| //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the PPC implementation of TargetFrameLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCFrameLowering.h" |
| #include "PPCInstrBuilder.h" |
| #include "PPCInstrInfo.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Target/TargetOptions.h" |
| |
| using namespace llvm; |
| |
| // FIXME This disables some code that aligns the stack to a boundary bigger than |
| // the default (16 bytes on Darwin) when there is a stack local of greater |
| // alignment. This does not currently work, because the delta between old and |
| // new stack pointers is added to offsets that reference incoming parameters |
| // after the prolog is generated, and the code that does that doesn't handle a |
| // variable delta. You don't want to do that anyway; a better approach is to |
| // reserve another register that retains to the incoming stack pointer, and |
| // reference parameters relative to that. |
| #define ALIGN_STACK 0 |
| |
| |
| /// VRRegNo - Map from a numbered VR register to its enum value. |
| /// |
| static const uint16_t VRRegNo[] = { |
| PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 , |
| PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15, |
| PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23, |
| PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31 |
| }; |
| |
| /// RemoveVRSaveCode - We have found that this function does not need any code |
| /// to manipulate the VRSAVE register, even though it uses vector registers. |
| /// This can happen when the only registers used are known to be live in or out |
| /// of the function. Remove all of the VRSAVE related code from the function. |
| /// FIXME: The removal of the code results in a compile failure at -O0 when the |
| /// function contains a function call, as the GPR containing original VRSAVE |
| /// contents is spilled and reloaded around the call. Without the prolog code, |
| /// the spill instruction refers to an undefined register. This code needs |
| /// to account for all uses of that GPR. |
| static void RemoveVRSaveCode(MachineInstr *MI) { |
| MachineBasicBlock *Entry = MI->getParent(); |
| MachineFunction *MF = Entry->getParent(); |
| |
| // We know that the MTVRSAVE instruction immediately follows MI. Remove it. |
| MachineBasicBlock::iterator MBBI = MI; |
| ++MBBI; |
| assert(MBBI != Entry->end() && MBBI->getOpcode() == PPC::MTVRSAVE); |
| MBBI->eraseFromParent(); |
| |
| bool RemovedAllMTVRSAVEs = true; |
| // See if we can find and remove the MTVRSAVE instruction from all of the |
| // epilog blocks. |
| for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { |
| // If last instruction is a return instruction, add an epilogue |
| if (!I->empty() && I->back().isReturn()) { |
| bool FoundIt = false; |
| for (MBBI = I->end(); MBBI != I->begin(); ) { |
| --MBBI; |
| if (MBBI->getOpcode() == PPC::MTVRSAVE) { |
| MBBI->eraseFromParent(); // remove it. |
| FoundIt = true; |
| break; |
| } |
| } |
| RemovedAllMTVRSAVEs &= FoundIt; |
| } |
| } |
| |
| // If we found and removed all MTVRSAVE instructions, remove the read of |
| // VRSAVE as well. |
| if (RemovedAllMTVRSAVEs) { |
| MBBI = MI; |
| assert(MBBI != Entry->begin() && "UPDATE_VRSAVE is first instr in block?"); |
| --MBBI; |
| assert(MBBI->getOpcode() == PPC::MFVRSAVE && "VRSAVE instrs wandered?"); |
| MBBI->eraseFromParent(); |
| } |
| |
| // Finally, nuke the UPDATE_VRSAVE. |
| MI->eraseFromParent(); |
| } |
| |
| // HandleVRSaveUpdate - MI is the UPDATE_VRSAVE instruction introduced by the |
| // instruction selector. Based on the vector registers that have been used, |
| // transform this into the appropriate ORI instruction. |
| static void HandleVRSaveUpdate(MachineInstr *MI, const TargetInstrInfo &TII) { |
| MachineFunction *MF = MI->getParent()->getParent(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| unsigned UsedRegMask = 0; |
| for (unsigned i = 0; i != 32; ++i) |
| if (MF->getRegInfo().isPhysRegUsed(VRRegNo[i])) |
| UsedRegMask |= 1 << (31-i); |
| |
| // Live in and live out values already must be in the mask, so don't bother |
| // marking them. |
| for (MachineRegisterInfo::livein_iterator |
| I = MF->getRegInfo().livein_begin(), |
| E = MF->getRegInfo().livein_end(); I != E; ++I) { |
| unsigned RegNo = getPPCRegisterNumbering(I->first); |
| if (VRRegNo[RegNo] == I->first) // If this really is a vector reg. |
| UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked. |
| } |
| |
| // Live out registers appear as use operands on return instructions. |
| for (MachineFunction::const_iterator BI = MF->begin(), BE = MF->end(); |
| UsedRegMask != 0 && BI != BE; ++BI) { |
| const MachineBasicBlock &MBB = *BI; |
| if (MBB.empty() || !MBB.back().isReturn()) |
| continue; |
| const MachineInstr &Ret = MBB.back(); |
| for (unsigned I = 0, E = Ret.getNumOperands(); I != E; ++I) { |
| const MachineOperand &MO = Ret.getOperand(I); |
| if (!MO.isReg() || !PPC::VRRCRegClass.contains(MO.getReg())) |
| continue; |
| unsigned RegNo = getPPCRegisterNumbering(MO.getReg()); |
| UsedRegMask &= ~(1 << (31-RegNo)); |
| } |
| } |
| |
| // If no registers are used, turn this into a copy. |
| if (UsedRegMask == 0) { |
| // Remove all VRSAVE code. |
| RemoveVRSaveCode(MI); |
| return; |
| } |
| |
| unsigned SrcReg = MI->getOperand(1).getReg(); |
| unsigned DstReg = MI->getOperand(0).getReg(); |
| |
| if ((UsedRegMask & 0xFFFF) == UsedRegMask) { |
| if (DstReg != SrcReg) |
| BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg) |
| .addReg(SrcReg) |
| .addImm(UsedRegMask); |
| else |
| BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg) |
