| //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a printer that converts from our internal representation |
| // of machine-dependent LLVM code to NVPTX assembly language. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "NVPTXAsmPrinter.h" |
| #include "MCTargetDesc/NVPTXMCAsmInfo.h" |
| #include "NVPTX.h" |
| #include "NVPTXInstrInfo.h" |
| #include "NVPTXNumRegisters.h" |
| #include "NVPTXRegisterInfo.h" |
| #include "NVPTXTargetMachine.h" |
| #include "NVPTXUtilities.h" |
| #include "cl_common_defines.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/TimeValue.h" |
| #include "llvm/Target/Mangler.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include <sstream> |
| using namespace llvm; |
| |
| |
| #include "NVPTXGenAsmWriter.inc" |
| |
| bool RegAllocNilUsed = true; |
| |
| #define DEPOTNAME "__local_depot" |
| |
| static cl::opt<bool> |
| EmitLineNumbers("nvptx-emit-line-numbers", |
| cl::desc("NVPTX Specific: Emit Line numbers even without -G"), |
| cl::init(true)); |
| |
| namespace llvm { |
| bool InterleaveSrcInPtx = false; |
| } |
| |
| static cl::opt<bool, true>InterleaveSrc("nvptx-emit-src", |
| cl::ZeroOrMore, |
| cl::desc("NVPTX Specific: Emit source line in ptx file"), |
| cl::location(llvm::InterleaveSrcInPtx)); |
| |
| |
| namespace { |
| /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V |
| /// depends. |
| void DiscoverDependentGlobals(Value *V, |
| DenseSet<GlobalVariable*> &Globals) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| Globals.insert(GV); |
| else { |
| if (User *U = dyn_cast<User>(V)) { |
| for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) { |
| DiscoverDependentGlobals(U->getOperand(i), Globals); |
| } |
| } |
| } |
| } |
| |
| /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable |
| /// instances to be emitted, but only after any dependents have been added |
| /// first. |
| void VisitGlobalVariableForEmission(GlobalVariable *GV, |
| SmallVectorImpl<GlobalVariable*> &Order, |
| DenseSet<GlobalVariable*> &Visited, |
| DenseSet<GlobalVariable*> &Visiting) { |
| // Have we already visited this one? |
| if (Visited.count(GV)) return; |
| |
| // Do we have a circular dependency? |
| if (Visiting.count(GV)) |
| report_fatal_error("Circular dependency found in global variable set"); |
| |
| // Start visiting this global |
| Visiting.insert(GV); |
| |
| // Make sure we visit all dependents first |
| DenseSet<GlobalVariable*> Others; |
| for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i) |
| DiscoverDependentGlobals(GV->getOperand(i), Others); |
| |
| for (DenseSet<GlobalVariable*>::iterator I = Others.begin(), |
| E = Others.end(); I != E; ++I) |
| VisitGlobalVariableForEmission(*I, Order, Visited, Visiting); |
| |
| // Now we can visit ourself |
| Order.push_back(GV); |
| Visited.insert(GV); |
| Visiting.erase(GV); |
| } |
| } |
| |
| // @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we |
| // cannot just link to the existing version. |
| /// LowerConstant - Lower the specified LLVM Constant to an MCExpr. |
| /// |
| using namespace nvptx; |
| const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) { |
| MCContext &Ctx = AP.OutContext; |
| |
| if (CV->isNullValue() || isa<UndefValue>(CV)) |
| return MCConstantExpr::Create(0, Ctx); |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) |
| return MCConstantExpr::Create(CI->getZExtValue(), Ctx); |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) |
| return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) |
| return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); |
| |
| const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); |
| if (CE == 0) |
| llvm_unreachable("Unknown constant value to lower!"); |
| |
| |
| switch (CE->getOpcode()) { |
| default: |
| // If the code isn't optimized, there may be outstanding folding |
| // opportunities. Attempt to fold the expression using DataLayout as a |
| // last resort before giving up. |
| if (Constant *C = |
| ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) |
| if (C != CE) |
| return LowerConstant(C, AP); |
| |
| // Otherwise report the problem to the user. |
| { |
| std::string S; |
| raw_string_ostream OS(S); |
| OS << "Unsupported expression in static initializer: "; |
| WriteAsOperand(OS, CE, /*PrintType=*/false, |
| !AP.MF ? 0 : AP.MF->getFunction()->getParent()); |
| report_fatal_error(OS.str()); |
| } |
| case Instruction::GetElementPtr: { |
| const DataLayout &TD = *AP.TM.getDataLayout(); |
| // Generate a symbolic expression for the byte address |
| APInt OffsetAI(TD.getPointerSizeInBits(), 0); |
| cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI); |
| |
| const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); |
| if (!OffsetAI) |
| return Base; |
| |
| int64_t Offset = OffsetAI.getSExtValue(); |
| return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), |
| Ctx); |
| } |
| |
| case Instruction::Trunc: |
| // We emit the value and depend on the assembler to truncate the generated |
| // expression properly. This is important for differences between |
| // blockaddress labels. Since the two labels are in the same function, it |
| // is reasonable to treat their delta as a 32-bit value. |
| // FALL THROUGH. |
| case Instruction::BitCast: |
| return LowerConstant(CE->getOperand(0), AP); |
| |
| case Instruction::IntToPtr: { |
| const DataLayout &TD = *AP.TM.getDataLayout(); |
| // Handle casts to pointers by changing them into casts to the appropriate |
| // integer type. This promotes constant folding and simplifies this code. |
| Constant *Op = CE->getOperand(0); |
| Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), |
| false/*ZExt*/); |
| return LowerConstant(Op, AP); |
| } |
| |
| case Instruction::PtrToInt: { |
| const DataLayout &TD = *AP.TM.getDataLayout(); |
| // Support only foldable casts to/from pointers that can be eliminated by |
| // changing the pointer to the appropriately sized integer type. |
| Constant *Op = CE->getOperand(0); |
| Type *Ty = CE->getType(); |
| |
| const MCExpr *OpExpr = LowerConstant(Op, AP); |
| |
| // We can emit the pointer value into this slot if the slot is an |
| // integer slot equal to the size of the pointer. |
| if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) |
| return OpExpr; |
| |
| // Otherwise the pointer is smaller than the resultant integer, mask off |
| // the high bits so we are sure to get a proper truncation if the input is |
| // a constant expr. |
| unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); |
| const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); |
| return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); |
| } |
| |
| // The MC library also has a right-shift operator, but it isn't consistently |
| // signed or unsigned between different targets. |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::SDiv: |
| case Instruction::SRem: |
| case Instruction::Shl: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); |
| const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Unknown binary operator constant cast expr"); |
| case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); |
| case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); |
| case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); |
| case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); |
| case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); |
| case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); |
| case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); |
| case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); |
| case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); |
| } |
| } |
| } |
| } |
| |
| |
| void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) |
| { |
| if (!EmitLineNumbers) |
| return; |
