| //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a DAG pattern matching instruction selector for X86, |
| // converting from a legalized dag to a X86 dag. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-isel" |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86RegisterInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); |
| |
| //===----------------------------------------------------------------------===// |
| // Pattern Matcher Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses |
| /// SDValue's instead of register numbers for the leaves of the matched |
| /// tree. |
| struct X86ISelAddressMode { |
| enum { |
| RegBase, |
| FrameIndexBase |
| } BaseType; |
| |
| // This is really a union, discriminated by BaseType! |
| SDValue Base_Reg; |
| int Base_FrameIndex; |
| |
| unsigned Scale; |
| SDValue IndexReg; |
| int32_t Disp; |
| SDValue Segment; |
| const GlobalValue *GV; |
| const Constant *CP; |
| const BlockAddress *BlockAddr; |
| const char *ES; |
| int JT; |
| unsigned Align; // CP alignment. |
| unsigned char SymbolFlags; // X86II::MO_* |
| |
| X86ISelAddressMode() |
| : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), |
| Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), |
| SymbolFlags(X86II::MO_NO_FLAG) { |
| } |
| |
| bool hasSymbolicDisplacement() const { |
| return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; |
| } |
| |
| bool hasBaseOrIndexReg() const { |
| return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0; |
| } |
| |
| /// isRIPRelative - Return true if this addressing mode is already RIP |
| /// relative. |
| bool isRIPRelative() const { |
| if (BaseType != RegBase) return false; |
| if (RegisterSDNode *RegNode = |
| dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) |
| return RegNode->getReg() == X86::RIP; |
| return false; |
| } |
| |
| void setBaseReg(SDValue Reg) { |
| BaseType = RegBase; |
| Base_Reg = Reg; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void dump() { |
| dbgs() << "X86ISelAddressMode " << this << '\n'; |
| dbgs() << "Base_Reg "; |
| if (Base_Reg.getNode() != 0) |
| Base_Reg.getNode()->dump(); |
| else |
| dbgs() << "nul"; |
| dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' |
| << " Scale" << Scale << '\n' |
| << "IndexReg "; |
| if (IndexReg.getNode() != 0) |
| IndexReg.getNode()->dump(); |
| else |
| dbgs() << "nul"; |
| dbgs() << " Disp " << Disp << '\n' |
| << "GV "; |
| if (GV) |
| GV->dump(); |
| else |
| dbgs() << "nul"; |
| dbgs() << " CP "; |
| if (CP) |
| CP->dump(); |
| else |
| dbgs() << "nul"; |
| dbgs() << '\n' |
| << "ES "; |
| if (ES) |
| dbgs() << ES; |
| else |
| dbgs() << "nul"; |
| dbgs() << " JT" << JT << " Align" << Align << '\n'; |
| } |
| #endif |
| }; |
| } |
| |
| namespace { |
| //===--------------------------------------------------------------------===// |
| /// ISel - X86 specific code to select X86 machine instructions for |
| /// SelectionDAG operations. |
| /// |
| class X86DAGToDAGISel : public SelectionDAGISel { |
| /// X86Lowering - This object fully describes how to lower LLVM code to an |
| /// X86-specific SelectionDAG. |
| const X86TargetLowering &X86Lowering; |
| |
| /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const X86Subtarget *Subtarget; |
| |
| /// OptForSize - If true, selector should try to optimize for code size |
| /// instead of performance. |
| bool OptForSize; |
| |
| public: |
| explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) |
| : SelectionDAGISel(tm, OptLevel), |
| X86Lowering(*tm.getTargetLowering()), |
| Subtarget(&tm.getSubtarget<X86Subtarget>()), |
| OptForSize(false) {} |
| |
| virtual const char *getPassName() const { |
| return "X86 DAG->DAG Instruction Selection"; |
| } |
| |
| virtual void EmitFunctionEntryCode(); |
| |
| virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const; |
| |
| virtual void PreprocessISelDAG(); |
| |
| inline bool immSext8(SDNode *N) const { |
| return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); |
| } |
| |
| // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit |
| // sign extended field. |
| inline bool i64immSExt32(SDNode *N) const { |
| uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); |
| return (int64_t)v == (int32_t)v; |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "X86GenDAGISel.inc" |
| |
| private: |
| SDNode *Select(SDNode *N); |
| SDNode *SelectGather(SDNode *N, unsigned Opc); |
| SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); |
| SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT); |
| |
| bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); |
| bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); |
| bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); |
| bool MatchAddress(SDValue N, X86ISelAddressMode &AM); |
| bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, |
| unsigned Depth); |
| bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); |
| bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, |
| SDValue &Scale, SDValue &Index, SDValue &Disp, |
| SDValue &Segment); |
| bool SelectLEAAddr(SDValue N, SDValue &Base, |
| SDValue &Scale, SDValue &Index, SDValue &Disp, |
| SDValue &Segment); |
| bool SelectTLSADDRAddr(SDValue N, SDValue &Base, |
| SDValue &Scale, SDValue &Index, SDValue &Disp, |
| SDValue &Segment); |
| bool SelectScalarSSELoad(SDNode *Root, SDValue N, |
| SDValue &Base, SDValue &Scale, |
| SDValue &Index, SDValue &Disp, |
| SDValue &Segment, |
| SDValue &NodeWithChain); |
| |
| bool TryFoldLoad(SDNode *P, SDValue N, |
| SDValue &Base, SDValue &Scale, |
| SDValue &Index, SDValue &Disp, |
| SDValue &Segment); |
| |
| /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| /// inline asm expressions. |
| virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| char ConstraintCode, |
| std::vector<SDValue> &OutOps); |
| |
| void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); |
| |
| inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, |
| SDValue &Scale, SDValue &Index, |
| SDValue &Disp, SDValue &Segment) { |
| Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? |
| CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) : |
| AM.Base_Reg; |
| Scale = getI8Imm(AM.Scale); |
| Index = AM.IndexReg; |
| // These are 32-bit even in 64-bit mode since RIP relative offset |
| // is 32-bit. |
| if (AM.GV) |
| Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(), |
| MVT::i32, AM.Disp, |
| AM.SymbolFlags); |
| else if (AM.CP) |
| Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, |
| AM.Align, AM.Disp, AM.SymbolFlags); |
| else if (AM.ES) { |
| assert(!AM.Disp && "Non-zero displacement is ignored with ES."); |
| Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); |
| } else if (AM.JT != -1) { |
| assert(!AM.Disp && "Non-zero displacement is ignored with JT."); |
| Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); |
| } else if (AM.BlockAddr) |
| Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, |
| AM.SymbolFlags); |
| else |
| Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); |
| |
| if (AM.Segment.getNode()) |
| Segment = AM.Segment; |
| else |
| Segment = CurDAG->getRegister(0, MVT::i32); |
| } |
| |
| /// getI8Imm - Return a target constant with the specified value, of type |
| /// i8. |
| inline SDValue getI8Imm(unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i8); |
| } |
| |
| /// getI32Imm - Return a target constant with the specified value, of type |
| /// i32. |
| inline SDValue getI32Imm(unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i32); |
| } |
| |
| /// getGlobalBaseReg - Return an SDNode that returns the value of |
| /// the global base register. Output instructions required to |
| /// initialize the global base register, if necessary. |
| /// |
| SDNode *getGlobalBaseReg(); |
| |
| /// getTargetMachine - Return a reference to the TargetMachine, casted |
| /// to the target-specific type. |
| const X86TargetMachine &getTargetMachine() const { |
| return static_cast<const X86TargetMachine &>(TM); |
| } |
| |
| /// getInstrInfo - Return a reference to the TargetInstrInfo, casted |
| /// to the target-specific type. |
| const X86InstrInfo *getInstrInfo() const { |
| return getTargetMachine().getInstrInfo(); |
| } |
| }; |
| } |
| |
| |
| bool |
| X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { |
| if (OptLevel == CodeGenOpt::None) return false; |
| |
| if (!N.hasOneUse()) |
| return false; |
| |
| if (N.getOpcode() != ISD::LOAD) |
| return true; |
| |
| // If N is a load, do additional profitability checks. |
| if (U == Root) { |
| switch (U->getOpcode()) { |
| default: break; |
| case X86ISD::ADD: |
| case X86ISD::SUB: |
| case X86ISD::AND: |
| case X86ISD::XOR: |
| case X86ISD::OR: |
| case ISD::ADD: |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| SDValue Op1 = U->getOperand(1); |
| |
| // If the other operand is a 8-bit immediate we should fold the immediate |
| // instead. This reduces code size. |
| // e.g. |
| // movl 4(%esp), %eax |
| // addl $4, %eax |
| // vs. |
| // movl $4, %eax |
| // addl 4(%esp), %eax |
| // The former is 2 bytes shorter. In case where the increment is 1, then |
| // the saving can be 4 bytes (by using incl %eax). |
| if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) |
| if (Imm->getAPIntValue().isSignedIntN(8)) |
| return false; |
| |
| // If the other operand is a TLS address, we should fold it instead. |
| // This produces |
| // movl %gs:0, %eax |
| // leal i@NTPOFF(%eax), %eax |
| // instead of |
| // movl $i@NTPOFF, %eax |
| // addl %gs:0, %eax |
| // if the block also has an access to a second TLS address this will save |
| // a load. |
| // FIXME: This is probably also true for non TLS addresses. |
| if (Op1.getOpcode() == X86ISD::Wrapper) { |
| SDValue Val = Op1.getOperand(0); |
| if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /// MoveBelowCallOrigChain - Replace the original chain operand of the call with |
| /// load's chain operand and move load below the call's chain operand. |
| static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, |
| SDValue Call, SDValue OrigChain) { |
| SmallVector<SDValue, 8> Ops; |
| SDValue Chain = OrigChain.getOperand(0); |
| if (Chain.getNode() == Load.getNode()) |
| Ops.push_back(Load.getOperand(0)); |
| else { |
| assert(Chain.getOpcode() == ISD::TokenFactor && |
| "Unexpected chain operand"); |
| for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) |
| if (Chain.getOperand(i).getNode() == Load.getNode()) |
| Ops.push_back(Load.getOperand(0)); |
| else |
| Ops.push_back(Chain.getOperand(i)); |
| SDValue NewChain = |
| CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(), |
| MVT::Other, &Ops[0], Ops.size()); |
| Ops.clear(); |
| Ops.push_back(NewChain); |
| } |
| for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) |
| Ops.push_back(OrigChain.getOperand(i)); |
| CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); |
| CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), |
| Load.getOperand(1), Load.getOperand(2)); |
| |
| unsigned NumOps = Call.getNode()->getNumOperands(); |
| Ops.clear(); |
| Ops.push_back(SDValue(Load.getNode(), 1)); |
| for (unsigned i = 1, e = NumOps; i != e; ++i) |
| Ops.push_back(Call.getOperand(i)); |
| CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps); |
| } |
| |
| /// isCalleeLoad - Return true if call address is a load and it can be |
| /// moved below CALLSEQ_START and the chains leading up to the call. |
| /// Return the CALLSEQ_START by reference as a second output. |
| /// In the case of a tail call, there isn't a callseq node between the call |
| /// chain and the load. |
