| //===-- Constants.cpp - Implement Constant nodes --------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Constant* classes... |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Constants.h" |
| #include "ConstantFolding.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <map> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Constant Class |
| //===----------------------------------------------------------------------===// |
| |
| void Constant::destroyConstantImpl() { |
| // When a Constant is destroyed, there may be lingering |
| // references to the constant by other constants in the constant pool. These |
| // constants are implicitly dependent on the module that is being deleted, |
| // but they don't know that. Because we only find out when the CPV is |
| // deleted, we must now notify all of our users (that should only be |
| // Constants) that they are, in fact, invalid now and should be deleted. |
| // |
| while (!use_empty()) { |
| Value *V = use_back(); |
| #ifndef NDEBUG // Only in -g mode... |
| if (!isa<Constant>(V)) |
| DOUT << "While deleting: " << *this |
| << "\n\nUse still stuck around after Def is destroyed: " |
| << *V << "\n\n"; |
| #endif |
| assert(isa<Constant>(V) && "References remain to Constant being destroyed"); |
| Constant *CV = cast<Constant>(V); |
| CV->destroyConstant(); |
| |
| // The constant should remove itself from our use list... |
| assert((use_empty() || use_back() != V) && "Constant not removed!"); |
| } |
| |
| // Value has no outstanding references it is safe to delete it now... |
| delete this; |
| } |
| |
| /// canTrap - Return true if evaluation of this constant could trap. This is |
| /// true for things like constant expressions that could divide by zero. |
| bool Constant::canTrap() const { |
| assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); |
| // The only thing that could possibly trap are constant exprs. |
| const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); |
| if (!CE) return false; |
| |
| // ConstantExpr traps if any operands can trap. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (getOperand(i)->canTrap()) |
| return true; |
| |
| // Otherwise, only specific operations can trap. |
| switch (CE->getOpcode()) { |
| default: |
| return false; |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| // Div and rem can trap if the RHS is not known to be non-zero. |
| if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue()) |
| return true; |
| return false; |
| } |
| } |
| |
| |
| // Static constructor to create a '0' constant of arbitrary type... |
| Constant *Constant::getNullValue(const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| case Type::IntegerTyID: { |
| const IntegerType *ITy = dyn_cast<IntegerType>(Ty); |
| switch (ITy->getBitWidth()) { |
| case 1: { |
| static Constant *NullBool = ConstantInt::get(Ty, false); |
| return NullBool; |
| } |
| case 8: { |
| static Constant *NullInt8 = ConstantInt::get(Ty, 0); |
| return NullInt8; |
| } |
| case 16: { |
| static Constant *NullInt16 = ConstantInt::get(Ty, 0); |
| return NullInt16; |
| } |
| case 32: { |
| static Constant *NullInt32 = ConstantInt::get(Ty, 0); |
| return NullInt32; |
| } |
| case 64: { |
| static Constant *NullInt64 = ConstantInt::get(Ty, 0); |
| return NullInt64; |
| } |
| default: |
| return ConstantInt::get(Ty, 0); |
| } |
| } |
| case Type::FloatTyID: { |
| static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0); |
| return NullFloat; |
| } |
| case Type::DoubleTyID: { |
| static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0); |
| return NullDouble; |
| } |
| case Type::PointerTyID: |
| return ConstantPointerNull::get(cast<PointerType>(Ty)); |
| case Type::StructTyID: |
| case Type::ArrayTyID: |
| case Type::VectorTyID: |
| return ConstantAggregateZero::get(Ty); |
| default: |
| // Function, Label, or Opaque type? |
| assert(!"Cannot create a null constant of that type!"); |
| return 0; |
| } |
| } |
| |
| |
| // Static constructor to create an integral constant with all bits set |
| ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) { |
| if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) |
| if (ITy->getBitWidth() == 1) |
| return ConstantInt::getTrue(); |
| else |
| return ConstantInt::get(Ty, int64_t(-1)); |
| return 0; |
| } |
| |
| /// @returns the value for an packed integer constant of the given type that |
| /// has all its bits set to true. |
| /// @brief Get the all ones value |
| ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) { |
| std::vector<Constant*> Elts; |
| Elts.resize(Ty->getNumElements(), |
| ConstantInt::getAllOnesValue(Ty->getElementType())); |
| assert(Elts[0] && "Not a packed integer type!"); |
| return cast<ConstantVector>(ConstantVector::get(Elts)); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantXXX Classes |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Normal Constructors |
| |
| ConstantInt::ConstantInt(bool V) |
| : Constant(Type::Int1Ty, ConstantIntVal, 0, 0), Val(uint64_t(V)) { |
| } |
| |
| ConstantInt::ConstantInt(const Type *Ty, uint64_t V) |
| : Constant(Ty, ConstantIntVal, 0, 0), Val(Ty == Type::Int1Ty ? bool(V) : V) { |
| } |
| |
| ConstantFP::ConstantFP(const Type *Ty, double V) |
| : Constant(Ty, ConstantFPVal, 0, 0) { |
| assert(isValueValidForType(Ty, V) && "Value too large for type!"); |
| Val = V; |
| } |
| |
| ConstantArray::ConstantArray(const ArrayType *T, |
| const std::vector<Constant*> &V) |
| : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) { |
| assert(V.size() == T->getNumElements() && |
| "Invalid initializer vector for constant array"); |
| Use *OL = OperandList; |
| for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); |
| I != E; ++I, ++OL) { |
| Constant *C = *I; |
| assert((C->getType() == T->getElementType() || |
| (T->isAbstract() && |
| C->getType()->getTypeID() == T->getElementType()->getTypeID())) && |
| "Initializer for array element doesn't match array element type!"); |
| OL->init(C, this); |
| } |
| } |
| |
| ConstantArray::~ConstantArray() { |
| delete [] OperandList; |
| } |
| |
| ConstantStruct::ConstantStruct(const StructType *T, |
| const std::vector<Constant*> &V) |
| : Constant(T, ConstantStructVal, new Use[V.size()], V.size()) { |
| assert(V.size() == T->getNumElements() && |
| "Invalid initializer vector for constant structure"); |
| Use *OL = OperandList; |
| for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); |
| I != E; ++I, ++OL) { |
| Constant *C = *I; |
| assert((C->getType() == T->getElementType(I-V.begin()) || |
| ((T->getElementType(I-V.begin())->isAbstract() || |
| C->getType()->isAbstract()) && |
| T->getElementType(I-V.begin())->getTypeID() == |
| C->getType()->getTypeID())) && |
| "Initializer for struct element doesn't match struct element type!"); |
| OL->init(C, this); |
| } |
| } |
| |
| ConstantStruct::~ConstantStruct() { |
| delete [] OperandList; |
| } |
| |
| |
| ConstantVector::ConstantVector(const VectorType *T, |
| const std::vector<Constant*> &V) |
| : Constant(T, ConstantVectorVal, new Use[V.size()], V.size()) { |
| Use *OL = OperandList; |
| for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); |
| I != E; ++I, ++OL) { |
| Constant *C = *I; |
| assert((C->getType() == T->getElementType() || |
| (T->isAbstract() && |
| C->getType()->getTypeID() == T->getElementType()->getTypeID())) && |
| "Initializer for packed element doesn't match packed element type!"); |
| OL->init(C, this); |
| } |
| } |
| |
| ConstantVector::~ConstantVector() { |
| delete [] OperandList; |
| } |
| |
| // We declare several classes private to this file, so use an anonymous |
| // namespace |
| namespace { |
| |
| /// UnaryConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement unary constant exprs. |
| class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr { |
| Use Op; |
| public: |
| UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) |
| : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {} |
| }; |
| |
| /// BinaryConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement binary constant exprs. |
| class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr { |
| Use Ops[2]; |
| public: |
| BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) |
| : ConstantExpr(C1->getType(), Opcode, Ops, 2) { |
| Ops[0].init(C1, this); |
| Ops[1].init(C2, this); |
| } |
| }; |
| |
| /// SelectConstantExpr - This class is private to Constants.cpp, and is used |
| /// behind the scenes to implement select constant exprs. |
| class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr { |
| Use Ops[3]; |
| public: |
| SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) { |
| Ops[0].init(C1, this); |
| Ops[1].init(C2, this); |
| Ops[2].init(C3, this); |
| } |
| }; |
| |
| /// ExtractElementConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// extractelement constant exprs. |
| class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr { |
| Use Ops[2]; |
| public: |
| ExtractElementConstantExpr(Constant *C1, Constant *C2) |
| : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), |
| Instruction::ExtractElement, Ops, 2) { |
| Ops[0].init(C1, this); |