| if (ignoreLoc(MI)) |
| return; |
| |
| DebugLoc curLoc = MI.getDebugLoc(); |
| |
| if (prevDebugLoc.isUnknown() && curLoc.isUnknown()) |
| return; |
| |
| if (prevDebugLoc == curLoc) |
| return; |
| |
| prevDebugLoc = curLoc; |
| |
| if (curLoc.isUnknown()) |
| return; |
| |
| |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| //const TargetMachine &TM = MF->getTarget(); |
| |
| const LLVMContext &ctx = MF->getFunction()->getContext(); |
| DIScope Scope(curLoc.getScope(ctx)); |
| |
| if (!Scope.Verify()) |
| return; |
| |
| StringRef fileName(Scope.getFilename()); |
| StringRef dirName(Scope.getDirectory()); |
| SmallString<128> FullPathName = dirName; |
| if (!dirName.empty() && !sys::path::is_absolute(fileName)) { |
| sys::path::append(FullPathName, fileName); |
| fileName = FullPathName.str(); |
| } |
| |
| if (filenameMap.find(fileName.str()) == filenameMap.end()) |
| return; |
| |
| |
| // Emit the line from the source file. |
| if (llvm::InterleaveSrcInPtx) |
| this->emitSrcInText(fileName.str(), curLoc.getLine()); |
| |
| std::stringstream temp; |
| temp << "\t.loc " << filenameMap[fileName.str()] |
| << " " << curLoc.getLine() << " " << curLoc.getCol(); |
| OutStreamer.EmitRawText(Twine(temp.str().c_str())); |
| } |
| |
| void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) { |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) |
| emitLineNumberAsDotLoc(*MI); |
| printInstruction(MI, OS); |
| OutStreamer.EmitRawText(OS.str()); |
| } |
| |
| void NVPTXAsmPrinter::printReturnValStr(const Function *F, |
| raw_ostream &O) |
| { |
| const DataLayout *TD = TM.getDataLayout(); |
| const TargetLowering *TLI = TM.getTargetLowering(); |
| |
| Type *Ty = F->getReturnType(); |
| |
| bool isABI = (nvptxSubtarget.getSmVersion() >= 20); |
| |
| if (Ty->getTypeID() == Type::VoidTyID) |
| return; |
| |
| O << " ("; |
| |
| if (isABI) { |
| if (Ty->isPrimitiveType() || Ty->isIntegerTy()) { |
| unsigned size = 0; |
| if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) { |
| size = ITy->getBitWidth(); |
| if (size < 32) size = 32; |
| } else { |
| assert(Ty->isFloatingPointTy() && |
| "Floating point type expected here"); |
| size = Ty->getPrimitiveSizeInBits(); |
| } |
| |
| O << ".param .b" << size << " func_retval0"; |
| } |
| else if (isa<PointerType>(Ty)) { |
| O << ".param .b" << TLI->getPointerTy().getSizeInBits() |
| << " func_retval0"; |
| } else { |
| if ((Ty->getTypeID() == Type::StructTyID) || |
| isa<VectorType>(Ty)) { |
| SmallVector<EVT, 16> vtparts; |
| ComputeValueVTs(*TLI, Ty, vtparts); |
| unsigned totalsz = 0; |
| for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { |
| unsigned elems = 1; |
| EVT elemtype = vtparts[i]; |
| if (vtparts[i].isVector()) { |
| elems = vtparts[i].getVectorNumElements(); |
| elemtype = vtparts[i].getVectorElementType(); |
| } |
| for (unsigned j=0, je=elems; j!=je; ++j) { |
| unsigned sz = elemtype.getSizeInBits(); |
| if (elemtype.isInteger() && (sz < 8)) sz = 8; |
| totalsz += sz/8; |
| } |
| } |
| unsigned retAlignment = 0; |
| if (!llvm::getAlign(*F, 0, retAlignment)) |
| retAlignment = TD->getABITypeAlignment(Ty); |
| O << ".param .align " |
| << retAlignment |
| << " .b8 func_retval0[" |
| << totalsz << "]"; |
| } else |
| assert(false && |
| "Unknown return type"); |
| } |
| } else { |
| SmallVector<EVT, 16> vtparts; |
| ComputeValueVTs(*TLI, Ty, vtparts); |
| unsigned idx = 0; |
| for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { |
| unsigned elems = 1; |
| EVT elemtype = vtparts[i]; |
| if (vtparts[i].isVector()) { |
| elems = vtparts[i].getVectorNumElements(); |
| elemtype = vtparts[i].getVectorElementType(); |
| } |
| |
| for (unsigned j=0, je=elems; j!=je; ++j) { |
| unsigned sz = elemtype.getSizeInBits(); |
| if (elemtype.isInteger() && (sz < 32)) sz = 32; |
| O << ".reg .b" << sz << " func_retval" << idx; |
| if (j<je-1) O << ", "; |
| ++idx; |
| } |
| if (i < e-1) |
| O << ", "; |
| } |
| } |
| O << ") "; |
| return; |
| } |
| |
| void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF, |
| raw_ostream &O) { |
| const Function *F = MF.getFunction(); |
| printReturnValStr(F, O); |
| } |
| |
| void NVPTXAsmPrinter::EmitFunctionEntryLabel() { |
| SmallString<128> Str; |
| raw_svector_ostream O(Str); |
| |
| // Set up |
| MRI = &MF->getRegInfo(); |
| F = MF->getFunction(); |
| emitLinkageDirective(F,O); |
| if (llvm::isKernelFunction(*F)) |
| O << ".entry "; |
| else { |
| O << ".func "; |
| printReturnValStr(*MF, O); |
| } |
| |
| O << *CurrentFnSym; |
| |
| emitFunctionParamList(*MF, O); |
| |
| if (llvm::isKernelFunction(*F)) |
| emitKernelFunctionDirectives(*F, O); |
| |
| OutStreamer.EmitRawText(O.str()); |
| |
| prevDebugLoc = DebugLoc(); |
| } |
| |
| void NVPTXAsmPrinter::EmitFunctionBodyStart() { |
| const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); |
| unsigned numRegClasses = TRI.getNumRegClasses(); |
| VRidGlobal2LocalMap = new std::map<unsigned, unsigned>[numRegClasses+1]; |
| OutStreamer.EmitRawText(StringRef("{\n")); |
| setAndEmitFunctionVirtualRegisters(*MF); |
| |
| SmallString<128> Str; |
| raw_svector_ostream O(Str); |
| emitDemotedVars(MF->getFunction(), O); |
| OutStreamer.EmitRawText(O.str()); |
| } |
| |
| void NVPTXAsmPrinter::EmitFunctionBodyEnd() { |
| OutStreamer.EmitRawText(StringRef("}\n")); |
| delete []VRidGlobal2LocalMap; |
| } |
| |
| |
| void |
| NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function& F, |
| raw_ostream &O) const { |
| // If the NVVM IR has some of reqntid* specified, then output |
| // the reqntid directive, and set the unspecified ones to 1. |
| // If none of reqntid* is specified, don't output reqntid directive. |
| unsigned reqntidx, reqntidy, reqntidz; |
| bool specified = false; |
| if (llvm::getReqNTIDx(F, reqntidx) == false) reqntidx = 1; |
| else specified = true; |
| if (llvm::getReqNTIDy(F, reqntidy) == false) reqntidy = 1; |
| else specified = true; |
| if (llvm::getReqNTIDz(F, reqntidz) == false) reqntidz = 1; |
| else specified = true; |
| |
| if (specified) |
| O << ".reqntid " << reqntidx << ", " |
| << reqntidy << ", " << reqntidz << "\n"; |
| |
| // If the NVVM IR has some of maxntid* specified, then output |
| // the maxntid directive, and set the unspecified ones to 1. |
| // If none of maxntid* is specified, don't output maxntid directive. |
| unsigned maxntidx, maxntidy, maxntidz; |
| specified = false; |
| if (llvm::getMaxNTIDx(F, maxntidx) == false) maxntidx = 1; |
| else specified = true; |
| if (llvm::getMaxNTIDy(F, maxntidy) == false) maxntidy = 1; |
| else specified = true; |
| if (llvm::getMaxNTIDz(F, maxntidz) == false) maxntidz = 1; |
| else specified = true; |
| |
| if (specified) |
| O << ".maxntid " << maxntidx << ", " |
| << maxntidy << ", " << maxntidz << "\n"; |
| |
| unsigned mincta; |
| if (llvm::getMinCTASm(F, mincta)) |
| O << ".minnctapersm " << mincta << "\n"; |
| } |
| |
| void |
| NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec, |
| raw_ostream &O) { |
| const TargetRegisterClass * RC = MRI->getRegClass(vr); |
| unsigned id = RC->getID(); |
| |
| std::map<unsigned, unsigned> ®map = VRidGlobal2LocalMap[id]; |
| unsigned mapped_vr = regmap[vr]; |
| |
| if (!isVec) { |
| O << getNVPTXRegClassStr(RC) << mapped_vr; |
| return; |
| } |
| report_fatal_error("Bad register!"); |
| } |
| |
| void |
| NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec, |
| raw_ostream &O) { |
| getVirtualRegisterName(vr, isVec, O); |
| } |
| |
| void NVPTXAsmPrinter::printVecModifiedImmediate(const MachineOperand &MO, |
| const char *Modifier, |
| raw_ostream &O) { |
| static const char vecelem[] = {'0', '1', '2', '3', '0', '1', '2', '3'}; |
| int Imm = (int)MO.getImm(); |
| if(0 == strcmp(Modifier, "vecelem")) |
| O << "_" << vecelem[Imm]; |
| else if(0 == strcmp(Modifier, "vecv4comm1")) { |