| static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { |
| // The transformation is somewhat dangerous if the call's chain was glued to |
| // the call. After MoveBelowOrigChain the load is moved between the call and |
| // the chain, this can create a cycle if the load is not folded. So it is |
| // *really* important that we are sure the load will be folded. |
| if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) |
| return false; |
| LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); |
| if (!LD || |
| LD->isVolatile() || |
| LD->getAddressingMode() != ISD::UNINDEXED || |
| LD->getExtensionType() != ISD::NON_EXTLOAD) |
| return false; |
| |
| // Now let's find the callseq_start. |
| while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { |
| if (!Chain.hasOneUse()) |
| return false; |
| Chain = Chain.getOperand(0); |
| } |
| |
| if (!Chain.getNumOperands()) |
| return false; |
| // Since we are not checking for AA here, conservatively abort if the chain |
| // writes to memory. It's not safe to move the callee (a load) across a store. |
| if (isa<MemSDNode>(Chain.getNode()) && |
| cast<MemSDNode>(Chain.getNode())->writeMem()) |
| return false; |
| if (Chain.getOperand(0).getNode() == Callee.getNode()) |
| return true; |
| if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && |
| Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && |
| Callee.getValue(1).hasOneUse()) |
| return true; |
| return false; |
| } |
| |
| void X86DAGToDAGISel::PreprocessISelDAG() { |
| // OptForSize is used in pattern predicates that isel is matching. |
| OptForSize = MF->getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); |
| |
| for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), |
| E = CurDAG->allnodes_end(); I != E; ) { |
| SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. |
| |
| if (OptLevel != CodeGenOpt::None && |
| (N->getOpcode() == X86ISD::CALL || |
| (N->getOpcode() == X86ISD::TC_RETURN && |
| // Only does this if load can be folded into TC_RETURN. |
| (Subtarget->is64Bit() || |
| getTargetMachine().getRelocationModel() != Reloc::PIC_)))) { |
| /// Also try moving call address load from outside callseq_start to just |
| /// before the call to allow it to be folded. |
| /// |
| /// [Load chain] |
| /// ^ |
| /// | |
| /// [Load] |
| /// ^ ^ |
| /// | | |
| /// / \-- |
| /// / | |
| ///[CALLSEQ_START] | |
| /// ^ | |
| /// | | |
| /// [LOAD/C2Reg] | |
| /// | | |
| /// \ / |
| /// \ / |
| /// [CALL] |
| bool HasCallSeq = N->getOpcode() == X86ISD::CALL; |
| SDValue Chain = N->getOperand(0); |
| SDValue Load = N->getOperand(1); |
| if (!isCalleeLoad(Load, Chain, HasCallSeq)) |
| continue; |
| MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); |
| ++NumLoadMoved; |
| continue; |
| } |
| |
| // Lower fpround and fpextend nodes that target the FP stack to be store and |
| // load to the stack. This is a gross hack. We would like to simply mark |
| // these as being illegal, but when we do that, legalize produces these when |
| // it expands calls, then expands these in the same legalize pass. We would |
| // like dag combine to be able to hack on these between the call expansion |
| // and the node legalization. As such this pass basically does "really |
| // late" legalization of these inline with the X86 isel pass. |
| // FIXME: This should only happen when not compiled with -O0. |
| if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) |
| continue; |
| |
| EVT SrcVT = N->getOperand(0).getValueType(); |
| EVT DstVT = N->getValueType(0); |
| |
| // If any of the sources are vectors, no fp stack involved. |
| if (SrcVT.isVector() || DstVT.isVector()) |
| continue; |
| |
| // If the source and destination are SSE registers, then this is a legal |
| // conversion that should not be lowered. |
| bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); |
| bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); |
| if (SrcIsSSE && DstIsSSE) |
| continue; |
| |
| if (!SrcIsSSE && !DstIsSSE) { |
| // If this is an FPStack extension, it is a noop. |
| if (N->getOpcode() == ISD::FP_EXTEND) |
| continue; |
| // If this is a value-preserving FPStack truncation, it is a noop. |
| if (N->getConstantOperandVal(1)) |
| continue; |
| } |
| |
| // Here we could have an FP stack truncation or an FPStack <-> SSE convert. |
| // FPStack has extload and truncstore. SSE can fold direct loads into other |
| // operations. Based on this, decide what we want to do. |
| EVT MemVT; |
| if (N->getOpcode() == ISD::FP_ROUND) |
| MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. |
| else |
| MemVT = SrcIsSSE ? SrcVT : DstVT; |
| |
| SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| // FIXME: optimize the case where the src/dest is a load or store? |
| SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, |
| N->getOperand(0), |
| MemTmp, MachinePointerInfo(), MemVT, |
| false, false, 0); |
| SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, |
| MachinePointerInfo(), |
| MemVT, false, false, 0); |
| |
| // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the |
| // extload we created. This will cause general havok on the dag because |
| // anything below the conversion could be folded into other existing nodes. |
| // To avoid invalidating 'I', back it up to the convert node. |
| --I; |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); |
| |
| // Now that we did that, the node is dead. Increment the iterator to the |
| // next node to process, then delete N. |
| ++I; |
| CurDAG->DeleteNode(N); |
| } |
| } |
| |
| |
| /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in |
| /// the main function. |
| void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, |
| MachineFrameInfo *MFI) { |
| const TargetInstrInfo *TII = TM.getInstrInfo(); |
| if (Subtarget->isTargetCygMing()) { |
| unsigned CallOp = |
| Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; |
| BuildMI(BB, DebugLoc(), |
| TII->get(CallOp)).addExternalSymbol("__main"); |
| } |
| } |
| |
| void X86DAGToDAGISel::EmitFunctionEntryCode() { |
| // If this is main, emit special code for main. |
| if (const Function *Fn = MF->getFunction()) |
| if (Fn->hasExternalLinkage() && Fn->getName() == "main") |
| EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo()); |
| } |
| |
| static bool isDispSafeForFrameIndex(int64_t Val) { |
| // On 64-bit platforms, we can run into an issue where a frame index |
| // includes a displacement that, when added to the explicit displacement, |
| // will overflow the displacement field. Assuming that the frame index |
| // displacement fits into a 31-bit integer (which is only slightly more |
| // aggressive than the current fundamental assumption that it fits into |
| // a 32-bit integer), a 31-bit disp should always be safe. |
| return isInt<31>(Val); |
| } |
| |
| bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset, |
| X86ISelAddressMode &AM) { |
| int64_t Val = AM.Disp + Offset; |
| CodeModel::Model M = TM.getCodeModel(); |
| if (Subtarget->is64Bit()) { |
| if (!X86::isOffsetSuitableForCodeModel(Val, M, |
| AM.hasSymbolicDisplacement())) |
| return true; |
| // In addition to the checks required for a register base, check that |
| // we do not try to use an unsafe Disp with a frame index. |
| if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && |
| !isDispSafeForFrameIndex(Val)) |
| return true; |
| } |
| AM.Disp = Val; |
| return false; |
| |
| } |
| |
| bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ |
| SDValue Address = N->getOperand(1); |
| |
| // load gs:0 -> GS segment register. |
| // load fs:0 -> FS segment register. |
| // |
| // This optimization is valid because the GNU TLS model defines that |
| // gs:0 (or fs:0 on X86-64) contains its own address. |
| // For more information see http://people.redhat.com/drepper/tls.pdf |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) |
| if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 && |
| Subtarget->isTargetLinux()) |
| switch (N->getPointerInfo().getAddrSpace()) { |
| case 256: |
| AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); |
| return false; |
| case 257: |
| AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes |
| /// into an addressing mode. These wrap things that will resolve down into a |
| /// symbol reference. If no match is possible, this returns true, otherwise it |
| /// returns false. |
| bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { |
| // If the addressing mode already has a symbol as the displacement, we can |
| // never match another symbol. |
| if (AM.hasSymbolicDisplacement()) |
| return true; |
| |
| SDValue N0 = N.getOperand(0); |
| CodeModel::Model M = TM.getCodeModel(); |
| |
| // Handle X86-64 rip-relative addresses. We check this before checking direct |
| // folding because RIP is preferable to non-RIP accesses. |
| if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP && |
| // Under X86-64 non-small code model, GV (and friends) are 64-bits, so |
| // they cannot be folded into immediate fields. |
| // FIXME: This can be improved for kernel and other models? |
| (M == CodeModel::Small || M == CodeModel::Kernel)) { |
| // Base and index reg must be 0 in order to use %rip as base. |
| if (AM.hasBaseOrIndexReg()) |
| return true; |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { |
| X86ISelAddressMode Backup = AM; |
| AM.GV = G->getGlobal(); |
| AM.SymbolFlags = G->getTargetFlags(); |
| if (FoldOffsetIntoAddress(G->getOffset(), AM)) { |
| AM = Backup; |
| return true; |
| } |
| } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { |
| X86ISelAddressMode Backup = AM; |
| AM.CP = CP->getConstVal(); |
| AM.Align = CP->getAlignment(); |
| AM.SymbolFlags = CP->getTargetFlags(); |
| if (FoldOffsetIntoAddress(CP->getOffset(), AM)) { |
| AM = Backup; |
| return true; |
| } |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { |
| AM.ES = S->getSymbol(); |
| AM.SymbolFlags = S->getTargetFlags(); |
| } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { |
| AM.JT = J->getIndex(); |
| AM.SymbolFlags = J->getTargetFlags(); |
| } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { |
| X86ISelAddressMode Backup = AM; |
| AM.BlockAddr = BA->getBlockAddress(); |
| AM.SymbolFlags = BA->getTargetFlags(); |
| if (FoldOffsetIntoAddress(BA->getOffset(), AM)) { |
| AM = Backup; |
| return true; |
| } |
| } else |
| llvm_unreachable("Unhandled symbol reference node."); |
| |
| if (N.getOpcode() == X86ISD::WrapperRIP) |
| AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); |
| return false; |
| } |
| |
| // Handle the case when globals fit in our immediate field: This is true for |
| // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit |
| // mode, this only applies to a non-RIP-relative computation. |
| if (!Subtarget->is64Bit() || |
| M == CodeModel::Small || M == CodeModel::Kernel) { |
| assert(N.getOpcode() != X86ISD::WrapperRIP && |
| "RIP-relative addressing already handled"); |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { |
| AM.GV = G->getGlobal(); |
| AM.Disp += G->getOffset(); |
| AM.SymbolFlags = G->getTargetFlags(); |
| } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { |
| AM.CP = CP->getConstVal(); |
| AM.Align = CP->getAlignment(); |
| AM.Disp += CP->getOffset(); |
| AM.SymbolFlags = CP->getTargetFlags(); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { |
| AM.ES = S->getSymbol(); |
| AM.SymbolFlags = S->getTargetFlags(); |
| } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { |
| AM.JT = J->getIndex(); |
| AM.SymbolFlags = J->getTargetFlags(); |
| } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { |
| AM.BlockAddr = BA->getBlockAddress(); |
| AM.Disp += BA->getOffset(); |
| AM.SymbolFlags = BA->getTargetFlags(); |
| } else |
| llvm_unreachable("Unhandled symbol reference node."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// MatchAddress - Add the specified node to the specified addressing mode, |
| /// returning true if it cannot be done. This just pattern matches for the |
| /// addressing mode. |
| bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { |
| if (MatchAddressRecursively(N, AM, 0)) |
| return true; |
| |
| // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has |
| // a smaller encoding and avoids a scaled-index. |
| if (AM.Scale == 2 && |
| AM.BaseType == X86ISelAddressMode::RegBase && |
| AM.Base_Reg.getNode() == 0) { |
| AM.Base_Reg = AM.IndexReg; |
| AM.Scale = 1; |
| } |
| |
| // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, |
| // because it has a smaller encoding. |
| // TODO: Which other code models can use this? |
| if (TM.getCodeModel() == CodeModel::Small && |
| Subtarget->is64Bit() && |
| AM.Scale == 1 && |
| AM.BaseType == X86ISelAddressMode::RegBase && |
| AM.Base_Reg.getNode() == 0 && |
| AM.IndexReg.getNode() == 0 && |
| AM.SymbolFlags == X86II::MO_NO_FLAG && |
| AM.hasSymbolicDisplacement()) |
| AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); |
| |
| return false; |
| } |
| |
| // Insert a node into the DAG at least before the Pos node's position. This |
| // will reposition the node as needed, and will assign it a node ID that is <= |
| // the Pos node's ID. Note that this does *not* preserve the uniqueness of node |
| // IDs! The selection DAG must no longer depend on their uniqueness when this |
| // is used. |
| static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { |
| if (N.getNode()->getNodeId() == -1 || |
| N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) { |
| DAG.RepositionNode(Pos.getNode(), N.getNode()); |
| N.getNode()->setNodeId(Pos.getNode()->getNodeId()); |
| } |
| } |
| |
| // Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This |
| // allows us to convert the shift and and into an h-register extract and |
| // a scaled index. Returns false if the simplification is performed. |
| static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, |
| uint64_t Mask, |
| SDValue Shift, SDValue X, |
| X86ISelAddressMode &AM) { |
| if (Shift.getOpcode() != ISD::SRL || |
| !isa<ConstantSDNode>(Shift.getOperand(1)) || |
| !Shift.hasOneUse()) |
| return true; |
| |
| int ScaleLog = 8 - Shift.getConstantOperandVal(1); |
| if (ScaleLog <= 0 || ScaleLog >= 4 || |
| Mask != (0xffu << ScaleLog)) |
| return true; |
| |
| EVT VT = N.getValueType(); |
| DebugLoc DL = N.getDebugLoc(); |
| SDValue Eight = DAG.getConstant(8, MVT::i8); |
| SDValue NewMask = DAG.getConstant(0xff, VT); |
| SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); |
| SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); |
| SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8); |
| SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); |
| |
| // Insert the new nodes into the topological ordering. We must do this in |
| // a valid topological ordering as nothing is going to go back and re-sort |
| // these nodes. We continually insert before 'N' in sequence as this is |
| // essentially a pre-flattened and pre-sorted sequence of nodes. There is no |
| // hierarchy left to express. |
| InsertDAGNode(DAG, N, Eight); |
| InsertDAGNode(DAG, N, Srl); |
| InsertDAGNode(DAG, N, NewMask); |
| InsertDAGNode(DAG, N, And); |
| InsertDAGNode(DAG, N, ShlCount); |
| InsertDAGNode(DAG, N, Shl); |
| DAG.ReplaceAllUsesWith(N, Shl); |
| AM.IndexReg = And; |
| AM.Scale = (1 << ScaleLog); |
| return false; |
| } |
| |
| // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this |
| // allows us to fold the shift into this addressing mode. Returns false if the |
| // transform succeeded. |
| static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, |
| uint64_t Mask, |
| SDValue Shift, SDValue X, |
| X86ISelAddressMode &AM) { |
| if (Shift.getOpcode() != ISD::SHL || |
| !isa<ConstantSDNode>(Shift.getOperand(1))) |
| return true; |
| |
| // Not likely to be profitable if either the AND or SHIFT node has more |
| // than one use (unless all uses are for address computation). Besides, |
| // isel mechanism requires their node ids to be reused. |
| if (!N.hasOneUse() || !Shift.hasOneUse()) |
| return true; |
| |
| // Verify that the shift amount is something we can fold. |
| unsigned ShiftAmt = Shift.getConstantOperandVal(1); |
| if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) |
| return true; |
| |
| EVT VT = N.getValueType(); |
| DebugLoc DL = N.getDebugLoc(); |
| SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT); |
| SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); |
| SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); |
| |
| // Insert the new nodes into the topological ordering. We must do this in |
| // a valid topological ordering as nothing is going to go back and re-sort |
| // these nodes. We continually insert before 'N' in sequence as this is |
| // essentially a pre-flattened and pre-sorted sequence of nodes. There is no |
| // hierarchy left to express. |
| InsertDAGNode(DAG, N, NewMask); |
| InsertDAGNode(DAG, N, NewAnd); |
| InsertDAGNode(DAG, N, NewShift); |
| DAG.ReplaceAllUsesWith(N, NewShift); |
| |
| AM.Scale = 1 << ShiftAmt; |
| AM.IndexReg = NewAnd; |
| return false; |
| } |
| |
| // Implement some heroics to detect shifts of masked values where the mask can |
| // be replaced by extending the shift and undoing that in the addressing mode |
| // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and |
| // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in |
| // the addressing mode. This results in code such as: |
| // |
| // int f(short *y, int *lookup_table) { |
| // ... |
| // return *y + lookup_table[*y >> 11]; |
| // } |
| // |
| // Turning into: |
| // movzwl (%rdi), %eax |
| // movl %eax, %ecx |
| // shrl $11, %ecx |
| // addl (%rsi,%rcx,4), %eax |
| // |
| // Instead of: |
| // movzwl (%rdi), %eax |
| // movl %eax, %ecx |
| // shrl $9, %ecx |
| // andl $124, %rcx |
| // addl (%rsi,%rcx), %eax |
| // |
| // Note that this function assumes the mask is provided as a mask *after* the |
| // value is shifted. The input chain may or may not match that, but computing |
| // such a mask is trivial. |
| static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, |
| uint64_t Mask, |
| SDValue Shift, SDValue X, |
| X86ISelAddressMode &AM) { |
| if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || |
| !isa<ConstantSDNode>(Shift.getOperand(1))) |
| return true; |
| |
| unsigned ShiftAmt = Shift.getConstantOperandVal(1); |
| unsigned MaskLZ = CountLeadingZeros_64(Mask); |
| unsigned MaskTZ = CountTrailingZeros_64(Mask); |
| |
| // The amount of shift we're trying to fit into the addressing mode is taken |
| // from the trailing zeros of the mask. |
| unsigned AMShiftAmt = MaskTZ; |
| |
| // There is nothing we can do here unless the mask is removing some bits. |
| // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. |
| if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; |
| |
| // We also need to ensure that mask is a continuous run of bits. |
| if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; |
| |
| // Scale the leading zero count down based on the actual size of the value. |
| // Also scale it down based on the size of the shift. |
| MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt; |
| |
| // The final check is to ensure that any masked out high bits of X are |
| // already known to be zero. Otherwise, the mask has a semantic impact |
| // other than masking out a couple of low bits. Unfortunately, because of |
| // the mask, zero extensions will be removed from operands in some cases. |
| // This code works extra hard to look through extensions because we can |
| // replace them with zero extensions cheaply if necessary. |
| bool ReplacingAnyExtend = false; |
| if (X.getOpcode() == ISD::ANY_EXTEND) { |
| unsigned ExtendBits = |
| X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits(); |
| // Assume that we'll replace the any-extend with a zero-extend, and |
| // narrow the search to the extended value. |
| X = X.getOperand(0); |
| MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; |
| ReplacingAnyExtend = true; |
| } |
| APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(), |
| MaskLZ); |
| APInt KnownZero, KnownOne; |
| DAG.ComputeMaskedBits(X, KnownZero, KnownOne); |
| if (MaskedHighBits != KnownZero) return true; |
| |
| // We've identified a pattern that can be transformed into a single shift |
| // and an addressing mode. Make it so. |
| EVT VT = N.getValueType(); |
| if (ReplacingAnyExtend) { |
| assert(X.getValueType() != VT); |
| // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. |
| SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X); |
| InsertDAGNode(DAG, N, NewX); |
| X = NewX; |
| } |
| DebugLoc DL = N.getDebugLoc(); |
| SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8); |
| SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); |
| SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8); |
| SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); |
| |
| // Insert the new nodes into the topological ordering. We must do this in |
| // a valid topological ordering as nothing is going to go back and re-sort |
| // these nodes. We continually insert before 'N' in sequence as this is |
| // essentially a pre-flattened and pre-sorted sequence of nodes. There is no |
| // hierarchy left to express. |
| InsertDAGNode(DAG, N, NewSRLAmt); |
| InsertDAGNode(DAG, N, NewSRL); |
| InsertDAGNode(DAG, N, NewSHLAmt); |
| InsertDAGNode(DAG, N, NewSHL); |
| DAG.ReplaceAllUsesWith(N, NewSHL); |
| |
| AM.Scale = 1 << AMShiftAmt; |
| AM.IndexReg = NewSRL; |
| return false; |
| } |
| |
| bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, |
| unsigned Depth) { |
| DebugLoc dl = N.getDebugLoc(); |
| DEBUG({ |
| dbgs() << "MatchAddress: "; |
| AM.dump(); |
| }); |
| // Limit recursion. |
| if (Depth > 5) |
| return MatchAddressBase(N, AM); |
| |
| // If this is already a %rip relative address, we can only merge immediates |
| // into it. Instead of handling this in every case, we handle it here. |
| // RIP relative addressing: %rip + 32-bit displacement! |
| if (AM.isRIPRelative()) { |
| // FIXME: JumpTable and ExternalSymbol address currently don't like |
| // displacements. It isn't very important, but this should be fixed for |
| // consistency. |
| if (!AM.ES && AM.JT != -1) return true; |
| |
| if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) |
| if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM)) |
| return false; |
| return true; |
| } |
| |
| switch (N.getOpcode()) { |
| default: break; |
| case ISD::Constant: { |
| uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); |
| if (!FoldOffsetIntoAddress(Val, AM)) |
| return false; |
| break; |
| } |
| |
| case X86ISD::Wrapper: |
| case X86ISD::WrapperRIP: |
| if (!MatchWrapper(N, AM)) |
| return false; |
| break; |
| |
| case ISD::LOAD: |
| if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM)) |
| return false; |
| break; |
| |
| case ISD::FrameIndex: |
| if (AM.BaseType == X86ISelAddressMode::RegBase && |
| AM.Base_Reg.getNode() == 0 && |
| (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { |
| AM.BaseType = X86ISelAddressMode::FrameIndexBase; |
| AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); |
| return false; |
| } |
| break; |