| Ops[1].init(C2, this); |
| } |
| }; |
| |
| /// InsertElementConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// insertelement constant exprs. |
| class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr { |
| Use Ops[3]; |
| public: |
| InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(C1->getType(), Instruction::InsertElement, |
| Ops, 3) { |
| Ops[0].init(C1, this); |
| Ops[1].init(C2, this); |
| Ops[2].init(C3, this); |
| } |
| }; |
| |
| /// ShuffleVectorConstantExpr - This class is private to |
| /// Constants.cpp, and is used behind the scenes to implement |
| /// shufflevector constant exprs. |
| class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr { |
| Use Ops[3]; |
| public: |
| ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| : ConstantExpr(C1->getType(), Instruction::ShuffleVector, |
| Ops, 3) { |
| Ops[0].init(C1, this); |
| Ops[1].init(C2, this); |
| Ops[2].init(C3, this); |
| } |
| }; |
| |
| /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is |
| /// used behind the scenes to implement getelementpr constant exprs. |
| struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr { |
| GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, |
| const Type *DestTy) |
| : ConstantExpr(DestTy, Instruction::GetElementPtr, |
| new Use[IdxList.size()+1], IdxList.size()+1) { |
| OperandList[0].init(C, this); |
| for (unsigned i = 0, E = IdxList.size(); i != E; ++i) |
| OperandList[i+1].init(IdxList[i], this); |
| } |
| ~GetElementPtrConstantExpr() { |
| delete [] OperandList; |
| } |
| }; |
| |
| // CompareConstantExpr - This class is private to Constants.cpp, and is used |
| // behind the scenes to implement ICmp and FCmp constant expressions. This is |
| // needed in order to store the predicate value for these instructions. |
| struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr { |
| unsigned short predicate; |
| Use Ops[2]; |
| CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred, |
| Constant* LHS, Constant* RHS) |
| : ConstantExpr(Type::Int1Ty, opc, Ops, 2), predicate(pred) { |
| OperandList[0].init(LHS, this); |
| OperandList[1].init(RHS, this); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| |
| // Utility function for determining if a ConstantExpr is a CastOp or not. This |
| // can't be inline because we don't want to #include Instruction.h into |
| // Constant.h |
| bool ConstantExpr::isCast() const { |
| return Instruction::isCast(getOpcode()); |
| } |
| |
| bool ConstantExpr::isCompare() const { |
| return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; |
| } |
| |
| /// ConstantExpr::get* - Return some common constants without having to |
| /// specify the full Instruction::OPCODE identifier. |
| /// |
| Constant *ConstantExpr::getNeg(Constant *C) { |
| return get(Instruction::Sub, |
| ConstantExpr::getZeroValueForNegationExpr(C->getType()), |
| C); |
| } |
| Constant *ConstantExpr::getNot(Constant *C) { |
| assert(isa<ConstantInt>(C) && "Cannot NOT a nonintegral type!"); |
| return get(Instruction::Xor, C, |
| ConstantInt::getAllOnesValue(C->getType())); |
| } |
| Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) { |
| return get(Instruction::Add, C1, C2); |
| } |
| Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) { |
| return get(Instruction::Sub, C1, C2); |
| } |
| Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) { |
| return get(Instruction::Mul, C1, C2); |
| } |
| Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) { |
| return get(Instruction::UDiv, C1, C2); |
| } |
| Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) { |
| return get(Instruction::SDiv, C1, C2); |
| } |
| Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { |
| return get(Instruction::FDiv, C1, C2); |
| } |
| Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { |
| return get(Instruction::URem, C1, C2); |
| } |
| Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { |
| return get(Instruction::SRem, C1, C2); |
| } |
| Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { |
| return get(Instruction::FRem, C1, C2); |
| } |
| Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { |
| return get(Instruction::And, C1, C2); |
| } |
| Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { |
| return get(Instruction::Or, C1, C2); |
| } |
| Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { |
| return get(Instruction::Xor, C1, C2); |
| } |
| unsigned ConstantExpr::getPredicate() const { |
| assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp); |
| return dynamic_cast<const CompareConstantExpr*>(this)->predicate; |
| } |
| Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) { |
| return get(Instruction::Shl, C1, C2); |
| } |
| Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) { |
| return get(Instruction::LShr, C1, C2); |
| } |
| Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) { |
| return get(Instruction::AShr, C1, C2); |
| } |
| |
| /// getWithOperandReplaced - Return a constant expression identical to this |
| /// one, but with the specified operand set to the specified value. |
| Constant * |
| ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { |
| assert(OpNo < getNumOperands() && "Operand num is out of range!"); |
| assert(Op->getType() == getOperand(OpNo)->getType() && |
| "Replacing operand with value of different type!"); |
| if (getOperand(OpNo) == Op) |
| return const_cast<ConstantExpr*>(this); |
| |
| Constant *Op0, *Op1, *Op2; |
| switch (getOpcode()) { |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| return ConstantExpr::getCast(getOpcode(), Op, getType()); |
| case Instruction::Select: |
| Op0 = (OpNo == 0) ? Op : getOperand(0); |
| Op1 = (OpNo == 1) ? Op : getOperand(1); |
| Op2 = (OpNo == 2) ? Op : getOperand(2); |
| return ConstantExpr::getSelect(Op0, Op1, Op2); |
| case Instruction::InsertElement: |
| Op0 = (OpNo == 0) ? Op : getOperand(0); |
| Op1 = (OpNo == 1) ? Op : getOperand(1); |
| Op2 = (OpNo == 2) ? Op : getOperand(2); |
| return ConstantExpr::getInsertElement(Op0, Op1, Op2); |
| case Instruction::ExtractElement: |
| Op0 = (OpNo == 0) ? Op : getOperand(0); |
| Op1 = (OpNo == 1) ? Op : getOperand(1); |
| return ConstantExpr::getExtractElement(Op0, Op1); |
| case Instruction::ShuffleVector: |
| Op0 = (OpNo == 0) ? Op : getOperand(0); |
| Op1 = (OpNo == 1) ? Op : getOperand(1); |
| Op2 = (OpNo == 2) ? Op : getOperand(2); |
| return ConstantExpr::getShuffleVector(Op0, Op1, Op2); |
| case Instruction::GetElementPtr: { |
| std::vector<Constant*> Ops; |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) |
| Ops.push_back(getOperand(i)); |
| if (OpNo == 0) |
| return ConstantExpr::getGetElementPtr(Op, Ops); |
| Ops[OpNo-1] = Op; |
| return ConstantExpr::getGetElementPtr(getOperand(0), Ops); |
| } |
| default: |
| assert(getNumOperands() == 2 && "Must be binary operator?"); |
| Op0 = (OpNo == 0) ? Op : getOperand(0); |
| Op1 = (OpNo == 1) ? Op : getOperand(1); |
| return ConstantExpr::get(getOpcode(), Op0, Op1); |
| } |
| } |
| |
| /// getWithOperands - This returns the current constant expression with the |
| /// operands replaced with the specified values. The specified operands must |
| /// match count and type with the existing ones. |
| Constant *ConstantExpr:: |
| getWithOperands(const std::vector<Constant*> &Ops) const { |
| assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); |
| bool AnyChange = false; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| assert(Ops[i]->getType() == getOperand(i)->getType() && |
| "Operand type mismatch!"); |
| AnyChange |= Ops[i] != getOperand(i); |
| } |
| if (!AnyChange) // No operands changed, return self. |
| return const_cast<ConstantExpr*>(this); |
| |
| switch (getOpcode()) { |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| return ConstantExpr::getCast(getOpcode(), Ops[0], getType()); |
| case Instruction::Select: |
| return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); |
| case Instruction::InsertElement: |
| return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); |
| case Instruction::ExtractElement: |
| return ConstantExpr::getExtractElement(Ops[0], Ops[1]); |
| case Instruction::ShuffleVector: |
| return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); |
| case Instruction::GetElementPtr: { |
| std::vector<Constant*> ActualOps(Ops.begin()+1, Ops.end()); |
| return ConstantExpr::getGetElementPtr(Ops[0], ActualOps); |
| } |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); |
| default: |
| assert(getNumOperands() == 2 && "Must be binary operator?"); |
| return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // isValueValidForType implementations |
| |
| bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { |
| unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay |
| if (Ty == Type::Int1Ty) |
| return Val == 0 || Val == 1; |
| if (NumBits >= 64) |
| return true; // always true, has to fit in largest type |
| uint64_t Max = (1ll << NumBits) - 1; |
| return Val <= Max; |
| } |
| |
| bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { |
| unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay |
| if (Ty == Type::Int1Ty) |
| return Val == 0 || Val == 1 || Val == -1; |
