| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-isel" |
| #include "X86ISelLowering.h" |
| #include "Utils/X86ShuffleDecode.h" |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86TargetMachine.h" |
| #include "X86TargetObjectFile.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/VariadicFunction.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <bitset> |
| #include <cctype> |
| using namespace llvm; |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| // Forward declarations. |
| static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, |
| SDValue V2); |
| |
| /// Generate a DAG to grab 128-bits from a vector > 128 bits. This |
| /// sets things up to match to an AVX VEXTRACTF128 instruction or a |
| /// simple subregister reference. Idx is an index in the 128 bits we |
| /// want. It need not be aligned to a 128-bit bounday. That makes |
| /// lowering EXTRACT_VECTOR_ELT operations easier. |
| static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, |
| SelectionDAG &DAG, DebugLoc dl) { |
| EVT VT = Vec.getValueType(); |
| assert(VT.is256BitVector() && "Unexpected vector size!"); |
| EVT ElVT = VT.getVectorElementType(); |
| unsigned Factor = VT.getSizeInBits()/128; |
| EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, |
| VT.getVectorNumElements()/Factor); |
| |
| // Extract from UNDEF is UNDEF. |
| if (Vec.getOpcode() == ISD::UNDEF) |
| return DAG.getUNDEF(ResultVT); |
| |
| // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR |
| // we can match to VEXTRACTF128. |
| unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits(); |
| |
| // This is the index of the first element of the 128-bit chunk |
| // we want. |
| unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128) |
| * ElemsPerChunk); |
| |
| // If the input is a buildvector just emit a smaller one. |
| if (Vec.getOpcode() == ISD::BUILD_VECTOR) |
| return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT, |
| Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk); |
| |
| SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); |
| SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, |
| VecIdx); |
| |
| return Result; |
| } |
| |
| /// Generate a DAG to put 128-bits into a vector > 128 bits. This |
| /// sets things up to match to an AVX VINSERTF128 instruction or a |
| /// simple superregister reference. Idx is an index in the 128 bits |
| /// we want. It need not be aligned to a 128-bit bounday. That makes |
| /// lowering INSERT_VECTOR_ELT operations easier. |
| static SDValue Insert128BitVector(SDValue Result, SDValue Vec, |
| unsigned IdxVal, SelectionDAG &DAG, |
| DebugLoc dl) { |
| // Inserting UNDEF is Result |
| if (Vec.getOpcode() == ISD::UNDEF) |
| return Result; |
| |
| EVT VT = Vec.getValueType(); |
| assert(VT.is128BitVector() && "Unexpected vector size!"); |
| |
| EVT ElVT = VT.getVectorElementType(); |
| EVT ResultVT = Result.getValueType(); |
| |
| // Insert the relevant 128 bits. |
| unsigned ElemsPerChunk = 128/ElVT.getSizeInBits(); |
| |
| // This is the index of the first element of the 128-bit chunk |
| // we want. |
| unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128) |
| * ElemsPerChunk); |
| |
| SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, |
| VecIdx); |
| } |
| |
| /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 |
| /// instructions. This is used because creating CONCAT_VECTOR nodes of |
| /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower |
| /// large BUILD_VECTORS. |
| static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT, |
| unsigned NumElems, SelectionDAG &DAG, |
| DebugLoc dl) { |
| SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); |
| return Insert128BitVector(V, V2, NumElems/2, DAG, dl); |
| } |
| |
| static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { |
| const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| bool is64Bit = Subtarget->is64Bit(); |
| |
| if (Subtarget->isTargetEnvMacho()) { |
| if (is64Bit) |
| return new X86_64MachoTargetObjectFile(); |
| return new TargetLoweringObjectFileMachO(); |
| } |
| |
| if (Subtarget->isTargetLinux()) |
| return new X86LinuxTargetObjectFile(); |
| if (Subtarget->isTargetELF()) |
| return new TargetLoweringObjectFileELF(); |
| if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho()) |
| return new TargetLoweringObjectFileCOFF(); |
| llvm_unreachable("unknown subtarget type"); |
| } |
| |
| X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) |
| : TargetLowering(TM, createTLOF(TM)) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| |
| RegInfo = TM.getRegisterInfo(); |
| TD = getDataLayout(); |
| |
| // Set up the TargetLowering object. |
| static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }; |
| |
| // X86 is weird, it always uses i8 for shift amounts and setcc results. |
| setBooleanContents(ZeroOrOneBooleanContent); |
| // X86-SSE is even stranger. It uses -1 or 0 for vector masks. |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| // For 64-bit since we have so many registers use the ILP scheduler, for |
| // 32-bit code use the register pressure specific scheduling. |
| // For Atom, always use ILP scheduling. |
| if (Subtarget->isAtom()) |
| setSchedulingPreference(Sched::ILP); |
| else if (Subtarget->is64Bit()) |
| setSchedulingPreference(Sched::ILP); |
| else |
| setSchedulingPreference(Sched::RegPressure); |
| setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); |
| |
| // Bypass expensive divides on Atom when compiling with O2 |
| if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) { |
| addBypassSlowDiv(32, 8); |
| if (Subtarget->is64Bit()) |
| addBypassSlowDiv(64, 16); |
| } |
| |
| if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) { |
| // Setup Windows compiler runtime calls. |
| setLibcallName(RTLIB::SDIV_I64, "_alldiv"); |
| setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); |
| setLibcallName(RTLIB::SREM_I64, "_allrem"); |
| setLibcallName(RTLIB::UREM_I64, "_aullrem"); |
| setLibcallName(RTLIB::MUL_I64, "_allmul"); |
| setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); |
| setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); |
| setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); |
| setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); |
| setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); |
| |
| // The _ftol2 runtime function has an unusual calling conv, which |
| // is modeled by a special pseudo-instruction. |
| setLibcallName(RTLIB::FPTOUINT_F64_I64, 0); |
| setLibcallName(RTLIB::FPTOUINT_F32_I64, 0); |
| setLibcallName(RTLIB::FPTOUINT_F64_I32, 0); |
| setLibcallName(RTLIB::FPTOUINT_F32_I32, 0); |
| } |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmp(false); |
| setUseUnderscoreLongJmp(false); |
| } else if (Subtarget->isTargetMingw()) { |
| // MS runtime is weird: it exports _setjmp, but longjmp! |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(false); |
| } else { |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(true); |
| } |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, &X86::GR8RegClass); |
| addRegisterClass(MVT::i16, &X86::GR16RegClass); |
| addRegisterClass(MVT::i32, &X86::GR32RegClass); |
| if (Subtarget->is64Bit()) |
| addRegisterClass(MVT::i64, &X86::GR64RegClass); |
| |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| |
| // We don't accept any truncstore of integer registers. |
| setTruncStoreAction(MVT::i64, MVT::i32, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i8 , Expand); |
| setTruncStoreAction(MVT::i32, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i32, MVT::i8 , Expand); |
| setTruncStoreAction(MVT::i16, MVT::i8, Expand); |
| |
| // SETOEQ and SETUNE require checking two conditions. |
| setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); |
| |
| // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| // operation. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); |
| } else if (!TM.Options.UseSoftFloat) { |
| // We have an algorithm for SSE2->double, and we turn this into a |
| // 64-bit FILD followed by conditional FADD for other targets. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); |
| // We have an algorithm for SSE2, and we turn this into a 64-bit |
| // FILD for other targets. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); |
| } |
| |
| // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| |
| if (!TM.Options.UseSoftFloat) { |
| // SSE has no i16 to fp conversion, only i32 |
| if (X86ScalarSSEf32) { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| // f32 and f64 cases are Legal, f80 case is not |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } |
| } else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); |
| } |
| |
| // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 |
| // are Legal, f80 is custom lowered. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| |
| // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| |
| if (X86ScalarSSEf32) { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| // f32 and f64 cases are Legal, f80 case is not |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } |
| |
| // Handle FP_TO_UINT by promoting the destination to a larger signed |
| // conversion. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| } else if (!TM.Options.UseSoftFloat) { |
| // Since AVX is a superset of SSE3, only check for SSE here. |
| if (Subtarget->hasSSE1() && !Subtarget->hasSSE3()) |
| // Expand FP_TO_UINT into a select. |
| // FIXME: We would like to use a Custom expander here eventually to do |
| // the optimal thing for SSE vs. the default expansion in the legalizer. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); |
| else |
| // With SSE3 we can use fisttpll to convert to a signed i64; without |
| // SSE, we're stuck with a fistpll. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); |
| } |
| |
| if (isTargetFTOL()) { |
| // Use the _ftol2 runtime function, which has a pseudo-instruction |
| // to handle its weird calling convention. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); |
| } |
| |
| // TODO: when we have SSE, these could be more efficient, by using movd/movq. |
| if (!X86ScalarSSEf64) { |
| setOperationAction(ISD::BITCAST , MVT::f32 , Expand); |
| setOperationAction(ISD::BITCAST , MVT::i32 , Expand); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::BITCAST , MVT::f64 , Expand); |
| // Without SSE, i64->f64 goes through memory. |
| setOperationAction(ISD::BITCAST , MVT::i64 , Expand); |
| } |
| } |
| |
| // Scalar integer divide and remainder are lowered to use operations that |
| // produce two results, to match the available instructions. This exposes |
| // the two-result form to trivial CSE, which is able to combine x/y and x%y |
| // into a single instruction. |
| // |
| // Scalar integer multiply-high is also lowered to use two-result |
| // operations, to match the available instructions. However, plain multiply |
| // (low) operations are left as Legal, as there are single-result |
| // instructions for this in x86. Using the two-result multiply instructions |
| // when both high and low results are needed must be arranged by dagcombine. |
| for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { |
| MVT VT = IntVTs[i]; |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| |
| // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. |
| setOperationAction(ISD::ADDC, VT, Custom); |
| setOperationAction(ISD::ADDE, VT, Custom); |
| setOperationAction(ISD::SUBC, VT, Custom); |
| setOperationAction(ISD::SUBE, VT, Custom); |
| } |
| |
| setOperationAction(ISD::BR_JT , MVT::Other, Expand); |
| setOperationAction(ISD::BRCOND , MVT::Other, Custom); |
| setOperationAction(ISD::BR_CC , MVT::f32, Expand); |
| setOperationAction(ISD::BR_CC , MVT::f64, Expand); |
| setOperationAction(ISD::BR_CC , MVT::f80, Expand); |
| setOperationAction(ISD::BR_CC , MVT::i8, Expand); |
| setOperationAction(ISD::BR_CC , MVT::i16, Expand); |
| setOperationAction(ISD::BR_CC , MVT::i32, Expand); |
| setOperationAction(ISD::BR_CC , MVT::i64, Expand); |
| setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| setOperationAction(ISD::FREM , MVT::f32 , Expand); |
| setOperationAction(ISD::FREM , MVT::f64 , Expand); |
| setOperationAction(ISD::FREM , MVT::f80 , Expand); |
| setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); |
| |
| // Promote the i8 variants and force them on up to i32 which has a shorter |
| // encoding. |
| setOperationAction(ISD::CTTZ , MVT::i8 , Promote); |
| AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote); |
| AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32); |
| if (Subtarget->hasBMI()) { |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); |
| } else { |
| setOperationAction(ISD::CTTZ , MVT::i16 , Custom); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::CTTZ , MVT::i64 , Custom); |
| } |
| |
| if (Subtarget->hasLZCNT()) { |
| // When promoting the i8 variants, force them to i32 for a shorter |
| // encoding. |
| setOperationAction(ISD::CTLZ , MVT::i8 , Promote); |
| AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote); |
| AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); |
| } else { |
| setOperationAction(ISD::CTLZ , MVT::i8 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i32 , Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::CTLZ , MVT::i64 , Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); |
| } |
| } |
| |
| if (Subtarget->hasPOPCNT()) { |
| setOperationAction(ISD::CTPOP , MVT::i8 , Promote); |
| } else { |
| setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::CTPOP , MVT::i64 , Expand); |
| } |
| |
| setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); |
| setOperationAction(ISD::BSWAP , MVT::i16 , Expand); |
| |
| // These should be promoted to a larger select which is supported. |
| setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| // X86 wants to expand cmov itself. |
| setOperationAction(ISD::SELECT , MVT::i8 , Custom); |
| setOperationAction(ISD::SELECT , MVT::i16 , Custom); |
| setOperationAction(ISD::SELECT , MVT::i32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f64 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f80 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i8 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i16 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f80 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::SELECT , MVT::i64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i64 , Custom); |
| } |
| setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); |
| // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support |
| // SjLj exception handling but a light-weight setjmp/longjmp replacement to |
| // support continuation, user-level threading, and etc.. As a result, no |
| // other SjLj exception interfaces are implemented and please don't build |
| // your own exception handling based on them. |
| // LLVM/Clang supports zero-cost DWARF exception handling. |
| setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); |
| setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); |
| |
| // Darwin ABI issue. |
| setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); |
| setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i64 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); |
| setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); |
| setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); |
| } |
| // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) |
| setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); |
| } |
| |
| if (Subtarget->hasSSE1()) |
| setOperationAction(ISD::PREFETCH , MVT::Other, Legal); |
| |
| setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom); |
| setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom); |
| |
| // On X86 and X86-64, atomic operations are lowered to locked instructions. |
| // Locked instructions, in turn, have implicit fence semantics (all memory |
| // operations are flushed before issuing the locked instruction, and they |
| // are not buffered), so we can fold away the common pattern of |
| // fence-atomic-fence. |
| setShouldFoldAtomicFences(true); |
| |
| // Expand certain atomics |
| for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { |
| MVT VT = IntVTs[i]; |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, VT, Custom); |
| } |
| |
| if (!Subtarget->is64Bit()) { |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom); |
| } |
| |
| if (Subtarget->hasCmpxchg16b()) { |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); |
| } |
| |
| // FIXME - use subtarget debug flags |
| if (!Subtarget->isTargetDarwin() && |
| !Subtarget->isTargetELF() && |
| !Subtarget->isTargetCygMing()) { |
| setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); |
| } |
| |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| if (Subtarget->is64Bit()) { |
| setExceptionPointerRegister(X86::RAX); |
| setExceptionSelectorRegister(X86::RDX); |
| } else { |
| setExceptionPointerRegister(X86::EAX); |
| setExceptionSelectorRegister(X86::EDX); |
| } |
| setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); |
| setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); |
| |
| setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); |
| setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::VAARG , MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY , MVT::Other, Custom); |
| } else { |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| } |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho()) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? |
| MVT::i64 : MVT::i32, Custom); |
| else if (TM.Options.EnableSegmentedStacks) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? |
| MVT::i64 : MVT::i32, Custom); |
| else |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? |
| MVT::i64 : MVT::i32, Expand); |
| |
| if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) { |
| // f32 and f64 use SSE. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, &X86::FR32RegClass); |
| addRegisterClass(MVT::f64, &X86::FR64RegClass); |
| |
| // Use ANDPD to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f64, Custom); |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f64, Custom); |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| // Use ANDPD and ORPD to simulate FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| |
| // Lower this to FGETSIGNx86 plus an AND. |
| setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); |
| setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| |
| // Expand FP immediates into loads from the stack, except for the special |
| // cases we handle. |
| addLegalFPImmediate(APFloat(+0.0)); // xorpd |
| addLegalFPImmediate(APFloat(+0.0f)); // xorps |
| } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) { |
| // Use SSE for f32, x87 for f64. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, &X86::FR32RegClass); |
| addRegisterClass(MVT::f64, &X86::RFP64RegClass); |
| |
| // Use ANDPS to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| |
| // Use ANDPS and ORPS to simulate FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| |
| // Special cases we handle for FP constants. |
| addLegalFPImmediate(APFloat(+0.0f)); // xorps |
| addLegalFPImmediate(APFloat(+0.0)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS |
| |
| if (!TM.Options.UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| } |
| } else if (!TM.Options.UseSoftFloat) { |
| // f32 and f64 in x87. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f64, &X86::RFP64RegClass); |
| addRegisterClass(MVT::f32, &X86::RFP32RegClass); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| setOperationAction(ISD::UNDEF, MVT::f32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| if (!TM.Options.UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| } |
| addLegalFPImmediate(APFloat(+0.0)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS |
| addLegalFPImmediate(APFloat(+0.0f)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0f)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS |
| } |
| |
| // We don't support FMA. |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| setOperationAction(ISD::FMA, MVT::f32, Expand); |
| |
| // Long double always uses X87. |
| if (!TM.Options.UseSoftFloat) { |
| addRegisterClass(MVT::f80, &X86::RFP80RegClass); |
| setOperationAction(ISD::UNDEF, MVT::f80, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); |
| { |
| APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); |
| addLegalFPImmediate(TmpFlt); // FLD0 |
| TmpFlt.changeSign(); |
| addLegalFPImmediate(TmpFlt); // FLD0/FCHS |
| |
| bool ignored; |
| APFloat TmpFlt2(+1.0); |
| TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, |
| &ignored); |
| addLegalFPImmediate(TmpFlt2); // FLD1 |
| TmpFlt2.changeSign(); |
| addLegalFPImmediate(TmpFlt2); // FLD1/FCHS |
| } |
| |
| if (!TM.Options.UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f80, Expand); |
| setOperationAction(ISD::FCOS , MVT::f80, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f80, Expand); |
| } |
| |
| setOperationAction(ISD::FFLOOR, MVT::f80, Expand); |
| setOperationAction(ISD::FCEIL, MVT::f80, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::f80, Expand); |
| setOperationAction(ISD::FRINT, MVT::f80, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); |
| setOperationAction(ISD::FMA, MVT::f80, Expand); |
| } |
| |
| // Always use a library call for pow. |
| setOperationAction(ISD::FPOW , MVT::f32 , Expand); |
| setOperationAction(ISD::FPOW , MVT::f64 , Expand); |
| setOperationAction(ISD::FPOW , MVT::f80 , Expand); |
| |
| setOperationAction(ISD::FLOG, MVT::f80, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f80, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f80, Expand); |
| setOperationAction(ISD::FEXP, MVT::f80, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f80, Expand); |
| |
| // First set operation action for all vector types to either promote |
| // (for widening) or expand (for scalarization). Then we will selectively |
| // turn on ones that can be effectively codegen'd. |
| for (int i = MVT::FIRST_VECTOR_VALUETYPE; |
| i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { |
| MVT VT = (MVT::SimpleValueType)i; |
| setOperationAction(ISD::ADD , VT, Expand); |
| setOperationAction(ISD::SUB , VT, Expand); |
| setOperationAction(ISD::FADD, VT, Expand); |
| setOperationAction(ISD::FNEG, VT, Expand); |
| setOperationAction(ISD::FSUB, VT, Expand); |
| setOperationAction(ISD::MUL , VT, Expand); |
| setOperationAction(ISD::FMUL, VT, Expand); |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::FDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::LOAD, VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); |
| setOperationAction(ISD::FABS, VT, Expand); |
| setOperationAction(ISD::FSIN, VT, Expand); |
| setOperationAction(ISD::FSINCOS, VT, Expand); |
| setOperationAction(ISD::FCOS, VT, Expand); |
| setOperationAction(ISD::FSINCOS, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| setOperationAction(ISD::FMA, VT, Expand); |
| setOperationAction(ISD::FPOWI, VT, Expand); |
| setOperationAction(ISD::FSQRT, VT, Expand); |
| setOperationAction(ISD::FCOPYSIGN, VT, Expand); |
| setOperationAction(ISD::FFLOOR, VT, Expand); |
| setOperationAction(ISD::FCEIL, VT, Expand); |
| setOperationAction(ISD::FTRUNC, VT, Expand); |
| setOperationAction(ISD::FRINT, VT, Expand); |
| setOperationAction(ISD::FNEARBYINT, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::SDIVREM, VT, Expand); |
| setOperationAction(ISD::UDIVREM, VT, Expand); |
| setOperationAction(ISD::FPOW, VT, Expand); |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); |
| setOperationAction(ISD::SHL, VT, Expand); |
| setOperationAction(ISD::SRA, VT, Expand); |
| setOperationAction(ISD::SRL, VT, Expand); |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| setOperationAction(ISD::SETCC, VT, Expand); |
| setOperationAction(ISD::FLOG, VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FEXP, VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| setOperationAction(ISD::FP_TO_UINT, VT, Expand); |
| setOperationAction(ISD::FP_TO_SINT, VT, Expand); |
| setOperationAction(ISD::UINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::SINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); |
| setOperationAction(ISD::TRUNCATE, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND, VT, Expand); |
| setOperationAction(ISD::ZERO_EXTEND, VT, Expand); |
| setOperationAction(ISD::ANY_EXTEND, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE; |
| InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) |
| setTruncStoreAction(VT, |
| (MVT::SimpleValueType)InnerVT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, Expand); |
| } |
| |
| // FIXME: In order to prevent SSE instructions being expanded to MMX ones |
| // with -msoft-float, disable use of MMX as well. |
| if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) { |
| addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); |
| // No operations on x86mmx supported, everything uses intrinsics. |
| } |
| |
| // MMX-sized vectors (other than x86mmx) are expected to be expanded |
| // into smaller operations. |
| setOperationAction(ISD::MULHS, MVT::v8i8, Expand); |
| setOperationAction(ISD::MULHS, MVT::v4i16, Expand); |
| setOperationAction(ISD::MULHS, MVT::v2i32, Expand); |
| setOperationAction(ISD::MULHS, MVT::v1i64, Expand); |
| setOperationAction(ISD::AND, MVT::v8i8, Expand); |
| setOperationAction(ISD::AND, MVT::v4i16, Expand); |
| setOperationAction(ISD::AND, MVT::v2i32, Expand); |
| setOperationAction(ISD::AND, MVT::v1i64, Expand); |
| setOperationAction(ISD::OR, MVT::v8i8, Expand); |
| setOperationAction(ISD::OR, MVT::v4i16, Expand); |
| setOperationAction(ISD::OR, MVT::v2i32, Expand); |
| setOperationAction(ISD::OR, MVT::v1i64, Expand); |
| setOperationAction(ISD::XOR, MVT::v8i8, Expand); |
| setOperationAction(ISD::XOR, MVT::v4i16, Expand); |
| setOperationAction(ISD::XOR, MVT::v2i32, Expand); |
| setOperationAction(ISD::XOR, MVT::v1i64, Expand); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand); |
| setOperationAction(ISD::SELECT, MVT::v8i8, Expand); |
| setOperationAction(ISD::SELECT, MVT::v4i16, Expand); |
| setOperationAction(ISD::SELECT, MVT::v2i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::v1i64, Expand); |
| setOperationAction(ISD::BITCAST, MVT::v8i8, Expand); |
| setOperationAction(ISD::BITCAST, MVT::v4i16, Expand); |
| setOperationAction(ISD::BITCAST, MVT::v2i32, Expand); |
| setOperationAction(ISD::BITCAST, MVT::v1i64, Expand); |
| |
| if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) { |
| addRegisterClass(MVT::v4f32, &X86::VR128RegClass); |
| |
| setOperationAction(ISD::FADD, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSUB, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FDIV, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::v4f32, Custom); |
| setOperationAction(ISD::FABS, MVT::v4f32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v4f32, Legal); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4f32, Custom); |
| } |
| |
| if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) { |
| addRegisterClass(MVT::v2f64, &X86::VR128RegClass); |
| |
| // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM |
| // registers cannot be used even for integer operations. |
| addRegisterClass(MVT::v16i8, &X86::VR128RegClass); |
| addRegisterClass(MVT::v8i16, &X86::VR128RegClass); |
| addRegisterClass(MVT::v4i32, &X86::VR128RegClass); |
| addRegisterClass(MVT::v2i64, &X86::VR128RegClass); |
| |
| setOperationAction(ISD::ADD, MVT::v16i8, Legal); |
| setOperationAction(ISD::ADD, MVT::v8i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v4i32, Legal); |
| setOperationAction(ISD::ADD, MVT::v2i64, Legal); |
| setOperationAction(ISD::MUL, MVT::v4i32, Custom); |
| setOperationAction(ISD::MUL, MVT::v2i64, Custom); |
| setOperationAction(ISD::SUB, MVT::v16i8, Legal); |
| setOperationAction(ISD::SUB, MVT::v8i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v4i32, Legal); |
| setOperationAction(ISD::SUB, MVT::v2i64, Legal); |
| setOperationAction(ISD::MUL, MVT::v8i16, Legal); |
| setOperationAction(ISD::FADD, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSUB, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMUL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FDIV, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FNEG, MVT::v2f64, Custom); |
| setOperationAction(ISD::FABS, MVT::v2f64, Custom); |
| |
| setOperationAction(ISD::SETCC, MVT::v2i64, Custom); |
| setOperationAction(ISD::SETCC, MVT::v16i8, Custom); |
| setOperationAction(ISD::SETCC, MVT::v8i16, Custom); |
| setOperationAction(ISD::SETCC, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| // Custom lower build_vector, vector_shuffle, and extract_vector_elt. |
| for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { |
| MVT VT = (MVT::SimpleValueType)i; |
| // Do not attempt to custom lower non-power-of-2 vectors |
| if (!isPowerOf2_32(VT.getVectorNumElements())) |
| continue; |
| // Do not attempt to custom lower non-128-bit vectors |
| if (!VT.is128BitVector()) |
| continue; |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| } |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); |
| } |
| |
| // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. |
| for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { |
| MVT VT = (MVT::SimpleValueType)i; |
| |
| // Do not attempt to promote non-128-bit vectors |
| if (!VT.is128BitVector()) |
| continue; |
| |
| setOperationAction(ISD::AND, VT, Promote); |
| AddPromotedToType (ISD::AND, VT, MVT::v2i64); |
| setOperationAction(ISD::OR, VT, Promote); |
| AddPromotedToType (ISD::OR, VT, MVT::v2i64); |
| setOperationAction(ISD::XOR, VT, Promote); |
| AddPromotedToType (ISD::XOR, VT, MVT::v2i64); |
| setOperationAction(ISD::LOAD, VT, Promote); |
| AddPromotedToType (ISD::LOAD, VT, MVT::v2i64); |
| setOperationAction(ISD::SELECT, VT, Promote); |
| AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); |
| } |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // Custom lower v2i64 and v2f64 selects. |
| setOperationAction(ISD::LOAD, MVT::v2f64, Legal); |
| setOperationAction(ISD::LOAD, MVT::v2i64, Legal); |
| setOperationAction(ISD::SELECT, MVT::v2f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v2i64, Custom); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); |
| |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); |
| // As there is no 64-bit GPR available, we need build a special custom |
| // sequence to convert from v2i32 to v2f32. |
| if (!Subtarget->is64Bit()) |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom); |
| |
| setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom); |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, Legal); |
| } |
| |
| if (Subtarget->hasSSE41()) { |
| setOperationAction(ISD::FFLOOR, MVT::f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::f32, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::f64, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f64, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f64, Legal); |
| setOperationAction(ISD::FRINT, MVT::f64, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); |
| setOperationAction(ISD::FRINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); |
| |
| // FIXME: Do we need to handle scalar-to-vector here? |
| setOperationAction(ISD::MUL, MVT::v4i32, Legal); |
| |
| setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); |
| setOperationAction(ISD::VSELECT, MVT::v2i64, Legal); |
| setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); |
| setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); |
| setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); |
| |
| // i8 and i16 vectors are custom , because the source register and source |
| // source memory operand types are not the same width. f32 vectors are |
| // custom since the immediate controlling the insert encodes additional |
| // information. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| // FIXME: these should be Legal but thats only for the case where |
| // the index is constant. For now custom expand to deal with that. |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); |
| } |
| } |
| |
| if (Subtarget->hasSSE2()) { |
| setOperationAction(ISD::SRL, MVT::v8i16, Custom); |
| setOperationAction(ISD::SRL, MVT::v16i8, Custom); |
| |
| setOperationAction(ISD::SHL, MVT::v8i16, Custom); |
| setOperationAction(ISD::SHL, MVT::v16i8, Custom); |
| |
| setOperationAction(ISD::SRA, MVT::v8i16, Custom); |
| setOperationAction(ISD::SRA, MVT::v16i8, Custom); |
| |
| if (Subtarget->hasInt256()) { |
| setOperationAction(ISD::SRL, MVT::v2i64, Legal); |
| setOperationAction(ISD::SRL, MVT::v4i32, Legal); |
| |
| setOperationAction(ISD::SHL, MVT::v2i64, Legal); |
| setOperationAction(ISD::SHL, MVT::v4i32, Legal); |
| |
| setOperationAction(ISD::SRA, MVT::v4i32, Legal); |
| } else { |
| setOperationAction(ISD::SRL, MVT::v2i64, Custom); |
| setOperationAction(ISD::SRL, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::SHL, MVT::v2i64, Custom); |
| setOperationAction(ISD::SHL, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::SRA, MVT::v4i32, Custom); |
| } |
| setOperationAction(ISD::SDIV, MVT::v8i16, Custom); |
| setOperationAction(ISD::SDIV, MVT::v4i32, Custom); |
| } |
| |
| if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) { |
| addRegisterClass(MVT::v32i8, &X86::VR256RegClass); |
| addRegisterClass(MVT::v16i16, &X86::VR256RegClass); |
| addRegisterClass(MVT::v8i32, &X86::VR256RegClass); |
| addRegisterClass(MVT::v8f32, &X86::VR256RegClass); |
| addRegisterClass(MVT::v4i64, &X86::VR256RegClass); |
| addRegisterClass(MVT::v4f64, &X86::VR256RegClass); |
| |
| setOperationAction(ISD::LOAD, MVT::v8f32, Legal); |
| setOperationAction(ISD::LOAD, MVT::v4f64, Legal); |
| setOperationAction(ISD::LOAD, MVT::v4i64, Legal); |
| |
| setOperationAction(ISD::FADD, MVT::v8f32, Legal); |
| setOperationAction(ISD::FSUB, MVT::v8f32, Legal); |
| setOperationAction(ISD::FMUL, MVT::v8f32, Legal); |
| setOperationAction(ISD::FDIV, MVT::v8f32, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v8f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::v8f32, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::v8f32, Custom); |
| setOperationAction(ISD::FABS, MVT::v8f32, Custom); |
| |
| setOperationAction(ISD::FADD, MVT::v4f64, Legal); |
| setOperationAction(ISD::FSUB, MVT::v4f64, Legal); |
| setOperationAction(ISD::FMUL, MVT::v4f64, Legal); |
| setOperationAction(ISD::FDIV, MVT::v4f64, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); |
| setOperationAction(ISD::FRINT, MVT::v4f64, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal); |
| setOperationAction(ISD::FNEG, MVT::v4f64, Custom); |
| setOperationAction(ISD::FABS, MVT::v4f64, Custom); |
| |
| setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); |
| setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); |
| |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, Legal); |
| |