| if((Imm < 0) || (Imm > 3)) |
| O << "//"; |
| } |
| else if(0 == strcmp(Modifier, "vecv4comm2")) { |
| if((Imm < 4) || (Imm > 7)) |
| O << "//"; |
| } |
| else if(0 == strcmp(Modifier, "vecv4pos")) { |
| if(Imm < 0) Imm = 0; |
| O << "_" << vecelem[Imm%4]; |
| } |
| else if(0 == strcmp(Modifier, "vecv2comm1")) { |
| if((Imm < 0) || (Imm > 1)) |
| O << "//"; |
| } |
| else if(0 == strcmp(Modifier, "vecv2comm2")) { |
| if((Imm < 2) || (Imm > 3)) |
| O << "//"; |
| } |
| else if(0 == strcmp(Modifier, "vecv2pos")) { |
| if(Imm < 0) Imm = 0; |
| O << "_" << vecelem[Imm%2]; |
| } |
| else |
| llvm_unreachable("Unknown Modifier on immediate operand"); |
| } |
| |
| void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum, |
| raw_ostream &O, const char *Modifier) { |
| const MachineOperand &MO = MI->getOperand(opNum); |
| switch (MO.getType()) { |
| case MachineOperand::MO_Register: |
| if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { |
| if (MO.getReg() == NVPTX::VRDepot) |
| O << DEPOTNAME << getFunctionNumber(); |
| else |
| O << getRegisterName(MO.getReg()); |
| } else { |
| if (!Modifier) |
| emitVirtualRegister(MO.getReg(), false, O); |
| else { |
| if (strcmp(Modifier, "vecfull") == 0) |
| emitVirtualRegister(MO.getReg(), true, O); |
| else |
| llvm_unreachable( |
| "Don't know how to handle the modifier on virtual register."); |
| } |
| } |
| return; |
| |
| case MachineOperand::MO_Immediate: |
| if (!Modifier) |
| O << MO.getImm(); |
| else if (strstr(Modifier, "vec") == Modifier) |
| printVecModifiedImmediate(MO, Modifier, O); |
| else |
| llvm_unreachable("Don't know how to handle modifier on immediate operand"); |
| return; |
| |
| case MachineOperand::MO_FPImmediate: |
| printFPConstant(MO.getFPImm(), O); |
| break; |
| |
| case MachineOperand::MO_GlobalAddress: |
| O << *Mang->getSymbol(MO.getGlobal()); |
| break; |
| |
| case MachineOperand::MO_ExternalSymbol: { |
| const char * symbname = MO.getSymbolName(); |
| if (strstr(symbname, ".PARAM") == symbname) { |
| unsigned index; |
| sscanf(symbname+6, "%u[];", &index); |
| printParamName(index, O); |
| } |
| else if (strstr(symbname, ".HLPPARAM") == symbname) { |
| unsigned index; |
| sscanf(symbname+9, "%u[];", &index); |
| O << *CurrentFnSym << "_param_" << index << "_offset"; |
| } |
| else |
| O << symbname; |
| break; |
| } |
| |
| case MachineOperand::MO_MachineBasicBlock: |
| O << *MO.getMBB()->getSymbol(); |
| return; |
| |
| default: |
| llvm_unreachable("Operand type not supported."); |
| } |
| } |
| |
| void NVPTXAsmPrinter:: |
| printImplicitDef(const MachineInstr *MI, raw_ostream &O) const { |
| #ifndef __OPTIMIZE__ |
| O << "\t// Implicit def :"; |
| //printOperand(MI, 0); |
| O << "\n"; |
| #endif |
| } |
| |
| void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum, |
| raw_ostream &O, const char *Modifier) { |
| printOperand(MI, opNum, O); |
| |
| if (Modifier && !strcmp(Modifier, "add")) { |
| O << ", "; |
| printOperand(MI, opNum+1, O); |
| } else { |
| if (MI->getOperand(opNum+1).isImm() && |
| MI->getOperand(opNum+1).getImm() == 0) |
| return; // don't print ',0' or '+0' |
| O << "+"; |
| printOperand(MI, opNum+1, O); |
| } |
| } |
| |
| void NVPTXAsmPrinter::printLdStCode(const MachineInstr *MI, int opNum, |
| raw_ostream &O, const char *Modifier) |
| { |
| if (Modifier) { |
| const MachineOperand &MO = MI->getOperand(opNum); |
| int Imm = (int)MO.getImm(); |
| if (!strcmp(Modifier, "volatile")) { |
| if (Imm) |
| O << ".volatile"; |
| } else if (!strcmp(Modifier, "addsp")) { |
| switch (Imm) { |
| case NVPTX::PTXLdStInstCode::GLOBAL: O << ".global"; break; |
| case NVPTX::PTXLdStInstCode::SHARED: O << ".shared"; break; |
| case NVPTX::PTXLdStInstCode::LOCAL: O << ".local"; break; |
| case NVPTX::PTXLdStInstCode::PARAM: O << ".param"; break; |
| case NVPTX::PTXLdStInstCode::CONSTANT: O << ".const"; break; |
| case NVPTX::PTXLdStInstCode::GENERIC: |
| if (!nvptxSubtarget.hasGenericLdSt()) |
| O << ".global"; |
| break; |
| default: |
| llvm_unreachable("Wrong Address Space"); |
| } |
| } |
| else if (!strcmp(Modifier, "sign")) { |
| if (Imm==NVPTX::PTXLdStInstCode::Signed) |
| O << "s"; |
| else if (Imm==NVPTX::PTXLdStInstCode::Unsigned) |
| O << "u"; |
| else |
| O << "f"; |
| } |
| else if (!strcmp(Modifier, "vec")) { |
| if (Imm==NVPTX::PTXLdStInstCode::V2) |
| O << ".v2"; |
| else if (Imm==NVPTX::PTXLdStInstCode::V4) |
| O << ".v4"; |
| } |
| else |
| llvm_unreachable("Unknown Modifier"); |
| } |
| else |
| llvm_unreachable("Empty Modifier"); |
| } |
| |
| void NVPTXAsmPrinter::emitDeclaration (const Function *F, raw_ostream &O) { |
| |
| emitLinkageDirective(F,O); |
| if (llvm::isKernelFunction(*F)) |
| O << ".entry "; |
| else |
| O << ".func "; |
| printReturnValStr(F, O); |
| O << *CurrentFnSym << "\n"; |
| emitFunctionParamList(F, O); |
| O << ";\n"; |
| } |
| |
| static bool usedInGlobalVarDef(const Constant *C) |
| { |
| if (!C) |
| return false; |
| |
| if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { |
| if (GV->getName().str() == "llvm.used") |
| return false; |
| return true; |
| } |
| |
| for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end(); |
| ui!=ue; ++ui) { |
| const Constant *C = dyn_cast<Constant>(*ui); |
| if (usedInGlobalVarDef(C)) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool usedInOneFunc(const User *U, Function const *&oneFunc) |
| { |
| if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) { |
| if (othergv->getName().str() == "llvm.used") |
| return true; |
| } |
| |
| if (const Instruction *instr = dyn_cast<Instruction>(U)) { |
| if (instr->getParent() && instr->getParent()->getParent()) { |
| const Function *curFunc = instr->getParent()->getParent(); |
| if (oneFunc && (curFunc != oneFunc)) |
| return false; |
| oneFunc = curFunc; |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| if (const MDNode *md = dyn_cast<MDNode>(U)) |
| if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") || |
| (md->getName().str() == "llvm.dbg.sp"))) |
| return true; |
| |
| |
| for (User::const_use_iterator ui=U->use_begin(), ue=U->use_end(); |
| ui!=ue; ++ui) { |
| if (usedInOneFunc(*ui, oneFunc) == false) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Find out if a global variable can be demoted to local scope. |
| * Currently, this is valid for CUDA shared variables, which have local |
| * scope and global lifetime. So the conditions to check are : |
| * 1. Is the global variable in shared address space? |
| * 2. Does it have internal linkage? |
| * 3. Is the global variable referenced only in one function? |
| */ |
| static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) { |
| if (gv->hasInternalLinkage() == false) |
| return false; |
| const PointerType *Pty = gv->getType(); |
| if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED) |
| return false; |
| |
| const Function *oneFunc = 0; |
| |
| bool flag = usedInOneFunc(gv, oneFunc); |
| if (flag == false) |
| return false; |
| if (!oneFunc) |
| return false; |
| f = oneFunc; |
| return true; |
| } |
| |
| static bool useFuncSeen(const Constant *C, |
| llvm::DenseMap<const Function *, bool> &seenMap) { |
| for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end(); |
| ui!=ue; ++ui) { |
| if (const Constant *cu = dyn_cast<Constant>(*ui)) { |
| if (useFuncSeen(cu, seenMap)) |
| return true; |
| } else if (const Instruction *I = dyn_cast<Instruction>(*ui)) { |
| const BasicBlock *bb = I->getParent(); |
| if (!bb) continue; |
| const Function *caller = bb->getParent(); |
| if (!caller) continue; |
| if (seenMap.find(caller) != seenMap.end()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void NVPTXAsmPrinter::emitDeclarations (Module &M, raw_ostream &O) { |
| llvm::DenseMap<const Function *, bool> seenMap; |