| .addReg(SrcReg, RegState::Kill) |
| .addImm(UsedRegMask); |
| } else if ((UsedRegMask & 0xFFFF0000) == UsedRegMask) { |
| if (DstReg != SrcReg) |
| BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) |
| .addReg(SrcReg) |
| .addImm(UsedRegMask >> 16); |
| else |
| BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) |
| .addReg(SrcReg, RegState::Kill) |
| .addImm(UsedRegMask >> 16); |
| } else { |
| if (DstReg != SrcReg) |
| BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) |
| .addReg(SrcReg) |
| .addImm(UsedRegMask >> 16); |
| else |
| BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) |
| .addReg(SrcReg, RegState::Kill) |
| .addImm(UsedRegMask >> 16); |
| |
| BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg) |
| .addReg(DstReg, RegState::Kill) |
| .addImm(UsedRegMask & 0xFFFF); |
| } |
| |
| // Remove the old UPDATE_VRSAVE instruction. |
| MI->eraseFromParent(); |
| } |
| |
| static bool spillsCR(const MachineFunction &MF) { |
| const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| return FuncInfo->isCRSpilled(); |
| } |
| |
| static bool hasSpills(const MachineFunction &MF) { |
| const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| return FuncInfo->hasSpills(); |
| } |
| |
| /// determineFrameLayout - Determine the size of the frame and maximum call |
| /// frame size. |
| unsigned PPCFrameLowering::determineFrameLayout(MachineFunction &MF, |
| bool UpdateMF, |
| bool UseEstimate) const { |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| // Get the number of bytes to allocate from the FrameInfo |
| unsigned FrameSize = |
| UseEstimate ? MFI->estimateStackSize(MF) : MFI->getStackSize(); |
| |
| // Get the alignments provided by the target, and the maximum alignment |
| // (if any) of the fixed frame objects. |
| unsigned MaxAlign = MFI->getMaxAlignment(); |
| unsigned TargetAlign = getStackAlignment(); |
| unsigned AlignMask = TargetAlign - 1; // |
| |
| // If we are a leaf function, and use up to 224 bytes of stack space, |
| // don't have a frame pointer, calls, or dynamic alloca then we do not need |
| // to adjust the stack pointer (we fit in the Red Zone). For 64-bit |
| // SVR4, we also require a stack frame if we need to spill the CR, |
| // since this spill area is addressed relative to the stack pointer. |
| // The 32-bit SVR4 ABI has no Red Zone. However, it can still generate |
| // stackless code if all local vars are reg-allocated. |
| bool DisableRedZone = MF.getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::NoRedZone); |
| if (!DisableRedZone && |
| (Subtarget.isPPC64() || // 32-bit SVR4, no stack- |
| !Subtarget.isSVR4ABI() || // allocated locals. |
| FrameSize == 0) && |
| FrameSize <= 224 && // Fits in red zone. |
| !MFI->hasVarSizedObjects() && // No dynamic alloca. |
| !MFI->adjustsStack() && // No calls. |
| !(Subtarget.isPPC64() && // No 64-bit SVR4 CRsave. |
| Subtarget.isSVR4ABI() |
| && spillsCR(MF)) && |
| (!ALIGN_STACK || MaxAlign <= TargetAlign)) { // No special alignment. |
| // No need for frame |
| if (UpdateMF) |
| MFI->setStackSize(0); |
| return 0; |
| } |
| |
| // Get the maximum call frame size of all the calls. |
| unsigned maxCallFrameSize = MFI->getMaxCallFrameSize(); |
| |
| // Maximum call frame needs to be at least big enough for linkage and 8 args. |
| unsigned minCallFrameSize = getMinCallFrameSize(Subtarget.isPPC64(), |
| Subtarget.isDarwinABI()); |
| maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); |
| |
| // If we have dynamic alloca then maxCallFrameSize needs to be aligned so |
| // that allocations will be aligned. |
| if (MFI->hasVarSizedObjects()) |
| maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask; |
| |
| // Update maximum call frame size. |
| if (UpdateMF) |
| MFI->setMaxCallFrameSize(maxCallFrameSize); |
| |
| // Include call frame size in total. |
| FrameSize += maxCallFrameSize; |
| |
| // Make sure the frame is aligned. |
| FrameSize = (FrameSize + AlignMask) & ~AlignMask; |
| |
| // Update frame info. |
| if (UpdateMF) |
| MFI->setStackSize(FrameSize); |
| |
| return FrameSize; |
| } |
| |
| // hasFP - Return true if the specified function actually has a dedicated frame |
| // pointer register. |
| bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { |
| const MachineFrameInfo *MFI = MF.getFrameInfo(); |
| // FIXME: This is pretty much broken by design: hasFP() might be called really |
| // early, before the stack layout was calculated and thus hasFP() might return |
| // true or false here depending on the time of call. |
| return (MFI->getStackSize()) && needsFP(MF); |
| } |
| |
| // needsFP - Return true if the specified function should have a dedicated frame |
| // pointer register. This is true if the function has variable sized allocas or |
| // if frame pointer elimination is disabled. |
| bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { |
| const MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| // Naked functions have no stack frame pushed, so we don't have a frame |
| // pointer. |
| if (MF.getFunction()->getAttributes().hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::Naked)) |
| return false; |
| |
| return MF.getTarget().Options.DisableFramePointerElim(MF) || |
| MFI->hasVarSizedObjects() || |
| (MF.getTarget().Options.GuaranteedTailCallOpt && |
| MF.getInfo<PPCFunctionInfo>()->hasFastCall()); |
| } |
| |
| |
| void PPCFrameLowering::emitPrologue(MachineFunction &MF) const { |
| MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB |
| MachineBasicBlock::iterator MBBI = MBB.begin(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| const PPCInstrInfo &TII = |