| setOperationAction(ISD::SRL, MVT::v16i16, Custom); |
| setOperationAction(ISD::SRL, MVT::v32i8, Custom); |
| |
| setOperationAction(ISD::SHL, MVT::v16i16, Custom); |
| setOperationAction(ISD::SHL, MVT::v32i8, Custom); |
| |
| setOperationAction(ISD::SRA, MVT::v16i16, Custom); |
| setOperationAction(ISD::SRA, MVT::v32i8, Custom); |
| |
| setOperationAction(ISD::SDIV, MVT::v16i16, Custom); |
| |
| setOperationAction(ISD::SETCC, MVT::v32i8, Custom); |
| setOperationAction(ISD::SETCC, MVT::v16i16, Custom); |
| setOperationAction(ISD::SETCC, MVT::v8i32, Custom); |
| setOperationAction(ISD::SETCC, MVT::v4i64, Custom); |
| |
| setOperationAction(ISD::SELECT, MVT::v4f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v8f32, Custom); |
| |
| setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); |
| setOperationAction(ISD::VSELECT, MVT::v4i64, Legal); |
| setOperationAction(ISD::VSELECT, MVT::v8i32, Legal); |
| setOperationAction(ISD::VSELECT, MVT::v8f32, Legal); |
| |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom); |
| setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); |
| setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom); |
| setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom); |
| |
| if (Subtarget->hasFMA() || Subtarget->hasFMA4()) { |
| setOperationAction(ISD::FMA, MVT::v8f32, Legal); |
| setOperationAction(ISD::FMA, MVT::v4f64, Legal); |
| setOperationAction(ISD::FMA, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMA, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMA, MVT::f32, Legal); |
| setOperationAction(ISD::FMA, MVT::f64, Legal); |
| } |
| |
| if (Subtarget->hasInt256()) { |
| setOperationAction(ISD::ADD, MVT::v4i64, Legal); |
| setOperationAction(ISD::ADD, MVT::v8i32, Legal); |
| setOperationAction(ISD::ADD, MVT::v16i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v32i8, Legal); |
| |
| setOperationAction(ISD::SUB, MVT::v4i64, Legal); |
| setOperationAction(ISD::SUB, MVT::v8i32, Legal); |
| setOperationAction(ISD::SUB, MVT::v16i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v32i8, Legal); |
| |
| setOperationAction(ISD::MUL, MVT::v4i64, Custom); |
| setOperationAction(ISD::MUL, MVT::v8i32, Legal); |
| setOperationAction(ISD::MUL, MVT::v16i16, Legal); |
| // Don't lower v32i8 because there is no 128-bit byte mul |
| |
| setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); |
| |
| setOperationAction(ISD::SRL, MVT::v4i64, Legal); |
| setOperationAction(ISD::SRL, MVT::v8i32, Legal); |
| |
| setOperationAction(ISD::SHL, MVT::v4i64, Legal); |
| setOperationAction(ISD::SHL, MVT::v8i32, Legal); |
| |
| setOperationAction(ISD::SRA, MVT::v8i32, Legal); |
| |
| setOperationAction(ISD::SDIV, MVT::v8i32, Custom); |
| } else { |
| setOperationAction(ISD::ADD, MVT::v4i64, Custom); |
| setOperationAction(ISD::ADD, MVT::v8i32, Custom); |
| setOperationAction(ISD::ADD, MVT::v16i16, Custom); |
| setOperationAction(ISD::ADD, MVT::v32i8, Custom); |
| |
| setOperationAction(ISD::SUB, MVT::v4i64, Custom); |
| setOperationAction(ISD::SUB, MVT::v8i32, Custom); |
| setOperationAction(ISD::SUB, MVT::v16i16, Custom); |
| setOperationAction(ISD::SUB, MVT::v32i8, Custom); |
| |
| setOperationAction(ISD::MUL, MVT::v4i64, Custom); |
| setOperationAction(ISD::MUL, MVT::v8i32, Custom); |
| setOperationAction(ISD::MUL, MVT::v16i16, Custom); |
| // Don't lower v32i8 because there is no 128-bit byte mul |
| |
| setOperationAction(ISD::SRL, MVT::v4i64, Custom); |
| setOperationAction(ISD::SRL, MVT::v8i32, Custom); |
| |
| setOperationAction(ISD::SHL, MVT::v4i64, Custom); |
| setOperationAction(ISD::SHL, MVT::v8i32, Custom); |
| |
| setOperationAction(ISD::SRA, MVT::v8i32, Custom); |
| } |
| |
| // Custom lower several nodes for 256-bit types. |
| for (int i = MVT::FIRST_VECTOR_VALUETYPE; |
| i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { |
| MVT VT = (MVT::SimpleValueType)i; |
| |
| // Extract subvector is special because the value type |
| // (result) is 128-bit but the source is 256-bit wide. |
| if (VT.is128BitVector()) |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| |
| // Do not attempt to custom lower other non-256-bit vectors |
| if (!VT.is256BitVector()) |
| continue; |
| |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); |
| } |
| |
| // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. |
| for (int i = MVT::v32i8; i != MVT::v4i64; ++i) { |
| MVT VT = (MVT::SimpleValueType)i; |
| |
| // Do not attempt to promote non-256-bit vectors |
| if (!VT.is256BitVector()) |
| continue; |
| |
| setOperationAction(ISD::AND, VT, Promote); |
| AddPromotedToType (ISD::AND, VT, MVT::v4i64); |
| setOperationAction(ISD::OR, VT, Promote); |
| AddPromotedToType (ISD::OR, VT, MVT::v4i64); |
| setOperationAction(ISD::XOR, VT, Promote); |
| AddPromotedToType (ISD::XOR, VT, MVT::v4i64); |
| setOperationAction(ISD::LOAD, VT, Promote); |
| AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); |
| setOperationAction(ISD::SELECT, VT, Promote); |
| AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); |
| } |
| } |
| |
| // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion |
| // of this type with custom code. |
| for (int VT = MVT::FIRST_VECTOR_VALUETYPE; |
| VT != MVT::LAST_VECTOR_VALUETYPE; VT++) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, |
| Custom); |
| } |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| |
| // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't |
| // handle type legalization for these operations here. |
| // |
| // FIXME: We really should do custom legalization for addition and |
| // subtraction on x86-32 once PR3203 is fixed. We really can't do much better |
| // than generic legalization for 64-bit multiplication-with-overflow, though. |
| for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) { |
| // Add/Sub/Mul with overflow operations are custom lowered. |
| MVT VT = IntVTs[i]; |
| setOperationAction(ISD::SADDO, VT, Custom); |
| setOperationAction(ISD::UADDO, VT, Custom); |
| setOperationAction(ISD::SSUBO, VT, Custom); |
| setOperationAction(ISD::USUBO, VT, Custom); |
| setOperationAction(ISD::SMULO, VT, Custom); |
| setOperationAction(ISD::UMULO, VT, Custom); |
| } |
| |
| // There are no 8-bit 3-address imul/mul instructions |
| setOperationAction(ISD::SMULO, MVT::i8, Expand); |
| setOperationAction(ISD::UMULO, MVT::i8, Expand); |
| |
| if (!Subtarget->is64Bit()) { |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, 0); |
| setLibcallName(RTLIB::SRL_I128, 0); |
| setLibcallName(RTLIB::SRA_I128, 0); |
| } |
| |
| // Combine sin / cos into one node or libcall if possible. |
| if (Subtarget->hasSinCos()) { |
| setLibcallName(RTLIB::SINCOS_F32, "sincosf"); |
| setLibcallName(RTLIB::SINCOS_F64, "sincos"); |
| if (Subtarget->isTargetDarwin()) { |
| // For MacOSX, we don't want to the normal expansion of a libcall to |
| // sincos. We want to issue a libcall to __sincos_stret to avoid memory |
| // traffic. |
| setOperationAction(ISD::FSINCOS, MVT::f64, Custom); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Custom); |
| } |
| } |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); |
| setTargetDAGCombine(ISD::VSELECT); |
| setTargetDAGCombine(ISD::SELECT); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::FADD); |
| setTargetDAGCombine(ISD::FSUB); |
| setTargetDAGCombine(ISD::FMA); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::LOAD); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| setTargetDAGCombine(ISD::ANY_EXTEND); |
| setTargetDAGCombine(ISD::SIGN_EXTEND); |
| setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); |
| setTargetDAGCombine(ISD::TRUNCATE); |
| setTargetDAGCombine(ISD::SINT_TO_FP); |
| setTargetDAGCombine(ISD::SETCC); |
| if (Subtarget->is64Bit()) |
| setTargetDAGCombine(ISD::MUL); |
| setTargetDAGCombine(ISD::XOR); |
| |
| computeRegisterProperties(); |
| |
| // On Darwin, -Os means optimize for size without hurting performance, |
| // do not reduce the limit. |
| MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores |
| MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; |
| MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores |
| MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; |
| MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores |
| MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; |
| setPrefLoopAlignment(4); // 2^4 bytes. |
| BenefitFromCodePlacementOpt = true; |
| |
| // Predictable cmov don't hurt on atom because it's in-order. |
| PredictableSelectIsExpensive = !Subtarget->isAtom(); |
| |
| setPrefFunctionAlignment(4); // 2^4 bytes. |
| } |
| |
| EVT X86TargetLowering::getSetCCResultType(EVT VT) const { |
| if (!VT.isVector()) return MVT::i8; |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| /// getMaxByValAlign - Helper for getByValTypeAlignment to determine |
| /// the desired ByVal argument alignment. |
| static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { |
| if (MaxAlign == 16) |
| return; |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { |
| if (VTy->getBitWidth() == 128) |
| MaxAlign = 16; |
| } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| unsigned EltAlign = 0; |
| getMaxByValAlign(ATy->getElementType(), EltAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| } else if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| unsigned EltAlign = 0; |
| getMaxByValAlign(STy->getElementType(i), EltAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| if (MaxAlign == 16) |
| break; |
| } |
| } |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. For X86, aggregates |
| /// that contain SSE vectors are placed at 16-byte boundaries while the rest |
| /// are at 4-byte boundaries. |
| unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const { |
| if (Subtarget->is64Bit()) { |
| // Max of 8 and alignment of type. |
| unsigned TyAlign = TD->getABITypeAlignment(Ty); |
| if (TyAlign > 8) |
| return TyAlign; |
| return 8; |
| } |
| |
| unsigned Align = 4; |
| if (Subtarget->hasSSE1()) |
| getMaxByValAlign(Ty, Align); |
| return Align; |
| } |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. If DstAlign is zero that means it's safe to destination |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it |
| /// means there isn't a need to check it against alignment requirement, |
| /// probably because the source does not need to be loaded. If 'IsMemset' is |
| /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that |
| /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy |
| /// source is constant so it does not need to be loaded. |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| EVT |
| X86TargetLowering::getOptimalMemOpType(uint64_t Size, |
| unsigned DstAlign, unsigned SrcAlign, |
| bool IsMemset, bool ZeroMemset, |
| bool MemcpyStrSrc, |
| MachineFunction &MF) const { |
| const Function *F = MF.getFunction(); |
| if ((!IsMemset || ZeroMemset) && |
| !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::NoImplicitFloat)) { |
| if (Size >= 16 && |
| (Subtarget->isUnalignedMemAccessFast() || |
| ((DstAlign == 0 || DstAlign >= 16) && |
| (SrcAlign == 0 || SrcAlign >= 16)))) { |
| if (Size >= 32) { |
| if (Subtarget->hasInt256()) |
| return MVT::v8i32; |
| if (Subtarget->hasFp256()) |
| return MVT::v8f32; |
| } |
| if (Subtarget->hasSSE2()) |
| return MVT::v4i32; |
| if (Subtarget->hasSSE1()) |
| return MVT::v4f32; |
| } else if (!MemcpyStrSrc && Size >= 8 && |
| !Subtarget->is64Bit() && |
| Subtarget->hasSSE2()) { |
| // Do not use f64 to lower memcpy if source is string constant. It's |
| // better to use i32 to avoid the loads. |
| return MVT::f64; |
| } |
| } |
| if (Subtarget->is64Bit() && Size >= 8) |
| return MVT::i64; |
| return MVT::i32; |
| } |
| |
| bool X86TargetLowering::isSafeMemOpType(MVT VT) const { |
| if (VT == MVT::f32) |
| return X86ScalarSSEf32; |
| else if (VT == MVT::f64) |
| return X86ScalarSSEf64; |
| return true; |
| } |
| |
| bool |
| X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { |
| if (Fast) |
| *Fast = Subtarget->isUnalignedMemAccessFast(); |
| return true; |
| } |
| |
| /// getJumpTableEncoding - Return the entry encoding for a jump table in the |
| /// current function. The returned value is a member of the |
| /// MachineJumpTableInfo::JTEntryKind enum. |
| unsigned X86TargetLowering::getJumpTableEncoding() const { |
| // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF |
| // symbol. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT()) |
| return MachineJumpTableInfo::EK_Custom32; |
| |
| // Otherwise, use the normal jump table encoding heuristics. |
| return TargetLowering::getJumpTableEncoding(); |
| } |
| |
| const MCExpr * |
| X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| const MachineBasicBlock *MBB, |
| unsigned uid,MCContext &Ctx) const{ |
| assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT()); |
| // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF |
| // entries. |
| return MCSymbolRefExpr::Create(MBB->getSymbol(), |
| MCSymbolRefExpr::VK_GOTOFF, Ctx); |
| } |
| |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC |
| /// jumptable. |
| SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const { |
| if (!Subtarget->is64Bit()) |
| // This doesn't have DebugLoc associated with it, but is not really the |
| // same as a Register. |
| return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()); |
| return Table; |
| } |
| |
| /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the |
| /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an |
| /// MCExpr. |
| const MCExpr *X86TargetLowering:: |
| getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, |
| MCContext &Ctx) const { |
| // X86-64 uses RIP relative addressing based on the jump table label. |
| if (Subtarget->isPICStyleRIPRel()) |
| return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); |
| |
| // Otherwise, the reference is relative to the PIC base. |
| return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx); |
| } |
| |
| // FIXME: Why this routine is here? Move to RegInfo! |
| std::pair<const TargetRegisterClass*, uint8_t> |
| X86TargetLowering::findRepresentativeClass(MVT VT) const{ |
| const TargetRegisterClass *RRC = 0; |
| uint8_t Cost = 1; |
| switch (VT.SimpleTy) { |
| default: |
| return TargetLowering::findRepresentativeClass(VT); |
| case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: |
| RRC = Subtarget->is64Bit() ? |
| (const TargetRegisterClass*)&X86::GR64RegClass : |
| (const TargetRegisterClass*)&X86::GR32RegClass; |
| break; |
| case MVT::x86mmx: |
| RRC = &X86::VR64RegClass; |
| break; |
| case MVT::f32: case MVT::f64: |
| case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: |
| case MVT::v4f32: case MVT::v2f64: |
| case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: |
| case MVT::v4f64: |
| RRC = &X86::VR128RegClass; |
| break; |
| } |
| return std::make_pair(RRC, Cost); |
| } |
| |
| bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, |
| unsigned &Offset) const { |
| if (!Subtarget->isTargetLinux()) |
| return false; |
| |
| if (Subtarget->is64Bit()) { |
| // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: |
| Offset = 0x28; |
| if (getTargetMachine().getCodeModel() == CodeModel::Kernel) |
| AddressSpace = 256; |
| else |
| AddressSpace = 257; |
| } else { |
| // %gs:0x14 on i386 |
| Offset = 0x14; |
| AddressSpace = 256; |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86GenCallingConv.inc" |
| |
| bool |
| X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, |
| MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), |
| RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, RetCC_X86); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| DebugLoc dl, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), |
| RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeReturn(Outs, RetCC_X86); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 6> RetOps; |
| RetOps.push_back(Chain); // Operand #0 = Chain (updated below) |
| // Operand #1 = Bytes To Pop |
| RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), |
| MVT::i16)); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| SDValue ValToCopy = OutVals[i]; |
| EVT ValVT = ValToCopy.getValueType(); |
| |
| // Promote values to the appropriate types |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); |
| else if (VA.getLocInfo() == CCValAssign::AExt) |
| ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); |
| else if (VA.getLocInfo() == CCValAssign::BCvt) |
| ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy); |
| |
| // If this is x86-64, and we disabled SSE, we can't return FP values, |
| // or SSE or MMX vectors. |
| if ((ValVT == MVT::f32 || ValVT == MVT::f64 || |
| VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && |
| (Subtarget->is64Bit() && !Subtarget->hasSSE1())) { |
| report_fatal_error("SSE register return with SSE disabled"); |
| } |
| // Likewise we can't return F64 values with SSE1 only. gcc does so, but |
| // llvm-gcc has never done it right and no one has noticed, so this |
| // should be OK for now. |
| if (ValVT == MVT::f64 && |
| (Subtarget->is64Bit() && !Subtarget->hasSSE2())) |
| report_fatal_error("SSE2 register return with SSE2 disabled"); |
| |
| // Returns in ST0/ST1 are handled specially: these are pushed as operands to |
| // the RET instruction and handled by the FP Stackifier. |
| if (VA.getLocReg() == X86::ST0 || |
| VA.getLocReg() == X86::ST1) { |
| // If this is a copy from an xmm register to ST(0), use an FPExtend to |
| // change the value to the FP stack register class. |
| if (isScalarFPTypeInSSEReg(VA.getValVT())) |
| ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); |
| RetOps.push_back(ValToCopy); |
| // Don't emit a copytoreg. |
| continue; |
| } |
| |
| // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 |
| // which is returned in RAX / RDX. |
| if (Subtarget->is64Bit()) { |
| if (ValVT == MVT::x86mmx) { |
| if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { |
| ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy); |
| ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, |
| ValToCopy); |
| // If we don't have SSE2 available, convert to v4f32 so the generated |
| // register is legal. |
| if (!Subtarget->hasSSE2()) |
| ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy); |
| } |
| } |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| // The x86-64 ABIs require that for returning structs by value we copy |
| // the sret argument into %rax/%eax (depending on ABI) for the return. |
| // We saved the argument into a virtual register in the entry block, |
| // so now we copy the value out and into %rax/%eax. |
| if (Subtarget->is64Bit() && |
| DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| unsigned Reg = FuncInfo->getSRetReturnReg(); |
| assert(Reg && |
| "SRetReturnReg should have been set in LowerFormalArguments()."); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); |
| |
| unsigned RetValReg = Subtarget->isTarget64BitILP32() ? X86::EAX : X86::RAX; |
| Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); |
| Flag = Chain.getValue(1); |
| |
| // RAX/EAX now acts like a return value. |
| RetOps.push_back(DAG.getRegister(RetValReg, MVT::i64)); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(X86ISD::RET_FLAG, dl, |
| MVT::Other, &RetOps[0], RetOps.size()); |
| } |
| |
| bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { |
| if (N->getNumValues() != 1) |
| return false; |
| if (!N->hasNUsesOfValue(1, 0)) |
| return false; |
| |
| SDValue TCChain = Chain; |
| SDNode *Copy = *N->use_begin(); |
| if (Copy->getOpcode() == ISD::CopyToReg) { |
| // If the copy has a glue operand, we conservatively assume it isn't safe to |
| // perform a tail call. |
| if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) |
| return false; |
| TCChain = Copy->getOperand(0); |
| } else if (Copy->getOpcode() != ISD::FP_EXTEND) |
| return false; |
| |
| bool HasRet = false; |
| for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); |
| UI != UE; ++UI) { |
| if (UI->getOpcode() != X86ISD::RET_FLAG) |
| return false; |
| HasRet = true; |
| } |
| |
| if (!HasRet) |
| return false; |
| |
| Chain = TCChain; |
| return true; |
| } |
| |
| MVT |
| X86TargetLowering::getTypeForExtArgOrReturn(MVT VT, |
| ISD::NodeType ExtendKind) const { |
| MVT ReturnMVT; |
| // TODO: Is this also valid on 32-bit? |
| if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) |
| ReturnMVT = MVT::i8; |
| else |
| ReturnMVT = MVT::i32; |
| |
| MVT MinVT = getRegisterType(ReturnMVT); |
| return VT.bitsLT(MinVT) ? MinVT : VT; |
| } |
| |
| /// LowerCallResult - Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| /// |
| SDValue |
| X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| bool Is64Bit = Subtarget->is64Bit(); |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC_X86); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| EVT CopyVT = VA.getValVT(); |
| |
| // If this is x86-64, and we disabled SSE, we can't return FP values |
| if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && |
| ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { |
| report_fatal_error("SSE register return with SSE disabled"); |
| } |
| |
| SDValue Val; |
| |
| // If this is a call to a function that returns an fp value on the floating |
| // point stack, we must guarantee the value is popped from the stack, so |
| // a CopyFromReg is not good enough - the copy instruction may be eliminated |
| // if the return value is not used. We use the FpPOP_RETVAL instruction |
| // instead. |
| if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { |
| // If we prefer to use the value in xmm registers, copy it out as f80 and |
| // use a truncate to move it from fp stack reg to xmm reg. |
| if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80; |
| SDValue Ops[] = { Chain, InFlag }; |
| Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT, |
| MVT::Other, MVT::Glue, Ops, 2), 1); |
| Val = Chain.getValue(0); |
| |
| // Round the f80 to the right size, which also moves it to the appropriate |
| // xmm register. |
| if (CopyVT != VA.getValVT()) |
| Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, |
| // This truncation won't change the value. |
| DAG.getIntPtrConstant(1)); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), |
| CopyVT, InFlag).getValue(1); |
| Val = Chain.getValue(0); |
| } |
| InFlag = Chain.getValue(2); |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C & StdCall & Fast Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // StdCall calling convention seems to be standard for many Windows' API |
| // routines and around. It differs from C calling convention just a little: |
| // callee should clean up the stack, not caller. Symbols should be also |
| // decorated in some fancy way :) It doesn't support any vector arguments. |
| // For info on fast calling convention see Fast Calling Convention (tail call) |
| // implementation LowerX86_32FastCCCallTo. |
| |
| /// CallIsStructReturn - Determines whether a call uses struct return |
| /// semantics. |
| enum StructReturnType { |
| NotStructReturn, |
| RegStructReturn, |
| StackStructReturn |
| }; |
| static StructReturnType |
| callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { |
| if (Outs.empty()) |
| return NotStructReturn; |
| |
| const ISD::ArgFlagsTy &Flags = Outs[0].Flags; |
| if (!Flags.isSRet()) |
| return NotStructReturn; |
| if (Flags.isInReg()) |
| return RegStructReturn; |
| return StackStructReturn; |
| } |
| |
| /// ArgsAreStructReturn - Determines whether a function uses struct |
| /// return semantics. |
| static StructReturnType |
| argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { |
| if (Ins.empty()) |
| return NotStructReturn; |
| |
| const ISD::ArgFlagsTy &Flags = Ins[0].Flags; |
| if (!Flags.isSRet()) |
| return NotStructReturn; |
| if (Flags.isInReg()) |
| return RegStructReturn; |
| return StackStructReturn; |
| } |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" with size and alignment information specified by |
| /// the specific parameter attribute. The copy will be passed as a byval |
| /// function parameter. |
| static SDValue |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| DebugLoc dl) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); |
| |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), |
| /*isVolatile*/false, /*AlwaysInline=*/true, |
| MachinePointerInfo(), MachinePointerInfo()); |
| } |
| |
| /// IsTailCallConvention - Return true if the calling convention is one that |
| /// supports tail call optimization. |
| static bool IsTailCallConvention(CallingConv::ID CC) { |
| return (CC == CallingConv::Fast || CC == CallingConv::GHC || |
| CC == CallingConv::HiPE); |
| } |
| |
| bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { |
| if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls) |
| return false; |
| |
| CallSite CS(CI); |
| CallingConv::ID CalleeCC = CS.getCallingConv(); |
| if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) |
| return false; |
| |
| return true; |
| } |
| |
| /// FuncIsMadeTailCallSafe - Return true if the function is being made into |
| /// a tailcall target by changing its ABI. |
| static bool FuncIsMadeTailCallSafe(CallingConv::ID CC, |
| bool GuaranteedTailCallOpt) { |
| return GuaranteedTailCallOpt && IsTailCallConvention(CC); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerMemArgument(SDValue Chain, |
| CallingConv::ID CallConv, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| MachineFrameInfo *MFI, |
| unsigned i) const { |
| // Create the nodes corresponding to a load from this parameter slot. |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv, |
| getTargetMachine().Options.GuaranteedTailCallOpt); |
| bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); |
| EVT ValVT; |
| |
| // If value is passed by pointer we have address passed instead of the value |
| // itself. |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| ValVT = VA.getLocVT(); |
| else |
| ValVT = VA.getValVT(); |
| |
| // FIXME: For now, all byval parameter objects are marked mutable. This can be |
| // changed with more analysis. |
| // In case of tail call optimization mark all arguments mutable. Since they |
| // could be overwritten by lowering of arguments in case of a tail call. |
| if (Flags.isByVal()) { |
| unsigned Bytes = Flags.getByValSize(); |
| if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. |
| int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); |
| return DAG.getFrameIndex(FI, getPointerTy()); |
| } else { |
| int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, |
| VA.getLocMemOffset(), isImmutable); |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| return DAG.getLoad(ValVT, dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(FI), |
| false, false, false, 0); |
| } |
| } |
| |
| SDValue |
| X86TargetLowering::LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, |
| SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) |
| const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| |
| const Function* Fn = MF.getFunction(); |
| if (Fn->hasExternalLinkage() && |
| Subtarget->isTargetCygMing() && |
| Fn->getName() == "main") |
| FuncInfo->setForceFramePointer(true); |
| |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| bool Is64Bit = Subtarget->is64Bit(); |
| bool IsWindows = Subtarget->isTargetWindows(); |
| bool IsWin64 = Subtarget->isTargetWin64(); |
| |
| assert(!(isVarArg && IsTailCallConvention(CallConv)) && |
| "Var args not supported with calling convention fastcc, ghc or hipe"); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), |
| ArgLocs, *DAG.getContext()); |
| |
| // Allocate shadow area for Win64 |
| if (IsWin64) { |
| CCInfo.AllocateStack(32, 8); |
| } |
| |
| CCInfo.AnalyzeFormalArguments(Ins, CC_X86); |
| |
| unsigned LastVal = ~0U; |
| SDValue ArgValue; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| // TODO: If an arg is passed in two places (e.g. reg and stack), skip later |
| // places. |
| assert(VA.getValNo() != LastVal && |
| "Don't support value assigned to multiple locs yet"); |
| (void)LastVal; |
| LastVal = VA.getValNo(); |
| |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| const TargetRegisterClass *RC; |
| if (RegVT == MVT::i32) |
| RC = &X86::GR32RegClass; |
| else if (Is64Bit && RegVT == MVT::i64) |
| RC = &X86::GR64RegClass; |
| else if (RegVT == MVT::f32) |
| RC = &X86::FR32RegClass; |
| else if (RegVT == MVT::f64) |
| RC = &X86::FR64RegClass; |
| else if (RegVT.is256BitVector()) |
| RC = &X86::VR256RegClass; |
| else if (RegVT.is128BitVector()) |
| RC = &X86::VR128RegClass; |
| else if (RegVT == MVT::x86mmx) |
| RC = &X86::VR64RegClass; |
| else |
| llvm_unreachable("Unknown argument type!"); |
| |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted to 32 |
| // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| // right size. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::BCvt) |
| ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); |
| |
| if (VA.isExtInLoc()) { |
| // Handle MMX values passed in XMM regs. |
| if (RegVT.isVector()) |
| ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); |
| else |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| } |
| } else { |
| assert(VA.isMemLoc()); |
| ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); |
| } |
| |
| // If value is passed via pointer - do a load. |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, |
| MachinePointerInfo(), false, false, false, 0); |
| |
| InVals.push_back(ArgValue); |
| } |
| |
| // The x86-64 ABIs require that for returning structs by value we copy |
| // the sret argument into %rax/%eax (depending on ABI) for the return. |
| // Save the argument into a virtual register so that we can access it |
| // from the return points. |
| if (Is64Bit && MF.getFunction()->hasStructRetAttr()) { |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| unsigned Reg = FuncInfo->getSRetReturnReg(); |
| if (!Reg) { |
| MVT PtrTy = getPointerTy(); |
| Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); |
| FuncInfo->setSRetReturnReg(Reg); |
| } |
| SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); |
| } |
| |
| unsigned StackSize = CCInfo.getNextStackOffset(); |
| // Align stack specially for tail calls. |
| if (FuncIsMadeTailCallSafe(CallConv, |
| MF.getTarget().Options.GuaranteedTailCallOpt)) |
| StackSize = GetAlignedArgumentStackSize(StackSize, DAG); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| if (Is64Bit || (CallConv != CallingConv::X86_FastCall && |
| CallConv != CallingConv::X86_ThisCall)) { |
| FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true)); |
| } |
| if (Is64Bit) { |
| unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; |
| |
| // FIXME: We should really autogenerate these arrays |
| static const uint16_t GPR64ArgRegsWin64[] = { |
| X86::RCX, X86::RDX, X86::R8, X86::R9 |
| }; |
| static const uint16_t GPR64ArgRegs64Bit[] = { |
| X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 |
| }; |
| static const uint16_t XMMArgRegs64Bit[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| const uint16_t *GPR64ArgRegs; |
| unsigned NumXMMRegs = 0; |
| |
| if (IsWin64) { |
| // The XMM registers which might contain var arg parameters are shadowed |
| // in their paired GPR. So we only need to save the GPR to their home |
| // slots. |
| TotalNumIntRegs = 4; |
| GPR64ArgRegs = GPR64ArgRegsWin64; |
| } else { |
| TotalNumIntRegs = 6; TotalNumXMMRegs = 8; |
| GPR64ArgRegs = GPR64ArgRegs64Bit; |
| |
| NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, |
| TotalNumXMMRegs); |
| } |
| unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, |
| TotalNumIntRegs); |
| |
| bool NoImplicitFloatOps = Fn->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); |
| assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && |
| "SSE register cannot be used when SSE is disabled!"); |
| assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat && |
| NoImplicitFloatOps) && |
| "SSE register cannot be used when SSE is disabled!"); |
| if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps || |
| !Subtarget->hasSSE1()) |
| // Kernel mode asks for SSE to be disabled, so don't push them |
| // on the stack. |
| TotalNumXMMRegs = 0; |
| |
| if (IsWin64) { |
| const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering(); |
| // Get to the caller-allocated home save location. Add 8 to account |
| // for the return address. |
| int HomeOffset = TFI.getOffsetOfLocalArea() + 8; |
| FuncInfo->setRegSaveFrameIndex( |
| MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); |
| // Fixup to set vararg frame on shadow area (4 x i64). |
| if (NumIntRegs < 4) |
| FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); |
| } else { |
| // For X86-64, if there are vararg parameters that are passed via |
| // registers, then we must store them to their spots on the stack so |
| // they may be loaded by deferencing the result of va_next. |
| FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); |
| FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16); |
| FuncInfo->setRegSaveFrameIndex( |
| MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16, |
| false)); |
| } |
| |
| // Store the integer parameter registers. |
| SmallVector<SDValue, 8> MemOps; |
| SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), |
| getPointerTy()); |
| unsigned Offset = FuncInfo->getVarArgsGPOffset(); |
| for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { |
| SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, |
| DAG.getIntPtrConstant(Offset)); |
| unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], |
| &X86::GR64RegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo::getFixedStack( |
| FuncInfo->getRegSaveFrameIndex(), Offset), |
| false, false, 0); |
| MemOps.push_back(Store); |
| Offset += 8; |
| } |
| |
| if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { |
| // Now store the XMM (fp + vector) parameter registers. |
| SmallVector<SDValue, 11> SaveXMMOps; |
| SaveXMMOps.push_back(Chain); |
| |
| unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); |
| SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); |
| SaveXMMOps.push_back(ALVal); |
| |
| SaveXMMOps.push_back(DAG.getIntPtrConstant( |
| FuncInfo->getRegSaveFrameIndex())); |
| SaveXMMOps.push_back(DAG.getIntPtrConstant( |
| FuncInfo->getVarArgsFPOffset())); |
| |
| for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { |
| unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs], |
| &X86::VR128RegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); |
| SaveXMMOps.push_back(Val); |
| } |
| MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, |
| MVT::Other, |
| &SaveXMMOps[0], SaveXMMOps.size())); |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } |
| } |
| |
| // Some CCs need callee pop. |
| if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, |
| MF.getTarget().Options.GuaranteedTailCallOpt)) { |
| FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. |
| } else { |
| FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. |
| // If this is an sret function, the return should pop the hidden pointer. |