| for (Module::const_iterator FI=M.begin(), FE=M.end(); |
| FI!=FE; ++FI) { |
| const Function *F = FI; |
| |
| if (F->isDeclaration()) { |
| if (F->use_empty()) |
| continue; |
| if (F->getIntrinsicID()) |
| continue; |
| CurrentFnSym = Mang->getSymbol(F); |
| emitDeclaration(F, O); |
| continue; |
| } |
| for (Value::const_use_iterator iter=F->use_begin(), |
| iterEnd=F->use_end(); iter!=iterEnd; ++iter) { |
| if (const Constant *C = dyn_cast<Constant>(*iter)) { |
| if (usedInGlobalVarDef(C)) { |
| // The use is in the initialization of a global variable |
| // that is a function pointer, so print a declaration |
| // for the original function |
| CurrentFnSym = Mang->getSymbol(F); |
| emitDeclaration(F, O); |
| break; |
| } |
| // Emit a declaration of this function if the function that |
| // uses this constant expr has already been seen. |
| if (useFuncSeen(C, seenMap)) { |
| CurrentFnSym = Mang->getSymbol(F); |
| emitDeclaration(F, O); |
| break; |
| } |
| } |
| |
| if (!isa<Instruction>(*iter)) continue; |
| const Instruction *instr = cast<Instruction>(*iter); |
| const BasicBlock *bb = instr->getParent(); |
| if (!bb) continue; |
| const Function *caller = bb->getParent(); |
| if (!caller) continue; |
| |
| // If a caller has already been seen, then the caller is |
| // appearing in the module before the callee. so print out |
| // a declaration for the callee. |
| if (seenMap.find(caller) != seenMap.end()) { |
| CurrentFnSym = Mang->getSymbol(F); |
| emitDeclaration(F, O); |
| break; |
| } |
| } |
| seenMap[F] = true; |
| } |
| } |
| |
| void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) { |
| DebugInfoFinder DbgFinder; |
| DbgFinder.processModule(M); |
| |
| unsigned i=1; |
| for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(), |
| E = DbgFinder.compile_unit_end(); I != E; ++I) { |
| DICompileUnit DIUnit(*I); |
| StringRef Filename(DIUnit.getFilename()); |
| StringRef Dirname(DIUnit.getDirectory()); |
| SmallString<128> FullPathName = Dirname; |
| if (!Dirname.empty() && !sys::path::is_absolute(Filename)) { |
| sys::path::append(FullPathName, Filename); |
| Filename = FullPathName.str(); |
| } |
| if (filenameMap.find(Filename.str()) != filenameMap.end()) |
| continue; |
| filenameMap[Filename.str()] = i; |
| OutStreamer.EmitDwarfFileDirective(i, "", Filename.str()); |
| ++i; |
| } |
| |
| for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(), |
| E = DbgFinder.subprogram_end(); I != E; ++I) { |
| DISubprogram SP(*I); |
| StringRef Filename(SP.getFilename()); |
| StringRef Dirname(SP.getDirectory()); |
| SmallString<128> FullPathName = Dirname; |
| if (!Dirname.empty() && !sys::path::is_absolute(Filename)) { |
| sys::path::append(FullPathName, Filename); |
| Filename = FullPathName.str(); |
| } |
| if (filenameMap.find(Filename.str()) != filenameMap.end()) |
| continue; |
| filenameMap[Filename.str()] = i; |
| ++i; |
| } |
| } |
| |
| bool NVPTXAsmPrinter::doInitialization (Module &M) { |
| |
| SmallString<128> Str1; |
| raw_svector_ostream OS1(Str1); |
| |
| MMI = getAnalysisIfAvailable<MachineModuleInfo>(); |
| MMI->AnalyzeModule(M); |
| |
| // We need to call the parent's one explicitly. |
| //bool Result = AsmPrinter::doInitialization(M); |
| |
| // Initialize TargetLoweringObjectFile. |
| const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) |
| .Initialize(OutContext, TM); |
| |
| Mang = new Mangler(OutContext, *TM.getDataLayout()); |
| |
| // Emit header before any dwarf directives are emitted below. |
| emitHeader(M, OS1); |
| OutStreamer.EmitRawText(OS1.str()); |
| |
| |
| // Already commented out |
| //bool Result = AsmPrinter::doInitialization(M); |
| |
| |
| if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) |
| recordAndEmitFilenames(M); |
| |
| SmallString<128> Str2; |
| raw_svector_ostream OS2(Str2); |
| |
| emitDeclarations(M, OS2); |
| |
| // As ptxas does not support forward references of globals, we need to first |
| // sort the list of module-level globals in def-use order. We visit each |
| // global variable in order, and ensure that we emit it *after* its dependent |
| // globals. We use a little extra memory maintaining both a set and a list to |
| // have fast searches while maintaining a strict ordering. |
| SmallVector<GlobalVariable*,8> Globals; |
| DenseSet<GlobalVariable*> GVVisited; |
| DenseSet<GlobalVariable*> GVVisiting; |
| |
| // Visit each global variable, in order |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting); |
| |
| assert(GVVisited.size() == M.getGlobalList().size() && |
| "Missed a global variable"); |
| assert(GVVisiting.size() == 0 && "Did not fully process a global variable"); |
| |
| // Print out module-level global variables in proper order |
| for (unsigned i = 0, e = Globals.size(); i != e; ++i) |
| printModuleLevelGV(Globals[i], OS2); |
| |
| OS2 << '\n'; |
| |
| OutStreamer.EmitRawText(OS2.str()); |
| return false; // success |
| } |
| |
| void NVPTXAsmPrinter::emitHeader (Module &M, raw_ostream &O) { |
| O << "//\n"; |
| O << "// Generated by LLVM NVPTX Back-End\n"; |
| O << "//\n"; |
| O << "\n"; |
| |
| unsigned PTXVersion = nvptxSubtarget.getPTXVersion(); |
| O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n"; |
| |
| O << ".target "; |
| O << nvptxSubtarget.getTargetName(); |
| |
| if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) |
| O << ", texmode_independent"; |
| if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) { |
| if (!nvptxSubtarget.hasDouble()) |
| O << ", map_f64_to_f32"; |
| } |
| |
| if (MAI->doesSupportDebugInformation()) |
| O << ", debug"; |
| |
| O << "\n"; |
| |
| O << ".address_size "; |
| if (nvptxSubtarget.is64Bit()) |
| O << "64"; |
| else |
| O << "32"; |
| O << "\n"; |
| |
| O << "\n"; |
| } |
| |
| bool NVPTXAsmPrinter::doFinalization(Module &M) { |
| // XXX Temproarily remove global variables so that doFinalization() will not |
| // emit them again (global variables are emitted at beginning). |
| |
| Module::GlobalListType &global_list = M.getGlobalList(); |
| int i, n = global_list.size(); |
| GlobalVariable **gv_array = new GlobalVariable* [n]; |
| |
| // first, back-up GlobalVariable in gv_array |
| i = 0; |
| for (Module::global_iterator I = global_list.begin(), E = global_list.end(); |
| I != E; ++I) |
| gv_array[i++] = &*I; |
| |
| // second, empty global_list |
| while (!global_list.empty()) |
| global_list.remove(global_list.begin()); |
| |
| // call doFinalization |
| bool ret = AsmPrinter::doFinalization(M); |
| |
| // now we restore global variables |
| for (i = 0; i < n; i ++) |
| global_list.insert(global_list.end(), gv_array[i]); |
| |
| delete[] gv_array; |
| return ret; |
| |
| |
| //bool Result = AsmPrinter::doFinalization(M); |
| // Instead of calling the parents doFinalization, we may |
| // clone parents doFinalization and customize here. |
| // Currently, we if NVISA out the EmitGlobals() in |
| // parent's doFinalization, which is too intrusive. |
| // |
| // Same for the doInitialization. |
| //return Result; |
| } |
| |
| // This function emits appropriate linkage directives for |
| // functions and global variables. |
| // |
| // extern function declaration -> .extern |
| // extern function definition -> .visible |
| // external global variable with init -> .visible |
| // external without init -> .extern |
| // appending -> not allowed, assert. |
| |
| void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue* V, raw_ostream &O) |
| { |
| if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) { |
| if (V->hasExternalLinkage()) { |
| if (isa<GlobalVariable>(V)) { |
| const GlobalVariable *GVar = cast<GlobalVariable>(V); |
| if (GVar) { |
| if (GVar->hasInitializer()) |
| O << ".visible "; |
| else |
| O << ".extern "; |
| } |
| } else if (V->isDeclaration()) |
| O << ".extern "; |
| else |