| if (NumBits >= 64) |
| return true; // always true, has to fit in largest type |
| int64_t Min = -(1ll << (NumBits-1)); |
| int64_t Max = (1ll << (NumBits-1)) - 1; |
| return (Val >= Min && Val <= Max); |
| } |
| |
| bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { |
| switch (Ty->getTypeID()) { |
| default: |
| return false; // These can't be represented as floating point! |
| |
| // TODO: Figure out how to test if a double can be cast to a float! |
| case Type::FloatTyID: |
| case Type::DoubleTyID: |
| return true; // This is the largest type... |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Factory Function Implementation |
| |
| // ConstantCreator - A class that is used to create constants by |
| // ValueMap*. This class should be partially specialized if there is |
| // something strange that needs to be done to interface to the ctor for the |
| // constant. |
| // |
| namespace llvm { |
| template<class ConstantClass, class TypeClass, class ValType> |
| struct VISIBILITY_HIDDEN ConstantCreator { |
| static ConstantClass *create(const TypeClass *Ty, const ValType &V) { |
| return new ConstantClass(Ty, V); |
| } |
| }; |
| |
| template<class ConstantClass, class TypeClass> |
| struct VISIBILITY_HIDDEN ConvertConstantType { |
| static void convert(ConstantClass *OldC, const TypeClass *NewTy) { |
| assert(0 && "This type cannot be converted!\n"); |
| abort(); |
| } |
| }; |
| |
| template<class ValType, class TypeClass, class ConstantClass, |
| bool HasLargeKey = false /*true for arrays and structs*/ > |
| class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser { |
| public: |
| typedef std::pair<const Type*, ValType> MapKey; |
| typedef std::map<MapKey, Constant *> MapTy; |
| typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy; |
| typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy; |
| private: |
| /// Map - This is the main map from the element descriptor to the Constants. |
| /// This is the primary way we avoid creating two of the same shape |
| /// constant. |
| MapTy Map; |
| |
| /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping |
| /// from the constants to their element in Map. This is important for |
| /// removal of constants from the array, which would otherwise have to scan |
| /// through the map with very large keys. |
| InverseMapTy InverseMap; |
| |
| /// AbstractTypeMap - Map for abstract type constants. |
| /// |
| AbstractTypeMapTy AbstractTypeMap; |
| |
| private: |
| void clear(std::vector<Constant *> &Constants) { |
| for(typename MapTy::iterator I = Map.begin(); I != Map.end(); ++I) |
| Constants.push_back(I->second); |
| Map.clear(); |
| AbstractTypeMap.clear(); |
| InverseMap.clear(); |
| } |
| |
| public: |
| typename MapTy::iterator map_end() { return Map.end(); } |
| |
| /// InsertOrGetItem - Return an iterator for the specified element. |
| /// If the element exists in the map, the returned iterator points to the |
| /// entry and Exists=true. If not, the iterator points to the newly |
| /// inserted entry and returns Exists=false. Newly inserted entries have |
| /// I->second == 0, and should be filled in. |
| typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *> |
| &InsertVal, |
| bool &Exists) { |
| std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); |
| Exists = !IP.second; |
| return IP.first; |
| } |
| |
| private: |
| typename MapTy::iterator FindExistingElement(ConstantClass *CP) { |
| if (HasLargeKey) { |
| typename InverseMapTy::iterator IMI = InverseMap.find(CP); |
| assert(IMI != InverseMap.end() && IMI->second != Map.end() && |
| IMI->second->second == CP && |
| "InverseMap corrupt!"); |
| return IMI->second; |
| } |
| |
| typename MapTy::iterator I = |
| Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP))); |
| if (I == Map.end() || I->second != CP) { |
| // FIXME: This should not use a linear scan. If this gets to be a |
| // performance problem, someone should look at this. |
| for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) |
| /* empty */; |
| } |
| return I; |
| } |
| public: |
| |
| /// getOrCreate - Return the specified constant from the map, creating it if |
| /// necessary. |
| ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { |
| MapKey Lookup(Ty, V); |
| typename MapTy::iterator I = Map.lower_bound(Lookup); |
| // Is it in the map? |
| if (I != Map.end() && I->first == Lookup) |
| return static_cast<ConstantClass *>(I->second); |
| |
| // If no preexisting value, create one now... |
| ConstantClass *Result = |
| ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); |
| |
| /// FIXME: why does this assert fail when loading 176.gcc? |
| //assert(Result->getType() == Ty && "Type specified is not correct!"); |
| I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); |
| |
| if (HasLargeKey) // Remember the reverse mapping if needed. |
| InverseMap.insert(std::make_pair(Result, I)); |
| |
| // If the type of the constant is abstract, make sure that an entry exists |
| // for it in the AbstractTypeMap. |
| if (Ty->isAbstract()) { |
| typename AbstractTypeMapTy::iterator TI = |
| AbstractTypeMap.lower_bound(Ty); |
| |
| if (TI == AbstractTypeMap.end() || TI->first != Ty) { |
| // Add ourselves to the ATU list of the type. |
| cast<DerivedType>(Ty)->addAbstractTypeUser(this); |
| |
| AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); |
| } |
| } |
| return Result; |
| } |
| |
| void remove(ConstantClass *CP) { |
| typename MapTy::iterator I = FindExistingElement(CP); |
| assert(I != Map.end() && "Constant not found in constant table!"); |
| assert(I->second == CP && "Didn't find correct element?"); |
| |
| if (HasLargeKey) // Remember the reverse mapping if needed. |
| InverseMap.erase(CP); |
| |
| // Now that we found the entry, make sure this isn't the entry that |
| // the AbstractTypeMap points to. |
| const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first); |
| if (Ty->isAbstract()) { |
| assert(AbstractTypeMap.count(Ty) && |
| "Abstract type not in AbstractTypeMap?"); |
| typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; |
| if (ATMEntryIt == I) { |
| // Yes, we are removing the representative entry for this type. |
| // See if there are any other entries of the same type. |
| typename MapTy::iterator TmpIt = ATMEntryIt; |
| |
| // First check the entry before this one... |
| if (TmpIt != Map.begin()) { |
| --TmpIt; |
| if (TmpIt->first.first != Ty) // Not the same type, move back... |
| ++TmpIt; |
| } |
| |
| // If we didn't find the same type, try to move forward... |
| if (TmpIt == ATMEntryIt) { |
| ++TmpIt; |
| if (TmpIt == Map.end() || TmpIt->first.first != Ty) |
| --TmpIt; // No entry afterwards with the same type |
| } |
| |
| // If there is another entry in the map of the same abstract type, |
| // update the AbstractTypeMap entry now. |
| if (TmpIt != ATMEntryIt) { |
| ATMEntryIt = TmpIt; |
| } else { |
| // Otherwise, we are removing the last instance of this type |
| // from the table. Remove from the ATM, and from user list. |
| cast<DerivedType>(Ty)->removeAbstractTypeUser(this); |
| AbstractTypeMap.erase(Ty); |
| } |
| } |
| } |
| |
| Map.erase(I); |
| } |
| |
| |
| /// MoveConstantToNewSlot - If we are about to change C to be the element |
| /// specified by I, update our internal data structures to reflect this |
| /// fact. |
| void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { |
| // First, remove the old location of the specified constant in the map. |
| typename MapTy::iterator OldI = FindExistingElement(C); |
| assert(OldI != Map.end() && "Constant not found in constant table!"); |
| assert(OldI->second == C && "Didn't find correct element?"); |
| |
| // If this constant is the representative element for its abstract type, |
| // update the AbstractTypeMap so that the representative element is I. |
| if (C->getType()->isAbstract()) { |
| typename AbstractTypeMapTy::iterator ATI = |
| AbstractTypeMap.find(C->getType()); |
| assert(ATI != AbstractTypeMap.end() && |
| "Abstract type not in AbstractTypeMap?"); |
| if (ATI->second == OldI) |
| ATI->second = I; |
| } |
| |
| // Remove the old entry from the map. |
| Map.erase(OldI); |
| |
| // Update the inverse map so that we know that this constant is now |
| // located at descriptor I. |
| if (HasLargeKey) { |
| assert(I->second == C && "Bad inversemap entry!"); |
| InverseMap[C] = I; |
| } |
| } |
| |
| void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { |
| typename AbstractTypeMapTy::iterator I = |
| AbstractTypeMap.find(cast<Type>(OldTy)); |
| |
| assert(I != AbstractTypeMap.end() && |
| "Abstract type not in AbstractTypeMap?"); |
| |
| // Convert a constant at a time until the last one is gone. The last one |
| // leaving will remove() itself, causing the AbstractTypeMapEntry to be |
| // eliminated eventually. |
| do { |
| ConvertConstantType<ConstantClass, |
| TypeClass>::convert( |
| static_cast<ConstantClass *>(I->second->second), |
| cast<TypeClass>(NewTy)); |
| |
| I = AbstractTypeMap.find(cast<Type>(OldTy)); |
| } while (I != AbstractTypeMap.end()); |
| } |
| |
| // If the type became concrete without being refined to any other existing |