| if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows && |
| argsAreStructReturn(Ins) == StackStructReturn) |
| FuncInfo->setBytesToPopOnReturn(4); |
| } |
| |
| if (!Is64Bit) { |
| // RegSaveFrameIndex is X86-64 only. |
| FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); |
| if (CallConv == CallingConv::X86_FastCall || |
| CallConv == CallingConv::X86_ThisCall) |
| // fastcc functions can't have varargs. |
| FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); |
| } |
| |
| FuncInfo->setArgumentStackSize(StackSize); |
| |
| return Chain; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerMemOpCallTo(SDValue Chain, |
| SDValue StackPtr, SDValue Arg, |
| DebugLoc dl, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| ISD::ArgFlagsTy Flags) const { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| if (Flags.isByVal()) |
| return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); |
| |
| return DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo::getStack(LocMemOffset), |
| false, false, 0); |
| } |
| |
| /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call |
| /// optimization is performed and it is required. |
| SDValue |
| X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, |
| SDValue &OutRetAddr, SDValue Chain, |
| bool IsTailCall, bool Is64Bit, |
| int FPDiff, DebugLoc dl) const { |
| // Adjust the Return address stack slot. |
| EVT VT = getPointerTy(); |
| OutRetAddr = getReturnAddressFrameIndex(DAG); |
| |
| // Load the "old" Return address. |
| OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), |
| false, false, false, 0); |
| return SDValue(OutRetAddr.getNode(), 1); |
| } |
| |
| /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call |
| /// optimization is performed and it is required (FPDiff!=0). |
| static SDValue |
| EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, |
| SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT, |
| unsigned SlotSize, int FPDiff, DebugLoc dl) { |
| // Store the return address to the appropriate stack slot. |
| if (!FPDiff) return Chain; |
| // Calculate the new stack slot for the return address. |
| int NewReturnAddrFI = |
| MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false); |
| SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); |
| Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, |
| MachinePointerInfo::getFixedStack(NewReturnAddrFI), |
| false, false, 0); |
| return Chain; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| DebugLoc &dl = CLI.DL; |
| SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool &isTailCall = CLI.IsTailCall; |
| bool isVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool Is64Bit = Subtarget->is64Bit(); |
| bool IsWin64 = Subtarget->isTargetWin64(); |
| bool IsWindows = Subtarget->isTargetWindows(); |
| StructReturnType SR = callIsStructReturn(Outs); |
| bool IsSibcall = false; |
| |
| if (MF.getTarget().Options.DisableTailCalls) |
| isTailCall = false; |
| |
| if (isTailCall) { |
| // Check if it's really possible to do a tail call. |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| isVarArg, SR != NotStructReturn, |
| MF.getFunction()->hasStructRetAttr(), CLI.RetTy, |
| Outs, OutVals, Ins, DAG); |
| |
| // Sibcalls are automatically detected tailcalls which do not require |
| // ABI changes. |
| if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) |
| IsSibcall = true; |
| |
| if (isTailCall) |
| ++NumTailCalls; |
| } |
| |
| assert(!(isVarArg && IsTailCallConvention(CallConv)) && |
| "Var args not supported with calling convention fastcc, ghc or hipe"); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), |
| ArgLocs, *DAG.getContext()); |
| |
| // Allocate shadow area for Win64 |
| if (IsWin64) { |
| CCInfo.AllocateStack(32, 8); |
| } |
| |
| CCInfo.AnalyzeCallOperands(Outs, CC_X86); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| if (IsSibcall) |
| // This is a sibcall. The memory operands are available in caller's |
| // own caller's stack. |
| NumBytes = 0; |
| else if (getTargetMachine().Options.GuaranteedTailCallOpt && |
| IsTailCallConvention(CallConv)) |
| NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); |
| |
| int FPDiff = 0; |
| if (isTailCall && !IsSibcall) { |
| // Lower arguments at fp - stackoffset + fpdiff. |
| X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>(); |
| unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); |
| |
| FPDiff = NumBytesCallerPushed - NumBytes; |
| |
| // Set the delta of movement of the returnaddr stackslot. |
| // But only set if delta is greater than previous delta. |
| if (FPDiff < X86Info->getTCReturnAddrDelta()) |
| X86Info->setTCReturnAddrDelta(FPDiff); |
| } |
| |
| if (!IsSibcall) |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| |
| SDValue RetAddrFrIdx; |
| // Load return address for tail calls. |
| if (isTailCall && FPDiff) |
| Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, |
| Is64Bit, FPDiff, dl); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| SDValue StackPtr; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. In the case |
| // of tail call optimization arguments are handle later. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| bool isByVal = Flags.isByVal(); |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::AExt: |
| if (RegVT.is128BitVector()) { |
| // Special case: passing MMX values in XMM registers. |
| Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); |
| Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); |
| Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); |
| } else |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg); |
| break; |
| case CCValAssign::Indirect: { |
| // Store the argument. |
| SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); |
| int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); |
| Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, |
| MachinePointerInfo::getFixedStack(FI), |
| false, false, 0); |
| Arg = SpillSlot; |
| break; |
| } |
| } |
| |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| if (isVarArg && IsWin64) { |
| // Win64 ABI requires argument XMM reg to be copied to the corresponding |
| // shadow reg if callee is a varargs function. |
| unsigned ShadowReg = 0; |
| switch (VA.getLocReg()) { |
| case X86::XMM0: ShadowReg = X86::RCX; break; |
| case X86::XMM1: ShadowReg = X86::RDX; break; |
| case X86::XMM2: ShadowReg = X86::R8; break; |
| case X86::XMM3: ShadowReg = X86::R9; break; |
| } |
| if (ShadowReg) |
| RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); |
| } |
| } else if (!IsSibcall && (!isTailCall || isByVal)) { |
| assert(VA.isMemLoc()); |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), |
| getPointerTy()); |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, |
| dl, DAG, VA, Flags)); |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| if (Subtarget->isPICStyleGOT()) { |
| // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| // GOT pointer. |
| if (!isTailCall) { |
| RegsToPass.push_back(std::make_pair(unsigned(X86::EBX), |
| DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()))); |
| } else { |
| // If we are tail calling and generating PIC/GOT style code load the |
| // address of the callee into ECX. The value in ecx is used as target of |
| // the tail jump. This is done to circumvent the ebx/callee-saved problem |
| // for tail calls on PIC/GOT architectures. Normally we would just put the |
| // address of GOT into ebx and then call target@PLT. But for tail calls |
| // ebx would be restored (since ebx is callee saved) before jumping to the |
| // target@PLT. |
| |
| // Note: The actual moving to ECX is done further down. |
| GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); |
| if (G && !G->getGlobal()->hasHiddenVisibility() && |
| !G->getGlobal()->hasProtectedVisibility()) |
| Callee = LowerGlobalAddress(Callee, DAG); |
| else if (isa<ExternalSymbolSDNode>(Callee)) |
| Callee = LowerExternalSymbol(Callee, DAG); |
| } |
| } |
| |
| if (Is64Bit && isVarArg && !IsWin64) { |
| // From AMD64 ABI document: |
| // For calls that may call functions that use varargs or stdargs |
| // (prototype-less calls or calls to functions containing ellipsis (...) in |
| // the declaration) %al is used as hidden argument to specify the number |
| // of SSE registers used. The contents of %al do not need to match exactly |
| // the number of registers, but must be an ubound on the number of SSE |
| // registers used and is in the range 0 - 8 inclusive. |
| |
| // Count the number of XMM registers allocated. |
| static const uint16_t XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); |
| assert((Subtarget->hasSSE1() || !NumXMMRegs) |
| && "SSE registers cannot be used when SSE is disabled"); |
| |
| RegsToPass.push_back(std::make_pair(unsigned(X86::AL), |
| DAG.getConstant(NumXMMRegs, MVT::i8))); |
| } |
| |
| // For tail calls lower the arguments to the 'real' stack slot. |
| if (isTailCall) { |
| // Force all the incoming stack arguments to be loaded from the stack |
| // before any new outgoing arguments are stored to the stack, because the |
| // outgoing stack slots may alias the incoming argument stack slots, and |
| // the alias isn't otherwise explicit. This is slightly more conservative |
| // than necessary, because it means that each store effectively depends |
| // on every argument instead of just those arguments it would clobber. |
| SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); |
| |
| SmallVector<SDValue, 8> MemOpChains2; |
| SDValue FIN; |
| int FI = 0; |
| if (getTargetMachine().Options.GuaranteedTailCallOpt) { |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (VA.isRegLoc()) |
| continue; |
| assert(VA.isMemLoc()); |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| // Create frame index. |
| int32_t Offset = VA.getLocMemOffset()+FPDiff; |
| uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; |
| FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); |
| FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| |
| if (Flags.isByVal()) { |
| // Copy relative to framepointer. |
| SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, |
| RegInfo->getStackRegister(), |
| getPointerTy()); |
| Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); |
| |
| MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, |
| ArgChain, |
| Flags, DAG, dl)); |
| } else { |
| // Store relative to framepointer. |
| MemOpChains2.push_back( |
| DAG.getStore(ArgChain, dl, Arg, FIN, |
| MachinePointerInfo::getFixedStack(FI), |
| false, false, 0)); |
| } |
| } |
| } |
| |
| if (!MemOpChains2.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains2[0], MemOpChains2.size()); |
| |
| // Store the return address to the appropriate stack slot. |
| Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, |
| getPointerTy(), RegInfo->getSlotSize(), |
| FPDiff, dl); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (getTargetMachine().getCodeModel() == CodeModel::Large) { |
| assert(Is64Bit && "Large code model is only legal in 64-bit mode."); |
| // In the 64-bit large code model, we have to make all calls |
| // through a register, since the call instruction's 32-bit |
| // pc-relative offset may not be large enough to hold the whole |
| // address. |
| } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| // If the callee is a GlobalAddress node (quite common, every direct call |
| // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack |
| // it. |
| |
| // We should use extra load for direct calls to dllimported functions in |
| // non-JIT mode. |
| const GlobalValue *GV = G->getGlobal(); |
| if (!GV->hasDLLImportLinkage()) { |
| unsigned char OpFlags = 0; |
| bool ExtraLoad = false; |
| unsigned WrapperKind = ISD::DELETED_NODE; |
| |
| // On ELF targets, in both X86-64 and X86-32 mode, direct calls to |
| // external symbols most go through the PLT in PIC mode. If the symbol |
| // has hidden or protected visibility, or if it is static or local, then |
| // we don't need to use the PLT - we can directly call it. |
| if (Subtarget->isTargetELF() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { |
| OpFlags = X86II::MO_PLT; |
| } else if (Subtarget->isPICStyleStubAny() && |
| (GV->isDeclaration() || GV->isWeakForLinker()) && |
| (!Subtarget->getTargetTriple().isMacOSX() || |
| Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { |
| // PC-relative references to external symbols should go through $stub, |
| // unless we're building with the leopard linker or later, which |
| // automatically synthesizes these stubs. |
| OpFlags = X86II::MO_DARWIN_STUB; |
| } else if (Subtarget->isPICStyleRIPRel() && |
| isa<Function>(GV) && |
| cast<Function>(GV)->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::NonLazyBind)) { |
| // If the function is marked as non-lazy, generate an indirect call |
| // which loads from the GOT directly. This avoids runtime overhead |
| // at the cost of eager binding (and one extra byte of encoding). |
| OpFlags = X86II::MO_GOTPCREL; |
| WrapperKind = X86ISD::WrapperRIP; |
| ExtraLoad = true; |
| } |
| |
| Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), |
| G->getOffset(), OpFlags); |
| |
| // Add a wrapper if needed. |
| if (WrapperKind != ISD::DELETED_NODE) |
| Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee); |
| // Add extra indirection if needed. |
| if (ExtraLoad) |
| Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee, |
| MachinePointerInfo::getGOT(), |
| false, false, false, 0); |
| } |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| unsigned char OpFlags = 0; |
| |
| // On ELF targets, in either X86-64 or X86-32 mode, direct calls to |
| // external symbols should go through the PLT. |
| if (Subtarget->isTargetELF() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| OpFlags = X86II::MO_PLT; |
| } else if (Subtarget->isPICStyleStubAny() && |
| (!Subtarget->getTargetTriple().isMacOSX() || |
| Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { |
| // PC-relative references to external symbols should go through $stub, |
| // unless we're building with the leopard linker or later, which |
| // automatically synthesizes these stubs. |
| OpFlags = X86II::MO_DARWIN_STUB; |
| } |
| |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), |
| OpFlags); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| |
| if (!IsSibcall && isTailCall) { |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| if (isTailCall) |
| Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| if (isTailCall) { |
| // We used to do: |
| //// If this is the first return lowered for this function, add the regs |
| //// to the liveout set for the function. |
| // This isn't right, although it's probably harmless on x86; liveouts |
| // should be computed from returns not tail calls. Consider a void |
| // function making a tail call to a function returning int. |
| return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); |
| } |
| |
| Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| unsigned NumBytesForCalleeToPush; |
| if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, |
| getTargetMachine().Options.GuaranteedTailCallOpt)) |
| NumBytesForCalleeToPush = NumBytes; // Callee pops everything |
| else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows && |
| SR == StackStructReturn) |
| // If this is a call to a struct-return function, the callee |
| // pops the hidden struct pointer, so we have to push it back. |
| // This is common for Darwin/X86, Linux & Mingw32 targets. |
| // For MSVC Win32 targets, the caller pops the hidden struct pointer. |
| NumBytesForCalleeToPush = 4; |
| else |
| NumBytesForCalleeToPush = 0; // Callee pops nothing. |
| |
| // Returns a flag for retval copy to use. |
| if (!IsSibcall) { |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(NumBytesForCalleeToPush, |
| true), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, |
| Ins, dl, DAG, InVals); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fast Calling Convention (tail call) implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Like std call, callee cleans arguments, convention except that ECX is |
| // reserved for storing the tail called function address. Only 2 registers are |
| // free for argument passing (inreg). Tail call optimization is performed |
| // provided: |
| // * tailcallopt is enabled |
| // * caller/callee are fastcc |
| // On X86_64 architecture with GOT-style position independent code only local |
| // (within module) calls are supported at the moment. |
| // To keep the stack aligned according to platform abi the function |
| // GetAlignedArgumentStackSize ensures that argument delta is always multiples |
| // of stack alignment. (Dynamic linkers need this - darwin's dyld for example) |
| // If a tail called function callee has more arguments than the caller the |
| // caller needs to make sure that there is room to move the RETADDR to. This is |
| // achieved by reserving an area the size of the argument delta right after the |
| // original REtADDR, but before the saved framepointer or the spilled registers |
| // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) |
| // stack layout: |
| // arg1 |
| // arg2 |
| // RETADDR |
| // [ new RETADDR |
| // move area ] |
| // (possible EBP) |
| // ESI |
| // EDI |
| // local1 .. |
| |
| /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned |
| /// for a 16 byte align requirement. |
| unsigned |
| X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, |
| SelectionDAG& DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetMachine &TM = MF.getTarget(); |
| const TargetFrameLowering &TFI = *TM.getFrameLowering(); |
| unsigned StackAlignment = TFI.getStackAlignment(); |
| uint64_t AlignMask = StackAlignment - 1; |
| int64_t Offset = StackSize; |
| unsigned SlotSize = RegInfo->getSlotSize(); |
| if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { |
| // Number smaller than 12 so just add the difference. |
| Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); |
| } else { |
| // Mask out lower bits, add stackalignment once plus the 12 bytes. |
| Offset = ((~AlignMask) & Offset) + StackAlignment + |
| (StackAlignment-SlotSize); |
| } |
| return Offset; |
| } |
| |
| /// MatchingStackOffset - Return true if the given stack call argument is |
| /// already available in the same position (relatively) of the caller's |
| /// incoming argument stack. |
| static |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, |
| MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, |
| const X86InstrInfo *TII) { |
| unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; |
| int FI = INT_MAX; |
| if (Arg.getOpcode() == ISD::CopyFromReg) { |
| unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(VR)) |
| return false; |
| MachineInstr *Def = MRI->getVRegDef(VR); |
| if (!Def) |
| return false; |
| if (!Flags.isByVal()) { |
| if (!TII->isLoadFromStackSlot(Def, FI)) |
| return false; |
| } else { |
| unsigned Opcode = Def->getOpcode(); |
| if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && |
| Def->getOperand(1).isFI()) { |
| FI = Def->getOperand(1).getIndex(); |
| Bytes = Flags.getByValSize(); |
| } else |
| return false; |
| } |
| } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { |
| if (Flags.isByVal()) |
| // ByVal argument is passed in as a pointer but it's now being |
| // dereferenced. e.g. |
| // define @foo(%struct.X* %A) { |
| // tail call @bar(%struct.X* byval %A) |
| // } |
| return false; |
| SDValue Ptr = Ld->getBasePtr(); |
| FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); |
| if (!FINode) |
| return false; |
| FI = FINode->getIndex(); |
| } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { |
| FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); |
| FI = FINode->getIndex(); |
| Bytes = Flags.getByValSize(); |
| } else |
| return false; |
| |
| assert(FI != INT_MAX); |
| if (!MFI->isFixedObjectIndex(FI)) |
| return false; |
| return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool |
| X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| bool isCalleeStructRet, |
| bool isCallerStructRet, |
| Type *RetTy, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG &DAG) const { |
| if (!IsTailCallConvention(CalleeCC) && |
| CalleeCC != CallingConv::C) |
| return false; |
| |
| // If -tailcallopt is specified, make fastcc functions tail-callable. |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const Function *CallerF = DAG.getMachineFunction().getFunction(); |
| |
| // If the function return type is x86_fp80 and the callee return type is not, |
| // then the FP_EXTEND of the call result is not a nop. It's not safe to |
| // perform a tailcall optimization here. |
| if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) |
| return false; |
| |
| CallingConv::ID CallerCC = CallerF->getCallingConv(); |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| if (getTargetMachine().Options.GuaranteedTailCallOpt) { |
| if (IsTailCallConvention(CalleeCC) && CCMatch) |
| return true; |
| return false; |
| } |
| |
| // Look for obvious safe cases to perform tail call optimization that do not |
| // require ABI changes. This is what gcc calls sibcall. |
| |
| // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to |
| // emit a special epilogue. |
| if (RegInfo->needsStackRealignment(MF)) |
| return false; |
| |
| // Also avoid sibcall optimization if either caller or callee uses struct |
| // return semantics. |
| if (isCalleeStructRet || isCallerStructRet) |
| return false; |
| |
| // An stdcall caller is expected to clean up its arguments; the callee |
| // isn't going to do that. |
| if (!CCMatch && CallerCC == CallingConv::X86_StdCall) |
| return false; |
| |
| // Do not sibcall optimize vararg calls unless all arguments are passed via |
| // registers. |
| if (isVarArg && !Outs.empty()) { |
| |
| // Optimizing for varargs on Win64 is unlikely to be safe without |
| // additional testing. |
| if (Subtarget->isTargetWin64()) |
| return false; |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CC_X86); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) |
| if (!ArgLocs[i].isRegLoc()) |
| return false; |
| } |
| |
| // If the call result is in ST0 / ST1, it needs to be popped off the x87 |
| // stack. Therefore, if it's not used by the call it is not safe to optimize |
| // this into a sibcall. |
| bool Unused = false; |
| for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
| if (!Ins[i].Used) { |
| Unused = true; |
| break; |
| } |
| } |
| if (Unused) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC_X86); |
| for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) |
| return false; |
| } |
| } |
| |
| // If the calling conventions do not match, then we'd better make sure the |
| // results are returned in the same way as what the caller expects. |
| if (!CCMatch) { |
| SmallVector<CCValAssign, 16> RVLocs1; |
| CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs1, *DAG.getContext()); |
| CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); |
| |
| SmallVector<CCValAssign, 16> RVLocs2; |
| CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs2, *DAG.getContext()); |
| CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); |
| |
| if (RVLocs1.size() != RVLocs2.size()) |
| return false; |
| for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { |
| if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) |
| return false; |
| if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) |
| return false; |
| if (RVLocs1[i].isRegLoc()) { |
| if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) |
| return false; |
| } else { |
| if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) |
| return false; |
| } |
| } |
| } |
| |
| // If the callee takes no arguments then go on to check the results of the |
| // call. |
| if (!Outs.empty()) { |
| // Check if stack adjustment is needed. For now, do not do this if any |
| // argument is passed on the stack. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| // Allocate shadow area for Win64 |
| if (Subtarget->isTargetWin64()) { |
| CCInfo.AllocateStack(32, 8); |
| } |
| |
| CCInfo.AnalyzeCallOperands(Outs, CC_X86); |
| if (CCInfo.getNextStackOffset()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) |
| return false; |
| |
| // Check if the arguments are already laid out in the right way as |
| // the caller's fixed stack objects. |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const X86InstrInfo *TII = |
| ((const X86TargetMachine&)getTargetMachine()).getInstrInfo(); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| if (!VA.isRegLoc()) { |
| if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, |
| MFI, MRI, TII)) |
| return false; |
| } |
| } |
| } |
| |
| // If the tailcall address may be in a register, then make sure it's |
| // possible to register allocate for it. In 32-bit, the call address can |
| // only target EAX, EDX, or ECX since the tail call must be scheduled after |
| // callee-saved registers are restored. These happen to be the same |
| // registers used to pass 'inreg' arguments so watch out for those. |
| if (!Subtarget->is64Bit() && |
| ((!isa<GlobalAddressSDNode>(Callee) && |
| !isa<ExternalSymbolSDNode>(Callee)) || |
| getTargetMachine().getRelocationModel() == Reloc::PIC_)) { |
| unsigned NumInRegs = 0; |
| // In PIC we need an extra register to formulate the address computation |
| // for the callee. |
| unsigned MaxInRegs = |
| (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3; |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (!VA.isRegLoc()) |
| continue; |
| unsigned Reg = VA.getLocReg(); |
| switch (Reg) { |
| default: break; |
| case X86::EAX: case X86::EDX: case X86::ECX: |
| if (++NumInRegs == MaxInRegs) |
| return false; |
| break; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| FastISel * |
| X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) const { |
| return X86::createFastISel(funcInfo, libInfo); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Lowering Hooks |
| //===----------------------------------------------------------------------===// |
| |
| static bool MayFoldLoad(SDValue Op) { |
| return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); |
| } |
| |
| static bool MayFoldIntoStore(SDValue Op) { |
| return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); |
| } |
| |
| static bool isTargetShuffle(unsigned Opcode) { |
| switch(Opcode) { |
| default: return false; |
| case X86ISD::PSHUFD: |
| case X86ISD::PSHUFHW: |
| case X86ISD::PSHUFLW: |
| case X86ISD::SHUFP: |
| case X86ISD::PALIGNR: |
| case X86ISD::MOVLHPS: |
| case X86ISD::MOVLHPD: |
| case X86ISD::MOVHLPS: |
| case X86ISD::MOVLPS: |
| case X86ISD::MOVLPD: |
| case X86ISD::MOVSHDUP: |
| case X86ISD::MOVSLDUP: |
| case X86ISD::MOVDDUP: |
| case X86ISD::MOVSS: |
| case X86ISD::MOVSD: |
| case X86ISD::UNPCKL: |
| case X86ISD::UNPCKH: |
| case X86ISD::VPERMILP: |
| case X86ISD::VPERM2X128: |
| case X86ISD::VPERMI: |
| return true; |
| } |
| } |
| |
| static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, |
| SDValue V1, SelectionDAG &DAG) { |
| switch(Opc) { |
| default: llvm_unreachable("Unknown x86 shuffle node"); |
| case X86ISD::MOVSHDUP: |
| case X86ISD::MOVSLDUP: |
| case X86ISD::MOVDDUP: |
| return DAG.getNode(Opc, dl, VT, V1); |
| } |
| } |
| |
| static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, |
| SDValue V1, unsigned TargetMask, |
| SelectionDAG &DAG) { |
| switch(Opc) { |
| default: llvm_unreachable("Unknown x86 shuffle node"); |
| case X86ISD::PSHUFD: |
| case X86ISD::PSHUFHW: |
| case X86ISD::PSHUFLW: |
| case X86ISD::VPERMILP: |
| case X86ISD::VPERMI: |
| return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8)); |
| } |
| } |
| |
| static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, |
| SDValue V1, SDValue V2, unsigned TargetMask, |
| SelectionDAG &DAG) { |
| switch(Opc) { |
| default: llvm_unreachable("Unknown x86 shuffle node"); |
| case X86ISD::PALIGNR: |
| case X86ISD::SHUFP: |
| case X86ISD::VPERM2X128: |
| return DAG.getNode(Opc, dl, VT, V1, V2, |
| DAG.getConstant(TargetMask, MVT::i8)); |
| } |
| } |
| |
| static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, |
| SDValue V1, SDValue V2, SelectionDAG &DAG) { |
| switch(Opc) { |
| default: llvm_unreachable("Unknown x86 shuffle node"); |
| case X86ISD::MOVLHPS: |
| case X86ISD::MOVLHPD: |
| case X86ISD::MOVHLPS: |
| case X86ISD::MOVLPS: |
| case X86ISD::MOVLPD: |
| case X86ISD::MOVSS: |
| case X86ISD::MOVSD: |
| case X86ISD::UNPCKL: |
| case X86ISD::UNPCKH: |
| return DAG.getNode(Opc, dl, VT, V1, V2); |
| } |
| } |
| |
| SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| int ReturnAddrIndex = FuncInfo->getRAIndex(); |
| |
| if (ReturnAddrIndex == 0) { |
| // Set up a frame object for the return address. |
| unsigned SlotSize = RegInfo->getSlotSize(); |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, |
| false); |
| FuncInfo->setRAIndex(ReturnAddrIndex); |
| } |
| |
| return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); |
| } |
| |
| bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, |
| bool hasSymbolicDisplacement) { |
| // Offset should fit into 32 bit immediate field. |
| if (!isInt<32>(Offset)) |
| return false; |
| |
| // If we don't have a symbolic displacement - we don't have any extra |
| // restrictions. |
| if (!hasSymbolicDisplacement) |
| return true; |
| |
| // FIXME: Some tweaks might be needed for medium code model. |
| if (M != CodeModel::Small && M != CodeModel::Kernel) |
| return false; |
| |
| // For small code model we assume that latest object is 16MB before end of 31 |
| // bits boundary. We may also accept pretty large negative constants knowing |
| // that all objects are in the positive half of address space. |
| if (M == CodeModel::Small && Offset < 16*1024*1024) |
| return true; |
| |
| // For kernel code model we know that all object resist in the negative half |
| // of 32bits address space. We may not accept negative offsets, since they may |
| // be just off and we may accept pretty large positive ones. |
| if (M == CodeModel::Kernel && Offset > 0) |
| return true; |
| |
| return false; |
| } |
| |
| /// isCalleePop - Determines whether the callee is required to pop its |
| /// own arguments. Callee pop is necessary to support tail calls. |
| bool X86::isCalleePop(CallingConv::ID CallingConv, |
| bool is64Bit, bool IsVarArg, bool TailCallOpt) { |
| if (IsVarArg) |
| return false; |
| |
| switch (CallingConv) { |
| default: |
| return false; |
| case CallingConv::X86_StdCall: |
| return !is64Bit; |
| case CallingConv::X86_FastCall: |
| return !is64Bit; |
| case CallingConv::X86_ThisCall: |
| return !is64Bit; |
| case CallingConv::Fast: |
| return TailCallOpt; |
| case CallingConv::GHC: |
| return TailCallOpt; |
| case CallingConv::HiPE: |
| return TailCallOpt; |
| } |
| } |
| |
| /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 |
| /// specific condition code, returning the condition code and the LHS/RHS of the |
| /// comparison to make. |
| static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, |
| SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { |
| if (!isFP) { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
| if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { |
| // X > -1 -> X == 0, jump !sign. |
| RHS = DAG.getConstant(0, RHS.getValueType()); |
| return X86::COND_NS; |
| } |
| if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { |
| // X < 0 -> X == 0, jump on sign. |
| return X86::COND_S; |
| } |
| if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { |
| // X < 1 -> X <= 0 |
| RHS = DAG.getConstant(0, RHS.getValueType()); |
| return X86::COND_LE; |
| } |
| } |
| |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Invalid integer condition!"); |
| case ISD::SETEQ: return X86::COND_E; |
| case ISD::SETGT: return X86::COND_G; |
| case ISD::SETGE: return X86::COND_GE; |
| case ISD::SETLT: return X86::COND_L; |
| case ISD::SETLE: return X86::COND_LE; |
| case ISD::SETNE: return X86::COND_NE; |
| case ISD::SETULT: return X86::COND_B; |
| case ISD::SETUGT: return X86::COND_A; |
| case ISD::SETULE: return X86::COND_BE; |
| case ISD::SETUGE: return X86::COND_AE; |
| } |
| } |
| |
| // First determine if it is required or is profitable to flip the operands. |
| |
| // If LHS is a foldable load, but RHS is not, flip the condition. |
| if (ISD::isNON_EXTLoad(LHS.getNode()) && |
| !ISD::isNON_EXTLoad(RHS.getNode())) { |
| SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); |
| std::swap(LHS, RHS); |
| } |
| |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| std::swap(LHS, RHS); |
| break; |
| } |
| |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Condcode should be pre-legalized away"); |
| case ISD::SETUEQ: |
| case ISD::SETEQ: return X86::COND_E; |
| case ISD::SETOLT: // flipped |
| case ISD::SETOGT: |
| case ISD::SETGT: return X86::COND_A; |
| case ISD::SETOLE: // flipped |
| case ISD::SETOGE: |
| case ISD::SETGE: return X86::COND_AE; |
| case ISD::SETUGT: // flipped |
| case ISD::SETULT: |
| case ISD::SETLT: return X86::COND_B; |
| case ISD::SETUGE: // flipped |
| case ISD::SETULE: |
| case ISD::SETLE: return X86::COND_BE; |
| case ISD::SETONE: |
| case ISD::SETNE: return X86::COND_NE; |
| case ISD::SETUO: return X86::COND_P; |
| case ISD::SETO: return X86::COND_NP; |
| case ISD::SETOEQ: |
| case ISD::SETUNE: return X86::COND_INVALID; |
| } |
| } |
| |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition |
| /// code. Current x86 isa includes the following FP cmov instructions: |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. |
| static bool hasFPCMov(unsigned X86CC) { |
| switch (X86CC) { |
| default: |
| return false; |
| case X86::COND_B: |
| case X86::COND_BE: |
| case X86::COND_E: |
| case X86::COND_P: |
| case X86::COND_A: |
| case X86::COND_AE: |
| case X86::COND_NE: |
| case X86::COND_NP: |
| return true; |
| } |
| } |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { |
| if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) |
| return true; |
| } |
| return false; |
| } |
| |
| /// isUndefOrInRange - Return true if Val is undef or if its value falls within |
| /// the specified range (L, H]. |
| static bool isUndefOrInRange(int Val, int Low, int Hi) { |
| return (Val < 0) || (Val >= Low && Val < Hi); |
| } |
| |
| /// isUndefOrEqual - Val is either less than zero (undef) or equal to the |
| /// specified value. |
| static bool isUndefOrEqual(int Val, int CmpVal) { |
| return (Val < 0 || Val == CmpVal); |
| } |
| |
| /// isSequentialOrUndefInRange - Return true if every element in Mask, beginning |
| /// from position Pos and ending in Pos+Size, falls within the specified |
| /// sequential range (L, L+Pos]. or is undef. |
| static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, |
| unsigned Pos, unsigned Size, int Low) { |
| for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) |
| if (!isUndefOrEqual(Mask[i], Low)) |
| return false; |
| return true; |
| } |
| |
| /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that |
| /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference |
| /// the second operand. |
| static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) { |
| if (VT == MVT::v4f32 || VT == MVT::v4i32 ) |
| return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); |
| if (VT == MVT::v2f64 || VT == MVT::v2i64) |
| return (Mask[0] < 2 && Mask[1] < 2); |
| return false; |
| } |
| |
| /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that |
| /// is suitable for input to PSHUFHW. |
| static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) { |
| if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) |
| return false; |
| |
| // Lower quadword copied in order or undef. |
| if (!isSequentialOrUndefInRange(Mask, 0, 4, 0)) |
| return false; |
| |
| // Upper quadword shuffled. |
| for (unsigned i = 4; i != 8; ++i) |
| if (!isUndefOrInRange(Mask[i], 4, 8)) |
| return false; |
| |
| if (VT == MVT::v16i16) { |
| // Lower quadword copied in order or undef. |
| if (!isSequentialOrUndefInRange(Mask, 8, 4, 8)) |
| return false; |
| |
| // Upper quadword shuffled. |
| for (unsigned i = 12; i != 16; ++i) |
| if (!isUndefOrInRange(Mask[i], 12, 16)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that |
| /// is suitable for input to PSHUFLW. |
| static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) { |
| if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) |
| return false; |
| |
| // Upper quadword copied in order. |
| if (!isSequentialOrUndefInRange(Mask, 4, 4, 4)) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (unsigned i = 0; i != 4; ++i) |
| if (!isUndefOrInRange(Mask[i], 0, 4)) |
| return false; |
| |
| if (VT == MVT::v16i16) { |
| // Upper quadword copied in order. |
| if (!isSequentialOrUndefInRange(Mask, 12, 4, 12)) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (unsigned i = 8; i != 12; ++i) |
| if (!isUndefOrInRange(Mask[i], 8, 12)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that |
| /// is suitable for input to PALIGNR. |
| static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT, |
| const X86Subtarget *Subtarget) { |
| if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) || |
| (VT.is256BitVector() && !Subtarget->hasInt256())) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts/NumLanes; |
| |
| // Do not handle 64-bit element shuffles with palignr. |
| if (NumLaneElts == 2) |
| return false; |
| |
| for (unsigned l = 0; l != NumElts; l+=NumLaneElts) { |
| unsigned i; |
| for (i = 0; i != NumLaneElts; ++i) { |
| if (Mask[i+l] >= 0) |
| break; |
| } |
| |
| // Lane is all undef, go to next lane |
| if (i == NumLaneElts) |
| continue; |
| |
| int Start = Mask[i+l]; |
| |
| // Make sure its in this lane in one of the sources |
| if (!isUndefOrInRange(Start, l, l+NumLaneElts) && |
| !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts)) |
| return false; |
| |
| // If not lane 0, then we must match lane 0 |
| if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l)) |
| return false; |
| |
| // Correct second source to be contiguous with first source |
| if (Start >= (int)NumElts) |
| Start -= NumElts - NumLaneElts; |
| |
| // Make sure we're shifting in the right direction. |
| if (Start <= (int)(i+l)) |
| return false; |
| |
| Start -= i; |
| |
| // Check the rest of the elements to see if they are consecutive. |
| for (++i; i != NumLaneElts; ++i) { |
| int Idx = Mask[i+l]; |
| |
| // Make sure its in this lane |
| if (!isUndefOrInRange(Idx, l, l+NumLaneElts) && |
| !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts)) |
| return false; |
| |
| // If not lane 0, then we must match lane 0 |
| if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l)) |
| return false; |
| |
| if (Idx >= (int)NumElts) |
| Idx -= NumElts - NumLaneElts; |
| |
| if (!isUndefOrEqual(Idx, Start+i)) |
| return false; |
| |
| } |
| } |
| |
| return true; |
| } |
| |
| /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming |
| /// the two vector operands have swapped position. |
| static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, |
| unsigned NumElems) { |
| for (unsigned i = 0; i != NumElems; ++i) { |
| int idx = Mask[i]; |
| if (idx < 0) |
| continue; |
| else if (idx < (int)NumElems) |
| Mask[i] = idx + NumElems; |
| else |
| Mask[i] = idx - NumElems; |
| } |
| } |
| |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to 128/256-bit |
| /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be |
| /// reverse of what x86 shuffles want. |
| static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256, |
| bool Commuted = false) { |
| if (!HasFp256 && VT.is256BitVector()) |
| return false; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElems = NumElems/NumLanes; |
| |
| if (NumLaneElems != 2 && NumLaneElems != 4) |
| return false; |
| |
| // VSHUFPSY divides the resulting vector into 4 chunks. |
| // The sources are also splitted into 4 chunks, and each destination |
| // chunk must come from a different source chunk. |
| // |
| // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0 |
| // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9 |
| // |
| // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4, |
| // Y3..Y0, Y3..Y0, X3..X0, X3..X0 |
| // |
| // VSHUFPDY divides the resulting vector into 4 chunks. |
| // The sources are also splitted into 4 chunks, and each destination |
| // chunk must come from a different source chunk. |
| // |
| // SRC1 => X3 X2 X1 X0 |
| // SRC2 => Y3 Y2 Y1 Y0 |
| // |
| // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0 |
| // |
| unsigned HalfLaneElems = NumLaneElems/2; |
| for (unsigned l = 0; l != NumElems; l += NumLaneElems) { |
| for (unsigned i = 0; i != NumLaneElems; ++i) { |
| int Idx = Mask[i+l]; |
| unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0); |
| if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems)) |
| return false; |
| // For VSHUFPSY, the mask of the second half must be the same as the |
| // first but with the appropriate offsets. This works in the same way as |
| // VPERMILPS works with masks. |
| if (NumElems != 8 || l == 0 || Mask[i] < 0) |
| continue; |
| if (!isUndefOrEqual(Idx, Mask[i]+l)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS. |
| static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) { |
| if (!VT.is128BitVector()) |
| return false; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (NumElems != 4) |
| return false; |
| |
| // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 |
| return isUndefOrEqual(Mask[0], 6) && |
| isUndefOrEqual(Mask[1], 7) && |
| isUndefOrEqual(Mask[2], 2) && |
| isUndefOrEqual(Mask[3], 3); |
| } |
| |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, |
| /// <2, 3, 2, 3> |
| static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) { |
| if (!VT.is128BitVector()) |
| return false; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (NumElems != 4) |
| return false; |
| |
| return isUndefOrEqual(Mask[0], 2) && |
| isUndefOrEqual(Mask[1], 3) && |
| isUndefOrEqual(Mask[2], 2) && |
| isUndefOrEqual(Mask[3], 3); |
| } |
| |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. |
| static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) { |
| if (!VT.is128BitVector()) |
| return false; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| if (!isUndefOrEqual(Mask[i], i + NumElems)) |
| return false; |
| |
| for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) |
| if (!isUndefOrEqual(Mask[i], i)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVLHPS. |
| static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) { |
| if (!VT.is128BitVector()) |
| return false; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| if (!isUndefOrEqual(Mask[i], i)) |
| return false; |
| |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| if (!isUndefOrEqual(Mask[i + e], i + NumElems)) |
| return false; |
| |
| return true; |
| } |
| |
| // |
| // Some special combinations that can be optimized. |
| // |
| static |
| SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp, |
| SelectionDAG &DAG) { |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| |
| if (VT != MVT::v8i32 && VT != MVT::v8f32) |
| return SDValue(); |
| |
| ArrayRef<int> Mask = SVOp->getMask(); |
| |
| // These are the special masks that may be optimized. |
| static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14}; |
| static const int MaskToOptimizeOdd[] = {1, 9, 3, 11, 5, 13, 7, 15}; |
| bool MatchEvenMask = true; |
| bool MatchOddMask = true; |
| for (int i=0; i<8; ++i) { |
| if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i])) |
| MatchEvenMask = false; |
| if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i])) |
| MatchOddMask = false; |
| } |
| |
| if (!MatchEvenMask && !MatchOddMask) |
| return SDValue(); |
| |
| SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT); |
| |
| SDValue Op0 = SVOp->getOperand(0); |
| SDValue Op1 = SVOp->getOperand(1); |
| |
| if (MatchEvenMask) { |
| // Shift the second operand right to 32 bits. |
| static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 }; |
| Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask); |
| } else { |
| // Shift the first operand left to 32 bits. |
| static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 }; |
| Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask); |
| } |
| static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15}; |
| return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask); |
| } |
| |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL. |
| static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT, |
| bool HasInt256, bool V2IsSplat = false) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Unsupported vector type for unpckh"); |
| |
| if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && |
| (!HasInt256 || (NumElts != 16 && NumElts != 32))) |
| return false; |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| // independently on 128-bit lanes. |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts/NumLanes; |
| |
| for (unsigned l = 0; l != NumLanes; ++l) { |
| for (unsigned i = l*NumLaneElts, j = l*NumLaneElts; |
| i != (l+1)*NumLaneElts; |
| i += 2, ++j) { |
| int BitI = Mask[i]; |
| int BitI1 = Mask[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (V2IsSplat) { |
| if (!isUndefOrEqual(BitI1, NumElts)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElts)) |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH. |
| static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT, |
| bool HasInt256, bool V2IsSplat = false) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Unsupported vector type for unpckh"); |
| |
| if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && |
| (!HasInt256 || (NumElts != 16 && NumElts != 32))) |
| return false; |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| // independently on 128-bit lanes. |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts/NumLanes; |
| |
| for (unsigned l = 0; l != NumLanes; ++l) { |
| for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2; |
| i != (l+1)*NumLaneElts; i += 2, ++j) { |
| int BitI = Mask[i]; |
| int BitI1 = Mask[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (V2IsSplat) { |
| if (isUndefOrEqual(BitI1, NumElts)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j+NumElts)) |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, |
| /// <0, 0, 1, 1> |
| static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| bool Is256BitVec = VT.is256BitVector(); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Unsupported vector type for unpckh"); |
| |
| if (Is256BitVec && NumElts != 4 && NumElts != 8 && |
| (!HasInt256 || (NumElts != 16 && NumElts != 32))) |
| return false; |
| |
| // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern |
| // FIXME: Need a better way to get rid of this, there's no latency difference |
| // between UNPCKLPD and MOVDDUP, the later should always be checked first and |
| // the former later. We should also remove the "_undef" special mask. |
| if (NumElts == 4 && Is256BitVec) |
| return false; |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| // independently on 128-bit lanes. |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts/NumLanes; |
| |
| for (unsigned l = 0; l != NumLanes; ++l) { |
| for (unsigned i = l*NumLaneElts, j = l*NumLaneElts; |
| i != (l+1)*NumLaneElts; |
| i += 2, ++j) { |
| int BitI = Mask[i]; |
| int BitI1 = Mask[i+1]; |
| |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (!isUndefOrEqual(BitI1, j)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form |
| /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, |
| /// <2, 2, 3, 3> |
| static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Unsupported vector type for unpckh"); |
| |
| if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && |
| (!HasInt256 || (NumElts != 16 && NumElts != 32))) |
| return false; |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| // independently on 128-bit lanes. |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts/NumLanes; |
| |
| for (unsigned l = 0; l != NumLanes; ++l) { |
| for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2; |
| i != (l+1)*NumLaneElts; i += 2, ++j) { |
| int BitI = Mask[i]; |
| int BitI1 = Mask[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (!isUndefOrEqual(BitI1, j)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSS, |
| /// MOVSD, and MOVD, i.e. setting the lowest element. |
| static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) { |
| if (VT.getVectorElementType().getSizeInBits() < 32) |
| return false; |
| if (!VT.is128BitVector()) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| if (!isUndefOrEqual(Mask[0], NumElts)) |
| return false; |
| |
| for (unsigned i = 1; i != NumElts; ++i) |
| if (!isUndefOrEqual(Mask[i], i)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered |
| /// as permutations between 128-bit chunks or halves. As an example: this |
| /// shuffle bellow: |
| /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15> |
| /// The first half comes from the second half of V1 and the second half from the |
| /// the second half of V2. |
| static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) { |
| if (!HasFp256 || !VT.is256BitVector()) |
| return false; |
| |
| // The shuffle result is divided into half A and half B. In total the two |
| // sources have 4 halves, namely: C, D, E, F. The final values of A and |
| // B must come from C, D, E or F. |
| unsigned HalfSize = VT.getVectorNumElements()/2; |
| bool MatchA = false, MatchB = false; |
| |
| // Check if A comes from one of C, D, E, F. |
| for (unsigned Half = 0; Half != 4; ++Half) { |
| if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) { |
| MatchA = true; |
| break; |
| } |
| } |
| |
| // Check if B comes from one of C, D, E, F. |
| for (unsigned Half = 0; Half != 4; ++Half) { |
| if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) { |
| MatchB = true; |
| break; |
| } |
| } |
| |
| return MatchA && MatchB; |
| } |
| |
| /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions. |
| static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) { |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| |
| unsigned HalfSize = VT.getVectorNumElements()/2; |
| |
| unsigned FstHalf = 0, SndHalf = 0; |
| for (unsigned i = 0; i < HalfSize; ++i) { |
| if (SVOp->getMaskElt(i) > 0) { |
| FstHalf = SVOp->getMaskElt(i)/HalfSize; |
| break; |
| } |
| } |
| for (unsigned i = HalfSize; i < HalfSize*2; ++i) { |
| if (SVOp->getMaskElt(i) > 0) { |
| SndHalf = SVOp->getMaskElt(i)/HalfSize; |
| break; |
| } |
| } |
| |
| return (FstHalf | (SndHalf << 4)); |
| } |
| |
| /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to VPERMILPD*. |
| /// Note that VPERMIL mask matching is different depending whether theunderlying |
| /// type is 32 or 64. In the VPERMILPS the high half of the mask should point |
| /// to the same elements of the low, but to the higher half of the source. |
| /// In VPERMILPD the two lanes could be shuffled independently of each other |
| /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY. |
| static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) { |
| if (!HasFp256) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| // Only match 256-bit with 32/64-bit types |
| if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8)) |
| return false; |
| |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned LaneSize = NumElts/NumLanes; |
| for (unsigned l = 0; l != NumElts; l += LaneSize) { |
| for (unsigned i = 0; i != LaneSize; ++i) { |
| if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize)) |
| return false; |
| if (NumElts != 8 || l == 0) |
| continue; |
| // VPERMILPS handling |
| if (Mask[i] < 0) |
| continue; |
| if (!isUndefOrEqual(Mask[i+l], Mask[i]+l)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse |
| /// of what x86 movss want. X86 movs requires the lowest element to be lowest |
| /// element of vector 2 and the other elements to come from vector 1 in order. |
| static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT, |
| bool V2IsSplat = false, bool V2IsUndef = false) { |
| if (!VT.is128BitVector()) |
| return false; |
| |
| unsigned NumOps = VT.getVectorNumElements(); |
| if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) |
| return false; |
| |
| if (!isUndefOrEqual(Mask[0], 0)) |
| return false; |
| |
| for (unsigned i = 1; i != NumOps; ++i) |
| if (!(isUndefOrEqual(Mask[i], i+NumOps) || |
| (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || |
| (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) |
| return false; |
| |
| return true; |
| } |
| |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. |
| /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7> |
| static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT, |
| const X86Subtarget *Subtarget) { |
| if (!Subtarget->hasSSE3()) |
| return false; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if ((VT.is128BitVector() && NumElems != 4) || |
| (VT.is256BitVector() && NumElems != 8)) |
| return false; |
| |
| // "i+1" is the value the indexed mask element must have |
| for (unsigned i = 0; i != NumElems; i += 2) |
| if (!isUndefOrEqual(Mask[i], i+1) || |
| !isUndefOrEqual(Mask[i+1], i+1)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. |
| /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6> |
| static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT, |
| const X86Subtarget *Subtarget) { |
| if (!Subtarget->hasSSE3()) |
| return false; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if ((VT.is128BitVector() && NumElems != 4) || |
| (VT.is256BitVector() && NumElems != 8)) |
| return false; |
| |
| // "i" is the value the indexed mask element must have |
| for (unsigned i = 0; i != NumElems; i += 2) |
| if (!isUndefOrEqual(Mask[i], i) || |
| !isUndefOrEqual(Mask[i+1], i)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to 256-bit |
| /// version of MOVDDUP. |
| static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) { |
| if (!HasFp256 || !VT.is256BitVector()) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (NumElts != 4) |
| return false; |
| |
| for (unsigned i = 0; i != NumElts/2; ++i) |
| if (!isUndefOrEqual(Mask[i], 0)) |
| return false; |
| for (unsigned i = NumElts/2; i != NumElts; ++i) |
| if (!isUndefOrEqual(Mask[i], NumElts/2)) |
| return false; |
| return true; |
| } |
| |
| /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to 128-bit |
| /// version of MOVDDUP. |
| static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) { |
| if (!VT.is128BitVector()) |
| return false; |
| |
| unsigned e = VT.getVectorNumElements() / 2; |
| for (unsigned i = 0; i != e; ++i) |
| if (!isUndefOrEqual(Mask[i], i)) |
| return false; |
| for (unsigned i = 0; i != e; ++i) |
| if (!isUndefOrEqual(Mask[e+i], i)) |
| return false; |
| return true; |
| } |
| |
| /// isVEXTRACTF128Index - Return true if the specified |
| /// EXTRACT_SUBVECTOR operand specifies a vector extract that is |
| /// suitable for input to VEXTRACTF128. |
| bool X86::isVEXTRACTF128Index(SDNode *N) { |
| if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) |
| return false; |
| |
| // The index should be aligned on a 128-bit boundary. |
| uint64_t Index = |
| cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); |
| |
| MVT VT = N->getValueType(0).getSimpleVT(); |
| unsigned ElSize = VT.getVectorElementType().getSizeInBits(); |
| bool Result = (Index * ElSize) % 128 == 0; |
| |
| return Result; |
| } |
| |
| /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR |
| /// operand specifies a subvector insert that is suitable for input to |
| /// VINSERTF128. |
| bool X86::isVINSERTF128Index(SDNode *N) { |
| if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) |
| return false; |
| |
| // The index should be aligned on a 128-bit boundary. |
| uint64_t Index = |
| cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); |
| |
| MVT VT = N->getValueType(0).getSimpleVT(); |
| unsigned ElSize = VT.getVectorElementType().getSizeInBits(); |
| bool Result = (Index * ElSize) % 128 == 0; |
| |
| return Result; |
| } |
| |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. |
| /// Handles 128-bit and 256-bit. |
| static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) { |
| MVT VT = N->getValueType(0).getSimpleVT(); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Unsupported vector type for PSHUF/SHUFP"); |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate |
| // independently on 128-bit lanes. |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts/NumLanes; |
| |
| assert((NumLaneElts == 2 || NumLaneElts == 4) && |
| "Only supports 2 or 4 elements per lane"); |
| |
| unsigned Shift = (NumLaneElts == 4) ? 1 : 0; |
| unsigned Mask = 0; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int Elt = N->getMaskElt(i); |
| if (Elt < 0) continue; |
| Elt &= NumLaneElts - 1; |
| unsigned ShAmt = (i << Shift) % 8; |
| Mask |= Elt << ShAmt; |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. |
| static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) { |
| MVT VT = N->getValueType(0).getSimpleVT(); |
| |
| assert((VT == MVT::v8i16 || VT == MVT::v16i16) && |
| "Unsupported vector type for PSHUFHW"); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| unsigned Mask = 0; |
| for (unsigned l = 0; l != NumElts; l += 8) { |
| // 8 nodes per lane, but we only care about the last 4. |
| for (unsigned i = 0; i < 4; ++i) { |
| int Elt = N->getMaskElt(l+i+4); |
| if (Elt < 0) continue; |
| Elt &= 0x3; // only 2-bits. |
| Mask |= Elt << (i * 2); |
| } |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. |
| static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) { |
| MVT VT = N->getValueType(0).getSimpleVT(); |
| |
| assert((VT == MVT::v8i16 || VT == MVT::v16i16) && |
| "Unsupported vector type for PSHUFHW"); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| unsigned Mask = 0; |
| for (unsigned l = 0; l != NumElts; l += 8) { |
| // 8 nodes per lane, but we only care about the first 4. |
| for (unsigned i = 0; i < 4; ++i) { |
| int Elt = N->getMaskElt(l+i); |
| if (Elt < 0) continue; |
| Elt &= 0x3; // only 2-bits |
| Mask |= Elt << (i * 2); |
| } |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. |
| static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) { |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts/NumLanes; |
| |
| int Val = 0; |
| unsigned i; |
| for (i = 0; i != NumElts; ++i) { |
| Val = SVOp->getMaskElt(i); |
| if (Val >= 0) |
| break; |
| } |
| if (Val >= (int)NumElts) |
| Val -= NumElts - NumLaneElts; |
| |
| assert(Val - i > 0 && "PALIGNR imm should be positive"); |
| return (Val - i) * EltSize; |
| } |
| |
| /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate |
| /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128 |
| /// instructions. |
| unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) { |
| if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) |
| llvm_unreachable("Illegal extract subvector for VEXTRACTF128"); |
| |
| uint64_t Index = |
| cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); |
| |
| MVT VecVT = N->getOperand(0).getValueType().getSimpleVT(); |
| MVT ElVT = VecVT.getVectorElementType(); |
| |
| unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); |
| return Index / NumElemsPerChunk; |
| } |
| |
| /// getInsertVINSERTF128Immediate - Return the appropriate immediate |
| /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128 |
| /// instructions. |
| unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) { |
| if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) |
| llvm_unreachable("Illegal insert subvector for VINSERTF128"); |
| |
| uint64_t Index = |
| cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); |
| |
| MVT VecVT = N->getValueType(0).getSimpleVT(); |
| MVT ElVT = VecVT.getVectorElementType(); |
| |
| unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); |
| return Index / NumElemsPerChunk; |
| } |
| |
| /// getShuffleCLImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions. |
| /// Handles 256-bit. |
| static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) { |
| MVT VT = N->getValueType(0).getSimpleVT(); |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| assert((VT.is256BitVector() && NumElts == 4) && |
| "Unsupported vector type for VPERMQ/VPERMPD"); |
| |
| unsigned Mask = 0; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int Elt = N->getMaskElt(i); |
| if (Elt < 0) |
| continue; |
| Mask |= Elt << (i*2); |
| } |
| |
| return Mask; |
| } |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point |
| /// constant +0.0. |
| bool X86::isZeroNode(SDValue Elt) { |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt)) |
| return CN->isNullValue(); |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt)) |
| return CFP->getValueAPF().isPosZero(); |
| return false; |
| } |
| |
| /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in |
| /// their permute mask. |
| static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, |
| SelectionDAG &DAG) { |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 8> MaskVec; |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| int Idx = SVOp->getMaskElt(i); |
| if (Idx >= 0) { |
| if (Idx < (int)NumElems) |
| Idx += NumElems; |
| else |
| Idx -= NumElems; |
| } |
| MaskVec.push_back(Idx); |
| } |
| return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), |
| SVOp->getOperand(0), &MaskVec[0]); |
| } |
| |
| /// ShouldXformToMOVHLPS - Return true if the node should be transformed to |
| /// match movhlps. The lower half elements should come from upper half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). |
| static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) { |
| if (!VT.is128BitVector()) |
| return false; |
| if (VT.getVectorNumElements() != 4) |
| return false; |
| for (unsigned i = 0, e = 2; i != e; ++i) |
| if (!isUndefOrEqual(Mask[i], i+2)) |
| return false; |
| for (unsigned i = 2; i != 4; ++i) |
| if (!isUndefOrEqual(Mask[i], i+4)) |
| return false; |
| return true; |
| } |
| |
| /// isScalarLoadToVector - Returns true if the node is a scalar load that |
| /// is promoted to a vector. It also returns the LoadSDNode by reference if |
| /// required. |
| static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { |
| if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) |
| return false; |
| N = N->getOperand(0).getNode(); |
| if (!ISD::isNON_EXTLoad(N)) |
| return false; |
| if (LD) |
| *LD = cast<LoadSDNode>(N); |
| return true; |
| } |
| |
| // Test whether the given value is a vector value which will be legalized |
| // into a load. |
| static bool WillBeConstantPoolLoad(SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| // Check for any non-constant elements. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| switch (N->getOperand(i).getNode()->getOpcode()) { |
| case ISD::UNDEF: |
| case ISD::ConstantFP: |
| case ISD::Constant: |
| break; |
| default: |
| return false; |
| } |
| |
| // Vectors of all-zeros and all-ones are materialized with special |
| // instructions rather than being loaded. |
| return !ISD::isBuildVectorAllZeros(N) && |
| !ISD::isBuildVectorAllOnes(N); |
| } |
| |
| /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to |
| /// match movlp{s|d}. The lower half elements should come from lower half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). And since V1 will become the source of the |
| /// MOVLP, it must be either a vector load or a scalar load to vector. |
| static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, |
| ArrayRef<int> Mask, EVT VT) { |
| if (!VT.is128BitVector()) |
| return false; |
| |
| if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) |
| return false; |
| // Is V2 is a vector load, don't do this transformation. We will try to use |
| // load folding shufps op. |
| if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2)) |
| return false; |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| if (!isUndefOrEqual(Mask[i], i)) |
| return false; |
| for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) |
| if (!isUndefOrEqual(Mask[i], i+NumElems)) |
| return false; |
| return true; |
| } |
| |
| /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are |
| /// all the same. |
| static bool isSplatVector(SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| SDValue SplatValue = N->getOperand(0); |
| for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i) != SplatValue) |
| return false; |
| return true; |
| } |
| |
| /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved |
| /// to an zero vector. |
| /// FIXME: move to dag combiner / method on ShuffleVectorSDNode |
| static bool isZeroShuffle(ShuffleVectorSDNode *N) { |
| SDValue V1 = N->getOperand(0); |
| SDValue V2 = N->getOperand(1); |
| unsigned NumElems = N->getValueType(0).getVectorNumElements(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| int Idx = N->getMaskElt(i); |
| if (Idx >= (int)NumElems) { |
| unsigned Opc = V2.getOpcode(); |
| if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) |
| continue; |
| if (Opc != ISD::BUILD_VECTOR || |
| !X86::isZeroNode(V2.getOperand(Idx-NumElems))) |
| return false; |
| } else if (Idx >= 0) { |
| unsigned Opc = V1.getOpcode(); |
| if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) |
| continue; |
| if (Opc != ISD::BUILD_VECTOR || |
| !X86::isZeroNode(V1.getOperand(Idx))) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// getZeroVector - Returns a vector of specified type with all zero elements. |
| /// |
| static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG, DebugLoc dl) { |
| assert(VT.isVector() && "Expected a vector type"); |
| |
| // Always build SSE zero vectors as <4 x i32> bitcasted |
| // to their dest type. This ensures they get CSE'd. |
| SDValue Vec; |
| if (VT.is128BitVector()) { // SSE |
| if (Subtarget->hasSSE2()) { // SSE2 |
| SDValue Cst = DAG.getTargetConstant(0, MVT::i32); |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); |
| } else { // SSE1 |
| SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); |
| } |
| } else if (VT.is256BitVector()) { // AVX |
| if (Subtarget->hasInt256()) { // AVX2 |
| SDValue Cst = DAG.getTargetConstant(0, MVT::i32); |
| SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8); |
| } else { |
| // 256-bit logic and arithmetic instructions in AVX are all |
| // floating-point, no support for integer ops. Emit fp zeroed vectors. |
| SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); |
| SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8); |
| } |
| } else |
| llvm_unreachable("Unexpected vector type"); |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vec); |
| } |
| |
| /// getOnesVector - Returns a vector of specified type with all bits set. |
| /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with |
| /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. |
| /// Then bitcast to their original type, ensuring they get CSE'd. |
| static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG, |
| DebugLoc dl) { |
| assert(VT.isVector() && "Expected a vector type"); |
| |
| SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); |
| SDValue Vec; |
| if (VT.is256BitVector()) { |
| if (HasInt256) { // AVX2 |
| SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8); |
| } else { // AVX |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); |
| Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); |
| } |
| } else if (VT.is128BitVector()) { |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); |
| } else |
| llvm_unreachable("Unexpected vector type"); |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, Vec); |
| } |
| |
| /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements |
| /// that point to V2 points to its first element. |
| static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) { |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Mask[i] > (int)NumElems) { |
| Mask[i] = NumElems; |
| } |
| } |
| } |
| |
| /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd |
| /// operation of specified width. |
| static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, |
| SDValue V2) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 8> Mask; |
| Mask.push_back(NumElems); |
| for (unsigned i = 1; i != NumElems; ++i) |
| Mask.push_back(i); |
| return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); |
| } |
| |
| /// getUnpackl - Returns a vector_shuffle node for an unpackl operation. |
| static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, |
| SDValue V2) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 8> Mask; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) { |
| Mask.push_back(i); |
| Mask.push_back(i + NumElems); |
| } |
| return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); |
| } |
| |
| /// getUnpackh - Returns a vector_shuffle node for an unpackh operation. |
| static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, |
| SDValue V2) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 8> Mask; |
| for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) { |
| Mask.push_back(i + Half); |
| Mask.push_back(i + NumElems + Half); |
| } |
| return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); |
| } |
| |
| // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by |
| // a generic shuffle instruction because the target has no such instructions. |
| // Generate shuffles which repeat i16 and i8 several times until they can be |
| // represented by v4f32 and then be manipulated by target suported shuffles. |
| static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) { |
| EVT VT = V.getValueType(); |
| int NumElems = VT.getVectorNumElements(); |
| DebugLoc dl = V.getDebugLoc(); |
| |
| while (NumElems > 4) { |
| if (EltNo < NumElems/2) { |
| V = getUnpackl(DAG, dl, VT, V, V); |
| } else { |
| V = getUnpackh(DAG, dl, VT, V, V); |
| EltNo -= NumElems/2; |
| } |
| NumElems >>= 1; |
| } |
| return V; |
| } |
| |
| /// getLegalSplat - Generate a legal splat with supported x86 shuffles |
| static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) { |
| EVT VT = V.getValueType(); |