| *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo()); |
| |
| MachineModuleInfo &MMI = MF.getMMI(); |
| DebugLoc dl; |
| bool needsFrameMoves = MMI.hasDebugInfo() || |
| MF.getFunction()->needsUnwindTableEntry(); |
| |
| // Prepare for frame info. |
| MCSymbol *FrameLabel = 0; |
| |
| // Scan the prolog, looking for an UPDATE_VRSAVE instruction. If we find it, |
| // process it. |
| if (!Subtarget.isSVR4ABI()) |
| for (unsigned i = 0; MBBI != MBB.end(); ++i, ++MBBI) { |
| if (MBBI->getOpcode() == PPC::UPDATE_VRSAVE) { |
| HandleVRSaveUpdate(MBBI, TII); |
| break; |
| } |
| } |
| |
| // Move MBBI back to the beginning of the function. |
| MBBI = MBB.begin(); |
| |
| // Work out frame sizes. |
| unsigned FrameSize = determineFrameLayout(MF); |
| int NegFrameSize = -FrameSize; |
| |
| // Get processor type. |
| bool isPPC64 = Subtarget.isPPC64(); |
| // Get operating system |
| bool isDarwinABI = Subtarget.isDarwinABI(); |
| // Check if the link register (LR) must be saved. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| bool MustSaveLR = FI->mustSaveLR(); |
| // Do we have a frame pointer for this function? |
| bool HasFP = hasFP(MF); |
| |
| int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); |
| |
| int FPOffset = 0; |
| if (HasFP) { |
| if (Subtarget.isSVR4ABI()) { |
| MachineFrameInfo *FFI = MF.getFrameInfo(); |
| int FPIndex = FI->getFramePointerSaveIndex(); |
| assert(FPIndex && "No Frame Pointer Save Slot!"); |
| FPOffset = FFI->getObjectOffset(FPIndex); |
| } else { |
| FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); |
| } |
| } |
| |
| if (isPPC64) { |
| if (MustSaveLR) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::MFLR8), PPC::X0); |
| |
| if (HasFP) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STD)) |
| .addReg(PPC::X31) |
| .addImm(FPOffset/4) |
| .addReg(PPC::X1); |
| |
| if (MustSaveLR) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STD)) |
| .addReg(PPC::X0) |
| .addImm(LROffset / 4) |
| .addReg(PPC::X1); |
| } else { |
| if (MustSaveLR) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::MFLR), PPC::R0); |
| |
| if (HasFP) |
| // FIXME: On PPC32 SVR4, FPOffset is negative and access to negative |
| // offsets of R1 is not allowed. |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STW)) |
| .addReg(PPC::R31) |
| .addImm(FPOffset) |
| .addReg(PPC::R1); |
| |
| if (MustSaveLR) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STW)) |
| .addReg(PPC::R0) |
| .addImm(LROffset) |
| .addReg(PPC::R1); |
| } |
| |
| // Skip if a leaf routine. |
| if (!FrameSize) return; |
| |
| // Get stack alignments. |
| unsigned TargetAlign = getStackAlignment(); |
| unsigned MaxAlign = MFI->getMaxAlignment(); |
| |
| // Adjust stack pointer: r1 += NegFrameSize. |
| // If there is a preferred stack alignment, align R1 now |
| if (!isPPC64) { |
| // PPC32. |
| if (ALIGN_STACK && MaxAlign > TargetAlign) { |
| assert(isPowerOf2_32(MaxAlign) && isInt<16>(MaxAlign) && |
| "Invalid alignment!"); |
| assert(isInt<16>(NegFrameSize) && "Unhandled stack size and alignment!"); |
| |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), PPC::R0) |
| .addReg(PPC::R1) |
| .addImm(0) |
| .addImm(32 - Log2_32(MaxAlign)) |
| .addImm(31); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBFIC) ,PPC::R0) |
| .addReg(PPC::R0, RegState::Kill) |
| .addImm(NegFrameSize); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STWUX), PPC::R1) |
| .addReg(PPC::R1, RegState::Kill) |
| .addReg(PPC::R1) |
| .addReg(PPC::R0); |
| } else if (isInt<16>(NegFrameSize)) { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STWU), PPC::R1) |
| .addReg(PPC::R1) |
| .addImm(NegFrameSize) |
| .addReg(PPC::R1); |
| } else { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LIS), PPC::R0) |
| .addImm(NegFrameSize >> 16); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ORI), PPC::R0) |
| .addReg(PPC::R0, RegState::Kill) |
| .addImm(NegFrameSize & 0xFFFF); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STWUX), PPC::R1) |
| .addReg(PPC::R1, RegState::Kill) |
| .addReg(PPC::R1) |
| .addReg(PPC::R0); |
| } |
| } else { // PPC64. |
| if (ALIGN_STACK && MaxAlign > TargetAlign) { |
| assert(isPowerOf2_32(MaxAlign) && isInt<16>(MaxAlign) && |
| "Invalid alignment!"); |
| assert(isInt<16>(NegFrameSize) && "Unhandled stack size and alignment!"); |
| |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), PPC::X0) |
| .addReg(PPC::X1) |
| .addImm(0) |
| .addImm(64 - Log2_32(MaxAlign)); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBFIC8), PPC::X0) |
| .addReg(PPC::X0) |
| .addImm(NegFrameSize); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STDUX), PPC::X1) |
| .addReg(PPC::X1, RegState::Kill) |
| .addReg(PPC::X1) |
| .addReg(PPC::X0); |
| } else if (isInt<16>(NegFrameSize)) { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STDU), PPC::X1) |
| .addReg(PPC::X1) |
| .addImm(NegFrameSize / 4) |
| .addReg(PPC::X1); |
| } else { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LIS8), PPC::X0) |
| .addImm(NegFrameSize >> 16); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ORI8), PPC::X0) |
| .addReg(PPC::X0, RegState::Kill) |
| .addImm(NegFrameSize & 0xFFFF); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::STDUX), PPC::X1) |
| .addReg(PPC::X1, RegState::Kill) |
| .addReg(PPC::X1) |
| .addReg(PPC::X0); |
| } |
| } |
| |
| std::vector<MachineMove> &Moves = MMI.getFrameMoves(); |
| |
| // Add the "machine moves" for the instructions we generated above, but in |
| // reverse order. |
| if (needsFrameMoves) { |
| // Mark effective beginning of when frame pointer becomes valid. |