| O << ".visible "; |
| } else if (V->hasAppendingLinkage()) { |
| std::string msg; |
| msg.append("Error: "); |
| msg.append("Symbol "); |
| if (V->hasName()) |
| msg.append(V->getName().str()); |
| msg.append("has unsupported appending linkage type"); |
| llvm_unreachable(msg.c_str()); |
| } |
| } |
| } |
| |
| |
| void NVPTXAsmPrinter::printModuleLevelGV(GlobalVariable* GVar, raw_ostream &O, |
| bool processDemoted) { |
| |
| // Skip meta data |
| if (GVar->hasSection()) { |
| if (GVar->getSection() == "llvm.metadata") |
| return; |
| } |
| |
| const DataLayout *TD = TM.getDataLayout(); |
| |
| // GlobalVariables are always constant pointers themselves. |
| const PointerType *PTy = GVar->getType(); |
| Type *ETy = PTy->getElementType(); |
| |
| if (GVar->hasExternalLinkage()) { |
| if (GVar->hasInitializer()) |
| O << ".visible "; |
| else |
| O << ".extern "; |
| } |
| |
| if (llvm::isTexture(*GVar)) { |
| O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n"; |
| return; |
| } |
| |
| if (llvm::isSurface(*GVar)) { |
| O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n"; |
| return; |
| } |
| |
| if (GVar->isDeclaration()) { |
| // (extern) declarations, no definition or initializer |
| // Currently the only known declaration is for an automatic __local |
| // (.shared) promoted to global. |
| emitPTXGlobalVariable(GVar, O); |
| O << ";\n"; |
| return; |
| } |
| |
| if (llvm::isSampler(*GVar)) { |
| O << ".global .samplerref " << llvm::getSamplerName(*GVar); |
| |
| Constant *Initializer = NULL; |
| if (GVar->hasInitializer()) |
| Initializer = GVar->getInitializer(); |
| ConstantInt *CI = NULL; |
| if (Initializer) |
| CI = dyn_cast<ConstantInt>(Initializer); |
| if (CI) { |
| unsigned sample=CI->getZExtValue(); |
| |
| O << " = { "; |
| |
| for (int i =0, addr=((sample & __CLK_ADDRESS_MASK ) >> |
| __CLK_ADDRESS_BASE) ; i < 3 ; i++) { |
| O << "addr_mode_" << i << " = "; |
| switch (addr) { |
| case 0: O << "wrap"; break; |
| case 1: O << "clamp_to_border"; break; |
| case 2: O << "clamp_to_edge"; break; |
| case 3: O << "wrap"; break; |
| case 4: O << "mirror"; break; |
| } |
| O <<", "; |
| } |
| O << "filter_mode = "; |
| switch (( sample & __CLK_FILTER_MASK ) >> __CLK_FILTER_BASE ) { |
| case 0: O << "nearest"; break; |
| case 1: O << "linear"; break; |
| case 2: assert ( 0 && "Anisotropic filtering is not supported"); |
| default: O << "nearest"; break; |
| } |
| if (!(( sample &__CLK_NORMALIZED_MASK ) >> __CLK_NORMALIZED_BASE)) { |
| O << ", force_unnormalized_coords = 1"; |
| } |
| O << " }"; |
| } |
| |
| O << ";\n"; |
| return; |
| } |
| |
| if (GVar->hasPrivateLinkage()) { |
| |
| if (!strncmp(GVar->getName().data(), "unrollpragma", 12)) |
| return; |
| |
| // FIXME - need better way (e.g. Metadata) to avoid generating this global |
| if (!strncmp(GVar->getName().data(), "filename", 8)) |
| return; |
| if (GVar->use_empty()) |
| return; |
| } |
| |
| const Function *demotedFunc = 0; |
| if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) { |
| O << "// " << GVar->getName().str() << " has been demoted\n"; |
| if (localDecls.find(demotedFunc) != localDecls.end()) |
| localDecls[demotedFunc].push_back(GVar); |
| else { |
| std::vector<GlobalVariable *> temp; |
| temp.push_back(GVar); |
| localDecls[demotedFunc] = temp; |
| } |
| return; |
| } |
| |
| O << "."; |
| emitPTXAddressSpace(PTy->getAddressSpace(), O); |
| if (GVar->getAlignment() == 0) |
| O << " .align " << (int) TD->getPrefTypeAlignment(ETy); |
| else |
| O << " .align " << GVar->getAlignment(); |
| |
| |
| if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) { |
| O << " ."; |
| O << getPTXFundamentalTypeStr(ETy, false); |
| O << " "; |
| O << *Mang->getSymbol(GVar); |
| |
| // Ptx allows variable initilization only for constant and global state |
| // spaces. |
| if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) || |
| (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) || |
| (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) |
| && GVar->hasInitializer()) { |
| Constant *Initializer = GVar->getInitializer(); |
| if (!Initializer->isNullValue()) { |
| O << " = " ; |
| printScalarConstant(Initializer, O); |
| } |
| } |
| } else { |
| unsigned int ElementSize =0; |
| |
| // Although PTX has direct support for struct type and array type and |
| // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for |
| // targets that support these high level field accesses. Structs, arrays |
| // and vectors are lowered into arrays of bytes. |
| switch (ETy->getTypeID()) { |
| case Type::StructTyID: |
| case Type::ArrayTyID: |
| case Type::VectorTyID: |
| ElementSize = TD->getTypeStoreSize(ETy); |
| // Ptx allows variable initilization only for constant and |
| // global state spaces. |
| if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) || |
| (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) || |
| (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) |
| && GVar->hasInitializer()) { |
| Constant *Initializer = GVar->getInitializer(); |
| if (!isa<UndefValue>(Initializer) && |
| !Initializer->isNullValue()) { |
| AggBuffer aggBuffer(ElementSize, O, *this); |
| bufferAggregateConstant(Initializer, &aggBuffer); |
| if (aggBuffer.numSymbols) { |
| if (nvptxSubtarget.is64Bit()) { |
| O << " .u64 " << *Mang->getSymbol(GVar) <<"[" ; |
| O << ElementSize/8; |
| } |
| else { |
| O << " .u32 " << *Mang->getSymbol(GVar) <<"[" ; |
| O << ElementSize/4; |
| } |
| O << "]"; |
| } |
| else { |
| O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ; |
| O << ElementSize; |
| O << "]"; |
| } |
| O << " = {" ; |
| aggBuffer.print(); |
| O << "}"; |
| } |
| else { |
| O << " .b8 " << *Mang->getSymbol(GVar) ; |
| if (ElementSize) { |
| O <<"[" ; |
| O << ElementSize; |
| O << "]"; |
| } |
| } |
| } |
| else { |
| O << " .b8 " << *Mang->getSymbol(GVar); |
| if (ElementSize) { |
| O <<"[" ; |
| O << ElementSize; |
| O << "]"; |
| } |
| } |
| break; |
| default: |
| assert( 0 && "type not supported yet"); |
| } |
| |
| } |
| O << ";\n"; |
| } |
| |
| void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) { |
| if (localDecls.find(f) == localDecls.end()) |
| return; |
| |
| std::vector<GlobalVariable *> &gvars = localDecls[f]; |
| |
| for (unsigned i=0, e=gvars.size(); i!=e; ++i) { |
| O << "\t// demoted variable\n\t"; |
| printModuleLevelGV(gvars[i], O, true); |
| } |
| } |
| |
| void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace, |
| raw_ostream &O) const { |
| switch (AddressSpace) { |
| case llvm::ADDRESS_SPACE_LOCAL: |
| O << "local" ; |
| break; |
| case llvm::ADDRESS_SPACE_GLOBAL: |
| O << "global" ; |
| break; |
| case llvm::ADDRESS_SPACE_CONST: |
| // This logic should be consistent with that in |
| // getCodeAddrSpace() (NVPTXISelDATToDAT.cpp) |
| if (nvptxSubtarget.hasGenericLdSt()) |
| O << "global" ; |
| else |
| O << "const" ; |
| break; |
| case llvm::ADDRESS_SPACE_CONST_NOT_GEN: |
| O << "const" ; |
| break; |
| case llvm::ADDRESS_SPACE_SHARED: |
| O << "shared" ; |
| break; |
| default: |
| report_fatal_error("Bad address space found while emitting PTX"); |
| break; |
| } |
| } |
| |
| std::string NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, |
| bool useB4PTR) const { |
| switch (Ty->getTypeID()) { |
| default: |
| llvm_unreachable("unexpected type"); |
| break; |
| case Type::IntegerTyID: { |
| unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); |
| if (NumBits == 1) |
| return "pred"; |
| else if (NumBits <= 64) { |
| std::string name = "u"; |
| return name + utostr(NumBits); |
| } else { |
| llvm_unreachable("Integer too large"); |
| break; |
| } |
| break; |
| } |
| case Type::FloatTyID: |
| return "f32"; |
| case Type::DoubleTyID: |
| return "f64"; |
| case Type::PointerTyID: |
| if (nvptxSubtarget.is64Bit()) |