| // type, we just remove ourselves from the ATU list. |
| void typeBecameConcrete(const DerivedType *AbsTy) { |
| AbsTy->removeAbstractTypeUser(this); |
| } |
| |
| void dump() const { |
| DOUT << "Constant.cpp: ValueMap\n"; |
| } |
| }; |
| } |
| |
| |
| //---- ConstantInt::get() implementations... |
| // |
| static ManagedStatic<ValueMap<uint64_t, Type, ConstantInt> > IntConstants; |
| |
| // Get a ConstantInt from an int64_t. Note here that we canoncialize the value |
| // to a uint64_t value that has been zero extended down to the size of the |
| // integer type of the ConstantInt. This allows the getZExtValue method to |
| // just return the stored value while getSExtValue has to convert back to sign |
| // extended. getZExtValue is more common in LLVM than getSExtValue(). |
| ConstantInt *ConstantInt::get(const Type *Ty, int64_t V) { |
| if (Ty == Type::Int1Ty) |
| if (V & 1) |
| return getTrue(); |
| else |
| return getFalse(); |
| return IntConstants->getOrCreate(Ty, V & cast<IntegerType>(Ty)->getBitMask()); |
| } |
| |
| //---- ConstantFP::get() implementation... |
| // |
| namespace llvm { |
| template<> |
| struct ConstantCreator<ConstantFP, Type, uint64_t> { |
| static ConstantFP *create(const Type *Ty, uint64_t V) { |
| assert(Ty == Type::DoubleTy); |
| return new ConstantFP(Ty, BitsToDouble(V)); |
| } |
| }; |
| template<> |
| struct ConstantCreator<ConstantFP, Type, uint32_t> { |
| static ConstantFP *create(const Type *Ty, uint32_t V) { |
| assert(Ty == Type::FloatTy); |
| return new ConstantFP(Ty, BitsToFloat(V)); |
| } |
| }; |
| } |
| |
| static ManagedStatic<ValueMap<uint64_t, Type, ConstantFP> > DoubleConstants; |
| static ManagedStatic<ValueMap<uint32_t, Type, ConstantFP> > FloatConstants; |
| |
| bool ConstantFP::isNullValue() const { |
| return DoubleToBits(Val) == 0; |
| } |
| |
| bool ConstantFP::isExactlyValue(double V) const { |
| return DoubleToBits(V) == DoubleToBits(Val); |
| } |
| |
| |
| ConstantFP *ConstantFP::get(const Type *Ty, double V) { |
| if (Ty == Type::FloatTy) { |
| // Force the value through memory to normalize it. |
| return FloatConstants->getOrCreate(Ty, FloatToBits(V)); |
| } else { |
| assert(Ty == Type::DoubleTy); |
| return DoubleConstants->getOrCreate(Ty, DoubleToBits(V)); |
| } |
| } |
| |
| //---- ConstantAggregateZero::get() implementation... |
| // |
| namespace llvm { |
| // ConstantAggregateZero does not take extra "value" argument... |
| template<class ValType> |
| struct ConstantCreator<ConstantAggregateZero, Type, ValType> { |
| static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ |
| return new ConstantAggregateZero(Ty); |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantAggregateZero, Type> { |
| static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { |
| // Make everyone now use a constant of the new type... |
| Constant *New = ConstantAggregateZero::get(NewTy); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| } |
| |
| static ManagedStatic<ValueMap<char, Type, |
| ConstantAggregateZero> > AggZeroConstants; |
| |
| static char getValType(ConstantAggregateZero *CPZ) { return 0; } |
| |
| Constant *ConstantAggregateZero::get(const Type *Ty) { |
| assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) && |
| "Cannot create an aggregate zero of non-aggregate type!"); |
| return AggZeroConstants->getOrCreate(Ty, 0); |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantAggregateZero::destroyConstant() { |
| AggZeroConstants->remove(this); |
| destroyConstantImpl(); |
| } |
| |
| //---- ConstantArray::get() implementation... |
| // |
| namespace llvm { |
| template<> |
| struct ConvertConstantType<ConstantArray, ArrayType> { |
| static void convert(ConstantArray *OldC, const ArrayType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| std::vector<Constant*> C; |
| for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| C.push_back(cast<Constant>(OldC->getOperand(i))); |
| Constant *New = ConstantArray::get(NewTy, C); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| } |
| |
| static std::vector<Constant*> getValType(ConstantArray *CA) { |
| std::vector<Constant*> Elements; |
| Elements.reserve(CA->getNumOperands()); |
| for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) |
| Elements.push_back(cast<Constant>(CA->getOperand(i))); |
| return Elements; |
| } |
| |
| typedef ValueMap<std::vector<Constant*>, ArrayType, |
| ConstantArray, true /*largekey*/> ArrayConstantsTy; |
| static ManagedStatic<ArrayConstantsTy> ArrayConstants; |
| |
| Constant *ConstantArray::get(const ArrayType *Ty, |
| const std::vector<Constant*> &V) { |
| // If this is an all-zero array, return a ConstantAggregateZero object |
| if (!V.empty()) { |
| Constant *C = V[0]; |
| if (!C->isNullValue()) |
| return ArrayConstants->getOrCreate(Ty, V); |
| for (unsigned i = 1, e = V.size(); i != e; ++i) |
| if (V[i] != C) |
| return ArrayConstants->getOrCreate(Ty, V); |
| } |
| return ConstantAggregateZero::get(Ty); |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantArray::destroyConstant() { |
| ArrayConstants->remove(this); |
| destroyConstantImpl(); |
| } |
| |
| /// ConstantArray::get(const string&) - Return an array that is initialized to |
| /// contain the specified string. If length is zero then a null terminator is |
| /// added to the specified string so that it may be used in a natural way. |
| /// Otherwise, the length parameter specifies how much of the string to use |
| /// and it won't be null terminated. |
| /// |
| Constant *ConstantArray::get(const std::string &Str, bool AddNull) { |
| std::vector<Constant*> ElementVals; |
| for (unsigned i = 0; i < Str.length(); ++i) |
| ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i])); |
| |
| // Add a null terminator to the string... |
| if (AddNull) { |
| ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0)); |
| } |
| |
| ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size()); |
| return ConstantArray::get(ATy, ElementVals); |
| } |
| |
| /// isString - This method returns true if the array is an array of i8, and |
| /// if the elements of the array are all ConstantInt's. |
| bool ConstantArray::isString() const { |
| // Check the element type for i8... |
| if (getType()->getElementType() != Type::Int8Ty) |
| return false; |
| // Check the elements to make sure they are all integers, not constant |
| // expressions. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (!isa<ConstantInt>(getOperand(i))) |
| return false; |
| return true; |
| } |
| |
| /// isCString - This method returns true if the array is a string (see |
| /// isString) and it ends in a null byte \0 and does not contains any other |
| /// null bytes except its terminator. |
| bool ConstantArray::isCString() const { |
| // Check the element type for i8... |
| if (getType()->getElementType() != Type::Int8Ty) |
| return false; |
| Constant *Zero = Constant::getNullValue(getOperand(0)->getType()); |
| // Last element must be a null. |
| if (getOperand(getNumOperands()-1) != Zero) |
| return false; |
| // Other elements must be non-null integers. |
| for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) { |
| if (!isa<ConstantInt>(getOperand(i))) |
| return false; |
| if (getOperand(i) == Zero) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| // getAsString - If the sub-element type of this array is i8 |
| // then this method converts the array to an std::string and returns it. |
| // Otherwise, it asserts out. |
| // |
| std::string ConstantArray::getAsString() const { |
| assert(isString() && "Not a string!"); |
| std::string Result; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| Result += (char)cast<ConstantInt>(getOperand(i))->getZExtValue(); |
| return Result; |
| } |
| |
| |
| //---- ConstantStruct::get() implementation... |
| // |
| |
| namespace llvm { |
| template<> |
| struct ConvertConstantType<ConstantStruct, StructType> { |
| static void convert(ConstantStruct *OldC, const StructType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| std::vector<Constant*> C; |
| for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| C.push_back(cast<Constant>(OldC->getOperand(i))); |
| Constant *New = ConstantStruct::get(NewTy, C); |
| assert(New != OldC && "Didn't replace constant??"); |
| |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| } |
| |
| typedef ValueMap<std::vector<Constant*>, StructType, |
| ConstantStruct, true /*largekey*/> StructConstantsTy; |
| static ManagedStatic<StructConstantsTy> StructConstants; |
| |
| static std::vector<Constant*> getValType(ConstantStruct *CS) { |
| std::vector<Constant*> Elements; |
| Elements.reserve(CS->getNumOperands()); |
| for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) |
| Elements.push_back(cast<Constant>(CS->getOperand(i))); |
| return Elements; |
| } |
| |
| Constant *ConstantStruct::get(const StructType *Ty, |
| const std::vector<Constant*> &V) { |
| // Create a ConstantAggregateZero value if all elements are zeros... |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| if (!V[i]->isNullValue()) |
| return StructConstants->getOrCreate(Ty, V); |
| |
| return ConstantAggregateZero::get(Ty); |