| |
| case ISD::SHL: |
| if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) |
| break; |
| |
| if (ConstantSDNode |
| *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { |
| unsigned Val = CN->getZExtValue(); |
| // Note that we handle x<<1 as (,x,2) rather than (x,x) here so |
| // that the base operand remains free for further matching. If |
| // the base doesn't end up getting used, a post-processing step |
| // in MatchAddress turns (,x,2) into (x,x), which is cheaper. |
| if (Val == 1 || Val == 2 || Val == 3) { |
| AM.Scale = 1 << Val; |
| SDValue ShVal = N.getNode()->getOperand(0); |
| |
| // Okay, we know that we have a scale by now. However, if the scaled |
| // value is an add of something and a constant, we can fold the |
| // constant into the disp field here. |
| if (CurDAG->isBaseWithConstantOffset(ShVal)) { |
| AM.IndexReg = ShVal.getNode()->getOperand(0); |
| ConstantSDNode *AddVal = |
| cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); |
| uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; |
| if (!FoldOffsetIntoAddress(Disp, AM)) |
| return false; |
| } |
| |
| AM.IndexReg = ShVal; |
| return false; |
| } |
| } |
| break; |
| |
| case ISD::SRL: { |
| // Scale must not be used already. |
| if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; |
| |
| SDValue And = N.getOperand(0); |
| if (And.getOpcode() != ISD::AND) break; |
| SDValue X = And.getOperand(0); |
| |
| // We only handle up to 64-bit values here as those are what matter for |
| // addressing mode optimizations. |
| if (X.getValueSizeInBits() > 64) break; |
| |
| // The mask used for the transform is expected to be post-shift, but we |
| // found the shift first so just apply the shift to the mask before passing |
| // it down. |
| if (!isa<ConstantSDNode>(N.getOperand(1)) || |
| !isa<ConstantSDNode>(And.getOperand(1))) |
| break; |
| uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); |
| |
| // Try to fold the mask and shift into the scale, and return false if we |
| // succeed. |
| if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) |
| return false; |
| break; |
| } |
| |
| case ISD::SMUL_LOHI: |
| case ISD::UMUL_LOHI: |
| // A mul_lohi where we need the low part can be folded as a plain multiply. |
| if (N.getResNo() != 0) break; |
| // FALL THROUGH |
| case ISD::MUL: |
| case X86ISD::MUL_IMM: |
| // X*[3,5,9] -> X+X*[2,4,8] |
| if (AM.BaseType == X86ISelAddressMode::RegBase && |
| AM.Base_Reg.getNode() == 0 && |
| AM.IndexReg.getNode() == 0) { |
| if (ConstantSDNode |
| *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) |
| if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || |
| CN->getZExtValue() == 9) { |
| AM.Scale = unsigned(CN->getZExtValue())-1; |
| |
| SDValue MulVal = N.getNode()->getOperand(0); |
| SDValue Reg; |
| |
| // Okay, we know that we have a scale by now. However, if the scaled |
| // value is an add of something and a constant, we can fold the |
| // constant into the disp field here. |
| if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && |
| isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { |
| Reg = MulVal.getNode()->getOperand(0); |
| ConstantSDNode *AddVal = |
| cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); |
| uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); |
| if (FoldOffsetIntoAddress(Disp, AM)) |
| Reg = N.getNode()->getOperand(0); |
| } else { |
| Reg = N.getNode()->getOperand(0); |
| } |
| |
| AM.IndexReg = AM.Base_Reg = Reg; |
| return false; |
| } |
| } |
| break; |
| |
| case ISD::SUB: { |
| // Given A-B, if A can be completely folded into the address and |
| // the index field with the index field unused, use -B as the index. |
| // This is a win if a has multiple parts that can be folded into |
| // the address. Also, this saves a mov if the base register has |
| // other uses, since it avoids a two-address sub instruction, however |
| // it costs an additional mov if the index register has other uses. |
| |
| // Add an artificial use to this node so that we can keep track of |
| // it if it gets CSE'd with a different node. |
| HandleSDNode Handle(N); |
| |
| // Test if the LHS of the sub can be folded. |
| X86ISelAddressMode Backup = AM; |
| if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { |
| AM = Backup; |
| break; |
| } |
| // Test if the index field is free for use. |
| if (AM.IndexReg.getNode() || AM.isRIPRelative()) { |
| AM = Backup; |
| break; |
| } |
| |
| int Cost = 0; |
| SDValue RHS = Handle.getValue().getNode()->getOperand(1); |
| // If the RHS involves a register with multiple uses, this |
| // transformation incurs an extra mov, due to the neg instruction |
| // clobbering its operand. |
| if (!RHS.getNode()->hasOneUse() || |
| RHS.getNode()->getOpcode() == ISD::CopyFromReg || |
| RHS.getNode()->getOpcode() == ISD::TRUNCATE || |
| RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || |
| (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && |
| RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) |
| ++Cost; |
| // If the base is a register with multiple uses, this |
| // transformation may save a mov. |
| if ((AM.BaseType == X86ISelAddressMode::RegBase && |
| AM.Base_Reg.getNode() && |
| !AM.Base_Reg.getNode()->hasOneUse()) || |
| AM.BaseType == X86ISelAddressMode::FrameIndexBase) |
| --Cost; |
| // If the folded LHS was interesting, this transformation saves |
| // address arithmetic. |
| if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + |
| ((AM.Disp != 0) && (Backup.Disp == 0)) + |
| (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) |
| --Cost; |
| // If it doesn't look like it may be an overall win, don't do it. |
| if (Cost >= 0) { |
| AM = Backup; |
| break; |
| } |
| |
| // Ok, the transformation is legal and appears profitable. Go for it. |
| SDValue Zero = CurDAG->getConstant(0, N.getValueType()); |
| SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); |
| AM.IndexReg = Neg; |
| AM.Scale = 1; |
| |
| // Insert the new nodes into the topological ordering. |
| InsertDAGNode(*CurDAG, N, Zero); |
| InsertDAGNode(*CurDAG, N, Neg); |
| return false; |
| } |
| |
| case ISD::ADD: { |
| // Add an artificial use to this node so that we can keep track of |
| // it if it gets CSE'd with a different node. |
| HandleSDNode Handle(N); |
| |
| X86ISelAddressMode Backup = AM; |
| if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && |
| !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) |
| return false; |
| AM = Backup; |
| |
| // Try again after commuting the operands. |
| if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&& |
| !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) |
| return false; |
| AM = Backup; |
| |
| // If we couldn't fold both operands into the address at the same time, |
| // see if we can just put each operand into a register and fold at least |
| // the add. |
| if (AM.BaseType == X86ISelAddressMode::RegBase && |
| !AM.Base_Reg.getNode() && |
| !AM.IndexReg.getNode()) { |
| N = Handle.getValue(); |
| AM.Base_Reg = N.getOperand(0); |
| AM.IndexReg = N.getOperand(1); |
| AM.Scale = 1; |
| return false; |
| } |
| N = Handle.getValue(); |
| break; |
| } |
| |
| case ISD::OR: |
| // Handle "X | C" as "X + C" iff X is known to have C bits clear. |
| if (CurDAG->isBaseWithConstantOffset(N)) { |
| X86ISelAddressMode Backup = AM; |
| ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1)); |
| |
| // Start with the LHS as an addr mode. |
| if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && |
| !FoldOffsetIntoAddress(CN->getSExtValue(), AM)) |
| return false; |
| AM = Backup; |
| } |
| break; |
| |
| case ISD::AND: { |
| // Perform some heroic transforms on an and of a constant-count shift |
| // with a constant to enable use of the scaled offset field. |
| |
| // Scale must not be used already. |
| if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; |
| |
| SDValue Shift = N.getOperand(0); |
| if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; |
| SDValue X = Shift.getOperand(0); |
| |
| // We only handle up to 64-bit values here as those are what matter for |
| // addressing mode optimizations. |
| if (X.getValueSizeInBits() > 64) break; |
| |
| if (!isa<ConstantSDNode>(N.getOperand(1))) |
| break; |
| uint64_t Mask = N.getConstantOperandVal(1); |
| |
| // Try to fold the mask and shift into an extract and scale. |
| if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) |
| return false; |
| |
| // Try to fold the mask and shift directly into the scale. |
| if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) |
| return false; |
| |
| // Try to swap the mask and shift to place shifts which can be done as |
| // a scale on the outside of the mask. |
| if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) |
| return false; |
| break; |
| } |
| } |
| |
| return MatchAddressBase(N, AM); |
| } |
| |
| /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the |
| /// specified addressing mode without any further recursion. |
| bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { |
| // Is the base register already occupied? |
| if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { |
| // If so, check to see if the scale index register is set. |
| if (AM.IndexReg.getNode() == 0) { |
| AM.IndexReg = N; |
| AM.Scale = 1; |
| return false; |
| } |
| |
| // Otherwise, we cannot select it. |
| return true; |
| } |
| |
| // Default, generate it as a register. |
| AM.BaseType = X86ISelAddressMode::RegBase; |
| AM.Base_Reg = N; |
| return false; |
| } |
| |
| /// SelectAddr - returns true if it is able pattern match an addressing mode. |
| /// It returns the operands which make up the maximal addressing mode it can |
| /// match by reference. |
| /// |
| /// Parent is the parent node of the addr operand that is being matched. It |
| /// is always a load, store, atomic node, or null. It is only null when |
| /// checking memory operands for inline asm nodes. |
| bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, |
| SDValue &Scale, SDValue &Index, |
| SDValue &Disp, SDValue &Segment) { |
| X86ISelAddressMode AM; |
| |
| if (Parent && |
| // This list of opcodes are all the nodes that have an "addr:$ptr" operand |
| // that are not a MemSDNode, and thus don't have proper addrspace info. |
| Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme |
| Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores |
| Parent->getOpcode() != X86ISD::TLSCALL && // Fixme |
| Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp |
| Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp |
| unsigned AddrSpace = |
| cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); |
| // AddrSpace 256 -> GS, 257 -> FS. |
| if (AddrSpace == 256) |
| AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); |
| if (AddrSpace == 257) |
| AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); |
| } |
| |
| if (MatchAddress(N, AM)) |
| return false; |
| |
| EVT VT = N.getValueType(); |
| if (AM.BaseType == X86ISelAddressMode::RegBase) { |
| if (!AM.Base_Reg.getNode()) |
| AM.Base_Reg = CurDAG->getRegister(0, VT); |
| } |
| |
| if (!AM.IndexReg.getNode()) |
| AM.IndexReg = CurDAG->getRegister(0, VT); |
| |
| getAddressOperands(AM, Base, Scale, Index, Disp, Segment); |
| return true; |
| } |
| |
| /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to |
| /// match a load whose top elements are either undef or zeros. The load flavor |
| /// is derived from the type of N, which is either v4f32 or v2f64. |
| /// |
| /// We also return: |
| /// PatternChainNode: this is the matched node that has a chain input and |
| /// output. |
| bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, |
| SDValue N, SDValue &Base, |
| SDValue &Scale, SDValue &Index, |
| SDValue &Disp, SDValue &Segment, |
| SDValue &PatternNodeWithChain) { |
| if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| PatternNodeWithChain = N.getOperand(0); |
| if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && |
| PatternNodeWithChain.hasOneUse() && |
| IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && |
| IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { |
| LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); |
| if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) |
| return false; |
| return true; |
| } |
| } |
| |
| // Also handle the case where we explicitly require zeros in the top |
| // elements. This is a vector shuffle from the zero vector. |
| if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && |
| // Check to see if the top elements are all zeros (or bitcast of zeros). |
| N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && |
| N.getOperand(0).getNode()->hasOneUse() && |
| ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && |
| N.getOperand(0).getOperand(0).hasOneUse() && |
| IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && |
| IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { |
| // Okay, this is a zero extending load. Fold it. |
| LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); |
| if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) |
| return false; |
| PatternNodeWithChain = SDValue(LD, 0); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing |
| /// mode it matches can be cost effectively emitted as an LEA instruction. |
| bool X86DAGToDAGISel::SelectLEAAddr(SDValue N, |
| SDValue &Base, SDValue &Scale, |
| SDValue &Index, SDValue &Disp, |
| SDValue &Segment) { |
| X86ISelAddressMode AM; |
| |
| // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support |
| // segments. |
| SDValue Copy = AM.Segment; |
| SDValue T = CurDAG->getRegister(0, MVT::i32); |
| AM.Segment = T; |
| if (MatchAddress(N, AM)) |
| return false; |
| assert (T == AM.Segment); |
| AM.Segment = Copy; |
| |
| EVT VT = N.getValueType(); |
| unsigned Complexity = 0; |
| if (AM.BaseType == X86ISelAddressMode::RegBase) |
| if (AM.Base_Reg.getNode()) |
| Complexity = 1; |
| else |
| AM.Base_Reg = CurDAG->getRegister(0, VT); |
| else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) |
| Complexity = 4; |
| |
| if (AM.IndexReg.getNode()) |
| Complexity++; |
| else |
| AM.IndexReg = CurDAG->getRegister(0, VT); |
| |
| // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with |
| // a simple shift. |
| if (AM.Scale > 1) |
| Complexity++; |
| |
| // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA |
| // to a LEA. This is determined with some expermentation but is by no means |
| // optimal (especially for code size consideration). LEA is nice because of |
| // its three-address nature. Tweak the cost function again when we can run |
| // convertToThreeAddress() at register allocation time. |
| if (AM.hasSymbolicDisplacement()) { |
| // For X86-64, we should always use lea to materialize RIP relative |
| // addresses. |
| if (Subtarget->is64Bit()) |
| Complexity = 4; |
| else |
| Complexity += 2; |
| } |
| |
| if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) |
| Complexity++; |
| |
| // If it isn't worth using an LEA, reject it. |
| if (Complexity <= 2) |
| return false; |
| |
| getAddressOperands(AM, Base, Scale, Index, Disp, Segment); |
| return true; |
| } |
| |
| /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. |
| bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base, |
| SDValue &Scale, SDValue &Index, |
| SDValue &Disp, SDValue &Segment) { |
| assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); |
| |
| X86ISelAddressMode AM; |
| AM.GV = GA->getGlobal(); |
| AM.Disp += GA->getOffset(); |
| AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); |
| AM.SymbolFlags = GA->getTargetFlags(); |
| |
| if (N.getValueType() == MVT::i32) { |
| AM.Scale = 1; |
| AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); |
| } else { |
| AM.IndexReg = CurDAG->getRegister(0, MVT::i64); |
| } |
| |
| getAddressOperands(AM, Base, Scale, Index, Disp, Segment); |
| return true; |
| } |
| |
| |
| bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, |
| SDValue &Base, SDValue &Scale, |
| SDValue &Index, SDValue &Disp, |
| SDValue &Segment) { |
| if (!ISD::isNON_EXTLoad(N.getNode()) || |
| !IsProfitableToFold(N, P, P) || |
| !IsLegalToFold(N, P, P, OptLevel)) |
| return false; |
| |
| return SelectAddr(N.getNode(), |
| N.getOperand(1), Base, Scale, Index, Disp, Segment); |
| } |
| |
| /// getGlobalBaseReg - Return an SDNode that returns the value of |
| /// the global base register. Output instructions required to |
| /// initialize the global base register, if necessary. |
| /// |
| SDNode *X86DAGToDAGISel::getGlobalBaseReg() { |
| unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); |
| return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); |
| } |
| |
| SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { |
| SDValue Chain = Node->getOperand(0); |
| SDValue In1 = Node->getOperand(1); |
| SDValue In2L = Node->getOperand(2); |
| SDValue In2H = Node->getOperand(3); |
| |
| SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; |
| if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) |
| return NULL; |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); |
| const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; |
| SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), |
| MVT::i32, MVT::i32, MVT::Other, Ops, |
| array_lengthof(Ops)); |
| cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); |
| return ResNode; |
| } |
| |
| /// Atomic opcode table |
| /// |
| enum AtomicOpc { |
| ADD, |
| SUB, |
| INC, |
| DEC, |
| OR, |
| AND, |
| XOR, |
| AtomicOpcEnd |
| }; |
| |
| enum AtomicSz { |
| ConstantI8, |
| I8, |
| SextConstantI16, |
| ConstantI16, |
| I16, |
| SextConstantI32, |
| ConstantI32, |
| I32, |
| SextConstantI64, |
| ConstantI64, |
| I64, |
| AtomicSzEnd |
| }; |
| |
| static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = { |
| { |
| X86::LOCK_ADD8mi, |
| X86::LOCK_ADD8mr, |
| X86::LOCK_ADD16mi8, |
| X86::LOCK_ADD16mi, |
| X86::LOCK_ADD16mr, |
| X86::LOCK_ADD32mi8, |
| X86::LOCK_ADD32mi, |
| X86::LOCK_ADD32mr, |
| X86::LOCK_ADD64mi8, |
| X86::LOCK_ADD64mi32, |
| X86::LOCK_ADD64mr, |
| }, |
| { |
| X86::LOCK_SUB8mi, |
| X86::LOCK_SUB8mr, |
| X86::LOCK_SUB16mi8, |
| X86::LOCK_SUB16mi, |
| X86::LOCK_SUB16mr, |
| X86::LOCK_SUB32mi8, |
| X86::LOCK_SUB32mi, |
| X86::LOCK_SUB32mr, |
| X86::LOCK_SUB64mi8, |
| X86::LOCK_SUB64mi32, |
| X86::LOCK_SUB64mr, |
| }, |
| { |
| 0, |
| X86::LOCK_INC8m, |
| 0, |
| 0, |
| X86::LOCK_INC16m, |
| 0, |
| 0, |
| X86::LOCK_INC32m, |
| 0, |
| 0, |
| X86::LOCK_INC64m, |
| }, |
| { |
| 0, |
| X86::LOCK_DEC8m, |
| 0, |
| 0, |
| X86::LOCK_DEC16m, |
| 0, |
| 0, |
| X86::LOCK_DEC32m, |
| 0, |
| 0, |
| X86::LOCK_DEC64m, |
| }, |
| { |
| X86::LOCK_OR8mi, |
| X86::LOCK_OR8mr, |
| X86::LOCK_OR16mi8, |
| X86::LOCK_OR16mi, |
| X86::LOCK_OR16mr, |
| X86::LOCK_OR32mi8, |
| X86::LOCK_OR32mi, |
| X86::LOCK_OR32mr, |
| X86::LOCK_OR64mi8, |
| X86::LOCK_OR64mi32, |
| X86::LOCK_OR64mr, |
| }, |
| { |
| X86::LOCK_AND8mi, |
| X86::LOCK_AND8mr, |
| X86::LOCK_AND16mi8, |
| X86::LOCK_AND16mi, |
| X86::LOCK_AND16mr, |
| X86::LOCK_AND32mi8, |
| X86::LOCK_AND32mi, |
| X86::LOCK_AND32mr, |
| X86::LOCK_AND64mi8, |
| X86::LOCK_AND64mi32, |
| X86::LOCK_AND64mr, |
| }, |
| { |
| X86::LOCK_XOR8mi, |
| X86::LOCK_XOR8mr, |
| X86::LOCK_XOR16mi8, |
| X86::LOCK_XOR16mi, |
| X86::LOCK_XOR16mr, |
| X86::LOCK_XOR32mi8, |
| X86::LOCK_XOR32mi, |
| X86::LOCK_XOR32mr, |
| X86::LOCK_XOR64mi8, |
| X86::LOCK_XOR64mi32, |
| X86::LOCK_XOR64mr, |
| } |
| }; |
| |
| // Return the target constant operand for atomic-load-op and do simple |
| // translations, such as from atomic-load-add to lock-sub. The return value is |
| // one of the following 3 cases: |
| // + target-constant, the operand could be supported as a target constant. |
| // + empty, the operand is not needed any more with the new op selected. |
| // + non-empty, otherwise. |
| static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG, |
| DebugLoc dl, |
| enum AtomicOpc &Op, EVT NVT, |
| SDValue Val) { |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) { |
| int64_t CNVal = CN->getSExtValue(); |
| // Quit if not 32-bit imm. |
| if ((int32_t)CNVal != CNVal) |
| return Val; |
| // For atomic-load-add, we could do some optimizations. |
| if (Op == ADD) { |
| // Translate to INC/DEC if ADD by 1 or -1. |
| if ((CNVal == 1) || (CNVal == -1)) { |
| Op = (CNVal == 1) ? INC : DEC; |
| // No more constant operand after being translated into INC/DEC. |
| return SDValue(); |
| } |
| // Translate to SUB if ADD by negative value. |
| if (CNVal < 0) { |
| Op = SUB; |
| CNVal = -CNVal; |
| } |
| } |
| return CurDAG->getTargetConstant(CNVal, NVT); |
| } |
| |
| // If the value operand is single-used, try to optimize it. |
| if (Op == ADD && Val.hasOneUse()) { |
| // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x). |
| if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) { |
| Op = SUB; |
| return Val.getOperand(1); |
| } |
| // A special case for i16, which needs truncating as, in most cases, it's |
| // promoted to i32. We will translate |
| // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x)) |
| if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 && |
| Val.getOperand(0).getOpcode() == ISD::SUB && |
| X86::isZeroNode(Val.getOperand(0).getOperand(0))) { |
| Op = SUB; |
| Val = Val.getOperand(0); |
| return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT, |
| Val.getOperand(1)); |
| } |
| } |
| |
| return Val; |
| } |
| |
| SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) { |
| if (Node->hasAnyUseOfValue(0)) |
| return 0; |
| |
| DebugLoc dl = Node->getDebugLoc(); |
| |
| // Optimize common patterns for __sync_or_and_fetch and similar arith |
| // operations where the result is not used. This allows us to use the "lock" |
| // version of the arithmetic instruction. |
| SDValue Chain = Node->getOperand(0); |
| SDValue Ptr = Node->getOperand(1); |
| SDValue Val = Node->getOperand(2); |
| SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; |
| if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) |
| return 0; |
| |
| // Which index into the table. |
| enum AtomicOpc Op; |
| switch (Node->getOpcode()) { |
| default: |
| return 0; |
| case ISD::ATOMIC_LOAD_OR: |
| Op = OR; |
| break; |
| case ISD::ATOMIC_LOAD_AND: |
| Op = AND; |
| break; |
| case ISD::ATOMIC_LOAD_XOR: |
| Op = XOR; |
| break; |
| case ISD::ATOMIC_LOAD_ADD: |
| Op = ADD; |
| break; |
| } |
| |
| Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val); |
| bool isUnOp = !Val.getNode(); |
| bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant); |
| |
| unsigned Opc = 0; |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: return 0; |
| case MVT::i8: |
| if (isCN) |
| Opc = AtomicOpcTbl[Op][ConstantI8]; |
| else |
| Opc = AtomicOpcTbl[Op][I8]; |
| break; |
| case MVT::i16: |
| if (isCN) { |
| if (immSext8(Val.getNode())) |
| Opc = AtomicOpcTbl[Op][SextConstantI16]; |
| else |
| Opc = AtomicOpcTbl[Op][ConstantI16]; |
| } else |
| Opc = AtomicOpcTbl[Op][I16]; |
| break; |
| case MVT::i32: |
| if (isCN) { |
| if (immSext8(Val.getNode())) |
| Opc = AtomicOpcTbl[Op][SextConstantI32]; |
| else |
| Opc = AtomicOpcTbl[Op][ConstantI32]; |
| } else |
| Opc = AtomicOpcTbl[Op][I32]; |
| break; |
| case MVT::i64: |
