case X86::WIN_FTOL_64: { |
| // Push the operand into ST0. |
| MachineOperand &Op = MI->getOperand(0); |
| assert(Op.isUse() && Op.isReg() && |
| Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6); |
| unsigned FPReg = getFPReg(Op); |
| if (Op.isKill()) |
| moveToTop(FPReg, I); |
| else |
| duplicateToTop(FPReg, FPReg, I); |
| |
| // Emit the call. This will pop the operand. |
| BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32)) |
| .addExternalSymbol("_ftol2") |
| .addReg(X86::ST0, RegState::ImplicitKill) |
| .addReg(X86::EAX, RegState::Define | RegState::Implicit) |
| .addReg(X86::EDX, RegState::Define | RegState::Implicit) |
| .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); |
| --StackTop; |
| |
| break; |
| } |
| |
| case X86::RET: |
| case X86::RETI: |
| // If RET has an FP register use operand, pass the first one in ST(0) and |
| // the second one in ST(1). |
| |
| // Find the register operands. |
| unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; |
| unsigned LiveMask = 0; |
| |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
| continue; |
| // FP Register uses must be kills unless there are two uses of the same |
| // register, in which case only one will be a kill. |
| assert(Op.isUse() && |
| (Op.isKill() || // Marked kill. |
| getFPReg(Op) == FirstFPRegOp || // Second instance. |
| MI->killsRegister(Op.getReg())) && // Later use is marked kill. |
| "Ret only defs operands, and values aren't live beyond it"); |
| |
| if (FirstFPRegOp == ~0U) |
| FirstFPRegOp = getFPReg(Op); |
| else { |
| assert(SecondFPRegOp == ~0U && "More than two fp operands!"); |
| SecondFPRegOp = getFPReg(Op); |
| } |
| LiveMask |= (1 << getFPReg(Op)); |
| |
| // Remove the operand so that later passes don't see it. |
| MI->RemoveOperand(i); |
| --i, --e; |
| } |
| |
| // We may have been carrying spurious live-ins, so make sure only the returned |
| // registers are left live. |
| adjustLiveRegs(LiveMask, MI); |
| if (!LiveMask) return; // Quick check to see if any are possible. |
| |
| // There are only four possibilities here: |
| // 1) we are returning a single FP value. In this case, it has to be in |
| // ST(0) already, so just declare success by removing the value from the |
| // FP Stack. |
| if (SecondFPRegOp == ~0U) { |
| // Assert that the top of stack contains the right FP register. |
| assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && |
| "Top of stack not the right register for RET!"); |
| |
| // Ok, everything is good, mark the value as not being on the stack |
| // anymore so that our assertion about the stack being empty at end of |
| // block doesn't fire. |
| StackTop = 0; |
| return; |
| } |
| |
| // Otherwise, we are returning two values: |
| // 2) If returning the same value for both, we only have one thing in the FP |
| // stack. Consider: RET FP1, FP1 |
| if (StackTop == 1) { |
| assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& |
| "Stack misconfiguration for RET!"); |
| |
| // Duplicate the TOS so that we return it twice. Just pick some other FPx |
| // register to hold it. |
| unsigned NewReg = getScratchReg(); |
| duplicateToTop(FirstFPRegOp, NewReg, MI); |
| FirstFPRegOp = NewReg; |
| } |
| |
| /// Okay we know we have two different FPx operands now: |
| assert(StackTop == 2 && "Must have two values live!"); |
| |
| /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently |
| /// in ST(1). In this case, emit an fxch. |
| if (getStackEntry(0) == SecondFPRegOp) { |
| assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); |
| moveToTop(FirstFPRegOp, MI); |
| } |
| |
| /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in |
| /// ST(1). Just remove both from our understanding of the stack and return. |
| assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); |
| assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); |
| StackTop = 0; |
| return; |
| } |
| |
| I = MBB->erase(I); // Remove the pseudo instruction |
| |
| // We want to leave I pointing to the previous instruction, but what if we |
| // just erased the first instruction? |
| if (I == MBB->begin()) { |
| DEBUG(dbgs() << "Inserting dummy KILL\n"); |
| I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL)); |
| } else |
| --I; |
| } |