| DebugLoc dl = V.getDebugLoc(); |
| |
| if (VT.is128BitVector()) { |
| V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V); |
| int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; |
| V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32), |
| &SplatMask[0]); |
| } else if (VT.is256BitVector()) { |
| // To use VPERMILPS to splat scalars, the second half of indicies must |
| // refer to the higher part, which is a duplication of the lower one, |
| // because VPERMILPS can only handle in-lane permutations. |
| int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo, |
| EltNo+4, EltNo+4, EltNo+4, EltNo+4 }; |
| |
| V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V); |
| V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32), |
| &SplatMask[0]); |
| } else |
| llvm_unreachable("Vector size not supported"); |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, V); |
| } |
| |
| /// PromoteSplat - Splat is promoted to target supported vector shuffles. |
| static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { |
| EVT SrcVT = SV->getValueType(0); |
| SDValue V1 = SV->getOperand(0); |
| DebugLoc dl = SV->getDebugLoc(); |
| |
| int EltNo = SV->getSplatIndex(); |
| int NumElems = SrcVT.getVectorNumElements(); |
| bool Is256BitVec = SrcVT.is256BitVector(); |
| |
| assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) && |
| "Unknown how to promote splat for type"); |
| |
| // Extract the 128-bit part containing the splat element and update |
| // the splat element index when it refers to the higher register. |
| if (Is256BitVec) { |
| V1 = Extract128BitVector(V1, EltNo, DAG, dl); |
| if (EltNo >= NumElems/2) |
| EltNo -= NumElems/2; |
| } |
| |
| // All i16 and i8 vector types can't be used directly by a generic shuffle |
| // instruction because the target has no such instruction. Generate shuffles |
| // which repeat i16 and i8 several times until they fit in i32, and then can |
| // be manipulated by target suported shuffles. |
| EVT EltVT = SrcVT.getVectorElementType(); |
| if (EltVT == MVT::i8 || EltVT == MVT::i16) |
| V1 = PromoteSplati8i16(V1, DAG, EltNo); |
| |
| // Recreate the 256-bit vector and place the same 128-bit vector |
| // into the low and high part. This is necessary because we want |
| // to use VPERM* to shuffle the vectors |
| if (Is256BitVec) { |
| V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1); |
| } |
| |
| return getLegalSplat(DAG, V1, EltNo); |
| } |
| |
| /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified |
| /// vector of zero or undef vector. This produces a shuffle where the low |
| /// element of V2 is swizzled into the zero/undef vector, landing at element |
| /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). |
| static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, |
| bool IsZero, |
| const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| EVT VT = V2.getValueType(); |
| SDValue V1 = IsZero |
| ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 16> MaskVec; |
| for (unsigned i = 0; i != NumElems; ++i) |
| // If this is the insertion idx, put the low elt of V2 here. |
| MaskVec.push_back(i == Idx ? NumElems : i); |
| return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); |
| } |
| |
| /// getTargetShuffleMask - Calculates the shuffle mask corresponding to the |
| /// target specific opcode. Returns true if the Mask could be calculated. |
| /// Sets IsUnary to true if only uses one source. |
| static bool getTargetShuffleMask(SDNode *N, MVT VT, |
| SmallVectorImpl<int> &Mask, bool &IsUnary) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SDValue ImmN; |
| |
| IsUnary = false; |
| switch(N->getOpcode()) { |
| case X86ISD::SHUFP: |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| break; |
| case X86ISD::UNPCKH: |
| DecodeUNPCKHMask(VT, Mask); |
| break; |
| case X86ISD::UNPCKL: |
| DecodeUNPCKLMask(VT, Mask); |
| break; |
| case X86ISD::MOVHLPS: |
| DecodeMOVHLPSMask(NumElems, Mask); |
| break; |
| case X86ISD::MOVLHPS: |
| DecodeMOVLHPSMask(NumElems, Mask); |
| break; |
| case X86ISD::PALIGNR: |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| break; |
| case X86ISD::PSHUFD: |
| case X86ISD::VPERMILP: |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::PSHUFHW: |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::PSHUFLW: |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::VPERMI: |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| IsUnary = true; |
| break; |
| case X86ISD::MOVSS: |
| case X86ISD::MOVSD: { |
| // The index 0 always comes from the first element of the second source, |
| // this is why MOVSS and MOVSD are used in the first place. The other |
| // elements come from the other positions of the first source vector |
| Mask.push_back(NumElems); |
| for (unsigned i = 1; i != NumElems; ++i) { |
| Mask.push_back(i); |
| } |
| break; |
| } |
| case X86ISD::VPERM2X128: |
| ImmN = N->getOperand(N->getNumOperands()-1); |
| DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); |
| if (Mask.empty()) return false; |
| break; |
| case X86ISD::MOVDDUP: |
| case X86ISD::MOVLHPD: |
| case X86ISD::MOVLPD: |
| case X86ISD::MOVLPS: |
| case X86ISD::MOVSHDUP: |
| case X86ISD::MOVSLDUP: |
| // Not yet implemented |
| return false; |
| default: llvm_unreachable("unknown target shuffle node"); |
| } |
| |
| return true; |
| } |
| |
| /// getShuffleScalarElt - Returns the scalar element that will make up the ith |
| /// element of the result of the vector shuffle. |
| static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, |
| unsigned Depth) { |
| if (Depth == 6) |
| return SDValue(); // Limit search depth. |
| |
| SDValue V = SDValue(N, 0); |
| EVT VT = V.getValueType(); |
| unsigned Opcode = V.getOpcode(); |
| |
| // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. |
| if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { |
| int Elt = SV->getMaskElt(Index); |
| |
| if (Elt < 0) |
| return DAG.getUNDEF(VT.getVectorElementType()); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) |
| : SV->getOperand(1); |
| return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); |
| } |
| |
| // Recurse into target specific vector shuffles to find scalars. |
| if (isTargetShuffle(Opcode)) { |
| MVT ShufVT = V.getValueType().getSimpleVT(); |
| unsigned NumElems = ShufVT.getVectorNumElements(); |
| SmallVector<int, 16> ShuffleMask; |
| bool IsUnary; |
| |
| if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary)) |
| return SDValue(); |
| |
| int Elt = ShuffleMask[Index]; |
| if (Elt < 0) |
| return DAG.getUNDEF(ShufVT.getVectorElementType()); |
| |
| SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0) |
| : N->getOperand(1); |
| return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, |
| Depth+1); |
| } |
| |
| // Actual nodes that may contain scalar elements |
| if (Opcode == ISD::BITCAST) { |
| V = V.getOperand(0); |
| EVT SrcVT = V.getValueType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) |
| return SDValue(); |
| } |
| |
| if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return (Index == 0) ? V.getOperand(0) |
| : DAG.getUNDEF(VT.getVectorElementType()); |
| |
| if (V.getOpcode() == ISD::BUILD_VECTOR) |
| return V.getOperand(Index); |
| |
| return SDValue(); |
| } |
| |
| /// getNumOfConsecutiveZeros - Return the number of elements of a vector |
| /// shuffle operation which come from a consecutively from a zero. The |
| /// search can start in two different directions, from left or right. |
| static |
| unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems, |
| bool ZerosFromLeft, SelectionDAG &DAG) { |
| unsigned i; |
| for (i = 0; i != NumElems; ++i) { |
| unsigned Index = ZerosFromLeft ? i : NumElems-i-1; |
| SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0); |
| if (!(Elt.getNode() && |
| (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)))) |
| break; |
| } |
| |
| return i; |
| } |
| |
| /// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE) |
| /// correspond consecutively to elements from one of the vector operands, |
| /// starting from its index OpIdx. Also tell OpNum which source vector operand. |
| static |
| bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, |
| unsigned MaskI, unsigned MaskE, unsigned OpIdx, |
| unsigned NumElems, unsigned &OpNum) { |
| bool SeenV1 = false; |
| bool SeenV2 = false; |
| |
| for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) { |
| int Idx = SVOp->getMaskElt(i); |
| // Ignore undef indicies |
| if (Idx < 0) |
| continue; |
| |
| if (Idx < (int)NumElems) |
| SeenV1 = true; |
| else |
| SeenV2 = true; |
| |
| // Only accept consecutive elements from the same vector |
| if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2)) |
| return false; |
| } |
| |
| OpNum = SeenV1 ? 0 : 1; |
| return true; |
| } |
| |
| /// isVectorShiftRight - Returns true if the shuffle can be implemented as a |
| /// logical left shift of a vector. |
| static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, |
| bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { |
| unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); |
| unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, |
| false /* check zeros from right */, DAG); |
| unsigned OpSrc; |
| |
| if (!NumZeros) |
| return false; |
| |
| // Considering the elements in the mask that are not consecutive zeros, |
| // check if they consecutively come from only one of the source vectors. |
| // |
| // V1 = {X, A, B, C} 0 |
| // \ \ \ / |
| // vector_shuffle V1, V2 <1, 2, 3, X> |
| // |
| if (!isShuffleMaskConsecutive(SVOp, |
| 0, // Mask Start Index |
| NumElems-NumZeros, // Mask End Index(exclusive) |
| NumZeros, // Where to start looking in the src vector |
| NumElems, // Number of elements in vector |
| OpSrc)) // Which source operand ? |
| return false; |
| |
| isLeft = false; |
| ShAmt = NumZeros; |
| ShVal = SVOp->getOperand(OpSrc); |
| return true; |
| } |
| |
| /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a |
| /// logical left shift of a vector. |
| static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, |
| bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { |
| unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); |
| unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, |
| true /* check zeros from left */, DAG); |
| unsigned OpSrc; |
| |
| if (!NumZeros) |
| return false; |
| |
| // Considering the elements in the mask that are not consecutive zeros, |
| // check if they consecutively come from only one of the source vectors. |
| // |
| // 0 { A, B, X, X } = V2 |
| // / \ / / |
| // vector_shuffle V1, V2 <X, X, 4, 5> |
| // |
| if (!isShuffleMaskConsecutive(SVOp, |
| NumZeros, // Mask Start Index |
| NumElems, // Mask End Index(exclusive) |
| 0, // Where to start looking in the src vector |
| NumElems, // Number of elements in vector |
| OpSrc)) // Which source operand ? |
| return false; |
| |
| isLeft = true; |
| ShAmt = NumZeros; |
| ShVal = SVOp->getOperand(OpSrc); |
| return true; |
| } |
| |
| /// isVectorShift - Returns true if the shuffle can be implemented as a |
| /// logical left or right shift of a vector. |
| static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, |
| bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { |
| // Although the logic below support any bitwidth size, there are no |
| // shift instructions which handle more than 128-bit vectors. |
| if (!SVOp->getValueType(0).is128BitVector()) |
| return false; |
| |
| if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) || |
| isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt)) |
| return true; |
| |
| return false; |
| } |
| |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. |
| /// |
| static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, |
| const X86Subtarget* Subtarget, |
| const TargetLowering &TLI) { |
| if (NumNonZero > 8) |
| return SDValue(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 16; ++i) { |
| bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; |
| if (ThisIsNonZero && First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); |
| else |
| V = DAG.getUNDEF(MVT::v8i16); |
| First = false; |
| } |
| |
| if ((i & 1) != 0) { |
| SDValue ThisElt(0, 0), LastElt(0, 0); |
| bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; |
| if (LastIsNonZero) { |
| LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, |
| MVT::i16, Op.getOperand(i-1)); |
| } |
| if (ThisIsNonZero) { |
| ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); |
| ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, |
| ThisElt, DAG.getConstant(8, MVT::i8)); |
| if (LastIsNonZero) |
| ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); |
| } else |
| ThisElt = LastElt; |
| |
| if (ThisElt.getNode()) |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, |
| DAG.getIntPtrConstant(i/2)); |
| } |
| } |
| |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V); |
| } |
| |
| /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. |
| /// |
| static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, |
| const X86Subtarget* Subtarget, |
| const TargetLowering &TLI) { |
| if (NumNonZero > 4) |
| return SDValue(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 8; ++i) { |
| bool isNonZero = (NonZeros & (1 << i)) != 0; |
| if (isNonZero) { |
| if (First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); |
| else |
| V = DAG.getUNDEF(MVT::v8i16); |
| First = false; |
| } |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, |
| MVT::v8i16, V, Op.getOperand(i), |
| DAG.getIntPtrConstant(i)); |
| } |
| } |
| |
| return V; |
| } |
| |
| /// getVShift - Return a vector logical shift node. |
| /// |
| static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, |
| unsigned NumBits, SelectionDAG &DAG, |
| const TargetLowering &TLI, DebugLoc dl) { |
| assert(VT.is128BitVector() && "Unknown type for VShift"); |
| EVT ShVT = MVT::v2i64; |
| unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; |
| SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp); |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| DAG.getNode(Opc, dl, ShVT, SrcOp, |
| DAG.getConstant(NumBits, |
| TLI.getScalarShiftAmountTy(SrcOp.getValueType())))); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, |
| SelectionDAG &DAG) const { |
| |
| // Check if the scalar load can be widened into a vector load. And if |
| // the address is "base + cst" see if the cst can be "absorbed" into |
| // the shuffle mask. |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { |
| SDValue Ptr = LD->getBasePtr(); |
| if (!ISD::isNormalLoad(LD) || LD->isVolatile()) |
| return SDValue(); |
| EVT PVT = LD->getValueType(0); |
| if (PVT != MVT::i32 && PVT != MVT::f32) |
| return SDValue(); |
| |
| int FI = -1; |
| int64_t Offset = 0; |
| if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { |
| FI = FINode->getIndex(); |
| Offset = 0; |
| } else if (DAG.isBaseWithConstantOffset(Ptr) && |
| isa<FrameIndexSDNode>(Ptr.getOperand(0))) { |
| FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); |
| Offset = Ptr.getConstantOperandVal(1); |
| Ptr = Ptr.getOperand(0); |
| } else { |
| return SDValue(); |
| } |
| |
| // FIXME: 256-bit vector instructions don't require a strict alignment, |
| // improve this code to support it better. |
| unsigned RequiredAlign = VT.getSizeInBits()/8; |
| SDValue Chain = LD->getChain(); |
| // Make sure the stack object alignment is at least 16 or 32. |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { |
| if (MFI->isFixedObjectIndex(FI)) { |
| // Can't change the alignment. FIXME: It's possible to compute |
| // the exact stack offset and reference FI + adjust offset instead. |
| // If someone *really* cares about this. That's the way to implement it. |
| return SDValue(); |
| } else { |
| MFI->setObjectAlignment(FI, RequiredAlign); |
| } |
| } |
| |
| // (Offset % 16 or 32) must be multiple of 4. Then address is then |
| // Ptr + (Offset & ~15). |
| if (Offset < 0) |
| return SDValue(); |
| if ((Offset % RequiredAlign) & 3) |
| return SDValue(); |
| int64_t StartOffset = Offset & ~(RequiredAlign-1); |
| if (StartOffset) |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(), |
| Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); |
| |
| int EltNo = (Offset - StartOffset) >> 2; |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); |
| SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(StartOffset), |
| false, false, false, 0); |
| |
| SmallVector<int, 8> Mask; |
| for (unsigned i = 0; i != NumElems; ++i) |
| Mask.push_back(EltNo); |
| |
| return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a |
| /// vector of type 'VT', see if the elements can be replaced by a single large |
| /// load which has the same value as a build_vector whose operands are 'elts'. |
| /// |
| /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a |
| /// |
| /// FIXME: we'd also like to handle the case where the last elements are zero |
| /// rather than undef via VZEXT_LOAD, but we do not detect that case today. |
| /// There's even a handy isZeroNode for that purpose. |
| static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts, |
| DebugLoc &DL, SelectionDAG &DAG) { |
| EVT EltVT = VT.getVectorElementType(); |
| unsigned NumElems = Elts.size(); |
| |
| LoadSDNode *LDBase = NULL; |
| unsigned LastLoadedElt = -1U; |
| |
| // For each element in the initializer, see if we've found a load or an undef. |
| // If we don't find an initial load element, or later load elements are |
| // non-consecutive, bail out. |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue Elt = Elts[i]; |
| |
| if (!Elt.getNode() || |
| (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) |
| return SDValue(); |
| if (!LDBase) { |
| if (Elt.getNode()->getOpcode() == ISD::UNDEF) |
| return SDValue(); |
| LDBase = cast<LoadSDNode>(Elt.getNode()); |
| LastLoadedElt = i; |
| continue; |
| } |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| |
| LoadSDNode *LD = cast<LoadSDNode>(Elt); |
| if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) |
| return SDValue(); |
| LastLoadedElt = i; |
| } |
| |
| // If we have found an entire vector of loads and undefs, then return a large |
| // load of the entire vector width starting at the base pointer. If we found |
| // consecutive loads for the low half, generate a vzext_load node. |
| if (LastLoadedElt == NumElems - 1) { |
| if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16) |
| return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), |
| LDBase->getPointerInfo(), |
| LDBase->isVolatile(), LDBase->isNonTemporal(), |
| LDBase->isInvariant(), 0); |
| return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), |
| LDBase->getPointerInfo(), |
| LDBase->isVolatile(), LDBase->isNonTemporal(), |
| LDBase->isInvariant(), LDBase->getAlignment()); |
| } |
| if (NumElems == 4 && LastLoadedElt == 1 && |
| DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) { |
| SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); |
| SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; |
| SDValue ResNode = |
| DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64, |
| LDBase->getPointerInfo(), |
| LDBase->getAlignment(), |
| false/*isVolatile*/, true/*ReadMem*/, |
| false/*WriteMem*/); |
| |
| // Make sure the newly-created LOAD is in the same position as LDBase in |
| // terms of dependency. We create a TokenFactor for LDBase and ResNode, and |
| // update uses of LDBase's output chain to use the TokenFactor. |
| if (LDBase->hasAnyUseOfValue(1)) { |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); |
| DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), |
| SDValue(ResNode.getNode(), 1)); |
| } |
| |
| return DAG.getNode(ISD::BITCAST, DL, VT, ResNode); |
| } |
| return SDValue(); |
| } |
| |
| /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction |
| /// to generate a splat value for the following cases: |
| /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant. |
| /// 2. A splat shuffle which uses a scalar_to_vector node which comes from |
| /// a scalar load, or a constant. |
| /// The VBROADCAST node is returned when a pattern is found, |
| /// or SDValue() otherwise. |
| SDValue |
| X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const { |
| if (!Subtarget->hasFp256()) |
| return SDValue(); |
| |
| MVT VT = Op.getValueType().getSimpleVT(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Unsupported vector type for broadcast."); |
| |
| SDValue Ld; |
| bool ConstSplatVal; |
| |
| switch (Op.getOpcode()) { |
| default: |
| // Unknown pattern found. |
| return SDValue(); |
| |
| case ISD::BUILD_VECTOR: { |
| // The BUILD_VECTOR node must be a splat. |
| if (!isSplatVector(Op.getNode())) |
| return SDValue(); |
| |
| Ld = Op.getOperand(0); |
| ConstSplatVal = (Ld.getOpcode() == ISD::Constant || |
| Ld.getOpcode() == ISD::ConstantFP); |
| |
| // The suspected load node has several users. Make sure that all |
| // of its users are from the BUILD_VECTOR node. |
| // Constants may have multiple users. |
| if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0)) |
| return SDValue(); |
| break; |
| } |
| |
| case ISD::VECTOR_SHUFFLE: { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| |
| // Shuffles must have a splat mask where the first element is |
| // broadcasted. |
| if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0) |
| return SDValue(); |
| |
| SDValue Sc = Op.getOperand(0); |
| if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && |
| Sc.getOpcode() != ISD::BUILD_VECTOR) { |
| |
| if (!Subtarget->hasInt256()) |
| return SDValue(); |
| |
| // Use the register form of the broadcast instruction available on AVX2. |
| if (VT.is256BitVector()) |
| Sc = Extract128BitVector(Sc, 0, DAG, dl); |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc); |
| } |
| |
| Ld = Sc.getOperand(0); |
| ConstSplatVal = (Ld.getOpcode() == ISD::Constant || |
| Ld.getOpcode() == ISD::ConstantFP); |
| |
| // The scalar_to_vector node and the suspected |
| // load node must have exactly one user. |
| // Constants may have multiple users. |
| if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse())) |
| return SDValue(); |
| break; |
| } |
| } |
| |
| bool Is256 = VT.is256BitVector(); |
| |
| // Handle the broadcasting a single constant scalar from the constant pool |
| // into a vector. On Sandybridge it is still better to load a constant vector |
| // from the constant pool and not to broadcast it from a scalar. |
| if (ConstSplatVal && Subtarget->hasInt256()) { |
| EVT CVT = Ld.getValueType(); |
| assert(!CVT.isVector() && "Must not broadcast a vector type"); |
| unsigned ScalarSize = CVT.getSizeInBits(); |
| |
| if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) { |
| const Constant *C = 0; |
| if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld)) |
| C = CI->getConstantIntValue(); |
| else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld)) |
| C = CF->getConstantFPValue(); |
| |
| assert(C && "Invalid constant type"); |
| |
| SDValue CP = DAG.getConstantPool(C, getPointerTy()); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); |
| Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, Alignment); |
| |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); |
| } |
| } |
| |
| bool IsLoad = ISD::isNormalLoad(Ld.getNode()); |
| unsigned ScalarSize = Ld.getValueType().getSizeInBits(); |
| |
| // Handle AVX2 in-register broadcasts. |
| if (!IsLoad && Subtarget->hasInt256() && |
| (ScalarSize == 32 || (Is256 && ScalarSize == 64))) |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); |
| |
| // The scalar source must be a normal load. |
| if (!IsLoad) |
| return SDValue(); |
| |
| if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); |
| |
| // The integer check is needed for the 64-bit into 128-bit so it doesn't match |
| // double since there is no vbroadcastsd xmm |
| if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) { |
| if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) |
| return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); |
| } |
| |
| // Unsupported broadcast. |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| // Skip if insert_vec_elt is not supported. |
| if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) |
| return SDValue(); |
| |
| DebugLoc DL = Op.getDebugLoc(); |
| unsigned NumElems = Op.getNumOperands(); |
| |
| SDValue VecIn1; |
| SDValue VecIn2; |
| SmallVector<unsigned, 4> InsertIndices; |
| SmallVector<int, 8> Mask(NumElems, -1); |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| unsigned Opc = Op.getOperand(i).getOpcode(); |
| |
| if (Opc == ISD::UNDEF) |
| continue; |
| |
| if (Opc != ISD::EXTRACT_VECTOR_ELT) { |
| // Quit if more than 1 elements need inserting. |
| if (InsertIndices.size() > 1) |
| return SDValue(); |
| |
| InsertIndices.push_back(i); |
| continue; |
| } |
| |
| SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); |
| SDValue ExtIdx = Op.getOperand(i).getOperand(1); |
| |
| // Quit if extracted from vector of different type. |
| if (ExtractedFromVec.getValueType() != VT) |
| return SDValue(); |
| |
| // Quit if non-constant index. |
| if (!isa<ConstantSDNode>(ExtIdx)) |
| return SDValue(); |
| |
| if (VecIn1.getNode() == 0) |
| VecIn1 = ExtractedFromVec; |
| else if (VecIn1 != ExtractedFromVec) { |
| if (VecIn2.getNode() == 0) |
| VecIn2 = ExtractedFromVec; |
| else if (VecIn2 != ExtractedFromVec) |
| // Quit if more than 2 vectors to shuffle |
| return SDValue(); |
| } |
| |
| unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue(); |
| |
| if (ExtractedFromVec == VecIn1) |
| Mask[i] = Idx; |
| else if (ExtractedFromVec == VecIn2) |
| Mask[i] = Idx + NumElems; |
| } |
| |
| if (VecIn1.getNode() == 0) |
| return SDValue(); |
| |
| VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); |
| SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]); |
| for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) { |
| unsigned Idx = InsertIndices[i]; |
| NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), |
| DAG.getIntPtrConstant(Idx)); |
| } |
| |
| return NV; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| MVT VT = Op.getValueType().getSimpleVT(); |
| MVT ExtVT = VT.getVectorElementType(); |
| unsigned NumElems = Op.getNumOperands(); |
| |
| // Vectors containing all zeros can be matched by pxor and xorps later |
| if (ISD::isBuildVectorAllZeros(Op.getNode())) { |
| // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd |
| // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. |
| if (VT == MVT::v4i32 || VT == MVT::v8i32) |
| return Op; |
| |
| return getZeroVector(VT, Subtarget, DAG, dl); |
| } |
| |
| // Vectors containing all ones can be matched by pcmpeqd on 128-bit width |
| // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use |
| // vpcmpeqd on 256-bit vectors. |
| if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { |
| if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256())) |
| return Op; |
| |
| return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl); |
| } |
| |
| SDValue Broadcast = LowerVectorBroadcast(Op, DAG); |
| if (Broadcast.getNode()) |
| return Broadcast; |
| |
| unsigned EVTBits = ExtVT.getSizeInBits(); |
| |
| unsigned NumZero = 0; |
| unsigned NumNonZero = 0; |
| unsigned NonZeros = 0; |
| bool IsAllConstants = true; |
| SmallSet<SDValue, 8> Values; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue Elt = Op.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| Values.insert(Elt); |
| if (Elt.getOpcode() != ISD::Constant && |
| Elt.getOpcode() != ISD::ConstantFP) |
| IsAllConstants = false; |
| if (X86::isZeroNode(Elt)) |
| NumZero++; |
| else { |
| NonZeros |= (1 << i); |
| NumNonZero++; |
| } |
| } |
| |
| // All undef vector. Return an UNDEF. All zero vectors were handled above. |
| if (NumNonZero == 0) |
| return DAG.getUNDEF(VT); |
| |
| // Special case for single non-zero, non-undef, element. |
| if (NumNonZero == 1) { |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDValue Item = Op.getOperand(Idx); |
| |
| // If this is an insertion of an i64 value on x86-32, and if the top bits of |
| // the value are obviously zero, truncate the value to i32 and do the |
| // insertion that way. Only do this if the value is non-constant or if the |
| // value is a constant being inserted into element 0. It is cheaper to do |
| // a constant pool load than it is to do a movd + shuffle. |
| if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && |
| (!IsAllConstants || Idx == 0)) { |
| if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { |
| // Handle SSE only. |
| assert(VT == MVT::v2i64 && "Expected an SSE value type!"); |
| EVT VecVT = MVT::v4i32; |
| unsigned VecElts = 4; |
| |
| // Truncate the value (which may itself be a constant) to i32, and |
| // convert it to a vector with movd (S2V+shuffle to zero extend). |
| Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); |
| Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); |
| |
| // Now we have our 32-bit value zero extended in the low element of |
| // a vector. If Idx != 0, swizzle it into place. |
| if (Idx != 0) { |
| SmallVector<int, 4> Mask; |
| Mask.push_back(Idx); |
| for (unsigned i = 1; i != VecElts; ++i) |
| Mask.push_back(i); |
| Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT), |
| &Mask[0]); |
| } |
| return DAG.getNode(ISD::BITCAST, dl, VT, Item); |
| } |
| } |
| |
| // If we have a constant or non-constant insertion into the low element of |
| // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into |
| // the rest of the elements. This will be matched as movd/movq/movss/movsd |
| // depending on what the source datatype is. |
| if (Idx == 0) { |
| if (NumZero == 0) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| |
| if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || |
| (ExtVT == MVT::i64 && Subtarget->is64Bit())) { |
| if (VT.is256BitVector()) { |
| SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); |
| return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, |
| Item, DAG.getIntPtrConstant(0)); |
| } |
| assert(VT.is128BitVector() && "Expected an SSE value type!"); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. |
| return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); |
| } |
| |
| if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { |
| Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); |
| if (VT.is256BitVector()) { |
| SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); |
| Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); |
| } else { |
| assert(VT.is128BitVector() && "Expected an SSE value type!"); |
| Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); |
| } |
| return DAG.getNode(ISD::BITCAST, dl, VT, Item); |
| } |
| } |
| |
| // Is it a vector logical left shift? |
| if (NumElems == 2 && Idx == 1 && |
| X86::isZeroNode(Op.getOperand(0)) && |
| !X86::isZeroNode(Op.getOperand(1))) { |
| unsigned NumBits = VT.getSizeInBits(); |
| return getVShift(true, VT, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| VT, Op.getOperand(1)), |
| NumBits/2, DAG, *this, dl); |
| } |
| |
| if (IsAllConstants) // Otherwise, it's better to do a constpool load. |
| return SDValue(); |
| |
| // Otherwise, if this is a vector with i32 or f32 elements, and the element |
| // is a non-constant being inserted into an element other than the low one, |
| // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka |
| // movd/movss) to move this into the low element, then shuffle it into |
| // place. |
| if (EVTBits == 32) { |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| |
| // Turn it into a shuffle of zero and zero-extended scalar to vector. |
| Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG); |
| SmallVector<int, 8> MaskVec; |
| for (unsigned i = 0; i != NumElems; ++i) |
| MaskVec.push_back(i == Idx ? 0 : 1); |
| return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); |
| } |
| } |
| |
| // Splat is obviously ok. Let legalizer expand it to a shuffle. |
| if (Values.size() == 1) { |
| if (EVTBits == 32) { |
| // Instead of a shuffle like this: |
| // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> |
| // Check if it's possible to issue this instead. |
| // shuffle (vload ptr)), undef, <1, 1, 1, 1> |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDValue Item = Op.getOperand(Idx); |
| if (Op.getNode()->isOnlyUserOf(Item.getNode())) |
| return LowerAsSplatVectorLoad(Item, VT, dl, DAG); |
| } |
| return SDValue(); |
| } |
| |
| // A vector full of immediates; various special cases are already |
| // handled, so this is best done with a single constant-pool load. |
| if (IsAllConstants) |
| return SDValue(); |
| |
| // For AVX-length vectors, build the individual 128-bit pieces and use |
| // shuffles to put them in place. |
| if (VT.is256BitVector()) { |
| SmallVector<SDValue, 32> V; |
| for (unsigned i = 0; i != NumElems; ++i) |
| V.push_back(Op.getOperand(i)); |
| |
| EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); |
| |
| // Build both the lower and upper subvector. |
| SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2); |
| SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2], |
| NumElems/2); |
| |
| // Recreate the wider vector with the lower and upper part. |
| return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); |
| } |
| |
| // Let legalizer expand 2-wide build_vectors. |
| if (EVTBits == 64) { |
| if (NumNonZero == 1) { |
| // One half is zero or undef. |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, |
| Op.getOperand(Idx)); |
| return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); |
| } |
| return SDValue(); |
| } |
| |
| // If element VT is < 32 bits, convert it to inserts into a zero vector. |
| if (EVTBits == 8 && NumElems == 16) { |
| SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, |
| Subtarget, *this); |
| if (V.getNode()) return V; |
| } |
| |
| if (EVTBits == 16 && NumElems == 8) { |
| SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, |
| Subtarget, *this); |
| if (V.getNode()) return V; |
| } |
| |
| // If element VT is == 32 bits, turn it into a number of shuffles. |
| SmallVector<SDValue, 8> V(NumElems); |
| if (NumElems == 4 && NumZero > 0) { |
| for (unsigned i = 0; i < 4; ++i) { |
| bool isZero = !(NonZeros & (1 << i)); |
| if (isZero) |
| V[i] = getZeroVector(VT, Subtarget, DAG, dl); |
| else |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); |
| } |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { |
| default: break; |
| case 0: |
| V[i] = V[i*2]; // Must be a zero vector. |
| break; |
| case 1: |
| V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); |
| break; |
| case 2: |
| V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); |
| break; |
| case 3: |
| V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); |
| break; |
| } |
| } |
| |
| bool Reverse1 = (NonZeros & 0x3) == 2; |
| bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; |
| int MaskVec[] = { |
| Reverse1 ? 1 : 0, |
| Reverse1 ? 0 : 1, |
| static_cast<int>(Reverse2 ? NumElems+1 : NumElems), |
| static_cast<int>(Reverse2 ? NumElems : NumElems+1) |
| }; |