| FrameLabel = MMI.getContext().CreateTempSymbol(); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::PROLOG_LABEL)).addSym(FrameLabel); |
| |
| // Show update of SP. |
| if (NegFrameSize) { |
| MachineLocation SPDst(MachineLocation::VirtualFP); |
| MachineLocation SPSrc(MachineLocation::VirtualFP, NegFrameSize); |
| Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc)); |
| } else { |
| MachineLocation SP(isPPC64 ? PPC::X31 : PPC::R31); |
| Moves.push_back(MachineMove(FrameLabel, SP, SP)); |
| } |
| |
| if (HasFP) { |
| MachineLocation FPDst(MachineLocation::VirtualFP, FPOffset); |
| MachineLocation FPSrc(isPPC64 ? PPC::X31 : PPC::R31); |
| Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc)); |
| } |
| |
| if (MustSaveLR) { |
| MachineLocation LRDst(MachineLocation::VirtualFP, LROffset); |
| MachineLocation LRSrc(isPPC64 ? PPC::LR8 : PPC::LR); |
| Moves.push_back(MachineMove(FrameLabel, LRDst, LRSrc)); |
| } |
| } |
| |
| MCSymbol *ReadyLabel = 0; |
| |
| // If there is a frame pointer, copy R1 into R31 |
| if (HasFP) { |
| if (!isPPC64) { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::OR), PPC::R31) |
| .addReg(PPC::R1) |
| .addReg(PPC::R1); |
| } else { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::OR8), PPC::X31) |
| .addReg(PPC::X1) |
| .addReg(PPC::X1); |
| } |
| |
| if (needsFrameMoves) { |
| ReadyLabel = MMI.getContext().CreateTempSymbol(); |
| |
| // Mark effective beginning of when frame pointer is ready. |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::PROLOG_LABEL)).addSym(ReadyLabel); |
| |
| MachineLocation FPDst(HasFP ? (isPPC64 ? PPC::X31 : PPC::R31) : |
| (isPPC64 ? PPC::X1 : PPC::R1)); |
| MachineLocation FPSrc(MachineLocation::VirtualFP); |
| Moves.push_back(MachineMove(ReadyLabel, FPDst, FPSrc)); |
| } |
| } |
| |
| if (needsFrameMoves) { |
| MCSymbol *Label = HasFP ? ReadyLabel : FrameLabel; |
| |
| // Add callee saved registers to move list. |
| const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); |
| for (unsigned I = 0, E = CSI.size(); I != E; ++I) { |
| unsigned Reg = CSI[I].getReg(); |
| if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; |
| |
| // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just |
| // subregisters of CR2. We just need to emit a move of CR2. |
| if (PPC::CRBITRCRegClass.contains(Reg)) |
| continue; |
| |
| // For SVR4, don't emit a move for the CR spill slot if we haven't |
| // spilled CRs. |
| if (Subtarget.isSVR4ABI() |
| && (PPC::CR2 <= Reg && Reg <= PPC::CR4) |
| && !spillsCR(MF)) |
| continue; |
| |
| // For 64-bit SVR4 when we have spilled CRs, the spill location |
| // is SP+8, not a frame-relative slot. |
| if (Subtarget.isSVR4ABI() |
| && Subtarget.isPPC64() |
| && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { |
| MachineLocation CSDst(PPC::X1, 8); |
| MachineLocation CSSrc(PPC::CR2); |
| Moves.push_back(MachineMove(Label, CSDst, CSSrc)); |
| continue; |
| } |
| |
| int Offset = MFI->getObjectOffset(CSI[I].getFrameIdx()); |
| MachineLocation CSDst(MachineLocation::VirtualFP, Offset); |
| MachineLocation CSSrc(Reg); |
| Moves.push_back(MachineMove(Label, CSDst, CSSrc)); |
| } |
| } |
| } |
| |
| void PPCFrameLowering::emitEpilogue(MachineFunction &MF, |
| MachineBasicBlock &MBB) const { |
| MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); |
| assert(MBBI != MBB.end() && "Returning block has no terminator"); |
| const PPCInstrInfo &TII = |
| *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo()); |
| |
| unsigned RetOpcode = MBBI->getOpcode(); |
| DebugLoc dl; |
| |
| assert((RetOpcode == PPC::BLR || |
| RetOpcode == PPC::TCRETURNri || |
| RetOpcode == PPC::TCRETURNdi || |
| RetOpcode == PPC::TCRETURNai || |
| RetOpcode == PPC::TCRETURNri8 || |
| RetOpcode == PPC::TCRETURNdi8 || |
| RetOpcode == PPC::TCRETURNai8) && |
| "Can only insert epilog into returning blocks"); |
| |
| // Get alignment info so we know how to restore r1 |
| const MachineFrameInfo *MFI = MF.getFrameInfo(); |
| unsigned TargetAlign = getStackAlignment(); |
| unsigned MaxAlign = MFI->getMaxAlignment(); |
| |
| // Get the number of bytes allocated from the FrameInfo. |
| int FrameSize = MFI->getStackSize(); |
| |
| // Get processor type. |
| bool isPPC64 = Subtarget.isPPC64(); |
| // Get operating system |
| bool isDarwinABI = Subtarget.isDarwinABI(); |
| // Check if the link register (LR) has been saved. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| bool MustSaveLR = FI->mustSaveLR(); |
| // Do we have a frame pointer for this function? |
| bool HasFP = hasFP(MF); |
| |
| int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); |
| |
| int FPOffset = 0; |
| if (HasFP) { |
| if (Subtarget.isSVR4ABI()) { |
| MachineFrameInfo *FFI = MF.getFrameInfo(); |
| int FPIndex = FI->getFramePointerSaveIndex(); |
| assert(FPIndex && "No Frame Pointer Save Slot!"); |
| FPOffset = FFI->getObjectOffset(FPIndex); |
| } else { |
| FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); |
| } |
| } |
| |
| bool UsesTCRet = RetOpcode == PPC::TCRETURNri || |
| RetOpcode == PPC::TCRETURNdi || |
| RetOpcode == PPC::TCRETURNai || |
| RetOpcode == PPC::TCRETURNri8 || |
| RetOpcode == PPC::TCRETURNdi8 || |
| RetOpcode == PPC::TCRETURNai8; |
| |
| if (UsesTCRet) { |
| int MaxTCRetDelta = FI->getTailCallSPDelta(); |
| MachineOperand &StackAdjust = MBBI->getOperand(1); |
| assert(StackAdjust.isImm() && "Expecting immediate value."); |
| // Adjust stack pointer. |
| int StackAdj = StackAdjust.getImm(); |
| int Delta = StackAdj - MaxTCRetDelta; |
| assert((Delta >= 0) && "Delta must be positive"); |
| if (MaxTCRetDelta>0) |
| FrameSize += (StackAdj +Delta); |
| else |
| FrameSize += StackAdj; |
| } |
| |
| if (FrameSize) { |