| if (useB4PTR) return "b64"; |
| else return "u64"; |
| else |
| if (useB4PTR) return "b32"; |
| else return "u32"; |
| } |
| llvm_unreachable("unexpected type"); |
| return NULL; |
| } |
| |
| void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable* GVar, |
| raw_ostream &O) { |
| |
| const DataLayout *TD = TM.getDataLayout(); |
| |
| // GlobalVariables are always constant pointers themselves. |
| const PointerType *PTy = GVar->getType(); |
| Type *ETy = PTy->getElementType(); |
| |
| O << "."; |
| emitPTXAddressSpace(PTy->getAddressSpace(), O); |
| if (GVar->getAlignment() == 0) |
| O << " .align " << (int) TD->getPrefTypeAlignment(ETy); |
| else |
| O << " .align " << GVar->getAlignment(); |
| |
| if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) { |
| O << " ."; |
| O << getPTXFundamentalTypeStr(ETy); |
| O << " "; |
| O << *Mang->getSymbol(GVar); |
| return; |
| } |
| |
| int64_t ElementSize =0; |
| |
| // Although PTX has direct support for struct type and array type and LLVM IR |
| // is very similar to PTX, the LLVM CodeGen does not support for targets that |
| // support these high level field accesses. Structs and arrays are lowered |
| // into arrays of bytes. |
| switch (ETy->getTypeID()) { |
| case Type::StructTyID: |
| case Type::ArrayTyID: |
| case Type::VectorTyID: |
| ElementSize = TD->getTypeStoreSize(ETy); |
| O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ; |
| if (ElementSize) { |
| O << itostr(ElementSize) ; |
| } |
| O << "]"; |
| break; |
| default: |
| assert( 0 && "type not supported yet"); |
| } |
| return ; |
| } |
| |
| |
| static unsigned int |
| getOpenCLAlignment(const DataLayout *TD, |
| Type *Ty) { |
| if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty)) |
| return TD->getPrefTypeAlignment(Ty); |
| |
| const ArrayType *ATy = dyn_cast<ArrayType>(Ty); |
| if (ATy) |
| return getOpenCLAlignment(TD, ATy->getElementType()); |
| |
| const VectorType *VTy = dyn_cast<VectorType>(Ty); |
| if (VTy) { |
| Type *ETy = VTy->getElementType(); |
| unsigned int numE = VTy->getNumElements(); |
| unsigned int alignE = TD->getPrefTypeAlignment(ETy); |
| if (numE == 3) |
| return 4*alignE; |
| else |
| return numE*alignE; |
| } |
| |
| const StructType *STy = dyn_cast<StructType>(Ty); |
| if (STy) { |
| unsigned int alignStruct = 1; |
| // Go through each element of the struct and find the |
| // largest alignment. |
| for (unsigned i=0, e=STy->getNumElements(); i != e; i++) { |
| Type *ETy = STy->getElementType(i); |
| unsigned int align = getOpenCLAlignment(TD, ETy); |
| if (align > alignStruct) |
| alignStruct = align; |
| } |
| return alignStruct; |
| } |
| |
| const FunctionType *FTy = dyn_cast<FunctionType>(Ty); |
| if (FTy) |
| return TD->getPointerPrefAlignment(); |
| return TD->getPrefTypeAlignment(Ty); |
| } |
| |
| void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I, |
| int paramIndex, raw_ostream &O) { |
| if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) || |
| (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) |
| O << *CurrentFnSym << "_param_" << paramIndex; |
| else { |
| std::string argName = I->getName(); |
| const char *p = argName.c_str(); |
| while (*p) { |
| if (*p == '.') |
| O << "_"; |
| else |
| O << *p; |
| p++; |
| } |
| } |
| } |
| |
| void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) { |
| Function::const_arg_iterator I, E; |
| int i = 0; |
| |
| if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) || |
| (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) { |
| O << *CurrentFnSym << "_param_" << paramIndex; |
| return; |
| } |
| |
| for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) { |
| if (i==paramIndex) { |
| printParamName(I, paramIndex, O); |
| return; |
| } |
| } |
| llvm_unreachable("paramIndex out of bound"); |
| } |
| |
| void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, |
| raw_ostream &O) { |
| const DataLayout *TD = TM.getDataLayout(); |
| const AttributeSet &PAL = F->getAttributes(); |
| const TargetLowering *TLI = TM.getTargetLowering(); |
| Function::const_arg_iterator I, E; |
| unsigned paramIndex = 0; |
| bool first = true; |
| bool isKernelFunc = llvm::isKernelFunction(*F); |
| bool isABI = (nvptxSubtarget.getSmVersion() >= 20); |
| MVT thePointerTy = TLI->getPointerTy(); |
| |
| O << "(\n"; |
| |
| for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) { |
| const Type *Ty = I->getType(); |
| |
| if (!first) |
| O << ",\n"; |
| |
| first = false; |
| |
| // Handle image/sampler parameters |
| if (llvm::isSampler(*I) || llvm::isImage(*I)) { |
| if (llvm::isImage(*I)) { |
| std::string sname = I->getName(); |
| if (llvm::isImageWriteOnly(*I)) |
| O << "\t.param .surfref " << *CurrentFnSym << "_param_" << paramIndex; |
| else // Default image is read_only |
| O << "\t.param .texref " << *CurrentFnSym << "_param_" << paramIndex; |
| } |
| else // Should be llvm::isSampler(*I) |
| O << "\t.param .samplerref " << *CurrentFnSym << "_param_" |
| << paramIndex; |
| continue; |
| } |
| |
| if (PAL.hasAttribute(paramIndex+1, Attribute::ByVal) == false) { |
| // Just a scalar |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| if (isKernelFunc) { |
| if (PTy) { |
| // Special handling for pointer arguments to kernel |
| O << "\t.param .u" << thePointerTy.getSizeInBits() << " "; |
| |
| if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) { |
| Type *ETy = PTy->getElementType(); |
| int addrSpace = PTy->getAddressSpace(); |
| switch(addrSpace) { |
| default: |
| O << ".ptr "; |
| break; |
| case llvm::ADDRESS_SPACE_CONST_NOT_GEN: |
| O << ".ptr .const "; |
| break; |
| case llvm::ADDRESS_SPACE_SHARED: |
| O << ".ptr .shared "; |
| break; |
| case llvm::ADDRESS_SPACE_GLOBAL: |
| case llvm::ADDRESS_SPACE_CONST: |
| O << ".ptr .global "; |
| break; |
| } |
| O << ".align " << (int)getOpenCLAlignment(TD, ETy) << " "; |
| } |
| printParamName(I, paramIndex, O); |
| continue; |
| } |
| |
| // non-pointer scalar to kernel func |
| O << "\t.param ." |
| << getPTXFundamentalTypeStr(Ty) << " "; |
| printParamName(I, paramIndex, O); |
| continue; |
| } |
| // Non-kernel function, just print .param .b<size> for ABI |
| // and .reg .b<size> for non ABY |
| unsigned sz = 0; |
| if (isa<IntegerType>(Ty)) { |
| sz = cast<IntegerType>(Ty)->getBitWidth(); |
| if (sz < 32) sz = 32; |
| } |
| else if (isa<PointerType>(Ty)) |
| sz = thePointerTy.getSizeInBits(); |
| else |
| sz = Ty->getPrimitiveSizeInBits(); |
| if (isABI) |
| O << "\t.param .b" << sz << " "; |
| else |
| O << "\t.reg .b" << sz << " "; |
| printParamName(I, paramIndex, O); |
| continue; |
| } |
| |
| // param has byVal attribute. So should be a pointer |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| assert(PTy && |
| "Param with byval attribute should be a pointer type"); |
| Type *ETy = PTy->getElementType(); |
| |
| if (isABI || isKernelFunc) { |
| // Just print .param .b8 .align <a> .param[size]; |
| // <a> = PAL.getparamalignment |
| // size = typeallocsize of element type |
| unsigned align = PAL.getParamAlignment(paramIndex+1); |
| if (align == 0) |
| align = TD->getABITypeAlignment(ETy); |
| |
| unsigned sz = TD->getTypeAllocSize(ETy); |
| O << "\t.param .align " << align |
| << " .b8 "; |
| printParamName(I, paramIndex, O); |
| O << "[" << sz << "]"; |
| continue; |
| } else { |
| // Split the ETy into constituent parts and |
| // print .param .b<size> <name> for each part. |
| // Further, if a part is vector, print the above for |
| // each vector element. |
| SmallVector<EVT, 16> vtparts; |
| ComputeValueVTs(*TLI, ETy, vtparts); |
| for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { |
| unsigned elems = 1; |
| EVT elemtype = vtparts[i]; |
| if (vtparts[i].isVector()) { |
| elems = vtparts[i].getVectorNumElements(); |
| elemtype = vtparts[i].getVectorElementType(); |