| return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); |
| } |
| |
| if (Values.size() > 1 && VT.is128BitVector()) { |
| // Check for a build vector of consecutive loads. |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = Op.getOperand(i); |
| |
| // Check for elements which are consecutive loads. |
| SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG); |
| if (LD.getNode()) |
| return LD; |
| |
| // Check for a build vector from mostly shuffle plus few inserting. |
| SDValue Sh = buildFromShuffleMostly(Op, DAG); |
| if (Sh.getNode()) |
| return Sh; |
| |
| // For SSE 4.1, use insertps to put the high elements into the low element. |
| if (getSubtarget()->hasSSE41()) { |
| SDValue Result; |
| if (Op.getOperand(0).getOpcode() != ISD::UNDEF) |
| Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); |
| else |
| Result = DAG.getUNDEF(VT); |
| |
| for (unsigned i = 1; i < NumElems; ++i) { |
| if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, |
| Op.getOperand(i), DAG.getIntPtrConstant(i)); |
| } |
| return Result; |
| } |
| |
| // Otherwise, expand into a number of unpckl*, start by extending each of |
| // our (non-undef) elements to the full vector width with the element in the |
| // bottom slot of the vector (which generates no code for SSE). |
| for (unsigned i = 0; i < NumElems; ++i) { |
| if (Op.getOperand(i).getOpcode() != ISD::UNDEF) |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); |
| else |
| V[i] = DAG.getUNDEF(VT); |
| } |
| |
| // Next, we iteratively mix elements, e.g. for v4f32: |
| // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> |
| // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> |
| // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> |
| unsigned EltStride = NumElems >> 1; |
| while (EltStride != 0) { |
| for (unsigned i = 0; i < EltStride; ++i) { |
| // If V[i+EltStride] is undef and this is the first round of mixing, |
| // then it is safe to just drop this shuffle: V[i] is already in the |
| // right place, the one element (since it's the first round) being |
| // inserted as undef can be dropped. This isn't safe for successive |
| // rounds because they will permute elements within both vectors. |
| if (V[i+EltStride].getOpcode() == ISD::UNDEF && |
| EltStride == NumElems/2) |
| continue; |
| |
| V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); |
| } |
| EltStride >>= 1; |
| } |
| return V[0]; |
| } |
| return SDValue(); |
| } |
| |
| // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction |
| // to create 256-bit vectors from two other 128-bit ones. |
| static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| MVT ResVT = Op.getValueType().getSimpleVT(); |
| |
| assert(ResVT.is256BitVector() && "Value type must be 256-bit wide"); |
| |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| unsigned NumElems = ResVT.getVectorNumElements(); |
| |
| return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); |
| } |
| |
| static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 2); |
| |
| // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors |
| // from two other 128-bit ones. |
| return LowerAVXCONCAT_VECTORS(Op, DAG); |
| } |
| |
| // Try to lower a shuffle node into a simple blend instruction. |
| static SDValue |
| LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp, |
| const X86Subtarget *Subtarget, SelectionDAG &DAG) { |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| MVT EltVT = VT.getVectorElementType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (!Subtarget->hasSSE41() || EltVT == MVT::i8) |
| return SDValue(); |
| if (!Subtarget->hasInt256() && VT == MVT::v16i16) |
| return SDValue(); |
| |
| // Check the mask for BLEND and build the value. |
| unsigned MaskValue = 0; |
| // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. |
| unsigned NumLanes = (NumElems-1)/8 + 1; |
| unsigned NumElemsInLane = NumElems / NumLanes; |
| |
| // Blend for v16i16 should be symetric for the both lanes. |
| for (unsigned i = 0; i < NumElemsInLane; ++i) { |
| |
| int SndLaneEltIdx = (NumLanes == 2) ? |
| SVOp->getMaskElt(i + NumElemsInLane) : -1; |
| int EltIdx = SVOp->getMaskElt(i); |
| |
| if ((EltIdx < 0 || EltIdx == (int)i) && |
| (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane))) |
| continue; |
| |
| if (((unsigned)EltIdx == (i + NumElems)) && |
| (SndLaneEltIdx < 0 || |
| (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane)) |
| MaskValue |= (1<<i); |
| else |
| return SDValue(); |
| } |
| |
| // Convert i32 vectors to floating point if it is not AVX2. |
| // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors. |
| MVT BlendVT = VT; |
| if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) { |
| BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()), |
| NumElems); |
| V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1); |
| V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2); |
| } |
| |
| SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2, |
| DAG.getConstant(MaskValue, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, VT, Ret); |
| } |
| |
| // v8i16 shuffles - Prefer shuffles in the following order: |
| // 1. [all] pshuflw, pshufhw, optional move |
| // 2. [ssse3] 1 x pshufb |
| // 3. [ssse3] 2 x pshufb + 1 x por |
| // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw) |
| static SDValue |
| LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| SmallVector<int, 8> MaskVals; |
| |
| // Determine if more than 1 of the words in each of the low and high quadwords |
| // of the result come from the same quadword of one of the two inputs. Undef |
| // mask values count as coming from any quadword, for better codegen. |
| unsigned LoQuad[] = { 0, 0, 0, 0 }; |
| unsigned HiQuad[] = { 0, 0, 0, 0 }; |
| std::bitset<4> InputQuads; |
| for (unsigned i = 0; i < 8; ++i) { |
| unsigned *Quad = i < 4 ? LoQuad : HiQuad; |
| int EltIdx = SVOp->getMaskElt(i); |
| MaskVals.push_back(EltIdx); |
| if (EltIdx < 0) { |
| ++Quad[0]; |
| ++Quad[1]; |
| ++Quad[2]; |
| ++Quad[3]; |
| continue; |
| } |
| ++Quad[EltIdx / 4]; |
| InputQuads.set(EltIdx / 4); |
| } |
| |
| int BestLoQuad = -1; |
| unsigned MaxQuad = 1; |
| for (unsigned i = 0; i < 4; ++i) { |
| if (LoQuad[i] > MaxQuad) { |
| BestLoQuad = i; |
| MaxQuad = LoQuad[i]; |
| } |
| } |
| |
| int BestHiQuad = -1; |
| MaxQuad = 1; |
| for (unsigned i = 0; i < 4; ++i) { |
| if (HiQuad[i] > MaxQuad) { |
| BestHiQuad = i; |
| MaxQuad = HiQuad[i]; |
| } |
| } |
| |
| // For SSSE3, If all 8 words of the result come from only 1 quadword of each |
| // of the two input vectors, shuffle them into one input vector so only a |
| // single pshufb instruction is necessary. If There are more than 2 input |
| // quads, disable the next transformation since it does not help SSSE3. |
| bool V1Used = InputQuads[0] || InputQuads[1]; |
| bool V2Used = InputQuads[2] || InputQuads[3]; |
| if (Subtarget->hasSSSE3()) { |
| if (InputQuads.count() == 2 && V1Used && V2Used) { |
| BestLoQuad = InputQuads[0] ? 0 : 1; |
| BestHiQuad = InputQuads[2] ? 2 : 3; |
| } |
| if (InputQuads.count() > 2) { |
| BestLoQuad = -1; |
| BestHiQuad = -1; |
| } |
| } |
| |
| // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update |
| // the shuffle mask. If a quad is scored as -1, that means that it contains |
| // words from all 4 input quadwords. |
| SDValue NewV; |
| if (BestLoQuad >= 0 || BestHiQuad >= 0) { |
| int MaskV[] = { |
| BestLoQuad < 0 ? 0 : BestLoQuad, |
| BestHiQuad < 0 ? 1 : BestHiQuad |
| }; |
| NewV = DAG.getVectorShuffle(MVT::v2i64, dl, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1), |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]); |
| NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV); |
| |
| // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the |
| // source words for the shuffle, to aid later transformations. |
| bool AllWordsInNewV = true; |
| bool InOrder[2] = { true, true }; |
| for (unsigned i = 0; i != 8; ++i) { |
| int idx = MaskVals[i]; |
| if (idx != (int)i) |
| InOrder[i/4] = false; |
| if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) |
| continue; |
| AllWordsInNewV = false; |
| break; |
| } |
| |
| bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; |
| if (AllWordsInNewV) { |
| for (int i = 0; i != 8; ++i) { |
| int idx = MaskVals[i]; |
| if (idx < 0) |
| continue; |
| idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; |
| if ((idx != i) && idx < 4) |
| pshufhw = false; |
| if ((idx != i) && idx > 3) |
| pshuflw = false; |
| } |
| V1 = NewV; |
| V2Used = false; |
| BestLoQuad = 0; |
| BestHiQuad = 1; |
| } |
| |
| // If we've eliminated the use of V2, and the new mask is a pshuflw or |
| // pshufhw, that's as cheap as it gets. Return the new shuffle. |
| if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { |
| unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW; |
| unsigned TargetMask = 0; |
| NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, |
| DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); |
| TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp): |
| getShufflePSHUFLWImmediate(SVOp); |
| V1 = NewV.getOperand(0); |
| return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG); |
| } |
| } |
| |
| // Promote splats to a larger type which usually leads to more efficient code. |
| // FIXME: Is this true if pshufb is available? |
| if (SVOp->isSplat()) |
| return PromoteSplat(SVOp, DAG); |
| |
| // If we have SSSE3, and all words of the result are from 1 input vector, |
| // case 2 is generated, otherwise case 3 is generated. If no SSSE3 |
| // is present, fall back to case 4. |
| if (Subtarget->hasSSSE3()) { |
| SmallVector<SDValue,16> pshufbMask; |
| |
| // If we have elements from both input vectors, set the high bit of the |
| // shuffle mask element to zero out elements that come from V2 in the V1 |
| // mask, and elements that come from V1 in the V2 mask, so that the two |
| // results can be OR'd together. |
| bool TwoInputs = V1Used && V2Used; |
| for (unsigned i = 0; i != 8; ++i) { |
| int EltIdx = MaskVals[i] * 2; |
| int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx; |
| int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1; |
| pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8)); |
| } |
| V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1); |
| V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v16i8, &pshufbMask[0], 16)); |
| if (!TwoInputs) |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); |
| |
| // Calculate the shuffle mask for the second input, shuffle it, and |
| // OR it with the first shuffled input. |
| pshufbMask.clear(); |
| for (unsigned i = 0; i != 8; ++i) { |
| int EltIdx = MaskVals[i] * 2; |
| int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16; |
| int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15; |
| pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8)); |
| } |
| V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2); |
| V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v16i8, &pshufbMask[0], 16)); |
| V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); |
| } |
| |
| // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, |
| // and update MaskVals with new element order. |
| std::bitset<8> InOrder; |
| if (BestLoQuad >= 0) { |
| int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 }; |
| for (int i = 0; i != 4; ++i) { |
| int idx = MaskVals[i]; |
| if (idx < 0) { |
| InOrder.set(i); |
| } else if ((idx / 4) == BestLoQuad) { |
| MaskV[i] = idx & 3; |
| InOrder.set(i); |
| } |
| } |
| NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), |
| &MaskV[0]); |
| |
| if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); |
| NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16, |
| NewV.getOperand(0), |
| getShufflePSHUFLWImmediate(SVOp), DAG); |
| } |
| } |
| |
| // If BestHi >= 0, generate a pshufhw to put the high elements in order, |
| // and update MaskVals with the new element order. |
| if (BestHiQuad >= 0) { |
| int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 }; |
| for (unsigned i = 4; i != 8; ++i) { |
| int idx = MaskVals[i]; |
| if (idx < 0) { |
| InOrder.set(i); |
| } else if ((idx / 4) == BestHiQuad) { |
| MaskV[i] = (idx & 3) + 4; |
| InOrder.set(i); |
| } |
| } |
| NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), |
| &MaskV[0]); |
| |
| if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); |
| NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16, |
| NewV.getOperand(0), |
| getShufflePSHUFHWImmediate(SVOp), DAG); |
| } |
| } |
| |
| // In case BestHi & BestLo were both -1, which means each quadword has a word |
| // from each of the four input quadwords, calculate the InOrder bitvector now |
| // before falling through to the insert/extract cleanup. |
| if (BestLoQuad == -1 && BestHiQuad == -1) { |
| NewV = V1; |
| for (int i = 0; i != 8; ++i) |
| if (MaskVals[i] < 0 || MaskVals[i] == i) |
| InOrder.set(i); |
| } |
| |
| // The other elements are put in the right place using pextrw and pinsrw. |
| for (unsigned i = 0; i != 8; ++i) { |
| if (InOrder[i]) |
| continue; |
| int EltIdx = MaskVals[i]; |
| if (EltIdx < 0) |
| continue; |
| SDValue ExtOp = (EltIdx < 8) ? |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, |
| DAG.getIntPtrConstant(EltIdx)) : |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, |
| DAG.getIntPtrConstant(EltIdx - 8)); |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, |
| DAG.getIntPtrConstant(i)); |
| } |
| return NewV; |
| } |
| |
| // v16i8 shuffles - Prefer shuffles in the following order: |
| // 1. [ssse3] 1 x pshufb |
| // 2. [ssse3] 2 x pshufb + 1 x por |
| // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw |
| static |
| SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, |
| SelectionDAG &DAG, |
| const X86TargetLowering &TLI) { |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| ArrayRef<int> MaskVals = SVOp->getMask(); |
| |
| // Promote splats to a larger type which usually leads to more efficient code. |
| // FIXME: Is this true if pshufb is available? |
| if (SVOp->isSplat()) |
| return PromoteSplat(SVOp, DAG); |
| |
| // If we have SSSE3, case 1 is generated when all result bytes come from |
| // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is |
| // present, fall back to case 3. |
| |
| // If SSSE3, use 1 pshufb instruction per vector with elements in the result. |
| if (TLI.getSubtarget()->hasSSSE3()) { |
| SmallVector<SDValue,16> pshufbMask; |
| |
| // If all result elements are from one input vector, then only translate |
| // undef mask values to 0x80 (zero out result) in the pshufb mask. |
| // |
| // Otherwise, we have elements from both input vectors, and must zero out |
| // elements that come from V2 in the first mask, and V1 in the second mask |
| // so that we can OR them together. |
| for (unsigned i = 0; i != 16; ++i) { |
| int EltIdx = MaskVals[i]; |
| if (EltIdx < 0 || EltIdx >= 16) |
| EltIdx = 0x80; |
| pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); |
| } |
| V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v16i8, &pshufbMask[0], 16)); |
| |
| // As PSHUFB will zero elements with negative indices, it's safe to ignore |
| // the 2nd operand if it's undefined or zero. |
| if (V2.getOpcode() == ISD::UNDEF || |
| ISD::isBuildVectorAllZeros(V2.getNode())) |
| return V1; |
| |
| // Calculate the shuffle mask for the second input, shuffle it, and |
| // OR it with the first shuffled input. |
| pshufbMask.clear(); |
| for (unsigned i = 0; i != 16; ++i) { |
| int EltIdx = MaskVals[i]; |
| EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16; |
| pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); |
| } |
| V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v16i8, &pshufbMask[0], 16)); |
| return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); |
| } |
| |
| // No SSSE3 - Calculate in place words and then fix all out of place words |
| // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from |
| // the 16 different words that comprise the two doublequadword input vectors. |
| V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); |
| V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); |
| SDValue NewV = V1; |
| for (int i = 0; i != 8; ++i) { |
| int Elt0 = MaskVals[i*2]; |
| int Elt1 = MaskVals[i*2+1]; |
| |
| // This word of the result is all undef, skip it. |
| if (Elt0 < 0 && Elt1 < 0) |
| continue; |
| |
| // This word of the result is already in the correct place, skip it. |
| if ((Elt0 == i*2) && (Elt1 == i*2+1)) |
| continue; |
| |
| SDValue Elt0Src = Elt0 < 16 ? V1 : V2; |
| SDValue Elt1Src = Elt1 < 16 ? V1 : V2; |
| SDValue InsElt; |
| |
| // If Elt0 and Elt1 are defined, are consecutive, and can be load |
| // using a single extract together, load it and store it. |
| if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { |
| InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, |
| DAG.getIntPtrConstant(Elt1 / 2)); |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, |
| DAG.getIntPtrConstant(i)); |
| continue; |
| } |
| |
| // If Elt1 is defined, extract it from the appropriate source. If the |
| // source byte is not also odd, shift the extracted word left 8 bits |
| // otherwise clear the bottom 8 bits if we need to do an or. |
| if (Elt1 >= 0) { |
| InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, |
| DAG.getIntPtrConstant(Elt1 / 2)); |
| if ((Elt1 & 1) == 0) |
| InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, |
| DAG.getConstant(8, |
| TLI.getShiftAmountTy(InsElt.getValueType()))); |
| else if (Elt0 >= 0) |
| InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, |
| DAG.getConstant(0xFF00, MVT::i16)); |
| } |
| // If Elt0 is defined, extract it from the appropriate source. If the |
| // source byte is not also even, shift the extracted word right 8 bits. If |
| // Elt1 was also defined, OR the extracted values together before |
| // inserting them in the result. |
| if (Elt0 >= 0) { |
| SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, |
| Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); |
| if ((Elt0 & 1) != 0) |
| InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, |
| DAG.getConstant(8, |
| TLI.getShiftAmountTy(InsElt0.getValueType()))); |
| else if (Elt1 >= 0) |
| InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, |
| DAG.getConstant(0x00FF, MVT::i16)); |
| InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) |
| : InsElt0; |
| } |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, |
| DAG.getIntPtrConstant(i)); |
| } |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV); |
| } |
| |
| // v32i8 shuffles - Translate to VPSHUFB if possible. |
| static |
| SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp, |
| const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end()); |
| |
| bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; |
| bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode()); |
| bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode()); |
| |
| // VPSHUFB may be generated if |
| // (1) one of input vector is undefined or zeroinitializer. |
| // The mask value 0x80 puts 0 in the corresponding slot of the vector. |
| // And (2) the mask indexes don't cross the 128-bit lane. |
| if (VT != MVT::v32i8 || !Subtarget->hasInt256() || |
| (!V2IsUndef && !V2IsAllZero && !V1IsAllZero)) |
| return SDValue(); |
| |
| if (V1IsAllZero && !V2IsAllZero) { |
| CommuteVectorShuffleMask(MaskVals, 32); |
| V1 = V2; |
| } |
| SmallVector<SDValue, 32> pshufbMask; |
| for (unsigned i = 0; i != 32; i++) { |
| int EltIdx = MaskVals[i]; |
| if (EltIdx < 0 || EltIdx >= 32) |
| EltIdx = 0x80; |
| else { |
| if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16)) |
| // Cross lane is not allowed. |
| return SDValue(); |
| EltIdx &= 0xf; |
| } |
| pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); |
| } |
| return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v32i8, &pshufbMask[0], 32)); |
| } |
| |
| /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide |
| /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be |
| /// done when every pair / quad of shuffle mask elements point to elements in |
| /// the right sequence. e.g. |
| /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15> |
| static |
| SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, |
| SelectionDAG &DAG) { |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| MVT NewVT; |
| unsigned Scale; |
| switch (VT.SimpleTy) { |
| default: llvm_unreachable("Unexpected!"); |
| case MVT::v4f32: NewVT = MVT::v2f64; Scale = 2; break; |
| case MVT::v4i32: NewVT = MVT::v2i64; Scale = 2; break; |
| case MVT::v8i16: NewVT = MVT::v4i32; Scale = 2; break; |
| case MVT::v16i8: NewVT = MVT::v4i32; Scale = 4; break; |
| case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break; |
| case MVT::v32i8: NewVT = MVT::v8i32; Scale = 4; break; |
| } |
| |
| SmallVector<int, 8> MaskVec; |
| for (unsigned i = 0; i != NumElems; i += Scale) { |
| int StartIdx = -1; |
| for (unsigned j = 0; j != Scale; ++j) { |
| int EltIdx = SVOp->getMaskElt(i+j); |
| if (EltIdx < 0) |
| continue; |
| if (StartIdx < 0) |
| StartIdx = (EltIdx / Scale); |
| if (EltIdx != (int)(StartIdx*Scale + j)) |
| return SDValue(); |
| } |
| MaskVec.push_back(StartIdx); |
| } |
| |
| SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0)); |
| SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1)); |
| return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); |
| } |
| |
| /// getVZextMovL - Return a zero-extending vector move low node. |
| /// |
| static SDValue getVZextMovL(MVT VT, EVT OpVT, |
| SDValue SrcOp, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget, DebugLoc dl) { |
| if (VT == MVT::v2f64 || VT == MVT::v4f32) { |
| LoadSDNode *LD = NULL; |
| if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) |
| LD = dyn_cast<LoadSDNode>(SrcOp); |
| if (!LD) { |
| // movssrr and movsdrr do not clear top bits. Try to use movd, movq |
| // instead. |
| MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; |
| if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) && |
| SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| SrcOp.getOperand(0).getOpcode() == ISD::BITCAST && |
| SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { |
| // PR2108 |
| OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| OpVT, |
| SrcOp.getOperand(0) |
| .getOperand(0)))); |
| } |
| } |
| } |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, |
| DAG.getNode(ISD::BITCAST, dl, |
| OpVT, SrcOp))); |
| } |
| |
| /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles |
| /// which could not be matched by any known target speficic shuffle |
| static SDValue |
| LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { |
| |
| SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG); |
| if (NewOp.getNode()) |
| return NewOp; |
| |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned NumLaneElems = NumElems / 2; |
| |
| DebugLoc dl = SVOp->getDebugLoc(); |
| MVT EltVT = VT.getVectorElementType(); |
| MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems); |
| SDValue Output[2]; |
| |
| SmallVector<int, 16> Mask; |
| for (unsigned l = 0; l < 2; ++l) { |
| // Build a shuffle mask for the output, discovering on the fly which |
| // input vectors to use as shuffle operands (recorded in InputUsed). |
| // If building a suitable shuffle vector proves too hard, then bail |
| // out with UseBuildVector set. |
| bool UseBuildVector = false; |
| int InputUsed[2] = { -1, -1 }; // Not yet discovered. |
| unsigned LaneStart = l * NumLaneElems; |
| for (unsigned i = 0; i != NumLaneElems; ++i) { |
| // The mask element. This indexes into the input. |
| int Idx = SVOp->getMaskElt(i+LaneStart); |
| if (Idx < 0) { |
| // the mask element does not index into any input vector. |
| Mask.push_back(-1); |
| continue; |
| } |
| |
| // The input vector this mask element indexes into. |
| int Input = Idx / NumLaneElems; |
| |
| // Turn the index into an offset from the start of the input vector. |
| Idx -= Input * NumLaneElems; |
| |
| // Find or create a shuffle vector operand to hold this input. |
| unsigned OpNo; |
| for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { |
| if (InputUsed[OpNo] == Input) |
| // This input vector is already an operand. |
| break; |
| if (InputUsed[OpNo] < 0) { |
| // Create a new operand for this input vector. |
| InputUsed[OpNo] = Input; |
| break; |
| } |
| } |
| |
| if (OpNo >= array_lengthof(InputUsed)) { |
| // More than two input vectors used! Give up on trying to create a |
| // shuffle vector. Insert all elements into a BUILD_VECTOR instead. |
| UseBuildVector = true; |
| break; |
| } |
| |
| // Add the mask index for the new shuffle vector. |
| Mask.push_back(Idx + OpNo * NumLaneElems); |
| } |
| |
| if (UseBuildVector) { |
| SmallVector<SDValue, 16> SVOps; |
| for (unsigned i = 0; i != NumLaneElems; ++i) { |
| // The mask element. This indexes into the input. |
| int Idx = SVOp->getMaskElt(i+LaneStart); |
| if (Idx < 0) { |
| SVOps.push_back(DAG.getUNDEF(EltVT)); |
| continue; |
| } |
| |
| // The input vector this mask element indexes into. |
| int Input = Idx / NumElems; |
| |
| // Turn the index into an offset from the start of the input vector. |
| Idx -= Input * NumElems; |
| |
| // Extract the vector element by hand. |
| SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, |
| SVOp->getOperand(Input), |
| DAG.getIntPtrConstant(Idx))); |
| } |
| |
| // Construct the output using a BUILD_VECTOR. |
| Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0], |
| SVOps.size()); |
| } else if (InputUsed[0] < 0) { |
| // No input vectors were used! The result is undefined. |
| Output[l] = DAG.getUNDEF(NVT); |
| } else { |
| SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2), |
| (InputUsed[0] % 2) * NumLaneElems, |
| DAG, dl); |
| // If only one input was used, use an undefined vector for the other. |
| SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) : |
| Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2), |
| (InputUsed[1] % 2) * NumLaneElems, DAG, dl); |
| // At least one input vector was used. Create a new shuffle vector. |
| Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]); |
| } |
| |
| Mask.clear(); |
| } |
| |
| // Concatenate the result back |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]); |
| } |
| |
| /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with |
| /// 4 elements, and match them with several different shuffle types. |
| static SDValue |
| LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| MVT VT = SVOp->getValueType(0).getSimpleVT(); |
| |
| assert(VT.is128BitVector() && "Unsupported vector size"); |
| |
| std::pair<int, int> Locs[4]; |
| int Mask1[] = { -1, -1, -1, -1 }; |
| SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end()); |
| |
| unsigned NumHi = 0; |
| unsigned NumLo = 0; |
| for (unsigned i = 0; i != 4; ++i) { |
| int Idx = PermMask[i]; |
| if (Idx < 0) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else { |
| assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); |
| if (Idx < 4) { |
| Locs[i] = std::make_pair(0, NumLo); |
| Mask1[NumLo] = Idx; |
| NumLo++; |
| } else { |
| Locs[i] = std::make_pair(1, NumHi); |
| if (2+NumHi < 4) |
| Mask1[2+NumHi] = Idx; |
| NumHi++; |
| } |
| } |
| } |
| |
| if (NumLo <= 2 && NumHi <= 2) { |
| // If no more than two elements come from either vector. This can be |
| // implemented with two shuffles. First shuffle gather the elements. |
| // The second shuffle, which takes the first shuffle as both of its |
| // vector operands, put the elements into the right order. |
| V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); |
| |
| int Mask2[] = { -1, -1, -1, -1 }; |
| |
| for (unsigned i = 0; i != 4; ++i) |
| if (Locs[i].first != -1) { |
| unsigned Idx = (i < 2) ? 0 : 4; |
| Idx += Locs[i].first * 2 + Locs[i].second; |
| Mask2[i] = Idx; |
| } |
| |
| return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); |
| } |
| |
| if (NumLo == 3 || NumHi == 3) { |
| // Otherwise, we must have three elements from one vector, call it X, and |
| // one element from the other, call it Y. First, use a shufps to build an |
| // intermediate vector with the one element from Y and the element from X |
| // that will be in the same half in the final destination (the indexes don't |
| // matter). Then, use a shufps to build the final vector, taking the half |
| // containing the element from Y from the intermediate, and the other half |
| // from X. |
| if (NumHi == 3) { |
| // Normalize it so the 3 elements come from V1. |
| CommuteVectorShuffleMask(PermMask, 4); |
| std::swap(V1, V2); |
| } |
| |
| // Find the element from V2. |
| unsigned HiIndex; |
| for (HiIndex = 0; HiIndex < 3; ++HiIndex) { |
| int Val = PermMask[HiIndex]; |
| if (Val < 0) |
| continue; |
| if (Val >= 4) |
| break; |
| } |
| |
| Mask1[0] = PermMask[HiIndex]; |
| Mask1[1] = -1; |
| Mask1[2] = PermMask[HiIndex^1]; |
| Mask1[3] = -1; |
| V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); |
| |
| if (HiIndex >= 2) { |
| Mask1[0] = PermMask[0]; |
| Mask1[1] = PermMask[1]; |
| Mask1[2] = HiIndex & 1 ? 6 : 4; |
| Mask1[3] = HiIndex & 1 ? 4 : 6; |
| return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); |
| } |
| |
| Mask1[0] = HiIndex & 1 ? 2 : 0; |
| Mask1[1] = HiIndex & 1 ? 0 : 2; |
| Mask1[2] = PermMask[2]; |
| Mask1[3] = PermMask[3]; |
| if (Mask1[2] >= 0) |
| Mask1[2] += 4; |
| if (Mask1[3] >= 0) |
| Mask1[3] += 4; |
| return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); |
| } |
| |
| // Break it into (shuffle shuffle_hi, shuffle_lo). |
| int LoMask[] = { -1, -1, -1, -1 }; |
| int HiMask[] = { -1, -1, -1, -1 }; |
| |
| int *MaskPtr = LoMask; |
| unsigned MaskIdx = 0; |
| unsigned LoIdx = 0; |
| unsigned HiIdx = 2; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (i == 2) { |
| MaskPtr = HiMask; |
| MaskIdx = 1; |
| LoIdx = 0; |
| HiIdx = 2; |
| } |
| int Idx = PermMask[i]; |
| if (Idx < 0) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else if (Idx < 4) { |
| Locs[i] = std::make_pair(MaskIdx, LoIdx); |
| MaskPtr[LoIdx] = Idx; |
| LoIdx++; |
| } else { |
| Locs[i] = std::make_pair(MaskIdx, HiIdx); |
| MaskPtr[HiIdx] = Idx; |
| HiIdx++; |
| } |
| } |
| |
| SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); |
| SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); |
| int MaskOps[] = { -1, -1, -1, -1 }; |
| for (unsigned i = 0; i != 4; ++i) |
| if (Locs[i].first != -1) |
| MaskOps[i] = Locs[i].first * 4 + Locs[i].second; |
| return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); |
| } |
| |
| static bool MayFoldVectorLoad(SDValue V) { |
| while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) |
| V = V.getOperand(0); |
| |
| if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) |
| V = V.getOperand(0); |
| if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR && |
| V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF) |
| // BUILD_VECTOR (load), undef |
| V = V.getOperand(0); |
| |
| return MayFoldLoad(V); |
| } |
| |
| static |
| SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| |
| // Canonizalize to v2f64. |
| V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64, |
| V1, DAG)); |
| } |
| |
| static |
| SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, |
| bool HasSSE2) { |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| |
| assert(VT != MVT::v2i64 && "unsupported shuffle type"); |
| |
| if (HasSSE2 && VT == MVT::v2f64) |
| return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG); |
| |
| // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1) |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1), |
| DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG)); |
| } |
| |
| static |
| SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) { |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| |
| assert((VT == MVT::v4i32 || VT == MVT::v4f32) && |
| "unsupported shuffle type"); |
| |
| if (V2.getOpcode() == ISD::UNDEF) |
| V2 = V1; |
| |
| // v4i32 or v4f32 |
| return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG); |
| } |
| |
| static |
| SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) { |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second |
| // operand of these instructions is only memory, so check if there's a |
| // potencial load folding here, otherwise use SHUFPS or MOVSD to match the |
| // same masks. |
| bool CanFoldLoad = false; |
| |
| // Trivial case, when V2 comes from a load. |
| if (MayFoldVectorLoad(V2)) |
| CanFoldLoad = true; |
| |
| // When V1 is a load, it can be folded later into a store in isel, example: |
| // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1) |
| // turns into: |
| // (MOVLPSmr addr:$src1, VR128:$src2) |
| // So, recognize this potential and also use MOVLPS or MOVLPD |
| else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op)) |
| CanFoldLoad = true; |
| |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| if (CanFoldLoad) { |
| if (HasSSE2 && NumElems == 2) |
| return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG); |
| |
| if (NumElems == 4) |
| // If we don't care about the second element, proceed to use movss. |
| if (SVOp->getMaskElt(1) != -1) |
| return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG); |
| } |
| |
| // movl and movlp will both match v2i64, but v2i64 is never matched by |
| // movl earlier because we make it strict to avoid messing with the movlp load |
| // folding logic (see the code above getMOVLP call). Match it here then, |
| // this is horrible, but will stay like this until we move all shuffle |
| // matching to x86 specific nodes. Note that for the 1st condition all |
| // types are matched with movsd. |
| if (HasSSE2) { |
| // FIXME: isMOVLMask should be checked and matched before getMOVLP, |
| // as to remove this logic from here, as much as possible |
| if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT)) |
| return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); |
| return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); |
| } |
| |
| assert(VT != MVT::v4i32 && "unsupported shuffle type"); |
| |
| // Invert the operand order and use SHUFPS to match it. |
| return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1, |
| getShuffleSHUFImmediate(SVOp), DAG); |
| } |
| |
| // Reduce a vector shuffle to zext. |
| SDValue |
| X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const { |
| // PMOVZX is only available from SSE41. |
| if (!Subtarget->hasSSE41()) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| |
| // Only AVX2 support 256-bit vector integer extending. |
| if (!Subtarget->hasInt256() && VT.is256BitVector()) |
| return SDValue(); |
| |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| DebugLoc DL = Op.getDebugLoc(); |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| // Extending is an unary operation and the element type of the source vector |
| // won't be equal to or larger than i64. |
| if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() || |
| VT.getVectorElementType() == MVT::i64) |
| return SDValue(); |
| |
| // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4. |
| unsigned Shift = 1; // Start from 2, i.e. 1 << 1. |
| while ((1U << Shift) < NumElems) { |
| if (SVOp->getMaskElt(1U << Shift) == 1) |
| break; |
| Shift += 1; |
| // The maximal ratio is 8, i.e. from i8 to i64. |
| if (Shift > 3) |
| return SDValue(); |
| } |
| |
| // Check the shuffle mask. |
| unsigned Mask = (1U << Shift) - 1; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| int EltIdx = SVOp->getMaskElt(i); |
| if ((i & Mask) != 0 && EltIdx != -1) |
| return SDValue(); |
| if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift)) |
| return SDValue(); |
| } |
| |
| LLVMContext *Context = DAG.getContext(); |
| unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift; |
| EVT NeVT = EVT::getIntegerVT(*Context, NBits); |
| EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift); |
| |
| if (!isTypeLegal(NVT)) |
| return SDValue(); |
| |
| // Simplify the operand as it's prepared to be fed into shuffle. |
| unsigned SignificantBits = NVT.getSizeInBits() >> Shift; |
| if (V1.getOpcode() == ISD::BITCAST && |
| V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && |
| V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| V1.getOperand(0) |
| .getOperand(0).getValueType().getSizeInBits() == SignificantBits) { |
| // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) |
| SDValue V = V1.getOperand(0).getOperand(0).getOperand(0); |
| ConstantSDNode *CIdx = |
| dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1)); |
| // If it's foldable, i.e. normal load with single use, we will let code |
| // selection to fold it. Otherwise, we will short the conversion sequence. |
| if (CIdx && CIdx->getZExtValue() == 0 && |
| (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) { |
| if (V.getValueSizeInBits() > V1.getValueSizeInBits()) { |
| // The "ext_vec_elt" node is wider than the result node. |
| // In this case we should extract subvector from V. |
| // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)). |
| unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits(); |
| EVT FullVT = V.getValueType(); |
| EVT SubVecVT = EVT::getVectorVT(*Context, |
| FullVT.getVectorElementType(), |
| FullVT.getVectorNumElements()/Ratio); |
| V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V, |
| DAG.getIntPtrConstant(0)); |
| } |
| V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V); |
| } |
| } |
| |
| return DAG.getNode(ISD::BITCAST, DL, VT, |
| DAG.getNode(X86ISD::VZEXT, DL, NVT, V1)); |
| } |
| |
| SDValue |
| X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| |
| if (isZeroShuffle(SVOp)) |
| return getZeroVector(VT, Subtarget, DAG, dl); |
| |
| // Handle splat operations |
| if (SVOp->isSplat()) { |
| // Use vbroadcast whenever the splat comes from a foldable load |
| SDValue Broadcast = LowerVectorBroadcast(Op, DAG); |
| if (Broadcast.getNode()) |
| return Broadcast; |
| } |
| |
| // Check integer expanding shuffles. |
| SDValue NewOp = LowerVectorIntExtend(Op, DAG); |
| if (NewOp.getNode()) |
| return NewOp; |
| |
| // If the shuffle can be profitably rewritten as a narrower shuffle, then |
| // do it! |
| if (VT == MVT::v8i16 || VT == MVT::v16i8 || |
| VT == MVT::v16i16 || VT == MVT::v32i8) { |
| SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); |
| if (NewOp.getNode()) |
| return DAG.getNode(ISD::BITCAST, dl, VT, NewOp); |
| } else if ((VT == MVT::v4i32 || |
| (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { |
| // FIXME: Figure out a cleaner way to do this. |
| // Try to make use of movq to zero out the top part. |
| if (ISD::isBuildVectorAllZeros(V2.getNode())) { |
| SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); |
| if (NewOp.getNode()) { |
| MVT NewVT = NewOp.getValueType().getSimpleVT(); |
| if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), |
| NewVT, true, false)) |
| return getVZextMovL(VT, NewVT, NewOp.getOperand(0), |
| DAG, Subtarget, dl); |
| } |
| } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { |
| SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); |
| if (NewOp.getNode()) { |
| MVT NewVT = NewOp.getValueType().getSimpleVT(); |
| if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT)) |
| return getVZextMovL(VT, NewVT, NewOp.getOperand(1), |
| DAG, Subtarget, dl); |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; |
| bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; |
| bool V1IsSplat = false; |
| bool V2IsSplat = false; |
| bool HasSSE2 = Subtarget->hasSSE2(); |
| bool HasFp256 = Subtarget->hasFp256(); |
| bool HasInt256 = Subtarget->hasInt256(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool OptForSize = MF.getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); |
| |
| assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles"); |
| |
| if (V1IsUndef && V2IsUndef) |
| return DAG.getUNDEF(VT); |
| |
| assert(!V1IsUndef && "Op 1 of shuffle should not be undef"); |
| |
| // Vector shuffle lowering takes 3 steps: |
| // |
| // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable |
| // narrowing and commutation of operands should be handled. |
| // 2) Matching of shuffles with known shuffle masks to x86 target specific |
| // shuffle nodes. |
| // 3) Rewriting of unmatched masks into new generic shuffle operations, |
| // so the shuffle can be broken into other shuffles and the legalizer can |
| // try the lowering again. |
| // |
| // The general idea is that no vector_shuffle operation should be left to |
| // be matched during isel, all of them must be converted to a target specific |
| // node here. |
| |
| // Normalize the input vectors. Here splats, zeroed vectors, profitable |
| // narrowing and commutation of operands should be handled. The actual code |
| // doesn't include all of those, work in progress... |
| SDValue NewOp = NormalizeVectorShuffle(Op, DAG); |
| if (NewOp.getNode()) |
| return NewOp; |
| |
| SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end()); |
| |
| // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and |
| // unpckh_undef). Only use pshufd if speed is more important than size. |
| if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); |
| if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); |
| |
| if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() && |
| V2IsUndef && MayFoldVectorLoad(V1)) |
| return getMOVDDup(Op, dl, V1, DAG); |
| |
| if (isMOVHLPS_v_undef_Mask(M, VT)) |
| return getMOVHighToLow(Op, dl, DAG); |
| |
| // Use to match splats |
| if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef && |
| (VT == MVT::v2f64 || VT == MVT::v2i64)) |
| return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); |
| |
| if (isPSHUFDMask(M, VT)) { |
| // The actual implementation will match the mask in the if above and then |
| // during isel it can match several different instructions, not only pshufd |
| // as its name says, sad but true, emulate the behavior for now... |
| if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64))) |
| return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG); |
| |
| unsigned TargetMask = getShuffleSHUFImmediate(SVOp); |
| |
| if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32)) |
| return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG); |
| |
| if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64)) |
| return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, |
| DAG); |
| |
| return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1, |
| TargetMask, DAG); |
| } |
| |
| // Check if this can be converted into a logical shift. |
| bool isLeft = false; |
| unsigned ShAmt = 0; |
| SDValue ShVal; |
| bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); |
| if (isShift && ShVal.hasOneUse()) { |
| // If the shifted value has multiple uses, it may be cheaper to use |
| // v_set0 + movlhps or movhlps, etc. |
| MVT EltVT = VT.getVectorElementType(); |
| ShAmt *= EltVT.getSizeInBits(); |
| return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); |
| } |
| |
| if (isMOVLMask(M, VT)) { |
| if (ISD::isBuildVectorAllZeros(V1.getNode())) |
| return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); |
| if (!isMOVLPMask(M, VT)) { |
| if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) |
| return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); |
| |
| if (VT == MVT::v4i32 || VT == MVT::v4f32) |
| return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); |
| } |
| } |
| |
| // FIXME: fold these into legal mask. |
| if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256)) |
| return getMOVLowToHigh(Op, dl, DAG, HasSSE2); |
| |
| if (isMOVHLPSMask(M, VT)) |
| return getMOVHighToLow(Op, dl, DAG); |
| |
| if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget)) |
| return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG); |
| |
| if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget)) |
| return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG); |
| |
| if (isMOVLPMask(M, VT)) |
| return getMOVLP(Op, dl, DAG, HasSSE2); |
| |
| if (ShouldXformToMOVHLPS(M, VT) || |
| ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT)) |
| return CommuteVectorShuffle(SVOp, DAG); |
| |
| if (isShift) { |
| // No better options. Use a vshldq / vsrldq. |
| MVT EltVT = VT.getVectorElementType(); |
| ShAmt *= EltVT.getSizeInBits(); |
| return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); |
| } |
| |
| bool Commuted = false; |
| // FIXME: This should also accept a bitcast of a splat? Be careful, not |
| // 1,1,1,1 -> v8i16 though. |
| V1IsSplat = isSplatVector(V1.getNode()); |
| V2IsSplat = isSplatVector(V2.getNode()); |
| |
| // Canonicalize the splat or undef, if present, to be on the RHS. |
| if (!V2IsUndef && V1IsSplat && !V2IsSplat) { |
| CommuteVectorShuffleMask(M, NumElems); |
| std::swap(V1, V2); |
| std::swap(V1IsSplat, V2IsSplat); |
| Commuted = true; |
| } |
| |
| if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) { |
| // Shuffling low element of v1 into undef, just return v1. |
| if (V2IsUndef) |
| return V1; |
| // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which |
| // the instruction selector will not match, so get a canonical MOVL with |
| // swapped operands to undo the commute. |
| return getMOVL(DAG, dl, VT, V2, V1); |
| } |
| |
| if (isUNPCKLMask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); |
| |
| if (isUNPCKHMask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); |
| |
| if (V2IsSplat) { |
| // Normalize mask so all entries that point to V2 points to its first |
| // element then try to match unpck{h|l} again. If match, return a |
| // new vector_shuffle with the corrected mask.p |
| SmallVector<int, 8> NewMask(M.begin(), M.end()); |
| NormalizeMask(NewMask, NumElems); |
| if (isUNPCKLMask(NewMask, VT, HasInt256, true)) |
| return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); |
| if (isUNPCKHMask(NewMask, VT, HasInt256, true)) |
| return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); |
| } |
| |
| if (Commuted) { |
| // Commute is back and try unpck* again. |
| // FIXME: this seems wrong. |
| CommuteVectorShuffleMask(M, NumElems); |
| std::swap(V1, V2); |
| std::swap(V1IsSplat, V2IsSplat); |
| Commuted = false; |
| |
| if (isUNPCKLMask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); |
| |
| if (isUNPCKHMask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); |
| } |
| |
| // Normalize the node to match x86 shuffle ops if needed |
| if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true))) |
| return CommuteVectorShuffle(SVOp, DAG); |
| |
| // The checks below are all present in isShuffleMaskLegal, but they are |
| // inlined here right now to enable us to directly emit target specific |
| // nodes, and remove one by one until they don't return Op anymore. |
| |
| if (isPALIGNRMask(M, VT, Subtarget)) |
| return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2, |
| getShufflePALIGNRImmediate(SVOp), |
| DAG); |
| |
| if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) && |
| SVOp->getSplatIndex() == 0 && V2IsUndef) { |
| if (VT == MVT::v2f64 || VT == MVT::v2i64) |
| return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); |
| } |
| |
| if (isPSHUFHWMask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1, |
| getShufflePSHUFHWImmediate(SVOp), |
| DAG); |
| |
| if (isPSHUFLWMask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1, |
| getShufflePSHUFLWImmediate(SVOp), |
| DAG); |
| |
| if (isSHUFPMask(M, VT, HasFp256)) |
| return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2, |
| getShuffleSHUFImmediate(SVOp), DAG); |
| |
| if (isUNPCKL_v_undef_Mask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); |
| if (isUNPCKH_v_undef_Mask(M, VT, HasInt256)) |
| return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); |
| |
| //===--------------------------------------------------------------------===// |
| // Generate target specific nodes for 128 or 256-bit shuffles only |
| // supported in the AVX instruction set. |
| // |
| |
| // Handle VMOVDDUPY permutations |
| if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256)) |
| return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG); |
| |
| // Handle VPERMILPS/D* permutations |
| if (isVPERMILPMask(M, VT, HasFp256)) { |
| if (HasInt256 && VT == MVT::v8i32) |
| return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, |
| getShuffleSHUFImmediate(SVOp), DAG); |
| return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, |
| getShuffleSHUFImmediate(SVOp), DAG); |
| } |
| |
| // Handle VPERM2F128/VPERM2I128 permutations |
| if (isVPERM2X128Mask(M, VT, HasFp256)) |
| return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1, |
| V2, getShuffleVPERM2X128Immediate(SVOp), DAG); |
| |
| SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG); |
| if (BlendOp.getNode()) |
| return BlendOp; |
| |
| if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) { |
| SmallVector<SDValue, 8> permclMask; |
| for (unsigned i = 0; i != 8; ++i) { |
| permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32)); |
| } |
| SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, |
| &permclMask[0], 8); |
| // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32 |
| return DAG.getNode(X86ISD::VPERMV, dl, VT, |
| DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1); |
| } |
| |
| if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64)) |
| return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, |
| getShuffleCLImmediate(SVOp), DAG); |
| |
| //===--------------------------------------------------------------------===// |
| // Since no target specific shuffle was selected for this generic one, |
| // lower it into other known shuffles. FIXME: this isn't true yet, but |
| // this is the plan. |
| // |
| |
| // Handle v8i16 specifically since SSE can do byte extraction and insertion. |
| if (VT == MVT::v8i16) { |
| SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG); |
| if (NewOp.getNode()) |
| return NewOp; |
| } |
| |
| if (VT == MVT::v16i8) { |
| SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); |
| if (NewOp.getNode()) |
| return NewOp; |
| } |
| |
| if (VT == MVT::v32i8) { |
| SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG); |
| if (NewOp.getNode()) |
| return NewOp; |
| } |
| |
| // Handle all 128-bit wide vectors with 4 elements, and match them with |
| // several different shuffle types. |
| if (NumElems == 4 && VT.is128BitVector()) |
| return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG); |
| |
| // Handle general 256-bit shuffles |
| if (VT.is256BitVector()) |
| return LowerVECTOR_SHUFFLE_256(SVOp, DAG); |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getValueType().getSimpleVT(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector()) |
| return SDValue(); |
| |
| if (VT.getSizeInBits() == 8) { |
| SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); |
| } |
| |
| if (VT.getSizeInBits() == 16) { |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| // If Idx is 0, it's cheaper to do a move instead of a pextrw. |
| if (Idx == 0) |
| return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getNode(ISD::BITCAST, dl, |
| MVT::v4i32, |
| Op.getOperand(0)), |
| Op.getOperand(1))); |
| SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); |
| } |
| |
| if (VT == MVT::f32) { |
| // EXTRACTPS outputs to a GPR32 register which will require a movd to copy |
| // the result back to FR32 register. It's only worth matching if the |
| // result has a single use which is a store or a bitcast to i32. And in |
| // the case of a store, it's not worth it if the index is a constant 0, |
| // because a MOVSSmr can be used instead, which is smaller and faster. |
| if (!Op.hasOneUse()) |
| return SDValue(); |
| SDNode *User = *Op.getNode()->use_begin(); |
| if ((User->getOpcode() != ISD::STORE || |
| (isa<ConstantSDNode>(Op.getOperand(1)) && |
| cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && |
| (User->getOpcode() != ISD::BITCAST || |
| User->getValueType(0) != MVT::i32)) |
| return SDValue(); |
| SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, |
| Op.getOperand(0)), |
| Op.getOperand(1)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract); |
| } |
| |
| if (VT == MVT::i32 || VT == MVT::i64) { |
| // ExtractPS/pextrq works with constant index. |
| if (isa<ConstantSDNode>(Op.getOperand(1))) |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return SDValue(); |
| |
| SDValue Vec = Op.getOperand(0); |
| MVT VecVT = Vec.getValueType().getSimpleVT(); |
| |
| // If this is a 256-bit vector result, first extract the 128-bit vector and |
| // then extract the element from the 128-bit vector. |
| if (VecVT.is256BitVector()) { |
| DebugLoc dl = Op.getNode()->getDebugLoc(); |
| unsigned NumElems = VecVT.getVectorNumElements(); |
| SDValue Idx = Op.getOperand(1); |
| unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| |
| // Get the 128-bit vector. |
| Vec = Extract128BitVector(Vec, IdxVal, DAG, dl); |
| |
| if (IdxVal >= NumElems/2) |
| IdxVal -= NumElems/2; |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, |
| DAG.getConstant(IdxVal, MVT::i32)); |
| } |
| |
| assert(VecVT.is128BitVector() && "Unexpected vector length"); |
| |
| if (Subtarget->hasSSE41()) { |
| SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); |
| if (Res.getNode()) |
| return Res; |
| } |
| |
| MVT VT = Op.getValueType().getSimpleVT(); |
| DebugLoc dl = Op.getDebugLoc(); |
| // TODO: handle v16i8. |
| if (VT.getSizeInBits() == 16) { |
| SDValue Vec = Op.getOperand(0); |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| if (Idx == 0) |
| return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getNode(ISD::BITCAST, dl, |
| MVT::v4i32, Vec), |
| Op.getOperand(1))); |
| // Transform it so it match pextrw which produces a 32-bit result. |
| MVT EltVT = MVT::i32; |
| SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); |
| } |
| |
| if (VT.getSizeInBits() == 32) { |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| if (Idx == 0) |
| return Op; |
| |
| // SHUFPS the element to the lowest double word, then movss. |
| int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 }; |
| MVT VVT = Op.getOperand(0).getValueType().getSimpleVT(); |
| SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), |
| DAG.getUNDEF(VVT), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| if (VT.getSizeInBits() == 64) { |
| // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b |
| // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught |
| // to match extract_elt for f64. |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| if (Idx == 0) |
| return Op; |
| |
| // UNPCKHPD the element to the lowest double word, then movsd. |
| // Note if the lower 64 bits of the result of the UNPCKHPD is then stored |
| // to a f64mem, the whole operation is folded into a single MOVHPDmr. |
| int Mask[2] = { 1, -1 }; |
| MVT VVT = Op.getOperand(0).getValueType().getSimpleVT(); |
| SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), |
| DAG.getUNDEF(VVT), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getValueType().getSimpleVT(); |
| MVT EltVT = VT.getVectorElementType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2 = Op.getOperand(2); |
| |
| if (!VT.is128BitVector()) |
| return SDValue(); |
| |
| if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && |
| isa<ConstantSDNode>(N2)) { |
| unsigned Opc; |
| if (VT == MVT::v8i16) |
| Opc = X86ISD::PINSRW; |
| else if (VT == MVT::v16i8) |
| Opc = X86ISD::PINSRB; |
| else |
| Opc = X86ISD::PINSRB; |
| |
| // Transform it so it match pinsr{b,w} which expects a GR32 as its second |
| // argument. |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); |
| return DAG.getNode(Opc, dl, VT, N0, N1, N2); |
| } |
| |
| if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) { |
| // Bits [7:6] of the constant are the source select. This will always be |
| // zero here. The DAG Combiner may combine an extract_elt index into these |
| // bits. For example (insert (extract, 3), 2) could be matched by putting |
| // the '3' into bits [7:6] of X86ISD::INSERTPS. |
| // Bits [5:4] of the constant are the destination select. This is the |
| // value of the incoming immediate. |
| // Bits [3:0] of the constant are the zero mask. The DAG Combiner may |
| // combine either bitwise AND or insert of float 0.0 to set these bits. |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); |
| // Create this as a scalar to vector.. |
| N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); |
| return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); |
| } |
| |
| if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) { |
| // PINSR* works with constant index. |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { |
| MVT VT = Op.getValueType().getSimpleVT(); |
| MVT EltVT = VT.getVectorElementType(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2 = Op.getOperand(2); |
| |
| // If this is a 256-bit vector result, first extract the 128-bit vector, |
| // insert the element into the extracted half and then place it back. |
| if (VT.is256BitVector()) { |
| if (!isa<ConstantSDNode>(N2)) |
| return SDValue(); |
| |
| // Get the desired 128-bit vector half. |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue(); |
| SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl); |
| |
| // Insert the element into the desired half. |
| bool Upper = IdxVal >= NumElems/2; |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, |
| DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32)); |
| |
| // Insert the changed part back to the 256-bit vector |
| return Insert128BitVector(N0, V, IdxVal, DAG, dl); |
| } |
| |
| if (Subtarget->hasSSE41()) |
| return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); |
| |
| if (EltVT == MVT::i8) |
| return SDValue(); |
| |
| if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) { |
| // Transform it so it match pinsrw which expects a 16-bit value in a GR32 |
| // as its second argument. |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); |
| return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { |
| LLVMContext *Context = DAG.getContext(); |
| DebugLoc dl = Op.getDebugLoc(); |
| MVT OpVT = Op.getValueType().getSimpleVT(); |
| |
| // If this is a 256-bit vector result, first insert into a 128-bit |
| // vector and then insert into the 256-bit vector. |
| if (!OpVT.is128BitVector()) { |
| // Insert into a 128-bit vector. |
| EVT VT128 = EVT::getVectorVT(*Context, |
| OpVT.getVectorElementType(), |
| OpVT.getVectorNumElements() / 2); |
| |
| Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); |
| |
| // Insert the 128-bit vector. |
| return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); |
| } |
| |
| if (OpVT == MVT::v1i64 && |
| Op.getOperand(0).getValueType() == MVT::i64) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); |
| |
| SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); |
| assert(OpVT.is128BitVector() && "Expected an SSE type!"); |
| return DAG.getNode(ISD::BITCAST, dl, OpVT, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt)); |
| } |
| |
| // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in |
| // a simple subregister reference or explicit instructions to grab |
| // upper bits of a vector. |
| static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| if (Subtarget->hasFp256()) { |
| DebugLoc dl = Op.getNode()->getDebugLoc(); |
| SDValue Vec = Op.getNode()->getOperand(0); |
| SDValue Idx = Op.getNode()->getOperand(1); |
| |
| if (Op.getNode()->getValueType(0).is128BitVector() && |
| Vec.getNode()->getValueType(0).is256BitVector() && |
| isa<ConstantSDNode>(Idx)) { |
| unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| return Extract128BitVector(Vec, IdxVal, DAG, dl); |
| } |
| } |
| return SDValue(); |
| } |
| |
| // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a |
| // simple superregister reference or explicit instructions to insert |
| // the upper bits of a vector. |
| static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| if (Subtarget->hasFp256()) { |
| DebugLoc dl = Op.getNode()->getDebugLoc(); |
| SDValue Vec = Op.getNode()->getOperand(0); |
| SDValue SubVec = Op.getNode()->getOperand(1); |
| SDValue Idx = Op.getNode()->getOperand(2); |
| |
| if (Op.getNode()->getValueType(0).is256BitVector() && |
| SubVec.getNode()->getValueType(0).is128BitVector() && |
| isa<ConstantSDNode>(Idx)) { |
| unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); |
| } |
| } |
| return SDValue(); |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOV32ri. |
| SDValue |
| X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| unsigned char OpFlag = 0; |
| unsigned WrapperKind = X86ISD::Wrapper; |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| WrapperKind = X86ISD::WrapperRIP; |
| else if (Subtarget->isPICStyleGOT()) |
| OpFlag = X86II::MO_GOTOFF; |
| else if (Subtarget->isPICStyleStubPIC()) |
| OpFlag = X86II::MO_PIC_BASE_OFFSET; |
| |
| SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), |
| CP->getAlignment(), |
| CP->getOffset(), OpFlag); |
| DebugLoc DL = CP->getDebugLoc(); |
| Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); |
| // With PIC, the address is actually $g + Offset. |
| if (OpFlag) { |
| Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc(), getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| unsigned char OpFlag = 0; |
| unsigned WrapperKind = X86ISD::Wrapper; |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| WrapperKind = X86ISD::WrapperRIP; |
| else if (Subtarget->isPICStyleGOT()) |
| OpFlag = X86II::MO_GOTOFF; |
| else if (Subtarget->isPICStyleStubPIC()) |
| OpFlag = X86II::MO_PIC_BASE_OFFSET; |
| |
| SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), |
| OpFlag); |
| DebugLoc DL = JT->getDebugLoc(); |
| Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (OpFlag) |
| Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc(), getPointerTy()), |
| Result); |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { |
| const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| unsigned char OpFlag = 0; |
| unsigned WrapperKind = X86ISD::Wrapper; |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) { |
| if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF()) |
| OpFlag = X86II::MO_GOTPCREL; |
| WrapperKind = X86ISD::WrapperRIP; |
| } else if (Subtarget->isPICStyleGOT()) { |
| OpFlag = X86II::MO_GOT; |
| } else if (Subtarget->isPICStyleStubPIC()) { |
| OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE; |
| } else if (Subtarget->isPICStyleStubNoDynamic()) { |
| OpFlag = X86II::MO_DARWIN_NONLAZY; |
| } |
| |
| SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); |
| |
| DebugLoc DL = Op.getDebugLoc(); |
| Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| !Subtarget->is64Bit()) { |
| Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc(), getPointerTy()), |
| Result); |
| } |
| |
| // For symbols that require a load from a stub to get the address, emit the |
| // load. |
| if (isGlobalStubReference(OpFlag)) |
| Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(), false, false, false, 0); |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { |
| // Create the TargetBlockAddressAddress node. |
| unsigned char OpFlags = |
| Subtarget->ClassifyBlockAddressReference(); |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset, |
| OpFlags); |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); |
| else |
| Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (isGlobalRelativeToPICBase(OpFlags)) { |
| Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, |
| int64_t Offset, SelectionDAG &DAG) const { |
| // Create the TargetGlobalAddress node, folding in the constant |
| // offset if it is legal. |
| unsigned char OpFlags = |
| Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| SDValue Result; |
| if (OpFlags == X86II::MO_NO_FLAG && |
| X86::isOffsetSuitableForCodeModel(Offset, M)) { |
| // A direct static reference to a global. |
| Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); |
| Offset = 0; |
| } else { |
| Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); |
| } |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); |
| else |
| Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (isGlobalRelativeToPICBase(OpFlags)) { |
| Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), |
| Result); |
| } |
| |
| // For globals that require a load from a stub to get the address, emit the |
| // load. |
| if (isGlobalStubReference(OpFlags)) |
| Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(), false, false, false, 0); |
| |
| // If there was a non-zero offset that we didn't fold, create an explicit |
| // addition for it. |
| if (Offset != 0) |
| Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, |
| DAG.getConstant(Offset, getPointerTy())); |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); |
| return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); |
| } |
| |
| static SDValue |
| GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, |
| SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, |
| unsigned char OperandFlags, bool LocalDynamic = false) { |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| DebugLoc dl = GA->getDebugLoc(); |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, |
| GA->getValueType(0), |
| GA->getOffset(), |
| OperandFlags); |
| |
| X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR |
| : X86ISD::TLSADDR; |
| |
| if (InFlag) { |
| SDValue Ops[] = { Chain, TGA, *InFlag }; |
| Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3); |
| } else { |
| SDValue Ops[] = { Chain, TGA }; |
| Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2); |
| } |
| |
| // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. |
| MFI->setAdjustsStack(true); |
| |
| SDValue Flag = Chain.getValue(1); |
| return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit |
| static SDValue |
| LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT) { |
| SDValue InFlag; |
| DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better |
| SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc(), PtrVT), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit |
| static SDValue |
| LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT) { |
| return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, |
| X86::RAX, X86II::MO_TLSGD); |
| } |
| |
| static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG, |
| const EVT PtrVT, |
| bool is64Bit) { |
| DebugLoc dl = GA->getDebugLoc(); |
| |
| // Get the start address of the TLS block for this module. |
| X86MachineFunctionInfo* MFI = DAG.getMachineFunction() |
| .getInfo<X86MachineFunctionInfo>(); |
| MFI->incNumLocalDynamicTLSAccesses(); |
| |
| SDValue Base; |
| if (is64Bit) { |
| Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX, |
| X86II::MO_TLSLD, /*LocalDynamic=*/true); |
| } else { |
| SDValue InFlag; |
| SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, |
| DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag); |
| InFlag = Chain.getValue(1); |
| Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, |
| X86II::MO_TLSLDM, /*LocalDynamic=*/true); |
| } |
| |
| // Note: the CleanupLocalDynamicTLSPass will remove redundant computations |
| // of Base. |
| |
| // Build x@dtpoff. |
| unsigned char OperandFlags = X86II::MO_DTPOFF; |
| unsigned WrapperKind = X86ISD::Wrapper; |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, |
| GA->getValueType(0), |
| GA->getOffset(), OperandFlags); |
| SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); |
| |
| // Add x@dtpoff with the base. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. |
| static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT, TLSModel::Model model, |
| bool is64Bit, bool isPIC) { |
| DebugLoc dl = GA->getDebugLoc(); |
| |
| // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). |
| Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), |
| is64Bit ? 257 : 256)); |
| |
| SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| DAG.getIntPtrConstant(0), |
| MachinePointerInfo(Ptr), |
| false, false, false, 0); |
| |
| unsigned char OperandFlags = 0; |
| // Most TLS accesses are not RIP relative, even on x86-64. One exception is |
| // initialexec. |
| unsigned WrapperKind = X86ISD::Wrapper; |
| if (model == TLSModel::LocalExec) { |
| OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; |
| } else if (model == TLSModel::InitialExec) { |
| if (is64Bit) { |
| OperandFlags = X86II::MO_GOTTPOFF; |
| WrapperKind = X86ISD::WrapperRIP; |
| } else { |
| OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; |
| } |
| } else { |
| llvm_unreachable("Unexpected model"); |
| } |
| |
| // emit "addl x@ntpoff,%eax" (local exec) |
| // or "addl x@indntpoff,%eax" (initial exec) |
| // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, |
| GA->getValueType(0), |
| GA->getOffset(), OperandFlags); |
| SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); |
| |
| if (model == TLSModel::InitialExec) { |
| if (isPIC && !is64Bit) { |
| Offset = DAG.getNode(ISD::ADD, dl, PtrVT, |
| DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), |
| Offset); |
| } |
| |
| Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, |
| MachinePointerInfo::getGOT(), false, false, false, |
| 0); |
| } |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { |
| |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = GA->getGlobal(); |
| |
| if (Subtarget->isTargetELF()) { |
| TLSModel::Model model = getTargetMachine().getTLSModel(GV); |
| |
| switch (model) { |
| case TLSModel::GeneralDynamic: |
| if (Subtarget->is64Bit()) |
| return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); |
| return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); |
| case TLSModel::LocalDynamic: |
| return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(), |
| Subtarget->is64Bit()); |
| case TLSModel::InitialExec: |
| case TLSModel::LocalExec: |
| return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, |
| Subtarget->is64Bit(), |
| getTargetMachine().getRelocationModel() == Reloc::PIC_); |
| } |
| llvm_unreachable("Unknown TLS model."); |
