| //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the X86SelectionDAGInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-selectiondag-info" |
| #include "X86TargetMachine.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/IR/DerivedTypes.h" |
| using namespace llvm; |
| |
| X86SelectionDAGInfo::X86SelectionDAGInfo(const X86TargetMachine &TM) : |
| TargetSelectionDAGInfo(TM), |
| Subtarget(&TM.getSubtarget<X86Subtarget>()), |
| TLI(*TM.getTargetLowering()) { |
| } |
| |
| X86SelectionDAGInfo::~X86SelectionDAGInfo() { |
| } |
| |
| SDValue |
| X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Chain, |
| SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, |
| bool isVolatile, |
| MachinePointerInfo DstPtrInfo) const { |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| |
| // If to a segment-relative address space, use the default lowering. |
| if (DstPtrInfo.getAddrSpace() >= 256) |
| return SDValue(); |
| |
| // If not DWORD aligned or size is more than the threshold, call the library. |
| // The libc version is likely to be faster for these cases. It can use the |
| // address value and run time information about the CPU. |
| if ((Align & 3) != 0 || |
| !ConstantSize || |
| ConstantSize->getZExtValue() > |
| Subtarget->getMaxInlineSizeThreshold()) { |
| SDValue InFlag(0, 0); |
| |
| // Check to see if there is a specialized entry-point for memory zeroing. |
| ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); |
| |
| if (const char *bzeroEntry = V && |
| V->isNullValue() ? Subtarget->getBZeroEntry() : 0) { |
| EVT IntPtr = TLI.getPointerTy(); |
| Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = Dst; |
| Entry.Ty = IntPtrTy; |
| Args.push_back(Entry); |
| Entry.Node = Size; |
| Args.push_back(Entry); |
| TargetLowering:: |
| CallLoweringInfo CLI(Chain, Type::getVoidTy(*DAG.getContext()), |
| false, false, false, false, |
| 0, CallingConv::C, /*isTailCall=*/false, |
| /*doesNotRet=*/false, /*isReturnValueUsed=*/false, |
| DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, |
| DAG, dl); |
| std::pair<SDValue,SDValue> CallResult = |
| TLI.LowerCallTo(CLI); |
| return CallResult.second; |
| } |
| |
| // Otherwise have the target-independent code call memset. |
| return SDValue(); |
| } |
| |
| uint64_t SizeVal = ConstantSize->getZExtValue(); |
| SDValue InFlag(0, 0); |
| EVT AVT; |
| SDValue Count; |
| ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src); |
| unsigned BytesLeft = 0; |
| bool TwoRepStos = false; |
| if (ValC) { |
| unsigned ValReg; |
| uint64_t Val = ValC->getZExtValue() & 255; |
| |
| // If the value is a constant, then we can potentially use larger sets. |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| ValReg = X86::AX; |
| Val = (Val << 8) | Val; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| ValReg = X86::EAX; |
| Val = (Val << 8) | Val; |
| Val = (Val << 16) | Val; |
| if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned |
| AVT = MVT::i64; |
| ValReg = X86::RAX; |
| Val = (Val << 32) | Val; |
| } |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| ValReg = X86::AL; |
| Count = DAG.getIntPtrConstant(SizeVal); |
| break; |
| } |
| |
| if (AVT.bitsGT(MVT::i8)) { |
| unsigned UBytes = AVT.getSizeInBits() / 8; |
| Count = DAG.getIntPtrConstant(SizeVal / UBytes); |
| BytesLeft = SizeVal % UBytes; |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } else { |
| AVT = MVT::i8; |
| Count = DAG.getIntPtrConstant(SizeVal); |
| Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : |
| X86::ECX, |
| Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : |
| X86::EDI, |
| Dst, InFlag); |
| InFlag = Chain.getValue(1); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; |
| Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops)); |
| |
| if (TwoRepStos) { |
| InFlag = Chain.getValue(1); |
| Count = Size; |
| EVT CVT = Count.getValueType(); |
| SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count, |
| DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); |
| Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX : |
| X86::ECX, |
| Left, InFlag); |
| InFlag = Chain.getValue(1); |
| Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag }; |
| Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops)); |
| } else if (BytesLeft) { |
| // Handle the last 1 - 7 bytes. |
| unsigned Offset = SizeVal - BytesLeft; |
| EVT AddrVT = Dst.getValueType(); |
| EVT SizeVT = Size.getValueType(); |
| |
| Chain = DAG.getMemset(Chain, dl, |
| DAG.getNode(ISD::ADD, dl, AddrVT, Dst, |
| DAG.getConstant(Offset, AddrVT)), |
| Src, |
| DAG.getConstant(BytesLeft, SizeVT), |
| Align, isVolatile, DstPtrInfo.getWithOffset(Offset)); |
| } |
| |
| // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. |
| return Chain; |
| } |
| |
| SDValue |
| X86SelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Chain, SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, |
| bool isVolatile, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) const { |
| // This requires the copy size to be a constant, preferably |
| // within a subtarget-specific limit. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (!ConstantSize) |
| return SDValue(); |
| uint64_t SizeVal = ConstantSize->getZExtValue(); |
| if (!AlwaysInline && SizeVal > Subtarget->getMaxInlineSizeThreshold()) |
| return SDValue(); |
| |
| /// If not DWORD aligned, it is more efficient to call the library. However |
| /// if calling the library is not allowed (AlwaysInline), then soldier on as |
| /// the code generated here is better than the long load-store sequence we |
| /// would otherwise get. |
| if (!AlwaysInline && (Align & 3) != 0) |
| return SDValue(); |
| |
| // If to a segment-relative address space, use the default lowering. |
| if (DstPtrInfo.getAddrSpace() >= 256 || |
| SrcPtrInfo.getAddrSpace() >= 256) |
| return SDValue(); |
| |
| // ESI might be used as a base pointer, in that case we can't simply overwrite |
| // the register. Fall back to generic code. |
| const X86RegisterInfo *TRI = |
| static_cast<const X86RegisterInfo *>(DAG.getTarget().getRegisterInfo()); |
| if (TRI->hasBasePointer(DAG.getMachineFunction()) && |
| TRI->getBaseRegister() == X86::ESI) |
| return SDValue(); |
| |
| MVT AVT; |
| if (Align & 1) |
| AVT = MVT::i8; |
| else if (Align & 2) |
| AVT = MVT::i16; |
| else if (Align & 4) |
| // DWORD aligned |
| AVT = MVT::i32; |
| else |
| // QWORD aligned |
| AVT = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; |
| |
| unsigned UBytes = AVT.getSizeInBits() / 8; |
| unsigned CountVal = SizeVal / UBytes; |
| SDValue Count = DAG.getIntPtrConstant(CountVal); |
| unsigned BytesLeft = SizeVal % UBytes; |
| |
| SDValue InFlag(0, 0); |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : |
| X86::ECX, |
| Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : |
| X86::EDI, |
| Dst, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI : |
| X86::ESI, |
| Src, InFlag); |
| InFlag = Chain.getValue(1); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; |
| SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops, |
| array_lengthof(Ops)); |
| |
| SmallVector<SDValue, 4> Results; |
| Results.push_back(RepMovs); |
| if (BytesLeft) { |
| // Handle the last 1 - 7 bytes. |
| unsigned Offset = SizeVal - BytesLeft; |
| EVT DstVT = Dst.getValueType(); |
| EVT SrcVT = Src.getValueType(); |
| EVT SizeVT = Size.getValueType(); |
| Results.push_back(DAG.getMemcpy(Chain, dl, |
| DAG.getNode(ISD::ADD, dl, DstVT, Dst, |
| DAG.getConstant(Offset, DstVT)), |
| DAG.getNode(ISD::ADD, dl, SrcVT, Src, |
| DAG.getConstant(Offset, SrcVT)), |
| DAG.getConstant(BytesLeft, SizeVT), |
| Align, isVolatile, AlwaysInline, |
| DstPtrInfo.getWithOffset(Offset), |
| SrcPtrInfo.getWithOffset(Offset))); |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &Results[0], Results.size()); |
| } |