| } |
| |
| for (unsigned j=0,je=elems; j!=je; ++j) { |
| unsigned sz = elemtype.getSizeInBits(); |
| if (elemtype.isInteger() && (sz < 32)) sz = 32; |
| O << "\t.reg .b" << sz << " "; |
| printParamName(I, paramIndex, O); |
| if (j<je-1) O << ",\n"; |
| ++paramIndex; |
| } |
| if (i<e-1) |
| O << ",\n"; |
| } |
| --paramIndex; |
| continue; |
| } |
| } |
| |
| O << "\n)\n"; |
| } |
| |
| void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF, |
| raw_ostream &O) { |
| const Function *F = MF.getFunction(); |
| emitFunctionParamList(F, O); |
| } |
| |
| |
| void NVPTXAsmPrinter:: |
| setAndEmitFunctionVirtualRegisters(const MachineFunction &MF) { |
| SmallString<128> Str; |
| raw_svector_ostream O(Str); |
| |
| // Map the global virtual register number to a register class specific |
| // virtual register number starting from 1 with that class. |
| const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); |
| //unsigned numRegClasses = TRI->getNumRegClasses(); |
| |
| // Emit the Fake Stack Object |
| const MachineFrameInfo *MFI = MF.getFrameInfo(); |
| int NumBytes = (int) MFI->getStackSize(); |
| if (NumBytes) { |
| O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" |
| << DEPOTNAME |
| << getFunctionNumber() << "[" << NumBytes << "];\n"; |
| if (nvptxSubtarget.is64Bit()) { |
| O << "\t.reg .b64 \t%SP;\n"; |
| O << "\t.reg .b64 \t%SPL;\n"; |
| } |
| else { |
| O << "\t.reg .b32 \t%SP;\n"; |
| O << "\t.reg .b32 \t%SPL;\n"; |
| } |
| } |
| |
| // Go through all virtual registers to establish the mapping between the |
| // global virtual |
| // register number and the per class virtual register number. |
| // We use the per class virtual register number in the ptx output. |
| unsigned int numVRs = MRI->getNumVirtRegs(); |
| for (unsigned i=0; i< numVRs; i++) { |
| unsigned int vr = TRI->index2VirtReg(i); |
| const TargetRegisterClass *RC = MRI->getRegClass(vr); |
| std::map<unsigned, unsigned> ®map = VRidGlobal2LocalMap[RC->getID()]; |
| int n = regmap.size(); |
| regmap.insert(std::make_pair(vr, n+1)); |
| } |
| |
| // Emit register declarations |
| // @TODO: Extract out the real register usage |
| O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n"; |
| O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n"; |
| O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n"; |
| O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n"; |
| O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n"; |
| O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n"; |
| O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n"; |
| |
| // Emit declaration of the virtual registers or 'physical' registers for |
| // each register class |
| //for (unsigned i=0; i< numRegClasses; i++) { |
| // std::map<unsigned, unsigned> ®map = VRidGlobal2LocalMap[i]; |
| // const TargetRegisterClass *RC = TRI->getRegClass(i); |
| // std::string rcname = getNVPTXRegClassName(RC); |
| // std::string rcStr = getNVPTXRegClassStr(RC); |
| // //int n = regmap.size(); |
| // if (!isNVPTXVectorRegClass(RC)) { |
| // O << "\t.reg " << rcname << " \t" << rcStr << "<" |
| // << NVPTXNumRegisters << ">;\n"; |
| // } |
| |
| // Only declare those registers that may be used. And do not emit vector |
| // registers as |
| // they are all elementized to scalar registers. |
| //if (n && !isNVPTXVectorRegClass(RC)) { |
| // if (RegAllocNilUsed) { |
| // O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1) |
| // << ">;\n"; |
| // } |
| // else { |
| // O << "\t.reg " << rcname << " \t" << StrToUpper(rcStr) |
| // << "<" << 32 << ">;\n"; |
| // } |
| //} |
| //} |
| |
| OutStreamer.EmitRawText(O.str()); |
| } |
| |
| |
| void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) { |
| APFloat APF = APFloat(Fp->getValueAPF()); // make a copy |
| bool ignored; |
| unsigned int numHex; |
| const char *lead; |
| |
| if (Fp->getType()->getTypeID()==Type::FloatTyID) { |
| numHex = 8; |
| lead = "0f"; |
| APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, |
| &ignored); |
| } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) { |
| numHex = 16; |
| lead = "0d"; |
| APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, |
| &ignored); |
| } else |
| llvm_unreachable("unsupported fp type"); |
| |
| APInt API = APF.bitcastToAPInt(); |
| std::string hexstr(utohexstr(API.getZExtValue())); |
| O << lead; |
| if (hexstr.length() < numHex) |
| O << std::string(numHex - hexstr.length(), '0'); |
| O << utohexstr(API.getZExtValue()); |
| } |
| |
| void NVPTXAsmPrinter::printScalarConstant(Constant *CPV, raw_ostream &O) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) { |
| O << CI->getValue(); |
| return; |
| } |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) { |
| printFPConstant(CFP, O); |
| return; |
| } |
| if (isa<ConstantPointerNull>(CPV)) { |
| O << "0"; |
| return; |
| } |
| if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) { |
| O << *Mang->getSymbol(GVar); |
| return; |
| } |
| if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) { |
| Value *v = Cexpr->stripPointerCasts(); |
| if (GlobalValue *GVar = dyn_cast<GlobalValue>(v)) { |
| O << *Mang->getSymbol(GVar); |
| return; |
| } else { |
| O << *LowerConstant(CPV, *this); |
| return; |
| } |
| } |
| llvm_unreachable("Not scalar type found in printScalarConstant()"); |
| } |
| |
| |
| void NVPTXAsmPrinter::bufferLEByte(Constant *CPV, int Bytes, |
| AggBuffer *aggBuffer) { |
| |
| const DataLayout *TD = TM.getDataLayout(); |
| |
| if (isa<UndefValue>(CPV) || CPV->isNullValue()) { |
| int s = TD->getTypeAllocSize(CPV->getType()); |
| if (s<Bytes) |
| s = Bytes; |
| aggBuffer->addZeros(s); |
| return; |
| } |
| |
| unsigned char *ptr; |
| switch (CPV->getType()->getTypeID()) { |
| |
| case Type::IntegerTyID: { |
| const Type *ETy = CPV->getType(); |
| if ( ETy == Type::getInt8Ty(CPV->getContext()) ){ |
| unsigned char c = |
| (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue(); |
| ptr = &c; |
| aggBuffer->addBytes(ptr, 1, Bytes); |
| } else if ( ETy == Type::getInt16Ty(CPV->getContext()) ) { |
| short int16 = |
| (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue(); |
| ptr = (unsigned char*)&int16; |
| aggBuffer->addBytes(ptr, 2, Bytes); |
| } else if ( ETy == Type::getInt32Ty(CPV->getContext()) ) { |
| if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) { |
| int int32 =(int)(constInt->getZExtValue()); |
| ptr = (unsigned char*)&int32; |
| aggBuffer->addBytes(ptr, 4, Bytes); |
| break; |
| } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) { |
| if (ConstantInt *constInt = |
| dyn_cast<ConstantInt>(ConstantFoldConstantExpression( |
| Cexpr, TD))) { |
| int int32 =(int)(constInt->getZExtValue()); |
| ptr = (unsigned char*)&int32; |
| aggBuffer->addBytes(ptr, 4, Bytes); |
| break; |
| } |
| if (Cexpr->getOpcode() == Instruction::PtrToInt) { |
| Value *v = Cexpr->getOperand(0)->stripPointerCasts(); |
| aggBuffer->addSymbol(v); |
| aggBuffer->addZeros(4); |
| break; |
| } |
| } |
| llvm_unreachable("unsupported integer const type"); |
| } else if (ETy == Type::getInt64Ty(CPV->getContext()) ) { |
| if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) { |
| long long int64 =(long long)(constInt->getZExtValue()); |
| ptr = (unsigned char*)&int64; |
| aggBuffer->addBytes(ptr, 8, Bytes); |
| break; |
| } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) { |
| if (ConstantInt *constInt = dyn_cast<ConstantInt>( |
| ConstantFoldConstantExpression(Cexpr, TD))) { |
| long long int64 =(long long)(constInt->getZExtValue()); |
| ptr = (unsigned char*)&int64; |
| aggBuffer->addBytes(ptr, 8, Bytes); |
| break; |
| } |
| if (Cexpr->getOpcode() == Instruction::PtrToInt) { |
| Value *v = Cexpr->getOperand(0)->stripPointerCasts(); |
| aggBuffer->addSymbol(v); |
| aggBuffer->addZeros(8); |