| // The loaded (or persistent) stack pointer value is offset by the 'stwu' |
| // on entry to the function. Add this offset back now. |
| if (!isPPC64) { |
| // If this function contained a fastcc call and GuaranteedTailCallOpt is |
| // enabled (=> hasFastCall()==true) the fastcc call might contain a tail |
| // call which invalidates the stack pointer value in SP(0). So we use the |
| // value of R31 in this case. |
| if (FI->hasFastCall() && isInt<16>(FrameSize)) { |
| assert(hasFP(MF) && "Expecting a valid the frame pointer."); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), PPC::R1) |
| .addReg(PPC::R31).addImm(FrameSize); |
| } else if(FI->hasFastCall()) { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LIS), PPC::R0) |
| .addImm(FrameSize >> 16); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ORI), PPC::R0) |
| .addReg(PPC::R0, RegState::Kill) |
| .addImm(FrameSize & 0xFFFF); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ADD4)) |
| .addReg(PPC::R1) |
| .addReg(PPC::R31) |
| .addReg(PPC::R0); |
| } else if (isInt<16>(FrameSize) && |
| (!ALIGN_STACK || TargetAlign >= MaxAlign) && |
| !MFI->hasVarSizedObjects()) { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), PPC::R1) |
| .addReg(PPC::R1).addImm(FrameSize); |
| } else { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ),PPC::R1) |
| .addImm(0).addReg(PPC::R1); |
| } |
| } else { |
| if (FI->hasFastCall() && isInt<16>(FrameSize)) { |
| assert(hasFP(MF) && "Expecting a valid the frame pointer."); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI8), PPC::X1) |
| .addReg(PPC::X31).addImm(FrameSize); |
| } else if(FI->hasFastCall()) { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LIS8), PPC::X0) |
| .addImm(FrameSize >> 16); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ORI8), PPC::X0) |
| .addReg(PPC::X0, RegState::Kill) |
| .addImm(FrameSize & 0xFFFF); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ADD8)) |
| .addReg(PPC::X1) |
| .addReg(PPC::X31) |
| .addReg(PPC::X0); |
| } else if (isInt<16>(FrameSize) && TargetAlign >= MaxAlign && |
| !MFI->hasVarSizedObjects()) { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI8), PPC::X1) |
| .addReg(PPC::X1).addImm(FrameSize); |
| } else { |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LD), PPC::X1) |
| .addImm(0).addReg(PPC::X1); |
| } |
| } |
| } |
| |
| if (isPPC64) { |
| if (MustSaveLR) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LD), PPC::X0) |
| .addImm(LROffset/4).addReg(PPC::X1); |
| |
| if (HasFP) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LD), PPC::X31) |
| .addImm(FPOffset/4).addReg(PPC::X1); |
| |
| if (MustSaveLR) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::MTLR8)).addReg(PPC::X0); |
| } else { |
| if (MustSaveLR) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ), PPC::R0) |
| .addImm(LROffset).addReg(PPC::R1); |
| |
| if (HasFP) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ), PPC::R31) |
| .addImm(FPOffset).addReg(PPC::R1); |
| |
| if (MustSaveLR) |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::MTLR)).addReg(PPC::R0); |
| } |
| |
| // Callee pop calling convention. Pop parameter/linkage area. Used for tail |
| // call optimization |
| if (MF.getTarget().Options.GuaranteedTailCallOpt && RetOpcode == PPC::BLR && |
| MF.getFunction()->getCallingConv() == CallingConv::Fast) { |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| unsigned CallerAllocatedAmt = FI->getMinReservedArea(); |
| unsigned StackReg = isPPC64 ? PPC::X1 : PPC::R1; |
| unsigned FPReg = isPPC64 ? PPC::X31 : PPC::R31; |
| unsigned TmpReg = isPPC64 ? PPC::X0 : PPC::R0; |
| unsigned ADDIInstr = isPPC64 ? PPC::ADDI8 : PPC::ADDI; |
| unsigned ADDInstr = isPPC64 ? PPC::ADD8 : PPC::ADD4; |
| unsigned LISInstr = isPPC64 ? PPC::LIS8 : PPC::LIS; |
| unsigned ORIInstr = isPPC64 ? PPC::ORI8 : PPC::ORI; |
| |
| if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { |
| BuildMI(MBB, MBBI, dl, TII.get(ADDIInstr), StackReg) |
| .addReg(StackReg).addImm(CallerAllocatedAmt); |
| } else { |
| BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) |
| .addImm(CallerAllocatedAmt >> 16); |
| BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) |
| .addReg(TmpReg, RegState::Kill) |
| .addImm(CallerAllocatedAmt & 0xFFFF); |
| BuildMI(MBB, MBBI, dl, TII.get(ADDInstr)) |
| .addReg(StackReg) |
| .addReg(FPReg) |
| .addReg(TmpReg); |
| } |
| } else if (RetOpcode == PPC::TCRETURNdi) { |
| MBBI = MBB.getLastNonDebugInstr(); |
| MachineOperand &JumpTarget = MBBI->getOperand(0); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). |
| addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); |
| } else if (RetOpcode == PPC::TCRETURNri) { |
| MBBI = MBB.getLastNonDebugInstr(); |
| assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); |
| } else if (RetOpcode == PPC::TCRETURNai) { |
| MBBI = MBB.getLastNonDebugInstr(); |
| MachineOperand &JumpTarget = MBBI->getOperand(0); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); |
| } else if (RetOpcode == PPC::TCRETURNdi8) { |
| MBBI = MBB.getLastNonDebugInstr(); |
| MachineOperand &JumpTarget = MBBI->getOperand(0); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). |
| addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); |
| } else if (RetOpcode == PPC::TCRETURNri8) { |
| MBBI = MBB.getLastNonDebugInstr(); |
| assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); |
| } else if (RetOpcode == PPC::TCRETURNai8) { |
| MBBI = MBB.getLastNonDebugInstr(); |
| MachineOperand &JumpTarget = MBBI->getOperand(0); |
| BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); |
| } |
| } |
| |
| /// MustSaveLR - Return true if this function requires that we save the LR |