| } |
| |
| Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) { |
| std::vector<const Type*> StructEls; |
| StructEls.reserve(V.size()); |
| for (unsigned i = 0, e = V.size(); i != e; ++i) |
| StructEls.push_back(V[i]->getType()); |
| return get(StructType::get(StructEls, packed), V); |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantStruct::destroyConstant() { |
| StructConstants->remove(this); |
| destroyConstantImpl(); |
| } |
| |
| //---- ConstantVector::get() implementation... |
| // |
| namespace llvm { |
| template<> |
| struct ConvertConstantType<ConstantVector, VectorType> { |
| static void convert(ConstantVector *OldC, const VectorType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| std::vector<Constant*> C; |
| for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| C.push_back(cast<Constant>(OldC->getOperand(i))); |
| Constant *New = ConstantVector::get(NewTy, C); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| } |
| |
| static std::vector<Constant*> getValType(ConstantVector *CP) { |
| std::vector<Constant*> Elements; |
| Elements.reserve(CP->getNumOperands()); |
| for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| Elements.push_back(CP->getOperand(i)); |
| return Elements; |
| } |
| |
| static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType, |
| ConstantVector> > VectorConstants; |
| |
| Constant *ConstantVector::get(const VectorType *Ty, |
| const std::vector<Constant*> &V) { |
| // If this is an all-zero packed, return a ConstantAggregateZero object |
| if (!V.empty()) { |
| Constant *C = V[0]; |
| if (!C->isNullValue()) |
| return VectorConstants->getOrCreate(Ty, V); |
| for (unsigned i = 1, e = V.size(); i != e; ++i) |
| if (V[i] != C) |
| return VectorConstants->getOrCreate(Ty, V); |
| } |
| return ConstantAggregateZero::get(Ty); |
| } |
| |
| Constant *ConstantVector::get(const std::vector<Constant*> &V) { |
| assert(!V.empty() && "Cannot infer type if V is empty"); |
| return get(VectorType::get(V.front()->getType(),V.size()), V); |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantVector::destroyConstant() { |
| VectorConstants->remove(this); |
| destroyConstantImpl(); |
| } |
| |
| /// This function will return true iff every element in this packed constant |
| /// is set to all ones. |
| /// @returns true iff this constant's emements are all set to all ones. |
| /// @brief Determine if the value is all ones. |
| bool ConstantVector::isAllOnesValue() const { |
| // Check out first element. |
| const Constant *Elt = getOperand(0); |
| const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); |
| if (!CI || !CI->isAllOnesValue()) return false; |
| // Then make sure all remaining elements point to the same value. |
| for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { |
| if (getOperand(I) != Elt) return false; |
| } |
| return true; |
| } |
| |
| //---- ConstantPointerNull::get() implementation... |
| // |
| |
| namespace llvm { |
| // ConstantPointerNull does not take extra "value" argument... |
| template<class ValType> |
| struct ConstantCreator<ConstantPointerNull, PointerType, ValType> { |
| static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ |
| return new ConstantPointerNull(Ty); |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantPointerNull, PointerType> { |
| static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { |
| // Make everyone now use a constant of the new type... |
| Constant *New = ConstantPointerNull::get(NewTy); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| } |
| |
| static ManagedStatic<ValueMap<char, PointerType, |
| ConstantPointerNull> > NullPtrConstants; |
| |
| static char getValType(ConstantPointerNull *) { |
| return 0; |
| } |
| |
| |
| ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { |
| return NullPtrConstants->getOrCreate(Ty, 0); |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantPointerNull::destroyConstant() { |
| NullPtrConstants->remove(this); |
| destroyConstantImpl(); |
| } |
| |
| |
| //---- UndefValue::get() implementation... |
| // |
| |
| namespace llvm { |
| // UndefValue does not take extra "value" argument... |
| template<class ValType> |
| struct ConstantCreator<UndefValue, Type, ValType> { |
| static UndefValue *create(const Type *Ty, const ValType &V) { |
| return new UndefValue(Ty); |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<UndefValue, Type> { |
| static void convert(UndefValue *OldC, const Type *NewTy) { |
| // Make everyone now use a constant of the new type. |
| Constant *New = UndefValue::get(NewTy); |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| } |
| |
| static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants; |
| |
| static char getValType(UndefValue *) { |
| return 0; |
| } |
| |
| |
| UndefValue *UndefValue::get(const Type *Ty) { |
| return UndefValueConstants->getOrCreate(Ty, 0); |
| } |
| |
| // destroyConstant - Remove the constant from the constant table. |
| // |
| void UndefValue::destroyConstant() { |
| UndefValueConstants->remove(this); |
| destroyConstantImpl(); |
| } |
| |
| |
| //---- ConstantExpr::get() implementations... |
| // |
| |
| struct ExprMapKeyType { |
| explicit ExprMapKeyType(unsigned opc, std::vector<Constant*> ops, |
| unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { } |
| uint16_t opcode; |
| uint16_t predicate; |
| std::vector<Constant*> operands; |
| bool operator==(const ExprMapKeyType& that) const { |
| return this->opcode == that.opcode && |
| this->predicate == that.predicate && |
| this->operands == that.operands; |
| } |
| bool operator<(const ExprMapKeyType & that) const { |
| return this->opcode < that.opcode || |
| (this->opcode == that.opcode && this->predicate < that.predicate) || |
| (this->opcode == that.opcode && this->predicate == that.predicate && |
| this->operands < that.operands); |
| } |
| |
| bool operator!=(const ExprMapKeyType& that) const { |
| return !(*this == that); |
| } |
| }; |
| |
| namespace llvm { |
| template<> |
| struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { |
| static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, |
| unsigned short pred = 0) { |
| if (Instruction::isCast(V.opcode)) |
| return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); |
| if ((V.opcode >= Instruction::BinaryOpsBegin && |
| V.opcode < Instruction::BinaryOpsEnd)) |
| return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); |
| if (V.opcode == Instruction::Select) |
| return new SelectConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::ExtractElement) |
| return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); |
| if (V.opcode == Instruction::InsertElement) |
| return new InsertElementConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::ShuffleVector) |
| return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], |
| V.operands[2]); |
| if (V.opcode == Instruction::GetElementPtr) { |
| std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); |
| return new GetElementPtrConstantExpr(V.operands[0], IdxList, Ty); |
| } |
| |
| // The compare instructions are weird. We have to encode the predicate |
| // value and it is combined with the instruction opcode by multiplying |
| // the opcode by one hundred. We must decode this to get the predicate. |
| if (V.opcode == Instruction::ICmp) |
| return new CompareConstantExpr(Instruction::ICmp, V.predicate, |
| V.operands[0], V.operands[1]); |
| if (V.opcode == Instruction::FCmp) |
| return new CompareConstantExpr(Instruction::FCmp, V.predicate, |
| V.operands[0], V.operands[1]); |
| assert(0 && "Invalid ConstantExpr!"); |
| return 0; |
| } |
| }; |
| |
| template<> |
| struct ConvertConstantType<ConstantExpr, Type> { |
| static void convert(ConstantExpr *OldC, const Type *NewTy) { |
| Constant *New; |
| switch (OldC->getOpcode()) { |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), |
| NewTy); |
| break; |
| case Instruction::Select: |
| New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), |
| OldC->getOperand(1), |
| OldC->getOperand(2)); |
| break; |
| default: |
| assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && |
| OldC->getOpcode() < Instruction::BinaryOpsEnd); |
| New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), |
| OldC->getOperand(1)); |
| break; |
| case Instruction::GetElementPtr: |
| // Make everyone now use a constant of the new type... |
| std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end()); |
| New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), |
| &Idx[0], Idx.size()); |
| break; |
| } |
| |
| assert(New != OldC && "Didn't replace constant??"); |
| OldC->uncheckedReplaceAllUsesWith(New); |
| OldC->destroyConstant(); // This constant is now dead, destroy it. |
| } |
| }; |
| } // end namespace llvm |
| |
| |
| static ExprMapKeyType getValType(ConstantExpr *CE) { |
| std::vector<Constant*> Operands; |
| Operands.reserve(CE->getNumOperands()); |
| for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) |
| Operands.push_back(cast<Constant>(CE->getOperand(i))); |
| return ExprMapKeyType(CE->getOpcode(), Operands, |
| CE->isCompare() ? CE->getPredicate() : 0); |
| } |