| Opc = AtomicOpcTbl[Op][I64]; |
| if (isCN) { |
| if (immSext8(Val.getNode())) |
| Opc = AtomicOpcTbl[Op][SextConstantI64]; |
| else if (i64immSExt32(Val.getNode())) |
| Opc = AtomicOpcTbl[Op][ConstantI64]; |
| } |
| break; |
| } |
| |
| assert(Opc != 0 && "Invalid arith lock transform!"); |
| |
| SDValue Ret; |
| SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, |
| dl, NVT), 0); |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); |
| if (isUnOp) { |
| SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; |
| Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, |
| array_lengthof(Ops)), 0); |
| } else { |
| SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; |
| Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, |
| array_lengthof(Ops)), 0); |
| } |
| cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); |
| SDValue RetVals[] = { Undef, Ret }; |
| return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); |
| } |
| |
| /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has |
| /// any uses which require the SF or OF bits to be accurate. |
| static bool HasNoSignedComparisonUses(SDNode *N) { |
| // Examine each user of the node. |
| for (SDNode::use_iterator UI = N->use_begin(), |
| UE = N->use_end(); UI != UE; ++UI) { |
| // Only examine CopyToReg uses. |
| if (UI->getOpcode() != ISD::CopyToReg) |
| return false; |
| // Only examine CopyToReg uses that copy to EFLAGS. |
| if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != |
| X86::EFLAGS) |
| return false; |
| // Examine each user of the CopyToReg use. |
| for (SDNode::use_iterator FlagUI = UI->use_begin(), |
| FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { |
| // Only examine the Flag result. |
| if (FlagUI.getUse().getResNo() != 1) continue; |
| // Anything unusual: assume conservatively. |
| if (!FlagUI->isMachineOpcode()) return false; |
| // Examine the opcode of the user. |
| switch (FlagUI->getMachineOpcode()) { |
| // These comparisons don't treat the most significant bit specially. |
| case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: |
| case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: |
| case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: |
| case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: |
| case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4: |
| case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4: |
| case X86::CMOVA16rr: case X86::CMOVA16rm: |
| case X86::CMOVA32rr: case X86::CMOVA32rm: |
| case X86::CMOVA64rr: case X86::CMOVA64rm: |
| case X86::CMOVAE16rr: case X86::CMOVAE16rm: |
| case X86::CMOVAE32rr: case X86::CMOVAE32rm: |
| case X86::CMOVAE64rr: case X86::CMOVAE64rm: |
| case X86::CMOVB16rr: case X86::CMOVB16rm: |
| case X86::CMOVB32rr: case X86::CMOVB32rm: |
| case X86::CMOVB64rr: case X86::CMOVB64rm: |
| case X86::CMOVBE16rr: case X86::CMOVBE16rm: |
| case X86::CMOVBE32rr: case X86::CMOVBE32rm: |
| case X86::CMOVBE64rr: case X86::CMOVBE64rm: |
| case X86::CMOVE16rr: case X86::CMOVE16rm: |
| case X86::CMOVE32rr: case X86::CMOVE32rm: |
| case X86::CMOVE64rr: case X86::CMOVE64rm: |
| case X86::CMOVNE16rr: case X86::CMOVNE16rm: |
| case X86::CMOVNE32rr: case X86::CMOVNE32rm: |
| case X86::CMOVNE64rr: case X86::CMOVNE64rm: |
| case X86::CMOVNP16rr: case X86::CMOVNP16rm: |
| case X86::CMOVNP32rr: case X86::CMOVNP32rm: |
| case X86::CMOVNP64rr: case X86::CMOVNP64rm: |
| case X86::CMOVP16rr: case X86::CMOVP16rm: |
| case X86::CMOVP32rr: case X86::CMOVP32rm: |
| case X86::CMOVP64rr: case X86::CMOVP64rm: |
| continue; |
| // Anything else: assume conservatively. |
| default: return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode |
| /// is suitable for doing the {load; increment or decrement; store} to modify |
| /// transformation. |
| static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, |
| SDValue StoredVal, SelectionDAG *CurDAG, |
| LoadSDNode* &LoadNode, SDValue &InputChain) { |
| |
| // is the value stored the result of a DEC or INC? |
| if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false; |
| |
| // is the stored value result 0 of the load? |
| if (StoredVal.getResNo() != 0) return false; |
| |
| // are there other uses of the loaded value than the inc or dec? |
| if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; |
| |
| // is the store non-extending and non-indexed? |
| if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) |
| return false; |
| |
| SDValue Load = StoredVal->getOperand(0); |
| // Is the stored value a non-extending and non-indexed load? |
| if (!ISD::isNormalLoad(Load.getNode())) return false; |
| |
| // Return LoadNode by reference. |
| LoadNode = cast<LoadSDNode>(Load); |
| // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8) |
| EVT LdVT = LoadNode->getMemoryVT(); |
| if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 && |
| LdVT != MVT::i8) |
| return false; |
| |
| // Is store the only read of the loaded value? |
| if (!Load.hasOneUse()) |
| return false; |
| |
| // Is the address of the store the same as the load? |
| if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || |
| LoadNode->getOffset() != StoreNode->getOffset()) |
| return false; |
| |
| // Check if the chain is produced by the load or is a TokenFactor with |
| // the load output chain as an operand. Return InputChain by reference. |
| SDValue Chain = StoreNode->getChain(); |
| |
| bool ChainCheck = false; |
| if (Chain == Load.getValue(1)) { |
| ChainCheck = true; |
| InputChain = LoadNode->getChain(); |
| } else if (Chain.getOpcode() == ISD::TokenFactor) { |
| SmallVector<SDValue, 4> ChainOps; |
| for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { |
| SDValue Op = Chain.getOperand(i); |
| if (Op == Load.getValue(1)) { |
| ChainCheck = true; |
| continue; |
| } |
| |
| // Make sure using Op as part of the chain would not cause a cycle here. |
| // In theory, we could check whether the chain node is a predecessor of |
| // the load. But that can be very expensive. Instead visit the uses and |
| // make sure they all have smaller node id than the load. |
| int LoadId = LoadNode->getNodeId(); |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = UI->use_end(); UI != UE; ++UI) { |
| if (UI.getUse().getResNo() != 0) |
| continue; |
| if (UI->getNodeId() > LoadId) |
| return false; |
| } |
| |
| ChainOps.push_back(Op); |
| } |
| |
| if (ChainCheck) |
| // Make a new TokenFactor with all the other input chains except |
| // for the load. |
| InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(), |
| MVT::Other, &ChainOps[0], ChainOps.size()); |
| } |
| if (!ChainCheck) |
| return false; |
| |
| return true; |
| } |
| |
| /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory |
| /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC. |
| static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) { |
| if (Opc == X86ISD::DEC) { |
| if (LdVT == MVT::i64) return X86::DEC64m; |
| if (LdVT == MVT::i32) return X86::DEC32m; |
| if (LdVT == MVT::i16) return X86::DEC16m; |
| if (LdVT == MVT::i8) return X86::DEC8m; |
| } else { |
| assert(Opc == X86ISD::INC && "unrecognized opcode"); |
| if (LdVT == MVT::i64) return X86::INC64m; |
| if (LdVT == MVT::i32) return X86::INC32m; |
| if (LdVT == MVT::i16) return X86::INC16m; |
| if (LdVT == MVT::i8) return X86::INC8m; |
| } |
| llvm_unreachable("unrecognized size for LdVT"); |
| } |
| |
| /// SelectGather - Customized ISel for GATHER operations. |
| /// |
| SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) { |
| // Operands of Gather: VSrc, Base, VIdx, VMask, Scale |
| SDValue Chain = Node->getOperand(0); |
| SDValue VSrc = Node->getOperand(2); |
| SDValue Base = Node->getOperand(3); |
| SDValue VIdx = Node->getOperand(4); |
| SDValue VMask = Node->getOperand(5); |
| ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6)); |
| if (!Scale) |
| return 0; |
| |
| SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(), |
| MVT::Other); |
| |
| // Memory Operands: Base, Scale, Index, Disp, Segment |
| SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32); |
| SDValue Segment = CurDAG->getRegister(0, MVT::i32); |
| const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx, |
| Disp, Segment, VMask, Chain}; |
| SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), |
| VTs, Ops, array_lengthof(Ops)); |
| // Node has 2 outputs: VDst and MVT::Other. |
| // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other. |
| // We replace VDst of Node with VDst of ResNode, and Other of Node with Other |
| // of ResNode. |
| ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0)); |
| ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2)); |
| return ResNode; |
| } |
| |
| SDNode *X86DAGToDAGISel::Select(SDNode *Node) { |
| EVT NVT = Node->getValueType(0); |
| unsigned Opc, MOpc; |
| unsigned Opcode = Node->getOpcode(); |
| DebugLoc dl = Node->getDebugLoc(); |
| |
| DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); |
| |
| if (Node->isMachineOpcode()) { |
| DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); |
| return NULL; // Already selected. |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case ISD::INTRINSIC_W_CHAIN: { |
| unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| default: break; |
| case Intrinsic::x86_avx2_gather_d_pd: |
| case Intrinsic::x86_avx2_gather_d_pd_256: |
| case Intrinsic::x86_avx2_gather_q_pd: |
| case Intrinsic::x86_avx2_gather_q_pd_256: |
| case Intrinsic::x86_avx2_gather_d_ps: |
| case Intrinsic::x86_avx2_gather_d_ps_256: |
| case Intrinsic::x86_avx2_gather_q_ps: |
| case Intrinsic::x86_avx2_gather_q_ps_256: |
| case Intrinsic::x86_avx2_gather_d_q: |
| case Intrinsic::x86_avx2_gather_d_q_256: |
| case Intrinsic::x86_avx2_gather_q_q: |
| case Intrinsic::x86_avx2_gather_q_q_256: |
| case Intrinsic::x86_avx2_gather_d_d: |
| case Intrinsic::x86_avx2_gather_d_d_256: |
| case Intrinsic::x86_avx2_gather_q_d: |
| case Intrinsic::x86_avx2_gather_q_d_256: { |
| unsigned Opc; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); |
| case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break; |
| case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break; |
| case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break; |
| case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break; |
| case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break; |
| case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break; |
| case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break; |
| case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break; |
| case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break; |
| case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break; |
| case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break; |
| case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break; |
| case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break; |
| case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break; |
| case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break; |
| case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break; |
| } |
| SDNode *RetVal = SelectGather(Node, Opc); |
| if (RetVal) |
| // We already called ReplaceUses inside SelectGather. |
| return NULL; |
| break; |
| } |
| } |
| break; |
| } |
| case X86ISD::GlobalBaseReg: |
| return getGlobalBaseReg(); |
| |
| |
| case X86ISD::ATOMOR64_DAG: |
| case X86ISD::ATOMXOR64_DAG: |
| case X86ISD::ATOMADD64_DAG: |
| case X86ISD::ATOMSUB64_DAG: |
| case X86ISD::ATOMNAND64_DAG: |
| case X86ISD::ATOMAND64_DAG: |
| case X86ISD::ATOMMAX64_DAG: |
| case X86ISD::ATOMMIN64_DAG: |
