| //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the X86 implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef X86INSTRUCTIONINFO_H |
| #define X86INSTRUCTIONINFO_H |
| |
| #include "X86.h" |
| #include "X86RegisterInfo.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| |
| #define GET_INSTRINFO_HEADER |
| #include "X86GenInstrInfo.inc" |
| |
| namespace llvm { |
| class X86RegisterInfo; |
| class X86TargetMachine; |
| |
| namespace X86 { |
| // X86 specific condition code. These correspond to X86_*_COND in |
| // X86InstrInfo.td. They must be kept in synch. |
| enum CondCode { |
| COND_A = 0, |
| COND_AE = 1, |
| COND_B = 2, |
| COND_BE = 3, |
| COND_E = 4, |
| COND_G = 5, |
| COND_GE = 6, |
| COND_L = 7, |
| COND_LE = 8, |
| COND_NE = 9, |
| COND_NO = 10, |
| COND_NP = 11, |
| COND_NS = 12, |
| COND_O = 13, |
| COND_P = 14, |
| COND_S = 15, |
| |
| // Artificial condition codes. These are used by AnalyzeBranch |
| // to indicate a block terminated with two conditional branches to |
| // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE, |
| // which can't be represented on x86 with a single condition. These |
| // are never used in MachineInstrs. |
| COND_NE_OR_P, |
| COND_NP_OR_E, |
| |
| COND_INVALID |
| }; |
| |
| // Turn condition code into conditional branch opcode. |
| unsigned GetCondBranchFromCond(CondCode CC); |
| |
| // Turn CMov opcode into condition code. |
| CondCode getCondFromCMovOpc(unsigned Opc); |
| |
| /// GetOppositeBranchCondition - Return the inverse of the specified cond, |
| /// e.g. turning COND_E to COND_NE. |
| CondCode GetOppositeBranchCondition(X86::CondCode CC); |
| } // end namespace X86; |
| |
| |
| /// isGlobalStubReference - Return true if the specified TargetFlag operand is |
| /// a reference to a stub for a global, not the global itself. |
| inline static bool isGlobalStubReference(unsigned char TargetFlag) { |
| switch (TargetFlag) { |
| case X86II::MO_DLLIMPORT: // dllimport stub. |
| case X86II::MO_GOTPCREL: // rip-relative GOT reference. |
| case X86II::MO_GOT: // normal GOT reference. |
| case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref. |
| case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref. |
| case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref. |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// isGlobalRelativeToPICBase - Return true if the specified global value |
| /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this |
| /// is true, the addressing mode has the PIC base register added in (e.g. EBX). |
| inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { |
| switch (TargetFlag) { |
| case X86II::MO_GOTOFF: // isPICStyleGOT: local global. |
| case X86II::MO_GOT: // isPICStyleGOT: other global. |
| case X86II::MO_PIC_BASE_OFFSET: // Darwin local global. |
| case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global. |
| case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global. |
| case X86II::MO_TLVP: // ??? Pretty sure.. |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| inline static bool isScale(const MachineOperand &MO) { |
| return MO.isImm() && |
| (MO.getImm() == 1 || MO.getImm() == 2 || |
| MO.getImm() == 4 || MO.getImm() == 8); |
| } |
| |
| inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) { |
| if (MI->getOperand(Op).isFI()) return true; |
| return Op+4 <= MI->getNumOperands() && |
| MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) && |
| MI->getOperand(Op+2).isReg() && |
| (MI->getOperand(Op+3).isImm() || |
| MI->getOperand(Op+3).isGlobal() || |
| MI->getOperand(Op+3).isCPI() || |
| MI->getOperand(Op+3).isJTI()); |
| } |
| |
| inline static bool isMem(const MachineInstr *MI, unsigned Op) { |
| if (MI->getOperand(Op).isFI()) return true; |
| return Op+5 <= MI->getNumOperands() && |
| MI->getOperand(Op+4).isReg() && |
| isLeaMem(MI, Op); |
| } |
| |
| class X86InstrInfo : public X86GenInstrInfo { |
| X86TargetMachine &TM; |
| const X86RegisterInfo RI; |
| |
| /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, |
| /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps. |
| /// |
| typedef DenseMap<unsigned, |
| std::pair<unsigned, unsigned> > RegOp2MemOpTableType; |
| RegOp2MemOpTableType RegOp2MemOpTable2Addr; |
| RegOp2MemOpTableType RegOp2MemOpTable0; |
| RegOp2MemOpTableType RegOp2MemOpTable1; |
| RegOp2MemOpTableType RegOp2MemOpTable2; |
| RegOp2MemOpTableType RegOp2MemOpTable3; |
| |
| /// MemOp2RegOpTable - Load / store unfolding opcode map. |
| /// |
| typedef DenseMap<unsigned, |
| std::pair<unsigned, unsigned> > MemOp2RegOpTableType; |
| MemOp2RegOpTableType MemOp2RegOpTable; |
| |
| static void AddTableEntry(RegOp2MemOpTableType &R2MTable, |
| MemOp2RegOpTableType &M2RTable, |
| unsigned RegOp, unsigned MemOp, unsigned Flags); |
| |
| public: |
| explicit X86InstrInfo(X86TargetMachine &tm); |
| |
| /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As |
| /// such, whenever a client has an instance of instruction info, it should |
| /// always be able to get register info as well (through this method). |
| /// |
| virtual const X86RegisterInfo &getRegisterInfo() const { return RI; } |
| |
| /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" |
| /// extension instruction. That is, it's like a copy where it's legal for the |
| /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns |
| /// true, then it's expected the pre-extension value is available as a subreg |
| /// of the result register. This also returns the sub-register index in |
| /// SubIdx. |
| virtual bool isCoalescableExtInstr(const MachineInstr &MI, |
| unsigned &SrcReg, unsigned &DstReg, |
| unsigned &SubIdx) const; |
| |
| unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const; |
| /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination |
| /// stack locations as well. This uses a heuristic so it isn't |
| /// reliable for correctness. |
| unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, |
| int &FrameIndex) const; |
| |
| unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const; |
| /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination |
| /// stack locations as well. This uses a heuristic so it isn't |
| /// reliable for correctness. |
| unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, |
| int &FrameIndex) const; |
| |
| bool isReallyTriviallyReMaterializable(const MachineInstr *MI, |
| AliasAnalysis *AA) const; |
| void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| unsigned DestReg, unsigned SubIdx, |
| const MachineInstr *Orig, |
| const TargetRegisterInfo &TRI) const; |
| |
| /// convertToThreeAddress - This method must be implemented by targets that |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| /// may be able to convert a two-address instruction into a true |
| /// three-address instruction on demand. This allows the X86 target (for |
| /// example) to convert ADD and SHL instructions into LEA instructions if they |
| /// would require register copies due to two-addressness. |
| /// |
| /// This method returns a null pointer if the transformation cannot be |
| /// performed, otherwise it returns the new instruction. |
| /// |
| virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI, |
| LiveVariables *LV) const; |
| |
| /// commuteInstruction - We have a few instructions that must be hacked on to |
| /// commute them. |
| /// |
| virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const; |
| |
| // Branch analysis. |
| virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const; |
| virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const; |
| virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; |
| virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| const SmallVectorImpl<MachineOperand> &Cond, |
| DebugLoc DL) const; |
| virtual bool canInsertSelect(const MachineBasicBlock&, |
| const SmallVectorImpl<MachineOperand> &Cond, |
| unsigned, unsigned, int&, int&, int&) const; |
| virtual void insertSelect(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, DebugLoc DL, |
| unsigned DstReg, |
| const SmallVectorImpl<MachineOperand> &Cond, |
| unsigned TrueReg, unsigned FalseReg) const; |
| virtual void copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, DebugLoc DL, |
| unsigned DestReg, unsigned SrcReg, |
| bool KillSrc) const; |
| virtual void storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned SrcReg, bool isKill, int FrameIndex, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const; |
| |
| virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| MachineInstr::mmo_iterator MMOBegin, |
| MachineInstr::mmo_iterator MMOEnd, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const; |
| |
| virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, int FrameIndex, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const; |
| |
| virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| MachineInstr::mmo_iterator MMOBegin, |
| MachineInstr::mmo_iterator MMOEnd, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const; |
| |
| virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const; |
| |
| virtual |
| MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, |
| int FrameIx, uint64_t Offset, |
| const MDNode *MDPtr, |
| DebugLoc DL) const; |
| |
| /// foldMemoryOperand - If this target supports it, fold a load or store of |
| /// the specified stack slot into the specified machine instruction for the |
| /// specified operand(s). If this is possible, the target should perform the |
| /// folding and return true, otherwise it should return false. If it folds |
| /// the instruction, it is likely that the MachineInstruction the iterator |
| /// references has been changed. |
| virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, |
| MachineInstr* MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| int FrameIndex) const; |
| |
| /// foldMemoryOperand - Same as the previous version except it allows folding |
| /// of any load and store from / to any address, not just from a specific |
| /// stack slot. |
| virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, |
| MachineInstr* MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| MachineInstr* LoadMI) const; |
| |
| /// canFoldMemoryOperand - Returns true if the specified load / store is |
| /// folding is possible. |
| virtual bool canFoldMemoryOperand(const MachineInstr*, |
| const SmallVectorImpl<unsigned> &) const; |
| |
| /// unfoldMemoryOperand - Separate a single instruction which folded a load or |
| /// a store or a load and a store into two or more instruction. If this is |
| /// possible, returns true as well as the new instructions by reference. |
| virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, |