| |
| static ManagedStatic<ValueMap<ExprMapKeyType, Type, |
| ConstantExpr> > ExprConstants; |
| |
| /// This is a utility function to handle folding of casts and lookup of the |
| /// cast in the ExprConstants map. It is usedby the various get* methods below. |
| static inline Constant *getFoldedCast( |
| Instruction::CastOps opc, Constant *C, const Type *Ty) { |
| assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); |
| // Fold a few common cases |
| if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) |
| return FC; |
| |
| // Look up the constant in the table first to ensure uniqueness |
| std::vector<Constant*> argVec(1, C); |
| ExprMapKeyType Key(opc, argVec); |
| return ExprConstants->getOrCreate(Ty, Key); |
| } |
| |
| Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { |
| Instruction::CastOps opc = Instruction::CastOps(oc); |
| assert(Instruction::isCast(opc) && "opcode out of range"); |
| assert(C && Ty && "Null arguments to getCast"); |
| assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); |
| |
| switch (opc) { |
| default: |
| assert(0 && "Invalid cast opcode"); |
| break; |
| case Instruction::Trunc: return getTrunc(C, Ty); |
| case Instruction::ZExt: return getZExt(C, Ty); |
| case Instruction::SExt: return getSExt(C, Ty); |
| case Instruction::FPTrunc: return getFPTrunc(C, Ty); |
| case Instruction::FPExt: return getFPExtend(C, Ty); |
| case Instruction::UIToFP: return getUIToFP(C, Ty); |
| case Instruction::SIToFP: return getSIToFP(C, Ty); |
| case Instruction::FPToUI: return getFPToUI(C, Ty); |
| case Instruction::FPToSI: return getFPToSI(C, Ty); |
| case Instruction::PtrToInt: return getPtrToInt(C, Ty); |
| case Instruction::IntToPtr: return getIntToPtr(C, Ty); |
| case Instruction::BitCast: return getBitCast(C, Ty); |
| } |
| return 0; |
| } |
| |
| Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) { |
| if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) |
| return getCast(Instruction::BitCast, C, Ty); |
| return getCast(Instruction::ZExt, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) { |
| if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) |
| return getCast(Instruction::BitCast, C, Ty); |
| return getCast(Instruction::SExt, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) { |
| if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) |
| return getCast(Instruction::BitCast, C, Ty); |
| return getCast(Instruction::Trunc, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { |
| assert(isa<PointerType>(S->getType()) && "Invalid cast"); |
| assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast"); |
| |
| if (Ty->isInteger()) |
| return getCast(Instruction::PtrToInt, S, Ty); |
| return getCast(Instruction::BitCast, S, Ty); |
| } |
| |
| Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, |
| bool isSigned) { |
| assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast"); |
| unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); |
| unsigned DstBits = Ty->getPrimitiveSizeInBits(); |
| Instruction::CastOps opcode = |
| (SrcBits == DstBits ? Instruction::BitCast : |
| (SrcBits > DstBits ? Instruction::Trunc : |
| (isSigned ? Instruction::SExt : Instruction::ZExt))); |
| return getCast(opcode, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { |
| assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && |
| "Invalid cast"); |
| unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); |
| unsigned DstBits = Ty->getPrimitiveSizeInBits(); |
| if (SrcBits == DstBits) |
| return C; // Avoid a useless cast |
| Instruction::CastOps opcode = |
| (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); |
| return getCast(opcode, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { |
| assert(C->getType()->isInteger() && "Trunc operand must be integer"); |
| assert(Ty->isInteger() && "Trunc produces only integral"); |
| assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&& |
| "SrcTy must be larger than DestTy for Trunc!"); |
| |
| return getFoldedCast(Instruction::Trunc, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { |
| assert(C->getType()->isInteger() && "SEXt operand must be integral"); |
| assert(Ty->isInteger() && "SExt produces only integer"); |
| assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& |
| "SrcTy must be smaller than DestTy for SExt!"); |
| |
| return getFoldedCast(Instruction::SExt, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { |
| assert(C->getType()->isInteger() && "ZEXt operand must be integral"); |
| assert(Ty->isInteger() && "ZExt produces only integer"); |
| assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& |
| "SrcTy must be smaller than DestTy for ZExt!"); |
| |
| return getFoldedCast(Instruction::ZExt, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) { |
| assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && |
| C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&& |
| "This is an illegal floating point truncation!"); |
| return getFoldedCast(Instruction::FPTrunc, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { |
| assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && |
| C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& |
| "This is an illegal floating point extension!"); |
| return getFoldedCast(Instruction::FPExt, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { |
| assert(C->getType()->isInteger() && Ty->isFloatingPoint() && |
| "This is an illegal i32 to floating point cast!"); |
| return getFoldedCast(Instruction::UIToFP, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { |
| assert(C->getType()->isInteger() && Ty->isFloatingPoint() && |
| "This is an illegal sint to floating point cast!"); |
| return getFoldedCast(Instruction::SIToFP, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { |
| assert(C->getType()->isFloatingPoint() && Ty->isInteger() && |
| "This is an illegal floating point to i32 cast!"); |
| return getFoldedCast(Instruction::FPToUI, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { |
| assert(C->getType()->isFloatingPoint() && Ty->isInteger() && |
| "This is an illegal floating point to i32 cast!"); |
| return getFoldedCast(Instruction::FPToSI, C, Ty); |
| } |
| |
| Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) { |
| assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer"); |
| assert(DstTy->isInteger() && "PtrToInt destination must be integral"); |
| return getFoldedCast(Instruction::PtrToInt, C, DstTy); |
| } |
| |
| Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) { |
| assert(C->getType()->isInteger() && "IntToPtr source must be integral"); |
| assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer"); |
| return getFoldedCast(Instruction::IntToPtr, C, DstTy); |
| } |
| |
| Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { |
| // BitCast implies a no-op cast of type only. No bits change. However, you |
| // can't cast pointers to anything but pointers. |
| const Type *SrcTy = C->getType(); |
| assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) && |
| "BitCast cannot cast pointer to non-pointer and vice versa"); |
| |
| // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr |
| // or nonptr->ptr). For all the other types, the cast is okay if source and |
| // destination bit widths are identical. |
| unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); |
| unsigned DstBitSize = DstTy->getPrimitiveSizeInBits(); |
| assert(SrcBitSize == DstBitSize && "BitCast requies types of same width"); |
| return getFoldedCast(Instruction::BitCast, C, DstTy); |
| } |
| |
| Constant *ConstantExpr::getSizeOf(const Type *Ty) { |
| // sizeof is implemented as: (ulong) gep (Ty*)null, 1 |
| return getCast(Instruction::PtrToInt, getGetElementPtr(getNullValue( |
| PointerType::get(Ty)), std::vector<Constant*>(1, |
| ConstantInt::get(Type::Int32Ty, 1))), Type::Int64Ty); |
| } |
| |
| Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) { |
| // pointer from array is implemented as: getelementptr arr ptr, 0, 0 |
| static std::vector<Constant*> Indices(2, ConstantInt::get(Type::Int32Ty, 0)); |
| |
| return ConstantExpr::getGetElementPtr(C, Indices); |
| } |
| |
| Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, |
| Constant *C1, Constant *C2) { |
| // Check the operands for consistency first |
| assert(Opcode >= Instruction::BinaryOpsBegin && |
| Opcode < Instruction::BinaryOpsEnd && |
| "Invalid opcode in binary constant expression"); |
| assert(C1->getType() == C2->getType() && |
| "Operand types in binary constant expression should match"); |
| |
| if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty) |
| if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) |
| return FC; // Fold a few common cases... |
| |
| std::vector<Constant*> argVec(1, C1); argVec.push_back(C2); |
| ExprMapKeyType Key(Opcode, argVec); |
| return ExprConstants->getOrCreate(ReqTy, Key); |
| } |
| |
| Constant *ConstantExpr::getCompareTy(unsigned short predicate, |
| Constant *C1, Constant *C2) { |
| switch (predicate) { |
| default: assert(0 && "Invalid CmpInst predicate"); |
| case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OGT: |
| case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE: |
