| //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements an abstract sparse conditional propagation algorithm, |
| // modeled after SCCP, but with a customizable lattice function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sparseprop" |
| #include "llvm/Analysis/SparsePropagation.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // AbstractLatticeFunction Implementation |
| //===----------------------------------------------------------------------===// |
| |
| AbstractLatticeFunction::~AbstractLatticeFunction() {} |
| |
| /// PrintValue - Render the specified lattice value to the specified stream. |
| void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) { |
| if (V == UndefVal) |
| OS << "undefined"; |
| else if (V == OverdefinedVal) |
| OS << "overdefined"; |
| else if (V == UntrackedVal) |
| OS << "untracked"; |
| else |
| OS << "unknown lattice value"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SparseSolver Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// getOrInitValueState - Return the LatticeVal object that corresponds to the |
| /// value, initializing the value's state if it hasn't been entered into the |
| /// map yet. This function is necessary because not all values should start |
| /// out in the underdefined state... Arguments should be overdefined, and |
| /// constants should be marked as constants. |
| /// |
| SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) { |
| DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V); |
| if (I != ValueState.end()) return I->second; // Common case, in the map |
| |
| LatticeVal LV; |
| if (LatticeFunc->IsUntrackedValue(V)) |
| return LatticeFunc->getUntrackedVal(); |
| else if (Constant *C = dyn_cast<Constant>(V)) |
| LV = LatticeFunc->ComputeConstant(C); |
| else if (Argument *A = dyn_cast<Argument>(V)) |
| LV = LatticeFunc->ComputeArgument(A); |
| else if (!isa<Instruction>(V)) |
| // All other non-instructions are overdefined. |
| LV = LatticeFunc->getOverdefinedVal(); |
| else |
| // All instructions are underdefined by default. |
| LV = LatticeFunc->getUndefVal(); |
| |
| // If this value is untracked, don't add it to the map. |
| if (LV == LatticeFunc->getUntrackedVal()) |
| return LV; |
| return ValueState[V] = LV; |
| } |
| |
| /// UpdateState - When the state for some instruction is potentially updated, |
| /// this function notices and adds I to the worklist if needed. |
| void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) { |
| DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst); |
| if (I != ValueState.end() && I->second == V) |
| return; // No change. |
| |
| // An update. Visit uses of I. |
| ValueState[&Inst] = V; |
| InstWorkList.push_back(&Inst); |
| } |
| |
| /// MarkBlockExecutable - This method can be used by clients to mark all of |
| /// the blocks that are known to be intrinsically live in the processed unit. |
| void SparseSolver::MarkBlockExecutable(BasicBlock *BB) { |
| DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); |
| BBExecutable.insert(BB); // Basic block is executable! |
| BBWorkList.push_back(BB); // Add the block to the work list! |
| } |
| |
| /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
| /// work list if it is not already executable... |
| void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { |
| if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
| return; // This edge is already known to be executable! |
| |
| DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() |
| << " -> " << Dest->getName() << "\n"); |
| |
| if (BBExecutable.count(Dest)) { |
| // The destination is already executable, but we just made an edge |
| // feasible that wasn't before. Revisit the PHI nodes in the block |
| // because they have potentially new operands. |
| for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) |
| visitPHINode(*cast<PHINode>(I)); |
| |
| } else { |
| MarkBlockExecutable(Dest); |
| } |
| } |
| |
| |
| /// getFeasibleSuccessors - Return a vector of booleans to indicate which |
| /// successors are reachable from a given terminator instruction. |
| void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI, |
| SmallVectorImpl<bool> &Succs, |
| bool AggressiveUndef) { |
| Succs.resize(TI.getNumSuccessors()); |
| if (TI.getNumSuccessors() == 0) return; |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
| if (BI->isUnconditional()) { |
| Succs[0] = true; |
| return; |
| } |
| |
| LatticeVal BCValue; |
| if (AggressiveUndef) |
| BCValue = getOrInitValueState(BI->getCondition()); |
| else |
| BCValue = getLatticeState(BI->getCondition()); |
| |
| if (BCValue == LatticeFunc->getOverdefinedVal() || |
| BCValue == LatticeFunc->getUntrackedVal()) { |
| // Overdefined condition variables can branch either way. |
| Succs[0] = Succs[1] = true; |
| return; |
| } |
| |
| // If undefined, neither is feasible yet. |
| if (BCValue == LatticeFunc->getUndefVal()) |
| return; |
| |
| Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this); |
| if (C == 0 || !isa<ConstantInt>(C)) { |
| // Non-constant values can go either way. |
| Succs[0] = Succs[1] = true; |
| return; |
| } |
| |
| // Constant condition variables mean the branch can only go a single way |
| Succs[C->isNullValue()] = true; |
| return; |
| } |
| |
| if (isa<InvokeInst>(TI)) { |
| // Invoke instructions successors are always executable. |
| // TODO: Could ask the lattice function if the value can throw. |
| Succs[0] = Succs[1] = true; |
| return; |
| } |
| |
| if (isa<IndirectBrInst>(TI)) { |
| Succs.assign(Succs.size(), true); |
| return; |
| } |
| |
| SwitchInst &SI = cast<SwitchInst>(TI); |
| LatticeVal SCValue; |
| if (AggressiveUndef) |
| SCValue = getOrInitValueState(SI.getCondition()); |