| unsigned Reg, bool UnfoldLoad, bool UnfoldStore, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const; |
| |
| virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, |
| SmallVectorImpl<SDNode*> &NewNodes) const; |
| |
| /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new |
| /// instruction after load / store are unfolded from an instruction of the |
| /// specified opcode. It returns zero if the specified unfolding is not |
| /// possible. If LoadRegIndex is non-null, it is filled in with the operand |
| /// index of the operand which will hold the register holding the loaded |
| /// value. |
| virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, |
| bool UnfoldLoad, bool UnfoldStore, |
| unsigned *LoadRegIndex = 0) const; |
| |
| /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler |
| /// to determine if two loads are loading from the same base address. It |
| /// should only return true if the base pointers are the same and the |
| /// only differences between the two addresses are the offset. It also returns |
| /// the offsets by reference. |
| virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| int64_t &Offset1, int64_t &Offset2) const; |
| |
| /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to |
| /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should |
| /// be scheduled togther. On some targets if two loads are loading from |
| /// addresses in the same cache line, it's better if they are scheduled |
| /// together. This function takes two integers that represent the load offsets |
| /// from the common base address. It returns true if it decides it's desirable |
| /// to schedule the two loads together. "NumLoads" is the number of loads that |
| /// have already been scheduled after Load1. |
| virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| int64_t Offset1, int64_t Offset2, |
| unsigned NumLoads) const; |
| |
| virtual void getNoopForMachoTarget(MCInst &NopInst) const; |
| |
| virtual |
| bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const; |
| |
| /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine |
| /// instruction that defines the specified register class. |
| bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const; |
| |
| static bool isX86_64ExtendedReg(const MachineOperand &MO) { |
| if (!MO.isReg()) return false; |
| return X86II::isX86_64ExtendedReg(MO.getReg()); |
| } |
| |
| /// getGlobalBaseReg - Return a virtual register initialized with the |
| /// the global base register value. Output instructions required to |
| /// initialize the register in the function entry block, if necessary. |
| /// |
| unsigned getGlobalBaseReg(MachineFunction *MF) const; |
| |
| std::pair<uint16_t, uint16_t> |
| getExecutionDomain(const MachineInstr *MI) const; |
| |
| void setExecutionDomain(MachineInstr *MI, unsigned Domain) const; |
| |
| unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, |
| const TargetRegisterInfo *TRI) const; |
| void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, |
| const TargetRegisterInfo *TRI) const; |
| |
| MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, |
| MachineInstr* MI, |
| unsigned OpNum, |
| const SmallVectorImpl<MachineOperand> &MOs, |
| unsigned Size, unsigned Alignment) const; |
| |
| bool isHighLatencyDef(int opc) const; |
| |
| bool hasHighOperandLatency(const InstrItineraryData *ItinData, |
| const MachineRegisterInfo *MRI, |
| const MachineInstr *DefMI, unsigned DefIdx, |
| const MachineInstr *UseMI, unsigned UseIdx) const; |
| |
| /// analyzeCompare - For a comparison instruction, return the source registers |
| /// in SrcReg and SrcReg2 if having two register operands, and the value it |
| /// compares against in CmpValue. Return true if the comparison instruction |
| /// can be analyzed. |
| virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, |
| unsigned &SrcReg2, |
| int &CmpMask, int &CmpValue) const; |
| |
| /// optimizeCompareInstr - Check if there exists an earlier instruction that |
| /// operates on the same source operands and sets flags in the same way as |
| /// Compare; remove Compare if possible. |
| virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, |
| unsigned SrcReg2, int CmpMask, int CmpValue, |
| const MachineRegisterInfo *MRI) const; |
| |
| /// optimizeLoadInstr - Try to remove the load by folding it to a register |
| /// operand at the use. We fold the load instructions if and only if the |
| /// def and use are in the same BB. We only look at one load and see |
| /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register |
| /// defined by the load we are trying to fold. DefMI returns the machine |
| /// instruction that defines FoldAsLoadDefReg, and the function returns |
| /// the machine instruction generated due to folding. |
| virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI, |
| const MachineRegisterInfo *MRI, |
| unsigned &FoldAsLoadDefReg, |
| MachineInstr *&DefMI) const; |
| |
| private: |
| MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, |
| MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI, |
| LiveVariables *LV) const; |
| |
| /// isFrameOperand - Return true and the FrameIndex if the specified |
| /// operand and follow operands form a reference to the stack frame. |
| bool isFrameOperand(const MachineInstr *MI, unsigned int Op, |
| int &FrameIndex) const; |
| }; |
| |
| } // End llvm namespace |
| |
| #endif |