| case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO: |
| case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE: |
| case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNE: |
| case FCmpInst::FCMP_TRUE: |
| return getFCmp(predicate, C1, C2); |
| case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: |
| case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: |
| return getICmp(predicate, C1, C2); |
| } |
| } |
| |
| Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { |
| #ifndef NDEBUG |
| switch (Opcode) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() || |
| isa<VectorType>(C1->getType())) && |
| "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) && |
| cast<VectorType>(C1->getType())->getElementType()->isInteger())) && |
| "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::FDiv: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType()) |
| && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint())) |
| && "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::URem: |
| case Instruction::SRem: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) && |
| cast<VectorType>(C1->getType())->getElementType()->isInteger())) && |
| "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::FRem: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType()) |
| && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint())) |
| && "Tried to create an arithmetic operation on a non-arithmetic type!"); |
| break; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert((C1->getType()->isInteger() || isa<VectorType>(C1->getType())) && |
| "Tried to create a logical operation on a non-integral type!"); |
| break; |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| assert(C1->getType()->isInteger() && |
| "Tried to create a shift operation on a non-integer type!"); |
| break; |
| default: |
| break; |
| } |
| #endif |
| |
| return getTy(C1->getType(), Opcode, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getCompare(unsigned short pred, |
| Constant *C1, Constant *C2) { |
| assert(C1->getType() == C2->getType() && "Op types should be identical!"); |
| return getCompareTy(pred, C1, C2); |
| } |
| |
| Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, |
| Constant *V1, Constant *V2) { |
| assert(C->getType() == Type::Int1Ty && "Select condition must be i1!"); |
| assert(V1->getType() == V2->getType() && "Select value types must match!"); |
| assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!"); |
| |
| if (ReqTy == V1->getType()) |
| if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) |
| return SC; // Fold common cases |
| |
| std::vector<Constant*> argVec(3, C); |
| argVec[1] = V1; |
| argVec[2] = V2; |
| ExprMapKeyType Key(Instruction::Select, argVec); |
| return ExprConstants->getOrCreate(ReqTy, Key); |
| } |
| |
| Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, |
| Value* const *Idxs, |
| unsigned NumIdx) { |
| assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, NumIdx, true) && |
| "GEP indices invalid!"); |
| |
| if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx)) |
| return FC; // Fold a few common cases... |
| |
| assert(isa<PointerType>(C->getType()) && |
| "Non-pointer type for constant GetElementPtr expression"); |
| // Look up the constant in the table first to ensure uniqueness |
| std::vector<Constant*> ArgVec; |
| ArgVec.reserve(NumIdx+1); |
| ArgVec.push_back(C); |
| for (unsigned i = 0; i != NumIdx; ++i) |
| ArgVec.push_back(cast<Constant>(Idxs[i])); |
| const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec); |
| return ExprConstants->getOrCreate(ReqTy, Key); |
| } |
| |
| Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, |
| unsigned NumIdx) { |
| // Get the result type of the getelementptr! |
| const Type *Ty = |
| GetElementPtrInst::getIndexedType(C->getType(), Idxs, NumIdx, true); |
| assert(Ty && "GEP indices invalid!"); |
| return getGetElementPtrTy(PointerType::get(Ty), C, Idxs, NumIdx); |
| } |
| |
| Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs, |
| unsigned NumIdx) { |
| return getGetElementPtr(C, (Value* const *)Idxs, NumIdx); |
| } |
| |
| |
| Constant * |
| ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { |
| assert(LHS->getType() == RHS->getType()); |
| assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && |
| pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); |
| |
| if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) |
| return FC; // Fold a few common cases... |
| |
| // Look up the constant in the table first to ensure uniqueness |
| std::vector<Constant*> ArgVec; |
| ArgVec.push_back(LHS); |
| ArgVec.push_back(RHS); |
| // Get the key type with both the opcode and predicate |
| const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); |
| return ExprConstants->getOrCreate(Type::Int1Ty, Key); |
| } |
| |
| Constant * |
| ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { |
| assert(LHS->getType() == RHS->getType()); |
| assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); |
| |
| if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) |
| return FC; // Fold a few common cases... |
| |
| // Look up the constant in the table first to ensure uniqueness |
| std::vector<Constant*> ArgVec; |
| ArgVec.push_back(LHS); |
| ArgVec.push_back(RHS); |
| // Get the key type with both the opcode and predicate |
| const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); |
| return ExprConstants->getOrCreate(Type::Int1Ty, Key); |
| } |
| |
| Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, |
| Constant *Idx) { |
| if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) |
| return FC; // Fold a few common cases... |
| // Look up the constant in the table first to ensure uniqueness |
| std::vector<Constant*> ArgVec(1, Val); |
| ArgVec.push_back(Idx); |
| const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); |
| return ExprConstants->getOrCreate(ReqTy, Key); |
| } |
| |
| Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { |
| assert(isa<VectorType>(Val->getType()) && |
| "Tried to create extractelement operation on non-vector type!"); |
| assert(Idx->getType() == Type::Int32Ty && |
| "Extractelement index must be i32 type!"); |
| return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(), |
| Val, Idx); |
| } |
| |
| Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, |
| Constant *Elt, Constant *Idx) { |
| if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) |
| return FC; // Fold a few common cases... |
| // Look up the constant in the table first to ensure uniqueness |
| std::vector<Constant*> ArgVec(1, Val); |
| ArgVec.push_back(Elt); |
| ArgVec.push_back(Idx); |
| const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); |
| return ExprConstants->getOrCreate(ReqTy, Key); |
| } |
| |
| Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, |
| Constant *Idx) { |
| assert(isa<VectorType>(Val->getType()) && |
| "Tried to create insertelement operation on non-vector type!"); |
| assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() |
| && "Insertelement types must match!"); |
| assert(Idx->getType() == Type::Int32Ty && |
| "Insertelement index must be i32 type!"); |
| return getInsertElementTy(cast<VectorType>(Val->getType())->getElementType(), |
| Val, Elt, Idx); |
| } |
| |
| Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, |
| Constant *V2, Constant *Mask) { |
| if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) |
| return FC; // Fold a few common cases... |
| // Look up the constant in the table first to ensure uniqueness |
| std::vector<Constant*> ArgVec(1, V1); |
| ArgVec.push_back(V2); |
| ArgVec.push_back(Mask); |
| const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); |
| return ExprConstants->getOrCreate(ReqTy, Key); |
| } |
| |
| Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, |
| Constant *Mask) { |
| assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && |
| "Invalid shuffle vector constant expr operands!"); |
| return getShuffleVectorTy(V1->getType(), V1, V2, Mask); |
| } |
| |
| Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) { |
| if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) |
| if (PTy->getElementType()->isFloatingPoint()) { |
| std::vector<Constant*> zeros(PTy->getNumElements(), |
| ConstantFP::get(PTy->getElementType(),-0.0)); |
| return ConstantVector::get(PTy, zeros); |
| } |
| |
| if (Ty->isFloatingPoint()) |
| return ConstantFP::get(Ty, -0.0); |
| |
| return Constant::getNullValue(Ty); |
| } |
| |
| // destroyConstant - Remove the constant from the constant table... |
| // |
| void ConstantExpr::destroyConstant() { |
| ExprConstants->remove(this); |
| destroyConstantImpl(); |
| } |
| |
| const char *ConstantExpr::getOpcodeName() const { |
| return Instruction::getOpcodeName(getOpcode()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // replaceUsesOfWithOnConstant implementations |
| |
| void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, |
| Use *U) { |
| assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); |
| Constant *ToC = cast<Constant>(To); |
| |
| unsigned OperandToUpdate = U-OperandList; |
| assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); |
| |
| std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup; |
| Lookup.first.first = getType(); |
| Lookup.second = this; |
| |
| std::vector<Constant*> &Values = Lookup.first.second; |
| Values.reserve(getNumOperands()); // Build replacement array. |
| |
| // Fill values with the modified operands of the constant array. Also, |
| // compute whether this turns into an all-zeros array. |
| bool isAllZeros = false; |
| if (!ToC->isNullValue()) { |
| for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) |
| Values.push_back(cast<Constant>(O->get())); |
| } else { |
| isAllZeros = true; |
| for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { |
| Constant *Val = cast<Constant>(O->get()); |
| Values.push_back(Val); |
| if (isAllZeros) isAllZeros = Val->isNullValue(); |
| } |
| } |
| Values[OperandToUpdate] = ToC; |
| |
| Constant *Replacement = 0; |
| if (isAllZeros) { |
| Replacement = ConstantAggregateZero::get(getType()); |
| } else { |
| // Check to see if we have this array type already. |
| bool Exists; |
| ArrayConstantsTy::MapTy::iterator I = |
| ArrayConstants->InsertOrGetItem(Lookup, Exists); |
| |
| if (Exists) { |
| Replacement = I->second; |
| } else { |
| // Okay, the new shape doesn't exist in the system yet. Instead of |
| // creating a new constant array, inserting it, replaceallusesof'ing the |
| // old with the new, then deleting the old... just update the current one |
| // in place! |
| ArrayConstants->MoveConstantToNewSlot(this, I); |
| |
| // Update to the new value. |
| setOperand(OperandToUpdate, ToC); |
| return; |
| } |
| } |
| |
| // Otherwise, I do need to replace this with an existing value. |
| assert(Replacement != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| uncheckedReplaceAllUsesWith(Replacement); |
| |
| // Delete the old constant! |
| destroyConstant(); |
| } |
| |
| void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, |
| Use *U) { |
| assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); |
| Constant *ToC = cast<Constant>(To); |
| |
| unsigned OperandToUpdate = U-OperandList; |
| assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); |
| |
| std::pair<StructConstantsTy::MapKey, Constant*> Lookup; |
| Lookup.first.first = getType(); |
| Lookup.second = this; |
| std::vector<Constant*> &Values = Lookup.first.second; |
| Values.reserve(getNumOperands()); // Build replacement struct. |
| |
| |
| // Fill values with the modified operands of the constant struct. Also, |
| // compute whether this turns into an all-zeros struct. |
| bool isAllZeros = false; |
| if (!ToC->isNullValue()) { |
| for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) |
| Values.push_back(cast<Constant>(O->get())); |
| } else { |
| isAllZeros = true; |
| for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { |
| Constant *Val = cast<Constant>(O->get()); |
| Values.push_back(Val); |
| if (isAllZeros) isAllZeros = Val->isNullValue(); |
| } |
| } |
| Values[OperandToUpdate] = ToC; |
| |
| Constant *Replacement = 0; |
| if (isAllZeros) { |
| Replacement = ConstantAggregateZero::get(getType()); |
| } else { |
| // Check to see if we have this array type already. |
| bool Exists; |
| StructConstantsTy::MapTy::iterator I = |
| StructConstants->InsertOrGetItem(Lookup, Exists); |
| |
| if (Exists) { |
| Replacement = I->second; |
| } else { |
| // Okay, the new shape doesn't exist in the system yet. Instead of |
| // creating a new constant struct, inserting it, replaceallusesof'ing the |
| // old with the new, then deleting the old... just update the current one |
| // in place! |
| StructConstants->MoveConstantToNewSlot(this, I); |
| |
| // Update to the new value. |
| setOperand(OperandToUpdate, ToC); |
| return; |
| } |
| } |
| |
| assert(Replacement != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| uncheckedReplaceAllUsesWith(Replacement); |
| |
| // Delete the old constant! |
| destroyConstant(); |
| } |
| |
| void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, |
| Use *U) { |
| assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); |
| |
| std::vector<Constant*> Values; |
| Values.reserve(getNumOperands()); // Build replacement array... |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| Constant *Val = getOperand(i); |
| if (Val == From) Val = cast<Constant>(To); |
| Values.push_back(Val); |
| } |
| |
| Constant *Replacement = ConstantVector::get(getType(), Values); |
| assert(Replacement != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| uncheckedReplaceAllUsesWith(Replacement); |
| |
| // Delete the old constant! |
| destroyConstant(); |
| } |
| |
| void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, |
| Use *U) { |
| assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); |
| Constant *To = cast<Constant>(ToV); |
| |
| Constant *Replacement = 0; |
| if (getOpcode() == Instruction::GetElementPtr) { |
| std::vector<Constant*> Indices; |
| Constant *Pointer = getOperand(0); |
| Indices.reserve(getNumOperands()-1); |
| if (Pointer == From) Pointer = To; |
| |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| Constant *Val = getOperand(i); |
| if (Val == From) Val = To; |
| Indices.push_back(Val); |
| } |
| Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices); |
| } else if (isCast()) { |
| assert(getOperand(0) == From && "Cast only has one use!"); |
| Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); |
| } else if (getOpcode() == Instruction::Select) { |
| Constant *C1 = getOperand(0); |
| Constant *C2 = getOperand(1); |
| Constant *C3 = getOperand(2); |
| if (C1 == From) C1 = To; |
| if (C2 == From) C2 = To; |
| if (C3 == From) C3 = To; |
| Replacement = ConstantExpr::getSelect(C1, C2, C3); |
| } else if (getOpcode() == Instruction::ExtractElement) { |
| Constant *C1 = getOperand(0); |
| Constant *C2 = getOperand(1); |
| if (C1 == From) C1 = To; |
| if (C2 == From) C2 = To; |
| Replacement = ConstantExpr::getExtractElement(C1, C2); |
| } else if (getOpcode() == Instruction::InsertElement) { |
| Constant *C1 = getOperand(0); |
| Constant *C2 = getOperand(1); |
| Constant *C3 = getOperand(1); |
| if (C1 == From) C1 = To; |
| if (C2 == From) C2 = To; |
| if (C3 == From) C3 = To; |
| Replacement = ConstantExpr::getInsertElement(C1, C2, C3); |
| } else if (getOpcode() == Instruction::ShuffleVector) { |
| Constant *C1 = getOperand(0); |
| Constant *C2 = getOperand(1); |
| Constant *C3 = getOperand(2); |
| if (C1 == From) C1 = To; |
| if (C2 == From) C2 = To; |
| if (C3 == From) C3 = To; |
| Replacement = ConstantExpr::getShuffleVector(C1, C2, C3); |
| } else if (isCompare()) { |
| Constant *C1 = getOperand(0); |
| Constant *C2 = getOperand(1); |
| if (C1 == From) C1 = To; |
| if (C2 == From) C2 = To; |
| if (getOpcode() == Instruction::ICmp) |
| Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); |
| else |
| Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); |
| } else if (getNumOperands() == 2) { |
| Constant *C1 = getOperand(0); |
| Constant *C2 = getOperand(1); |
| if (C1 == From) C1 = To; |
| if (C2 == From) C2 = To; |
| Replacement = ConstantExpr::get(getOpcode(), C1, C2); |
| } else { |
| assert(0 && "Unknown ConstantExpr type!"); |
| return; |
| } |
| |
| assert(Replacement != this && "I didn't contain From!"); |
| |
| // Everyone using this now uses the replacement. |
| uncheckedReplaceAllUsesWith(Replacement); |
| |
| // Delete the old constant! |
| destroyConstant(); |
| } |
| |
| |
| /// getStringValue - Turn an LLVM constant pointer that eventually points to a |
| /// global into a string value. Return an empty string if we can't do it. |
| /// Parameter Chop determines if the result is chopped at the first null |
| /// terminator. |
| /// |
| std::string Constant::getStringValue(bool Chop, unsigned Offset) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) { |
| if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) { |
| ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); |
| if (Init->isString()) { |
| std::string Result = Init->getAsString(); |
| if (Offset < Result.size()) { |
| // If we are pointing INTO The string, erase the beginning... |
| Result.erase(Result.begin(), Result.begin()+Offset); |
| |
| // Take off the null terminator, and any string fragments after it. |
| if (Chop) { |
| std::string::size_type NullPos = Result.find_first_of((char)0); |
| if (NullPos != std::string::npos) |
| Result.erase(Result.begin()+NullPos, Result.end()); |
| } |
| return Result; |
| } |
| } |
| } |
| } else if (Constant *C = dyn_cast<Constant>(this)) { |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return GV->getStringValue(Chop, Offset); |
| else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| if (CE->getOpcode() == Instruction::GetElementPtr) { |
| // Turn a gep into the specified offset. |
| if (CE->getNumOperands() == 3 && |
| cast<Constant>(CE->getOperand(1))->isNullValue() && |
| isa<ConstantInt>(CE->getOperand(2))) { |
| Offset += cast<ConstantInt>(CE->getOperand(2))->getZExtValue(); |
| return CE->getOperand(0)->getStringValue(Chop, Offset); |
| } |
| } |
| } |
| } |
| return ""; |
| } |