| else |
| SCValue = getLatticeState(SI.getCondition()); |
| |
| if (SCValue == LatticeFunc->getOverdefinedVal() || |
| SCValue == LatticeFunc->getUntrackedVal()) { |
| // All destinations are executable! |
| Succs.assign(TI.getNumSuccessors(), true); |
| return; |
| } |
| |
| // If undefined, neither is feasible yet. |
| if (SCValue == LatticeFunc->getUndefVal()) |
| return; |
| |
| Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this); |
| if (C == 0 || !isa<ConstantInt>(C)) { |
| // All destinations are executable! |
| Succs.assign(TI.getNumSuccessors(), true); |
| return; |
| } |
| SwitchInst::CaseIt Case = SI.findCaseValue(cast<ConstantInt>(C)); |
| Succs[Case.getSuccessorIndex()] = true; |
| } |
| |
| |
| /// isEdgeFeasible - Return true if the control flow edge from the 'From' |
| /// basic block to the 'To' basic block is currently feasible... |
| bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To, |
| bool AggressiveUndef) { |
| SmallVector<bool, 16> SuccFeasible; |
| TerminatorInst *TI = From->getTerminator(); |
| getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); |
| |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| if (TI->getSuccessor(i) == To && SuccFeasible[i]) |
| return true; |
| |
| return false; |
| } |
| |
| void SparseSolver::visitTerminatorInst(TerminatorInst &TI) { |
| SmallVector<bool, 16> SuccFeasible; |
| getFeasibleSuccessors(TI, SuccFeasible, true); |
| |
| BasicBlock *BB = TI.getParent(); |
| |
| // Mark all feasible successors executable... |
| for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| if (SuccFeasible[i]) |
| markEdgeExecutable(BB, TI.getSuccessor(i)); |
| } |
| |
| void SparseSolver::visitPHINode(PHINode &PN) { |
| // The lattice function may store more information on a PHINode than could be |
| // computed from its incoming values. For example, SSI form stores its sigma |
| // functions as PHINodes with a single incoming value. |
| if (LatticeFunc->IsSpecialCasedPHI(&PN)) { |
| LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this); |
| if (IV != LatticeFunc->getUntrackedVal()) |
| UpdateState(PN, IV); |
| return; |
| } |
| |
| LatticeVal PNIV = getOrInitValueState(&PN); |
| LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); |
| |
| // If this value is already overdefined (common) just return. |
| if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) |
| return; // Quick exit |
| |
| // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, |
| // and slow us down a lot. Just mark them overdefined. |
| if (PN.getNumIncomingValues() > 64) { |
| UpdateState(PN, Overdefined); |
| return; |
| } |
| |
| // Look at all of the executable operands of the PHI node. If any of them |
| // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the |
| // transfer function to give us the merge of the incoming values. |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| // If the edge is not yet known to be feasible, it doesn't impact the PHI. |
| if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) |
| continue; |
| |
| // Merge in this value. |
| LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i)); |
| if (OpVal != PNIV) |
| PNIV = LatticeFunc->MergeValues(PNIV, OpVal); |
| |
| if (PNIV == Overdefined) |
| break; // Rest of input values don't matter. |
| } |
| |
| // Update the PHI with the compute value, which is the merge of the inputs. |
| UpdateState(PN, PNIV); |
| } |
| |
| |
| void SparseSolver::visitInst(Instruction &I) { |
| // PHIs are handled by the propagation logic, they are never passed into the |
| // transfer functions. |
| if (PHINode *PN = dyn_cast<PHINode>(&I)) |
| return visitPHINode(*PN); |
| |
| // Otherwise, ask the transfer function what the result is. If this is |
| // something that we care about, remember it. |
| LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this); |
| if (IV != LatticeFunc->getUntrackedVal()) |
| UpdateState(I, IV); |
| |
| if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) |
| visitTerminatorInst(*TI); |
| } |
| |
| void SparseSolver::Solve(Function &F) { |
| MarkBlockExecutable(&F.getEntryBlock()); |
| |
| // Process the work lists until they are empty! |
| while (!BBWorkList.empty() || !InstWorkList.empty()) { |
| // Process the instruction work list. |
| while (!InstWorkList.empty()) { |
| Instruction *I = InstWorkList.back(); |
| InstWorkList.pop_back(); |
| |
| DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n"); |
| |
| // "I" got into the work list because it made a transition. See if any |
| // users are both live and in need of updating. |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) { |
| Instruction *U = cast<Instruction>(*UI); |
| if (BBExecutable.count(U->getParent())) // Inst is executable? |
| visitInst(*U); |
| } |
| } |
| |
| // Process the basic block work list. |
| while (!BBWorkList.empty()) { |
| BasicBlock *BB = BBWorkList.back(); |
| BBWorkList.pop_back(); |
| |
| DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); |
| |
| // Notify all instructions in this basic block that they are newly |
| // executable. |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| visitInst(*I); |
| } |
| } |
| } |
| |
| void SparseSolver::Print(Function &F, raw_ostream &OS) const { |
| OS << "\nFUNCTION: " << F.getName() << "\n"; |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| if (!BBExecutable.count(BB)) |
| OS << "INFEASIBLE: "; |
| OS << "\t"; |
| if (BB->hasName()) |
| OS << BB->getName() << ":\n"; |
| else |
| OS << "; anon bb\n"; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| LatticeFunc->PrintValue(getLatticeState(I), OS); |
| OS << *I << "\n"; |
| } |
| |
| OS << "\n"; |
| } |
| } |
| |