| /// register onto the stack in the prolog and restore it in the epilog of the |
| /// function. |
| static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { |
| const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); |
| |
| // We need a save/restore of LR if there is any def of LR (which is |
| // defined by calls, including the PIC setup sequence), or if there is |
| // some use of the LR stack slot (e.g. for builtin_return_address). |
| // (LR comes in 32 and 64 bit versions.) |
| MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); |
| return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); |
| } |
| |
| void |
| PPCFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, |
| RegScavenger *) const { |
| const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); |
| |
| // Save and clear the LR state. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| unsigned LR = RegInfo->getRARegister(); |
| FI->setMustSaveLR(MustSaveLR(MF, LR)); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| MRI.setPhysRegUnused(LR); |
| |
| // Save R31 if necessary |
| int FPSI = FI->getFramePointerSaveIndex(); |
| bool isPPC64 = Subtarget.isPPC64(); |
| bool isDarwinABI = Subtarget.isDarwinABI(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| // If the frame pointer save index hasn't been defined yet. |
| if (!FPSI && needsFP(MF)) { |
| // Find out what the fix offset of the frame pointer save area. |
| int FPOffset = getFramePointerSaveOffset(isPPC64, isDarwinABI); |
| // Allocate the frame index for frame pointer save area. |
| FPSI = MFI->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); |
| // Save the result. |
| FI->setFramePointerSaveIndex(FPSI); |
| } |
| |
| // Reserve stack space to move the linkage area to in case of a tail call. |
| int TCSPDelta = 0; |
| if (MF.getTarget().Options.GuaranteedTailCallOpt && |
| (TCSPDelta = FI->getTailCallSPDelta()) < 0) { |
| MFI->CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); |
| } |
| |
| // For 32-bit SVR4, allocate the nonvolatile CR spill slot iff the |
| // function uses CR 2, 3, or 4. |
| if (!isPPC64 && !isDarwinABI && |
| (MRI.isPhysRegUsed(PPC::CR2) || |
| MRI.isPhysRegUsed(PPC::CR3) || |
| MRI.isPhysRegUsed(PPC::CR4))) { |
| int FrameIdx = MFI->CreateFixedObject((uint64_t)4, (int64_t)-4, true); |
| FI->setCRSpillFrameIndex(FrameIdx); |
| } |
| } |
| |
| void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, |
| RegScavenger *RS) const { |
| // Early exit if not using the SVR4 ABI. |
| if (!Subtarget.isSVR4ABI()) { |
| addScavengingSpillSlot(MF, RS); |
| return; |
| } |
| |
| // Get callee saved register information. |
| MachineFrameInfo *FFI = MF.getFrameInfo(); |
| const std::vector<CalleeSavedInfo> &CSI = FFI->getCalleeSavedInfo(); |
| |
| // Early exit if no callee saved registers are modified! |
| if (CSI.empty() && !needsFP(MF)) { |
| addScavengingSpillSlot(MF, RS); |
| return; |
| } |
| |
| unsigned MinGPR = PPC::R31; |
| unsigned MinG8R = PPC::X31; |
| unsigned MinFPR = PPC::F31; |
| unsigned MinVR = PPC::V31; |
| |
| bool HasGPSaveArea = false; |
| bool HasG8SaveArea = false; |
| bool HasFPSaveArea = false; |
| bool HasVRSAVESaveArea = false; |
| bool HasVRSaveArea = false; |
| |
| SmallVector<CalleeSavedInfo, 18> GPRegs; |
| SmallVector<CalleeSavedInfo, 18> G8Regs; |
| SmallVector<CalleeSavedInfo, 18> FPRegs; |
| SmallVector<CalleeSavedInfo, 18> VRegs; |
| |
| for (unsigned i = 0, e = CSI.size(); i != e; ++i) { |
| unsigned Reg = CSI[i].getReg(); |
| if (PPC::GPRCRegClass.contains(Reg)) { |
| HasGPSaveArea = true; |
| |
| GPRegs.push_back(CSI[i]); |
| |
| if (Reg < MinGPR) { |
| MinGPR = Reg; |
| } |
| } else if (PPC::G8RCRegClass.contains(Reg)) { |
| HasG8SaveArea = true; |
| |
| G8Regs.push_back(CSI[i]); |
| |
| if (Reg < MinG8R) { |
| MinG8R = Reg; |
| } |
| } else if (PPC::F8RCRegClass.contains(Reg)) { |
| HasFPSaveArea = true; |
| |
| FPRegs.push_back(CSI[i]); |
| |
| if (Reg < MinFPR) { |
| MinFPR = Reg; |
| } |
| } else if (PPC::CRBITRCRegClass.contains(Reg) || |
| PPC::CRRCRegClass.contains(Reg)) { |
| ; // do nothing, as we already know whether CRs are spilled |
| } else if (PPC::VRSAVERCRegClass.contains(Reg)) { |
| HasVRSAVESaveArea = true; |
| } else if (PPC::VRRCRegClass.contains(Reg)) { |
| HasVRSaveArea = true; |
| |
| VRegs.push_back(CSI[i]); |
| |
| if (Reg < MinVR) { |
| MinVR = Reg; |
| } |
| } else { |
| llvm_unreachable("Unknown RegisterClass!"); |
| } |
| } |
| |
| PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); |
| |
| int64_t LowerBound = 0; |
| |
| // Take into account stack space reserved for tail calls. |
| int TCSPDelta = 0; |
| if (MF.getTarget().Options.GuaranteedTailCallOpt && |
| (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { |
| LowerBound = TCSPDelta; |
| } |
| |
| // The Floating-point register save area is right below the back chain word |
| // of the previous stack frame. |
| if (HasFPSaveArea) { |
| for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { |
| int FI = FPRegs[i].getFrameIdx(); |
| |
| FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI)); |
| } |
| |
| LowerBound -= (31 - getPPCRegisterNumbering(MinFPR) + 1) * 8; |
| } |
| |
| // Check whether the frame pointer register is allocated. If so, make sure it |
| // is spilled to the correct offset. |
| if (needsFP(MF)) { |
| HasGPSaveArea = true; |
| |
| int FI = PFI->getFramePointerSaveIndex(); |
| assert(FI && "No Frame Pointer Save Slot!"); |
| |
| FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI)); |
| } |
| |
| // General register save area starts right below the Floating-point |