| case X86ISD::ATOMUMAX64_DAG: |
| case X86ISD::ATOMUMIN64_DAG: |
| case X86ISD::ATOMSWAP64_DAG: { |
| unsigned Opc; |
| switch (Opcode) { |
| default: llvm_unreachable("Impossible opcode"); |
| case X86ISD::ATOMOR64_DAG: Opc = X86::ATOMOR6432; break; |
| case X86ISD::ATOMXOR64_DAG: Opc = X86::ATOMXOR6432; break; |
| case X86ISD::ATOMADD64_DAG: Opc = X86::ATOMADD6432; break; |
| case X86ISD::ATOMSUB64_DAG: Opc = X86::ATOMSUB6432; break; |
| case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break; |
| case X86ISD::ATOMAND64_DAG: Opc = X86::ATOMAND6432; break; |
| case X86ISD::ATOMMAX64_DAG: Opc = X86::ATOMMAX6432; break; |
| case X86ISD::ATOMMIN64_DAG: Opc = X86::ATOMMIN6432; break; |
| case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break; |
| case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break; |
| case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break; |
| } |
| SDNode *RetVal = SelectAtomic64(Node, Opc); |
| if (RetVal) |
| return RetVal; |
| break; |
| } |
| |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_ADD: { |
| SDNode *RetVal = SelectAtomicLoadArith(Node, NVT); |
| if (RetVal) |
| return RetVal; |
| break; |
| } |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| // For operations of the form (x << C1) op C2, check if we can use a smaller |
| // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. |
| SDValue N0 = Node->getOperand(0); |
| SDValue N1 = Node->getOperand(1); |
| |
| if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) |
| break; |
| |
| // i8 is unshrinkable, i16 should be promoted to i32. |
| if (NVT != MVT::i32 && NVT != MVT::i64) |
| break; |
| |
| ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); |
| ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); |
| if (!Cst || !ShlCst) |
| break; |
| |
| int64_t Val = Cst->getSExtValue(); |
| uint64_t ShlVal = ShlCst->getZExtValue(); |
| |
| // Make sure that we don't change the operation by removing bits. |
| // This only matters for OR and XOR, AND is unaffected. |
| uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1; |
| if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) |
| break; |
| |
| unsigned ShlOp, Op; |
| EVT CstVT = NVT; |
| |
| // Check the minimum bitwidth for the new constant. |
| // TODO: AND32ri is the same as AND64ri32 with zext imm. |
| // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr |
| // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. |
| if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) |
| CstVT = MVT::i8; |
| else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) |
| CstVT = MVT::i32; |
| |
| // Bail if there is no smaller encoding. |
| if (NVT == CstVT) |
| break; |
| |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported VT!"); |
| case MVT::i32: |
| assert(CstVT == MVT::i8); |
| ShlOp = X86::SHL32ri; |
| |
| switch (Opcode) { |
| default: llvm_unreachable("Impossible opcode"); |
| case ISD::AND: Op = X86::AND32ri8; break; |
| case ISD::OR: Op = X86::OR32ri8; break; |
| case ISD::XOR: Op = X86::XOR32ri8; break; |
| } |
| break; |
| case MVT::i64: |
| assert(CstVT == MVT::i8 || CstVT == MVT::i32); |
| ShlOp = X86::SHL64ri; |
| |
| switch (Opcode) { |
| default: llvm_unreachable("Impossible opcode"); |
| case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; |
| case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; |
| case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; |
| } |
| break; |
| } |
| |
| // Emit the smaller op and the shift. |
| SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT); |
| SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); |
| return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), |
| getI8Imm(ShlVal)); |
| } |
| case X86ISD::UMUL: { |
| SDValue N0 = Node->getOperand(0); |
| SDValue N1 = Node->getOperand(1); |
| |
| unsigned LoReg; |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported VT!"); |
| case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break; |
| case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break; |
| case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; |
| case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; |
| } |
| |
| SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, |
| N0, SDValue()).getValue(1); |
| |
| SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); |
| SDValue Ops[] = {N1, InFlag}; |
| SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2); |
| |
| ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); |
| ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); |
| ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); |
| return NULL; |
| } |
| |
| case ISD::SMUL_LOHI: |
| case ISD::UMUL_LOHI: { |
| SDValue N0 = Node->getOperand(0); |
| SDValue N1 = Node->getOperand(1); |
| |
| bool isSigned = Opcode == ISD::SMUL_LOHI; |
| bool hasBMI2 = Subtarget->hasBMI2(); |
| if (!isSigned) { |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported VT!"); |
| case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; |
| case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; |
| case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r; |
| MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break; |
| case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r; |
| MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break; |
| } |
| } else { |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported VT!"); |
| case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; |
| case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; |
| case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; |
| case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; |
| } |
| } |
| |
| unsigned SrcReg, LoReg, HiReg; |
| switch (Opc) { |
| default: llvm_unreachable("Unknown MUL opcode!"); |
| case X86::IMUL8r: |
| case X86::MUL8r: |
| SrcReg = LoReg = X86::AL; HiReg = X86::AH; |
| break; |
| case X86::IMUL16r: |
| case X86::MUL16r: |
| SrcReg = LoReg = X86::AX; HiReg = X86::DX; |
| break; |
| case X86::IMUL32r: |
| case X86::MUL32r: |
| SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; |
| break; |
| case X86::IMUL64r: |
| case X86::MUL64r: |
| SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; |
| break; |
| case X86::MULX32rr: |
| SrcReg = X86::EDX; LoReg = HiReg = 0; |
| break; |
| case X86::MULX64rr: |
| SrcReg = X86::RDX; LoReg = HiReg = 0; |
| break; |
| } |
| |
| SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; |
| bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); |
| // Multiply is commmutative. |
| if (!foldedLoad) { |
| foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); |
| if (foldedLoad) |
| std::swap(N0, N1); |
| } |
| |
| SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, |
| N0, SDValue()).getValue(1); |
| SDValue ResHi, ResLo; |
| |
| if (foldedLoad) { |
| SDValue Chain; |
| SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), |
| InFlag }; |
| if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) { |
| SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue); |
| SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops, |
| array_lengthof(Ops)); |
| ResHi = SDValue(CNode, 0); |
| ResLo = SDValue(CNode, 1); |
| Chain = SDValue(CNode, 2); |
| InFlag = SDValue(CNode, 3); |
| } else { |
| SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); |
| SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops, |
| array_lengthof(Ops)); |
| Chain = SDValue(CNode, 0); |
| InFlag = SDValue(CNode, 1); |
| } |
| |
| // Update the chain. |
| ReplaceUses(N1.getValue(1), Chain); |
| } else { |
| SDValue Ops[] = { N1, InFlag }; |
| if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) { |
| SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue); |
| SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, |
| array_lengthof(Ops)); |
| ResHi = SDValue(CNode, 0); |
| ResLo = SDValue(CNode, 1); |
| InFlag = SDValue(CNode, 2); |
| } else { |
| SDVTList VTs = CurDAG->getVTList(MVT::Glue); |
| SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, |
| array_lengthof(Ops)); |
| InFlag = SDValue(CNode, 0); |
| } |
| } |
| |
| // Prevent use of AH in a REX instruction by referencing AX instead. |
| if (HiReg == X86::AH && Subtarget->is64Bit() && |
| !SDValue(Node, 1).use_empty()) { |
| SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, |
| X86::AX, MVT::i16, InFlag); |
| InFlag = Result.getValue(2); |
| // Get the low part if needed. Don't use getCopyFromReg for aliasing |
| // registers. |
| if (!SDValue(Node, 0).use_empty()) |
| ReplaceUses(SDValue(Node, 1), |
| CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); |
| |
| // Shift AX down 8 bits. |
| Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, |
| Result, |
| CurDAG->getTargetConstant(8, MVT::i8)), 0); |
| // Then truncate it down to i8. |
| ReplaceUses(SDValue(Node, 1), |
| CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); |
| } |
| // Copy the low half of the result, if it is needed. |
| if (!SDValue(Node, 0).use_empty()) { |
| if (ResLo.getNode() == 0) { |
| assert(LoReg && "Register for low half is not defined!"); |
| ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, |
| InFlag); |
| InFlag = ResLo.getValue(2); |
| } |
| ReplaceUses(SDValue(Node, 0), ResLo); |
| DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n'); |
| } |
| // Copy the high half of the result, if it is needed. |
| if (!SDValue(Node, 1).use_empty()) { |
| if (ResHi.getNode() == 0) { |
| assert(HiReg && "Register for high half is not defined!"); |
| ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, |
| InFlag); |
| InFlag = ResHi.getValue(2); |
| } |
| ReplaceUses(SDValue(Node, 1), ResHi); |
| DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n'); |
| } |
| |
| return NULL; |
| } |
| |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: { |
| SDValue N0 = Node->getOperand(0); |
| SDValue N1 = Node->getOperand(1); |
| |
| bool isSigned = Opcode == ISD::SDIVREM; |
| if (!isSigned) { |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported VT!"); |
| case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; |
| case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; |
| case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; |
| case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; |
| } |
| } else { |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported VT!"); |
| case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; |
| case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; |
| case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; |
| case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; |
| } |
| } |
| |
| unsigned LoReg, HiReg, ClrReg; |
| unsigned ClrOpcode, SExtOpcode; |
| switch (NVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unsupported VT!"); |
| case MVT::i8: |
| LoReg = X86::AL; ClrReg = HiReg = X86::AH; |
| ClrOpcode = 0; |
| SExtOpcode = X86::CBW; |
| break; |
| case MVT::i16: |
| LoReg = X86::AX; HiReg = X86::DX; |
| ClrOpcode = X86::MOV16r0; ClrReg = X86::DX; |
| SExtOpcode = X86::CWD; |
| break; |
| case MVT::i32: |
| LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; |
| ClrOpcode = X86::MOV32r0; |
| SExtOpcode = X86::CDQ; |
| break; |
| case MVT::i64: |
| LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; |
| ClrOpcode = X86::MOV64r0; |
| SExtOpcode = X86::CQO; |
| break; |
| } |
| |
| SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; |
| bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); |
| bool signBitIsZero = CurDAG->SignBitIsZero(N0); |
| |
| SDValue InFlag; |
| if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { |
| // Special case for div8, just use a move with zero extension to AX to |
| // clear the upper 8 bits (AH). |
| SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; |
| if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { |
| SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; |
| Move = |
| SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, |
| MVT::Other, Ops, |
| array_lengthof(Ops)), 0); |
| Chain = Move.getValue(1); |
| ReplaceUses(N0.getValue(1), Chain); |
| } else { |
| Move = |
| SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); |
| Chain = CurDAG->getEntryNode(); |
| } |
| Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); |
| InFlag = Chain.getValue(1); |
| } else { |
| InFlag = |
| CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, |
| LoReg, N0, SDValue()).getValue(1); |
| if (isSigned && !signBitIsZero) { |
| // Sign extend the low part into the high part. |
| InFlag = |
| SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); |
| } else { |
| // Zero out the high part, effectively zero extending the input. |
| SDValue ClrNode = |
| SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0); |
| InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, |
| ClrNode, InFlag).getValue(1); |
| } |
| } |
| |
| if (foldedLoad) { |
| SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), |
| InFlag }; |
| SDNode *CNode = |
| CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops, |
| array_lengthof(Ops)); |
| InFlag = SDValue(CNode, 1); |
| // Update the chain. |
| ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); |
| } else { |
| InFlag = |
| SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); |
| } |
| |
| // Prevent use of AH in a REX instruction by referencing AX instead. |
| // Shift it down 8 bits. |
| if (HiReg == X86::AH && Subtarget->is64Bit() && |
| !SDValue(Node, 1).use_empty()) { |
| SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, |
| X86::AX, MVT::i16, InFlag); |
| InFlag = Result.getValue(2); |
| |
| // If we also need AL (the quotient), get it by extracting a subreg from |
| // Result. The fast register allocator does not like multiple CopyFromReg |
| // nodes using aliasing registers. |
| if (!SDValue(Node, 0).use_empty()) |
| ReplaceUses(SDValue(Node, 0), |
| CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); |
| |
| // Shift AX right by 8 bits instead of using AH. |
| Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, |
| Result, |
| CurDAG->getTargetConstant(8, MVT::i8)), |
| 0); |
| ReplaceUses(SDValue(Node, 1), |
| CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); |
| } |
| // Copy the division (low) result, if it is needed. |
| if (!SDValue(Node, 0).use_empty()) { |
| SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, |
| LoReg, NVT, InFlag); |
| InFlag = Result.getValue(2); |
| ReplaceUses(SDValue(Node, 0), Result); |
| DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); |
| } |
| // Copy the remainder (high) result, if it is needed. |
| if (!SDValue(Node, 1).use_empty()) { |
| SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, |
| HiReg, NVT, InFlag); |
| InFlag = Result.getValue(2); |
| ReplaceUses(SDValue(Node, 1), Result); |
| DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); |
| } |
| return NULL; |
| } |
| |
| case X86ISD::CMP: |
| case X86ISD::SUB: { |
| // Sometimes a SUB is used to perform comparison. |
| if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0)) |
| // This node is not a CMP. |
| break; |
| SDValue N0 = Node->getOperand(0); |
| SDValue N1 = Node->getOperand(1); |
| |
| // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to |
| // use a smaller encoding. |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && |
| HasNoSignedComparisonUses(Node)) |
| // Look past the truncate if CMP is the only use of it. |
| N0 = N0.getOperand(0); |
| if ((N0.getNode()->getOpcode() == ISD::AND || |
| (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) && |
| N0.getNode()->hasOneUse() && |
| N0.getValueType() != MVT::i8 && |
| X86::isZeroNode(N1)) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); |
| if (!C) break; |
| |
| // For example, convert "testl %eax, $8" to "testb %al, $8" |
| if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && |
| (!(C->getZExtValue() & 0x80) || |
| HasNoSignedComparisonUses(Node))) { |
| SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); |
| SDValue Reg = N0.getNode()->getOperand(0); |
| |
| // On x86-32, only the ABCD registers have 8-bit subregisters. |
| if (!Subtarget->is64Bit()) { |
| const TargetRegisterClass *TRC; |
| switch (N0.getValueType().getSimpleVT().SimpleTy) { |
| case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; |
| case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; |
| default: llvm_unreachable("Unsupported TEST operand type!"); |
| } |
| SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); |
| Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, |
| Reg.getValueType(), Reg, RC), 0); |
| } |
| |
| // Extract the l-register. |
| SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, |
| MVT::i8, Reg); |
| |
| // Emit a testb. |
| SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, |
| Subreg, Imm); |
| // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has |
| // one, do not call ReplaceAllUsesWith. |
| ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), |
| SDValue(NewNode, 0)); |
| return NULL; |
| } |
| |
| // For example, "testl %eax, $2048" to "testb %ah, $8". |
| if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && |
| (!(C->getZExtValue() & 0x8000) || |
| HasNoSignedComparisonUses(Node))) { |
| // Shift the immediate right by 8 bits. |
| SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, |
| MVT::i8); |
| SDValue Reg = N0.getNode()->getOperand(0); |
| |
| // Put the value in an ABCD register. |
| const TargetRegisterClass *TRC; |
| switch (N0.getValueType().getSimpleVT().SimpleTy) { |
| case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; |
| case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; |
| case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; |
| default: llvm_unreachable("Unsupported TEST operand type!"); |
| } |
| SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); |
| Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, |
| Reg.getValueType(), Reg, RC), 0); |
| |
| // Extract the h-register. |
| SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, |
| MVT::i8, Reg); |
| |
| // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only |
| // target GR8_NOREX registers, so make sure the register class is |
| // forced. |
| SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, |
| MVT::i32, Subreg, ShiftedImm); |
| // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has |
| // one, do not call ReplaceAllUsesWith. |
| ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), |
| SDValue(NewNode, 0)); |
| return NULL; |
| } |
| |
| // For example, "testl %eax, $32776" to "testw %ax, $32776". |
| if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && |
| N0.getValueType() != MVT::i16 && |
| (!(C->getZExtValue() & 0x8000) || |
| HasNoSignedComparisonUses(Node))) { |
| SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); |
| SDValue Reg = N0.getNode()->getOperand(0); |
| |
| // Extract the 16-bit subregister. |
| SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, |
| MVT::i16, Reg); |
| |
| // Emit a testw. |
| SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, |
| Subreg, Imm); |
| // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has |
| // one, do not call ReplaceAllUsesWith. |
| ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), |
| SDValue(NewNode, 0)); |
| return NULL; |
| } |
| |
| // For example, "testq %rax, $268468232" to "testl %eax, $268468232". |
| if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && |
| N0.getValueType() == MVT::i64 && |
| (!(C->getZExtValue() & 0x80000000) || |
| HasNoSignedComparisonUses(Node))) { |
| SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); |
| SDValue Reg = N0.getNode()->getOperand(0); |
| |
| // Extract the 32-bit subregister. |
| SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, |
| MVT::i32, Reg); |
| |
| // Emit a testl. |
| SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, |
| Subreg, Imm); |
| // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has |
| // one, do not call ReplaceAllUsesWith. |
| ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), |
| SDValue(NewNode, 0)); |
| return NULL; |
| } |
| } |
| break; |
| } |
| case ISD::STORE: { |
| // Change a chain of {load; incr or dec; store} of the same value into |
| // a simple increment or decrement through memory of that value, if the |
| // uses of the modified value and its address are suitable. |
| // The DEC64m tablegen pattern is currently not able to match the case where |
| // the EFLAGS on the original DEC are used. (This also applies to |
| // {INC,DEC}X{64,32,16,8}.) |
| // We'll need to improve tablegen to allow flags to be transferred from a |
| // node in the pattern to the result node. probably with a new keyword |
| // for example, we have this |
| // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", |
| // [(store (add (loadi64 addr:$dst), -1), addr:$dst), |
| // (implicit EFLAGS)]>; |
| // but maybe need something like this |
| // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", |
| // [(store (add (loadi64 addr:$dst), -1), addr:$dst), |
| // (transferrable EFLAGS)]>; |
| |
| StoreSDNode *StoreNode = cast<StoreSDNode>(Node); |
| SDValue StoredVal = StoreNode->getOperand(1); |
| unsigned Opc = StoredVal->getOpcode(); |
| |
| LoadSDNode *LoadNode = 0; |
| SDValue InputChain; |
| if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG, |
| LoadNode, InputChain)) |
| break; |
| |
| SDValue Base, Scale, Index, Disp, Segment; |
| if (!SelectAddr(LoadNode, LoadNode->getBasePtr(), |
| Base, Scale, Index, Disp, Segment)) |
| break; |
| |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); |
| MemOp[0] = StoreNode->getMemOperand(); |
| MemOp[1] = LoadNode->getMemOperand(); |
| const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain }; |
| EVT LdVT = LoadNode->getMemoryVT(); |
| unsigned newOpc = getFusedLdStOpcode(LdVT, Opc); |
| MachineSDNode *Result = CurDAG->getMachineNode(newOpc, |
| Node->getDebugLoc(), |
| MVT::i32, MVT::Other, Ops, |
| array_lengthof(Ops)); |
| Result->setMemRefs(MemOp, MemOp + 2); |
| |
| ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); |
| ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); |
| |
| return Result; |
| } |
| } |
| |
| SDNode *ResNode = SelectCode(Node); |
| |
| DEBUG(dbgs() << "=> "; |
| if (ResNode == NULL || ResNode == Node) |
| Node->dump(CurDAG); |
| else |
| ResNode->dump(CurDAG); |
| dbgs() << '\n'); |
| |
| return ResNode; |
| } |
| |
| bool X86DAGToDAGISel:: |
| SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, |
| std::vector<SDValue> &OutOps) { |
| SDValue Op0, Op1, Op2, Op3, Op4; |
| switch (ConstraintCode) { |
| case 'o': // offsetable ?? |
| case 'v': // not offsetable ?? |
| default: return true; |
| case 'm': // memory |
| if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4)) |
| return true; |
| break; |
| } |
| |
| OutOps.push_back(Op0); |
| OutOps.push_back(Op1); |
| OutOps.push_back(Op2); |
| OutOps.push_back(Op3); |
| OutOps.push_back(Op4); |
| return false; |
| } |
| |
| /// createX86ISelDag - This pass converts a legalized DAG into a |
| /// X86-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new X86DAGToDAGISel(TM, OptLevel); |
| } |