| break; |
| } |
| } |
| llvm_unreachable("unsupported integer const type"); |
| } else |
| llvm_unreachable("unsupported integer const type"); |
| break; |
| } |
| case Type::FloatTyID: |
| case Type::DoubleTyID: { |
| ConstantFP *CFP = dyn_cast<ConstantFP>(CPV); |
| const Type* Ty = CFP->getType(); |
| if (Ty == Type::getFloatTy(CPV->getContext())) { |
| float float32 = (float)CFP->getValueAPF().convertToFloat(); |
| ptr = (unsigned char*)&float32; |
| aggBuffer->addBytes(ptr, 4, Bytes); |
| } else if (Ty == Type::getDoubleTy(CPV->getContext())) { |
| double float64 = CFP->getValueAPF().convertToDouble(); |
| ptr = (unsigned char*)&float64; |
| aggBuffer->addBytes(ptr, 8, Bytes); |
| } |
| else { |
| llvm_unreachable("unsupported fp const type"); |
| } |
| break; |
| } |
| case Type::PointerTyID: { |
| if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) { |
| aggBuffer->addSymbol(GVar); |
| } |
| else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) { |
| Value *v = Cexpr->stripPointerCasts(); |
| aggBuffer->addSymbol(v); |
| } |
| unsigned int s = TD->getTypeAllocSize(CPV->getType()); |
| aggBuffer->addZeros(s); |
| break; |
| } |
| |
| case Type::ArrayTyID: |
| case Type::VectorTyID: |
| case Type::StructTyID: { |
| if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) || |
| isa<ConstantStruct>(CPV)) { |
| int ElementSize = TD->getTypeAllocSize(CPV->getType()); |
| bufferAggregateConstant(CPV, aggBuffer); |
| if ( Bytes > ElementSize ) |
| aggBuffer->addZeros(Bytes-ElementSize); |
| } |
| else if (isa<ConstantAggregateZero>(CPV)) |
| aggBuffer->addZeros(Bytes); |
| else |
| llvm_unreachable("Unexpected Constant type"); |
| break; |
| } |
| |
| default: |
| llvm_unreachable("unsupported type"); |
| } |
| } |
| |
| void NVPTXAsmPrinter::bufferAggregateConstant(Constant *CPV, |
| AggBuffer *aggBuffer) { |
| const DataLayout *TD = TM.getDataLayout(); |
| int Bytes; |
| |
| // Old constants |
| if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) { |
| if (CPV->getNumOperands()) |
| for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) |
| bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer); |
| return; |
| } |
| |
| if (const ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(CPV)) { |
| if (CDS->getNumElements()) |
| for (unsigned i = 0; i < CDS->getNumElements(); ++i) |
| bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0, |
| aggBuffer); |
| return; |
| } |
| |
| |
| if (isa<ConstantStruct>(CPV)) { |
| if (CPV->getNumOperands()) { |
| StructType *ST = cast<StructType>(CPV->getType()); |
| for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) { |
| if ( i == (e - 1)) |
| Bytes = TD->getStructLayout(ST)->getElementOffset(0) + |
| TD->getTypeAllocSize(ST) |
| - TD->getStructLayout(ST)->getElementOffset(i); |
| else |
| Bytes = TD->getStructLayout(ST)->getElementOffset(i+1) - |
| TD->getStructLayout(ST)->getElementOffset(i); |
| bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, |
| aggBuffer); |
| } |
| } |
| return; |
| } |
| llvm_unreachable("unsupported constant type in printAggregateConstant()"); |
| } |
| |
| // buildTypeNameMap - Run through symbol table looking for type names. |
| // |
| |
| |
| bool NVPTXAsmPrinter::isImageType(const Type *Ty) { |
| |
| std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty); |
| |
| if (PI != TypeNameMap.end() && |
| (!PI->second.compare("struct._image1d_t") || |
| !PI->second.compare("struct._image2d_t") || |
| !PI->second.compare("struct._image3d_t"))) |
| return true; |
| |
| return false; |
| } |
| |
| /// PrintAsmOperand - Print out an operand for an inline asm expression. |
| /// |
| bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, |
| unsigned AsmVariant, |
| const char *ExtraCode, |
| raw_ostream &O) { |
| if (ExtraCode && ExtraCode[0]) { |
| if (ExtraCode[1] != 0) return true; // Unknown modifier. |
| |
| switch (ExtraCode[0]) { |
| default: |
| // See if this is a generic print operand |
| return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); |
| case 'r': |
| break; |
| } |
| } |
| |
| printOperand(MI, OpNo, O); |
| |
| return false; |
| } |
| |
| bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, |
| unsigned OpNo, |
| unsigned AsmVariant, |
| const char *ExtraCode, |
| raw_ostream &O) { |
| if (ExtraCode && ExtraCode[0]) |
| return true; // Unknown modifier |
| |
| O << '['; |
| printMemOperand(MI, OpNo, O); |
| O << ']'; |
| |
| return false; |
| } |
| |
| bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) |
| { |
| switch(MI.getOpcode()) { |
| default: |
| return false; |
| case NVPTX::CallArgBeginInst: case NVPTX::CallArgEndInst0: |
| case NVPTX::CallArgEndInst1: case NVPTX::CallArgF32: |
| case NVPTX::CallArgF64: case NVPTX::CallArgI16: |
| case NVPTX::CallArgI32: case NVPTX::CallArgI32imm: |
| case NVPTX::CallArgI64: case NVPTX::CallArgI8: |
| case NVPTX::CallArgParam: case NVPTX::CallVoidInst: |
| case NVPTX::CallVoidInstReg: case NVPTX::Callseq_End: |
| case NVPTX::CallVoidInstReg64: |
| case NVPTX::DeclareParamInst: case NVPTX::DeclareRetMemInst: |
| case NVPTX::DeclareRetRegInst: case NVPTX::DeclareRetScalarInst: |
| case NVPTX::DeclareScalarParamInst: case NVPTX::DeclareScalarRegInst: |
| case NVPTX::StoreParamF32: case NVPTX::StoreParamF64: |
| case NVPTX::StoreParamI16: case NVPTX::StoreParamI32: |
| case NVPTX::StoreParamI64: case NVPTX::StoreParamI8: |
| case NVPTX::StoreParamS32I8: case NVPTX::StoreParamU32I8: |
| case NVPTX::StoreParamS32I16: case NVPTX::StoreParamU32I16: |
| case NVPTX::StoreRetvalF32: case NVPTX::StoreRetvalF64: |
| case NVPTX::StoreRetvalI16: case NVPTX::StoreRetvalI32: |
| case NVPTX::StoreRetvalI64: case NVPTX::StoreRetvalI8: |
| case NVPTX::LastCallArgF32: case NVPTX::LastCallArgF64: |
| case NVPTX::LastCallArgI16: case NVPTX::LastCallArgI32: |
| case NVPTX::LastCallArgI32imm: case NVPTX::LastCallArgI64: |
| case NVPTX::LastCallArgI8: case NVPTX::LastCallArgParam: |
| case NVPTX::LoadParamMemF32: case NVPTX::LoadParamMemF64: |
| case NVPTX::LoadParamMemI16: case NVPTX::LoadParamMemI32: |
| case NVPTX::LoadParamMemI64: case NVPTX::LoadParamMemI8: |
| case NVPTX::LoadParamRegF32: case NVPTX::LoadParamRegF64: |
| case NVPTX::LoadParamRegI16: case NVPTX::LoadParamRegI32: |
| case NVPTX::LoadParamRegI64: case NVPTX::LoadParamRegI8: |
| case NVPTX::PrototypeInst: case NVPTX::DBG_VALUE: |
| return true; |
| } |
| return false; |
| } |
| |
| // Force static initialization. |
| extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() { |
| RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32); |
| RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64); |
| } |
| |
| |
| void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) { |
| std::stringstream temp; |
| LineReader * reader = this->getReader(filename.str()); |
| temp << "\n//"; |
| temp << filename.str(); |
| temp << ":"; |
| temp << line; |
| temp << " "; |
| temp << reader->readLine(line); |
| temp << "\n"; |
| this->OutStreamer.EmitRawText(Twine(temp.str())); |
| } |
| |
| |
| LineReader *NVPTXAsmPrinter::getReader(std::string filename) { |
| if (reader == NULL) { |
| reader = new LineReader(filename); |
| } |
| |
| if (reader->fileName() != filename) { |
| delete reader; |
| reader = new LineReader(filename); |
| } |
| |
| return reader; |
| } |
| |
| |
| std::string |
| LineReader::readLine(unsigned lineNum) { |
| if (lineNum < theCurLine) { |
| theCurLine = 0; |
| fstr.seekg(0,std::ios::beg); |
| } |
| while (theCurLine < lineNum) { |
| fstr.getline(buff,500); |
| theCurLine++; |
| } |
| return buff; |
| } |
| |
| // Force static initialization. |
| extern "C" void LLVMInitializeNVPTXAsmPrinter() { |
| RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32); |
| RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64); |
| } |