| // register save area. |
| if (HasGPSaveArea || HasG8SaveArea) { |
| // Move general register save area spill slots down, taking into account |
| // the size of the Floating-point register save area. |
| for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { |
| int FI = GPRegs[i].getFrameIdx(); |
| |
| FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI)); |
| } |
| |
| // Move general register save area spill slots down, taking into account |
| // the size of the Floating-point register save area. |
| for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { |
| int FI = G8Regs[i].getFrameIdx(); |
| |
| FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI)); |
| } |
| |
| unsigned MinReg = |
| std::min<unsigned>(getPPCRegisterNumbering(MinGPR), |
| getPPCRegisterNumbering(MinG8R)); |
| |
| if (Subtarget.isPPC64()) { |
| LowerBound -= (31 - MinReg + 1) * 8; |
| } else { |
| LowerBound -= (31 - MinReg + 1) * 4; |
| } |
| } |
| |
| // For 32-bit only, the CR save area is below the general register |
| // save area. For 64-bit SVR4, the CR save area is addressed relative |
| // to the stack pointer and hence does not need an adjustment here. |
| // Only CR2 (the first nonvolatile spilled) has an associated frame |
| // index so that we have a single uniform save area. |
| if (spillsCR(MF) && !(Subtarget.isPPC64() && Subtarget.isSVR4ABI())) { |
| // Adjust the frame index of the CR spill slot. |
| for (unsigned i = 0, e = CSI.size(); i != e; ++i) { |
| unsigned Reg = CSI[i].getReg(); |
| |
| if ((Subtarget.isSVR4ABI() && Reg == PPC::CR2) |
| // Leave Darwin logic as-is. |
| || (!Subtarget.isSVR4ABI() && |
| (PPC::CRBITRCRegClass.contains(Reg) || |
| PPC::CRRCRegClass.contains(Reg)))) { |
| int FI = CSI[i].getFrameIdx(); |
| |
| FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI)); |
| } |
| } |
| |
| LowerBound -= 4; // The CR save area is always 4 bytes long. |
| } |
| |
| if (HasVRSAVESaveArea) { |
| // FIXME SVR4: Is it actually possible to have multiple elements in CSI |
| // which have the VRSAVE register class? |
| // Adjust the frame index of the VRSAVE spill slot. |
| for (unsigned i = 0, e = CSI.size(); i != e; ++i) { |
| unsigned Reg = CSI[i].getReg(); |
| |
| if (PPC::VRSAVERCRegClass.contains(Reg)) { |
| int FI = CSI[i].getFrameIdx(); |
| |
| FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI)); |
| } |
| } |
| |
| LowerBound -= 4; // The VRSAVE save area is always 4 bytes long. |
| } |
| |
| if (HasVRSaveArea) { |
| // Insert alignment padding, we need 16-byte alignment. |
| LowerBound = (LowerBound - 15) & ~(15); |
| |
| for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { |
| int FI = VRegs[i].getFrameIdx(); |
| |
| FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI)); |
| } |
| } |
| |
| addScavengingSpillSlot(MF, RS); |
| } |
| |
| void |
| PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, |
| RegScavenger *RS) const { |
| // Reserve a slot closest to SP or frame pointer if we have a dynalloc or |
| // a large stack, which will require scavenging a register to materialize a |
| // large offset. |
| |
| // We need to have a scavenger spill slot for spills if the frame size is |
| // large. In case there is no free register for large-offset addressing, |
| // this slot is used for the necessary emergency spill. Also, we need the |
| // slot for dynamic stack allocations. |
| |
| // The scavenger might be invoked if the frame offset does not fit into |
| // the 16-bit immediate. We don't know the complete frame size here |
| // because we've not yet computed callee-saved register spills or the |
| // needed alignment padding. |
| unsigned StackSize = determineFrameLayout(MF, false, true); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| if (MFI->hasVarSizedObjects() || spillsCR(MF) || |
| (hasSpills(MF) && !isInt<16>(StackSize))) { |
| const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; |
| const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; |
| const TargetRegisterClass *RC = Subtarget.isPPC64() ? G8RC : GPRC; |
| RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(), |
| RC->getAlignment(), |
| false)); |
| } |
| } |
| |
| bool |
| PPCFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const std::vector<CalleeSavedInfo> &CSI, |
| const TargetRegisterInfo *TRI) const { |
| |
| // Currently, this function only handles SVR4 32- and 64-bit ABIs. |
| // Return false otherwise to maintain pre-existing behavior. |
| if (!Subtarget.isSVR4ABI()) |
| return false; |
| |
| MachineFunction *MF = MBB.getParent(); |
| const PPCInstrInfo &TII = |
| *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo()); |
| DebugLoc DL; |
| bool CRSpilled = false; |
| |
| for (unsigned i = 0, e = CSI.size(); i != e; ++i) { |
| unsigned Reg = CSI[i].getReg(); |
| // CR2 through CR4 are the nonvolatile CR fields. |
| bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; |
| |
| if (CRSpilled && IsCRField) |
| continue; |
| |
| // Add the callee-saved register as live-in; it's killed at the spill. |
| MBB.addLiveIn(Reg); |
| |
| // Insert the spill to the stack frame. |
| if (IsCRField) { |
| CRSpilled = true; |
| // The first time we see a CR field, store the whole CR into the |
| // save slot via GPR12 (available in the prolog for 32- and 64-bit). |
| if (Subtarget.isPPC64()) { |
| // 64-bit: SP+8 |
| MBB.insert(MI, BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::X12)); |
| MBB.insert(MI, BuildMI(*MF, DL, TII.get(PPC::STW)) |
| .addReg(PPC::X12, |
| getKillRegState(true)) |
| .addImm(8) |
| .addReg(PPC::X1)); |
| } else { |
| // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have |
| // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. |
| MBB.insert(MI, BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)); |
| MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) |
| .addReg(PPC::R12, |
| getKillRegState(true)), |
| CSI[i].getFrameIdx())); |
| } |
| |
| // Record that we spill the CR in this function. |
| PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); |
| FuncInfo->setSpillsCR(); |
| } else { |
| const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); |
| TII.storeRegToStackSlot(MBB, MI, Reg, true, |
| CSI[i].getFrameIdx(), RC, TRI); |
| } |
| } |
| return true; |
| } |
| |
| static void |
| restoreCRs(bool isPPC64, bool CR2Spilled, bool CR3Spilled, bool CR4Spilled, |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| const std::vector<CalleeSavedInfo> &CSI, unsigned CSIIndex) { |
| |
| MachineFunction *MF = MBB.getParent(); |
| const PPCInstrInfo &TII = |
| *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo()); |
| DebugLoc DL; |
| unsigned RestoreOp, MoveReg; |
| |
| if (isPPC64) { |
| // 64-bit: SP+8 |
| MBB.insert(MI, BuildMI(*MF, DL, TII.get(PPC::LWZ), PPC::X12) |
| .addImm(8) |
| .addReg(PPC::X1)); |
| RestoreOp = PPC::MTCRF8; |
| MoveReg = PPC::X12; |
| } else { |
| // 32-bit: FP-relative |
| MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), |
| PPC::R12), |
| CSI[CSIIndex].getFrameIdx())); |
| RestoreOp = PPC::MTCRF; |
| MoveReg = PPC::R12; |
| } |
| |
| if (CR2Spilled) |
| MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) |
| .addReg(MoveReg)); |
| |
| if (CR3Spilled) |
| MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) |
| .addReg(MoveReg)); |
| |
| if (CR4Spilled) |
| MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) |
| .addReg(MoveReg)); |
| } |
| |
| void PPCFrameLowering:: |
| eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) const { |
| const PPCInstrInfo &TII = |
| *static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo()); |
| if (MF.getTarget().Options.GuaranteedTailCallOpt && |
| I->getOpcode() == PPC::ADJCALLSTACKUP) { |
| // Add (actually subtract) back the amount the callee popped on return. |
| if (int CalleeAmt = I->getOperand(1).getImm()) { |
| bool is64Bit = Subtarget.isPPC64(); |
| CalleeAmt *= -1; |
| unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; |
| unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; |
| unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; |
| unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; |
| unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; |
| unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; |
| MachineInstr *MI = I; |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| if (isInt<16>(CalleeAmt)) { |
| BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) |
| .addReg(StackReg, RegState::Kill) |
| .addImm(CalleeAmt); |
| } else { |
| MachineBasicBlock::iterator MBBI = I; |
| BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) |
| .addImm(CalleeAmt >> 16); |
| BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) |
| .addReg(TmpReg, RegState::Kill) |
| .addImm(CalleeAmt & 0xFFFF); |
| BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) |
| .addReg(StackReg, RegState::Kill) |
| .addReg(TmpReg); |
| } |
| } |
| } |
| // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. |
| MBB.erase(I); |
| } |
| |
| bool |
| PPCFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const std::vector<CalleeSavedInfo> &CSI, |
| const TargetRegisterInfo *TRI) const { |
| |
| // Currently, this function only handles SVR4 32- and 64-bit ABIs. |
| // Return false otherwise to maintain pre-existing behavior. |
| if (!Subtarget.isSVR4ABI()) |
| return false; |
| |
| MachineFunction *MF = MBB.getParent(); |
| const PPCInstrInfo &TII = |
| *static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo()); |
| bool CR2Spilled = false; |
| bool CR3Spilled = false; |
| bool CR4Spilled = false; |
| unsigned CSIIndex = 0; |
| |
| // Initialize insertion-point logic; we will be restoring in reverse |
| // order of spill. |
| MachineBasicBlock::iterator I = MI, BeforeI = I; |
| bool AtStart = I == MBB.begin(); |
| |
| if (!AtStart) |
| --BeforeI; |
| |
| for (unsigned i = 0, e = CSI.size(); i != e; ++i) { |
| unsigned Reg = CSI[i].getReg(); |
| |
| if (Reg == PPC::CR2) { |
| CR2Spilled = true; |
| // The spill slot is associated only with CR2, which is the |
| // first nonvolatile spilled. Save it here. |
| CSIIndex = i; |
| continue; |
| } else if (Reg == PPC::CR3) { |
| CR3Spilled = true; |
| continue; |
| } else if (Reg == PPC::CR4) { |
| CR4Spilled = true; |
| continue; |
| } else { |
| // When we first encounter a non-CR register after seeing at |
| // least one CR register, restore all spilled CRs together. |
| if ((CR2Spilled || CR3Spilled || CR4Spilled) |
| && !(PPC::CR2 <= Reg && Reg <= PPC::CR4)) { |
| restoreCRs(Subtarget.isPPC64(), CR2Spilled, CR3Spilled, CR4Spilled, |
| MBB, I, CSI, CSIIndex); |
| CR2Spilled = CR3Spilled = CR4Spilled = false; |
| } |
| |
| // Default behavior for non-CR saves. |
| const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); |
| TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), |
| RC, TRI); |
| assert(I != MBB.begin() && |
| "loadRegFromStackSlot didn't insert any code!"); |
| } |
| |
| // Insert in reverse order. |
| if (AtStart) |
| I = MBB.begin(); |
| else { |
| I = BeforeI; |
| ++I; |
| } |
| } |
| |
| // If we haven't yet spilled the CRs, do so now. |
| if (CR2Spilled || CR3Spilled || CR4Spilled) |
| restoreCRs(Subtarget.isPPC64(), CR2Spilled, CR3Spilled, CR4Spilled, |
| MBB, I, CSI, CSIIndex); |
| |
| return true; |
| } |
| |