| } |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Darwin only has one model of TLS. Lower to that. |
| unsigned char OpFlag = 0; |
| unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? |
| X86ISD::WrapperRIP : X86ISD::Wrapper; |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) && |
| !Subtarget->is64Bit(); |
| if (PIC32) |
| OpFlag = X86II::MO_TLVP_PIC_BASE; |
| else |
| OpFlag = X86II::MO_TLVP; |
| DebugLoc DL = Op.getDebugLoc(); |
| SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, |
| GA->getValueType(0), |
| GA->getOffset(), OpFlag); |
| SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); |
| |
| // With PIC32, the address is actually $g + Offset. |
| if (PIC32) |
| Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc(), getPointerTy()), |
| Offset); |
| |
| // Lowering the machine isd will make sure everything is in the right |
| // location. |
| SDValue Chain = DAG.getEntryNode(); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Args[] = { Chain, Offset }; |
| Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2); |
| |
| // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setAdjustsStack(true); |
| |
| // And our return value (tls address) is in the standard call return value |
| // location. |
| unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; |
| return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(), |
| Chain.getValue(1)); |
| } |
| |
| if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) { |
| // Just use the implicit TLS architecture |
| // Need to generate someting similar to: |
| // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage |
| // ; from TEB |
| // mov ecx, dword [rel _tls_index]: Load index (from C runtime) |
| // mov rcx, qword [rdx+rcx*8] |
| // mov eax, .tls$:tlsvar |
| // [rax+rcx] contains the address |
| // Windows 64bit: gs:0x58 |
| // Windows 32bit: fs:__tls_array |
| |
| // If GV is an alias then use the aliasee for determining |
| // thread-localness. |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) |
| GV = GA->resolveAliasedGlobal(false); |
| DebugLoc dl = GA->getDebugLoc(); |
| SDValue Chain = DAG.getEntryNode(); |
| |
| // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or |
| // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly |
| // use its literal value of 0x2C. |
| Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() |
| ? Type::getInt8PtrTy(*DAG.getContext(), |
| 256) |
| : Type::getInt32PtrTy(*DAG.getContext(), |
| 257)); |
| |
| SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) : |
| (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) : |
| DAG.getExternalSymbol("_tls_array", getPointerTy())); |
| |
| SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray, |
| MachinePointerInfo(Ptr), |
| false, false, false, 0); |
| |
| // Load the _tls_index variable |
| SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy()); |
| if (Subtarget->is64Bit()) |
| IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain, |
| IDX, MachinePointerInfo(), MVT::i32, |
| false, false, 0); |
| else |
| IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(), |
| false, false, false, 0); |
| |
| SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()), |
| getPointerTy()); |
| IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale); |
| |
| SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX); |
| res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(), |
| false, false, false, 0); |
| |
| // Get the offset of start of .tls section |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, |
| GA->getValueType(0), |
| GA->getOffset(), X86II::MO_SECREL); |
| SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA); |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset); |
| } |
| |
| llvm_unreachable("TLS not implemented for this target."); |
| } |
| |
| /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values |
| /// and take a 2 x i32 value to shift plus a shift amount. |
| SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{ |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, |
| DAG.getConstant(VTBits - 1, MVT::i8)) |
| : DAG.getConstant(0, VT); |
| |
| SDValue Tmp2, Tmp3; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); |
| Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| } else { |
| Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); |
| Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); |
| } |
| |
| SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, |
| DAG.getConstant(VTBits, MVT::i8)); |
| SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, |
| AndNode, DAG.getConstant(0, MVT::i8)); |
| |
| SDValue Hi, Lo; |
| SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; |
| SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; |
| |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); |
| Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); |
| } else { |
| Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); |
| Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); |
| } |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT SrcVT = Op.getOperand(0).getValueType(); |
| |
| if (SrcVT.isVector()) |
| return SDValue(); |
| |
| assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && |
| "Unknown SINT_TO_FP to lower!"); |
| |
| // These are really Legal; return the operand so the caller accepts it as |
| // Legal. |
| if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) |
| return Op; |
| if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && |
| Subtarget->is64Bit()) { |
| return Op; |
| } |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Size = SrcVT.getSizeInBits()/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), |
| StackSlot, |
| MachinePointerInfo::getFixedStack(SSFI), |
| false, false, 0); |
| return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); |
| } |
| |
| SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, |
| SDValue StackSlot, |
| SelectionDAG &DAG) const { |
| // Build the FILD |
| DebugLoc DL = Op.getDebugLoc(); |
| SDVTList Tys; |
| bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); |
| if (useSSE) |
| Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); |
| else |
| Tys = DAG.getVTList(Op.getValueType(), MVT::Other); |
| |
| unsigned ByteSize = SrcVT.getSizeInBits()/8; |
| |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot); |
| MachineMemOperand *MMO; |
| if (FI) { |
| int SSFI = FI->getIndex(); |
| MMO = |
| DAG.getMachineFunction() |
| .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), |
| MachineMemOperand::MOLoad, ByteSize, ByteSize); |
| } else { |
| MMO = cast<LoadSDNode>(StackSlot)->getMemOperand(); |
| StackSlot = StackSlot.getOperand(1); |
| } |
| SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; |
| SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : |
| X86ISD::FILD, DL, |
| Tys, Ops, array_lengthof(Ops), |
| SrcVT, MMO); |
| |
| if (useSSE) { |
| Chain = Result.getValue(1); |
| SDValue InFlag = Result.getValue(2); |
| |
| // FIXME: Currently the FST is flagged to the FILD_FLAG. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned SSFISize = Op.getValueType().getSizeInBits()/8; |
| int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys = DAG.getVTList(MVT::Other); |
| SDValue Ops[] = { |
| Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag |
| }; |
| MachineMemOperand *MMO = |
| DAG.getMachineFunction() |
| .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), |
| MachineMemOperand::MOStore, SSFISize, SSFISize); |
| |
| Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, |
| Ops, array_lengthof(Ops), |
| Op.getValueType(), MMO); |
| Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot, |
| MachinePointerInfo::getFixedStack(SSFI), |
| false, false, false, 0); |
| } |
| |
| return Result; |
| } |
| |
| // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. |
| SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, |
| SelectionDAG &DAG) const { |
| // This algorithm is not obvious. Here it is what we're trying to output: |
| /* |
| movq %rax, %xmm0 |
| punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } |
| subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } |
| #ifdef __SSE3__ |
| haddpd %xmm0, %xmm0 |
| #else |
| pshufd $0x4e, %xmm0, %xmm1 |
| addpd %xmm1, %xmm0 |
| #endif |
| */ |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| LLVMContext *Context = DAG.getContext(); |
| |
| // Build some magic constants. |
| const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; |
| Constant *C0 = ConstantDataVector::get(*Context, CV0); |
| SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); |
| |
| SmallVector<Constant*,2> CV1; |
| CV1.push_back( |
| ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, |
| APInt(64, 0x4330000000000000ULL)))); |
| CV1.push_back( |
| ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, |
| APInt(64, 0x4530000000000000ULL)))); |
| Constant *C1 = ConstantVector::get(CV1); |
| SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); |
| |
| // Load the 64-bit value into an XMM register. |
| SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, |
| Op.getOperand(0)); |
| SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 16); |
| SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1), |
| CLod0); |
| |
| SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 16); |
| SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1); |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); |
| SDValue Result; |
| |
| if (Subtarget->hasSSE3()) { |
| // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. |
| Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); |
| } else { |
| SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub); |
| SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32, |
| S2F, 0x4E, DAG); |
| Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle), |
| Sub); |
| } |
| |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. |
| SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| // FP constant to bias correct the final result. |
| SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), |
| MVT::f64); |
| |
| // Load the 32-bit value into an XMM register. |
| SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, |
| Op.getOperand(0)); |
| |
| // Zero out the upper parts of the register. |
| Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); |
| |
| Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load), |
| DAG.getIntPtrConstant(0)); |
| |
| // Or the load with the bias. |
| SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| MVT::v2f64, Load)), |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| MVT::v2f64, Bias))); |
| Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or), |
| DAG.getIntPtrConstant(0)); |
| |
| // Subtract the bias. |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); |
| |
| // Handle final rounding. |
| EVT DestVT = Op.getValueType(); |
| |
| if (DestVT.bitsLT(MVT::f64)) |
| return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, |
| DAG.getIntPtrConstant(0)); |
| if (DestVT.bitsGT(MVT::f64)) |
| return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); |
| |
| // Handle final rounding. |
| return Sub; |
| } |
| |
| SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue N0 = Op.getOperand(0); |
| EVT SVT = N0.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 || |
| SVT == MVT::v8i8 || SVT == MVT::v8i16) && |
| "Custom UINT_TO_FP is not supported!"); |
| |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| SVT.getVectorNumElements()); |
| return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), |
| DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0)); |
| } |
| |
| SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue N0 = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (Op.getValueType().isVector()) |
| return lowerUINT_TO_FP_vec(Op, DAG); |
| |
| // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't |
| // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform |
| // the optimization here. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); |
| |
| EVT SrcVT = N0.getValueType(); |
| EVT DstVT = Op.getValueType(); |
| if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) |
| return LowerUINT_TO_FP_i64(Op, DAG); |
| if (SrcVT == MVT::i32 && X86ScalarSSEf64) |
| return LowerUINT_TO_FP_i32(Op, DAG); |
| if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) |
| return SDValue(); |
| |
| // Make a 64-bit buffer, and use it to build an FILD. |
| SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); |
| if (SrcVT == MVT::i32) { |
| SDValue WordOff = DAG.getConstant(4, getPointerTy()); |
| SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, |
| getPointerTy(), StackSlot, WordOff); |
| SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), |
| StackSlot, MachinePointerInfo(), |
| false, false, 0); |
| SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), |
| OffsetSlot, MachinePointerInfo(), |
| false, false, 0); |
| SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); |
| return Fild; |
| } |
| |
| assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); |
| SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), |
| StackSlot, MachinePointerInfo(), |
| false, false, 0); |
| // For i64 source, we need to add the appropriate power of 2 if the input |
| // was negative. This is the same as the optimization in |
| // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, |
| // we must be careful to do the computation in x87 extended precision, not |
| // in SSE. (The generic code can't know it's OK to do this, or how to.) |
| int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); |
| MachineMemOperand *MMO = |
| DAG.getMachineFunction() |
| .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), |
| MachineMemOperand::MOLoad, 8, 8); |
| |
| SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); |
| SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; |
| SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3, |
| MVT::i64, MMO); |
| |
| APInt FF(32, 0x5F800000ULL); |
| |
| // Check whether the sign bit is set. |
| SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), |
| Op.getOperand(0), DAG.getConstant(0, MVT::i64), |
| ISD::SETLT); |
| |
| // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. |
| SDValue FudgePtr = DAG.getConstantPool( |
| ConstantInt::get(*DAG.getContext(), FF.zext(64)), |
| getPointerTy()); |
| |
| // Get a pointer to FF if the sign bit was set, or to 0 otherwise. |
| SDValue Zero = DAG.getIntPtrConstant(0); |
| SDValue Four = DAG.getIntPtrConstant(4); |
| SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, |
| Zero, Four); |
| FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset); |
| |
| // Load the value out, extending it from f32 to f80. |
| // FIXME: Avoid the extend by constructing the right constant pool? |
| SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), |
| FudgePtr, MachinePointerInfo::getConstantPool(), |
| MVT::f32, false, false, 4); |
| // Extend everything to 80 bits to force it to be done on x87. |
| SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); |
| return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); |
| } |
| |
| std::pair<SDValue,SDValue> |
| X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, |
| bool IsSigned, bool IsReplace) const { |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| EVT DstTy = Op.getValueType(); |
| |
| if (!IsSigned && !isIntegerTypeFTOL(DstTy)) { |
| assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); |
| DstTy = MVT::i64; |
| } |
| |
| assert(DstTy.getSimpleVT() <= MVT::i64 && |
| DstTy.getSimpleVT() >= MVT::i16 && |
| "Unknown FP_TO_INT to lower!"); |
| |
| // These are really Legal. |
| if (DstTy == MVT::i32 && |
| isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) |
| return std::make_pair(SDValue(), SDValue()); |
| if (Subtarget->is64Bit() && |
| DstTy == MVT::i64 && |
| isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) |
| return std::make_pair(SDValue(), SDValue()); |
| |
| // We lower FP->int64 either into FISTP64 followed by a load from a temporary |
| // stack slot, or into the FTOL runtime function. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MemSize = DstTy.getSizeInBits()/8; |
| int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| unsigned Opc; |
| if (!IsSigned && isIntegerTypeFTOL(DstTy)) |
| Opc = X86ISD::WIN_FTOL; |
| else |
| switch (DstTy.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); |
| case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| } |
| |
| SDValue Chain = DAG.getEntryNode(); |
| SDValue Value = Op.getOperand(0); |
| EVT TheVT = Op.getOperand(0).getValueType(); |
| // FIXME This causes a redundant load/store if the SSE-class value is already |
| // in memory, such as if it is on the callstack. |
| if (isScalarFPTypeInSSEReg(TheVT)) { |
| assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); |
| Chain = DAG.getStore(Chain, DL, Value, StackSlot, |
| MachinePointerInfo::getFixedStack(SSFI), |
| false, false, 0); |
| SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); |
| SDValue Ops[] = { |
| Chain, StackSlot, DAG.getValueType(TheVT) |
| }; |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), |
| MachineMemOperand::MOLoad, MemSize, MemSize); |
| Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3, |
| DstTy, MMO); |
| Chain = Value.getValue(1); |
| SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); |
| StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| } |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), |
| MachineMemOperand::MOStore, MemSize, MemSize); |
| |
| if (Opc != X86ISD::WIN_FTOL) { |
| // Build the FP_TO_INT*_IN_MEM |
| SDValue Ops[] = { Chain, Value, StackSlot }; |
| SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), |
| Ops, 3, DstTy, MMO); |
| return std::make_pair(FIST, StackSlot); |
| } else { |
| SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL, |
| DAG.getVTList(MVT::Other, MVT::Glue), |
| Chain, Value); |
| SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX, |
| MVT::i32, ftol.getValue(1)); |
| SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX, |
| MVT::i32, eax.getValue(2)); |
| SDValue Ops[] = { eax, edx }; |
| SDValue pair = IsReplace |
| ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2) |
| : DAG.getMergeValues(Ops, 2, DL); |
| return std::make_pair(pair, SDValue()); |
| } |
| } |
| |
| static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| MVT VT = Op->getValueType(0).getSimpleVT(); |
| SDValue In = Op->getOperand(0); |
| MVT InVT = In.getValueType().getSimpleVT(); |
| DebugLoc dl = Op->getDebugLoc(); |
| |
| // Optimize vectors in AVX mode: |
| // |
| // v8i16 -> v8i32 |
| // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. |
| // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. |
| // Concat upper and lower parts. |
| // |
| // v4i32 -> v4i64 |
| // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. |
| // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. |
| // Concat upper and lower parts. |
| // |
| |
| if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) && |
| ((VT != MVT::v4i64) || (InVT != MVT::v4i32))) |
| return SDValue(); |
| |
| if (Subtarget->hasInt256()) |
| return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In); |
| |
| SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); |
| SDValue Undef = DAG.getUNDEF(InVT); |
| bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; |
| SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); |
| SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); |
| |
| MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), |
| VT.getVectorNumElements()/2); |
| |
| OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo); |
| OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); |
| } |
| |
| SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Subtarget->hasFp256()) { |
| SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); |
| if (Res.getNode()) |
| return Res; |
| } |
| |
| return SDValue(); |
| } |
| SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc DL = Op.getDebugLoc(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| SDValue In = Op.getOperand(0); |
| MVT SVT = In.getValueType().getSimpleVT(); |
| |
| if (Subtarget->hasFp256()) { |
| SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); |
| if (Res.getNode()) |
| return Res; |
| } |
| |
| if (!VT.is256BitVector() || !SVT.is128BitVector() || |
| VT.getVectorNumElements() != SVT.getVectorNumElements()) |
| return SDValue(); |
| |
| assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!"); |
| |
| // AVX2 has better support of integer extending. |
| if (Subtarget->hasInt256()) |
| return DAG.getNode(X86ISD::VZEXT, DL, VT, In); |
| |
| SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In); |
| static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1}; |
| SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, |
| DAG.getVectorShuffle(MVT::v8i16, DL, In, |
| DAG.getUNDEF(MVT::v8i16), |
| &Mask[0])); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi); |
| } |
| |
| SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { |
| DebugLoc DL = Op.getDebugLoc(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| SDValue In = Op.getOperand(0); |
| MVT SVT = In.getValueType().getSimpleVT(); |
| |
| if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) { |
| // On AVX2, v4i64 -> v4i32 becomes VPERMD. |
| if (Subtarget->hasInt256()) { |
| static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; |
| In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In); |
| In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32), |
| ShufMask); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS. |
| SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, |
| DAG.getIntPtrConstant(0)); |
| SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, |
| DAG.getIntPtrConstant(2)); |
| |
| OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); |
| OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); |
| |
| // The PSHUFD mask: |
| static const int ShufMask1[] = {0, 2, 0, 0}; |
| SDValue Undef = DAG.getUNDEF(VT); |
| OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1); |
| OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1); |
| |
| // The MOVLHPS mask: |
| static const int ShufMask2[] = {0, 1, 4, 5}; |
| return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2); |
| } |
| |
| if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) { |
| // On AVX2, v8i32 -> v8i16 becomed PSHUFB. |
| if (Subtarget->hasInt256()) { |
| In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In); |
| |
| SmallVector<SDValue,32> pshufbMask; |
| for (unsigned i = 0; i < 2; ++i) { |
| pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8)); |
| for (unsigned j = 0; j < 8; ++j) |
| pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); |
| } |
| SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, |
| &pshufbMask[0], 32); |
| In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV); |
| In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In); |
| |
| static const int ShufMask[] = {0, 2, -1, -1}; |
| In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64), |
| &ShufMask[0]); |
| In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, |
| DAG.getIntPtrConstant(0)); |
| return DAG.getNode(ISD::BITCAST, DL, VT, In); |
| } |
| |
| SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, |
| DAG.getIntPtrConstant(0)); |
| |
| SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, |
| DAG.getIntPtrConstant(4)); |
| |
| OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo); |
| OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi); |
| |
| // The PSHUFB mask: |
| static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, |
| -1, -1, -1, -1, -1, -1, -1, -1}; |
| |
| SDValue Undef = DAG.getUNDEF(MVT::v16i8); |
| OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1); |
| OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1); |
| |
| OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); |
| OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); |
| |
| // The MOVLHPS Mask: |
| static const int ShufMask2[] = {0, 1, 4, 5}; |
| SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); |
| return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res); |
| } |
| |
| // Handle truncation of V256 to V128 using shuffles. |
| if (!VT.is128BitVector() || !SVT.is256BitVector()) |
| return SDValue(); |
| |
| assert(VT.getVectorNumElements() != SVT.getVectorNumElements() && |
| "Invalid op"); |
| assert(Subtarget->hasFp256() && "256-bit vector without AVX!"); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), |
| NumElems * 2); |
| |
| SmallVector<int, 16> MaskVec(NumElems * 2, -1); |
| // Prepare truncation shuffle mask |
| for (unsigned i = 0; i != NumElems; ++i) |
| MaskVec[i] = i * 2; |
| SDValue V = DAG.getVectorShuffle(NVT, DL, |
| DAG.getNode(ISD::BITCAST, DL, NVT, In), |
| DAG.getUNDEF(NVT), &MaskVec[0]); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, |
| SelectionDAG &DAG) const { |
| MVT VT = Op.getValueType().getSimpleVT(); |
| if (VT.isVector()) { |
| if (VT == MVT::v8i16) |
| return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT, |
| DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(), |
| MVT::v8i32, Op.getOperand(0))); |
| return SDValue(); |
| } |
| |
| std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, |
| /*IsSigned=*/ true, /*IsReplace=*/ false); |
| SDValue FIST = Vals.first, StackSlot = Vals.second; |
| // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. |
| if (FIST.getNode() == 0) return Op; |
| |
| if (StackSlot.getNode()) |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), |
| FIST, StackSlot, MachinePointerInfo(), |
| false, false, false, 0); |
| |
| // The node is the result. |
| return FIST; |
| } |
| |
| SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, |
| SelectionDAG &DAG) const { |
| std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, |
| /*IsSigned=*/ false, /*IsReplace=*/ false); |
| SDValue FIST = Vals.first, StackSlot = Vals.second; |
| assert(FIST.getNode() && "Unexpected failure"); |
| |
| if (StackSlot.getNode()) |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), |
| FIST, StackSlot, MachinePointerInfo(), |
| false, false, false, 0); |
| |
| // The node is the result. |
| return FIST; |
| } |
| |
| static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc DL = Op.getDebugLoc(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| SDValue In = Op.getOperand(0); |
| MVT SVT = In.getValueType().getSimpleVT(); |
| |
| assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); |
| |
| return DAG.getNode(X86ISD::VFPEXT, DL, VT, |
| DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, |
| In, DAG.getUNDEF(SVT))); |
| } |
| |
| SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const { |
| LLVMContext *Context = DAG.getContext(); |
| DebugLoc dl = Op.getDebugLoc(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| MVT EltVT = VT; |
| unsigned NumElts = VT == MVT::f64 ? 2 : 4; |
| if (VT.isVector()) { |
| EltVT = VT.getVectorElementType(); |
| NumElts = VT.getVectorNumElements(); |
| } |
| Constant *C; |
| if (EltVT == MVT::f64) |
| C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, |
| APInt(64, ~(1ULL << 63)))); |
| else |
| C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle, |
| APInt(32, ~(1U << 31)))); |
| C = ConstantVector::getSplat(NumElts, C); |
| SDValue CPIdx = DAG.getConstantPool(C, getPointerTy()); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, Alignment); |
| if (VT.isVector()) { |
| MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| DAG.getNode(ISD::AND, dl, ANDVT, |
| DAG.getNode(ISD::BITCAST, dl, ANDVT, |
| Op.getOperand(0)), |
| DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask))); |
| } |
| return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); |
| } |
| |
| SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { |
| LLVMContext *Context = DAG.getContext(); |
| DebugLoc dl = Op.getDebugLoc(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| MVT EltVT = VT; |
| unsigned NumElts = VT == MVT::f64 ? 2 : 4; |
| if (VT.isVector()) { |
| EltVT = VT.getVectorElementType(); |
| NumElts = VT.getVectorNumElements(); |
| } |
| Constant *C; |
| if (EltVT == MVT::f64) |
| C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, |
| APInt(64, 1ULL << 63))); |
| else |
| C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle, |
| APInt(32, 1U << 31))); |
| C = ConstantVector::getSplat(NumElts, C); |
| SDValue CPIdx = DAG.getConstantPool(C, getPointerTy()); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, Alignment); |
| if (VT.isVector()) { |
| MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| DAG.getNode(ISD::XOR, dl, XORVT, |
| DAG.getNode(ISD::BITCAST, dl, XORVT, |
| Op.getOperand(0)), |
| DAG.getNode(ISD::BITCAST, dl, XORVT, Mask))); |
| } |
| |
| return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); |
| } |
| |
| SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { |
| LLVMContext *Context = DAG.getContext(); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| MVT SrcVT = Op1.getValueType().getSimpleVT(); |
| |
| // If second operand is smaller, extend it first. |
| if (SrcVT.bitsLT(VT)) { |
| Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); |
| SrcVT = VT; |
| } |
| // And if it is bigger, shrink it first. |
| if (SrcVT.bitsGT(VT)) { |
| Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); |
| SrcVT = VT; |
| } |
| |
| // At this point the operands and the result should have the same |
| // type, and that won't be f80 since that is not custom lowered. |
| |
| // First get the sign bit of second operand. |
| SmallVector<Constant*,4> CV; |
| if (SrcVT == MVT::f64) { |
| const fltSemantics &Sem = APFloat::IEEEdouble; |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0)))); |
| } else { |
| const fltSemantics &Sem = APFloat::IEEEsingle; |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); |
| } |
| Constant *C = ConstantVector::get(CV); |
| SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); |
| SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 16); |
| SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); |
| |
| // Shift sign bit right or left if the two operands have different types. |
| if (SrcVT.bitsGT(VT)) { |
| // Op0 is MVT::f32, Op1 is MVT::f64. |
| SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); |
| SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, |
| DAG.getConstant(32, MVT::i32)); |
| SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit); |
| SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| // Clear first operand sign bit. |
| CV.clear(); |
| if (VT == MVT::f64) { |
| const fltSemantics &Sem = APFloat::IEEEdouble; |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, |
| APInt(64, ~(1ULL << 63))))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0)))); |
| } else { |
| const fltSemantics &Sem = APFloat::IEEEsingle; |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, |
| APInt(32, ~(1U << 31))))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); |
| } |
| C = ConstantVector::get(CV); |
| CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); |
| SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(), |
| false, false, false, 16); |
| SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); |
| |
| // Or the value with the sign bit. |
| return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); |
| } |
| |
| static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { |
| SDValue N0 = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| |
| // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). |
| SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, |
| DAG.getConstant(1, VT)); |
| return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT)); |
| } |
| |
| // LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able. |
| // |
| SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); |
| |
| if (!Subtarget->hasSSE41()) |
| return SDValue(); |
| |
| if (!Op->hasOneUse()) |
| return SDValue(); |
| |
| SDNode *N = Op.getNode(); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| SmallVector<SDValue, 8> Opnds; |
| DenseMap<SDValue, unsigned> VecInMap; |
| EVT VT = MVT::Other; |
| |
| // Recognize a special case where a vector is casted into wide integer to |
| // test all 0s. |
| Opnds.push_back(N->getOperand(0)); |
| Opnds.push_back(N->getOperand(1)); |
| |
| for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { |
| SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot; |
| // BFS traverse all OR'd operands. |
| if (I->getOpcode() == ISD::OR) { |
| Opnds.push_back(I->getOperand(0)); |
| Opnds.push_back(I->getOperand(1)); |
| // Re-evaluate the number of nodes to be traversed. |
| e += 2; // 2 more nodes (LHS and RHS) are pushed. |
| continue; |
| } |
| |
| // Quit if a non-EXTRACT_VECTOR_ELT |
| if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| // Quit if without a constant index. |
| SDValue Idx = I->getOperand(1); |
| if (!isa<ConstantSDNode>(Idx)) |
| return SDValue(); |
| |
| SDValue ExtractedFromVec = I->getOperand(0); |
| DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec); |
| if (M == VecInMap.end()) { |
| VT = ExtractedFromVec.getValueType(); |
| // Quit if not 128/256-bit vector. |
| if (!VT.is128BitVector() && !VT.is256BitVector()) |
| return SDValue(); |
| // Quit if not the same type. |
| if (VecInMap.begin() != VecInMap.end() && |
| VT != VecInMap.begin()->first.getValueType()) |
| return SDValue(); |
| M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; |
| } |
| M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue(); |
| } |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Not extracted from 128-/256-bit vector."); |
| |
| unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; |
| SmallVector<SDValue, 8> VecIns; |
| |
| for (DenseMap<SDValue, unsigned>::const_iterator |
| I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { |
| // Quit if not all elements are used. |
| if (I->second != FullMask) |
| return SDValue(); |
| VecIns.push_back(I->first); |
| } |
| |
| EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; |
| |
| // Cast all vectors into TestVT for PTEST. |
| for (unsigned i = 0, e = VecIns.size(); i < e; ++i) |
| VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]); |
| |
| // If more than one full vectors are evaluated, OR them first before PTEST. |
| for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { |
| // Each iteration will OR 2 nodes and append the result until there is only |
| // 1 node left, i.e. the final OR'd value of all vectors. |
| SDValue LHS = VecIns[Slot]; |
| SDValue RHS = VecIns[Slot + 1]; |
| VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); |
| } |
| |
| return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, |
| VecIns.back(), VecIns.back()); |
| } |
| |
| /// Emit nodes that will be selected as "test Op0,Op0", or something |
| /// equivalent. |
| SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // CF and OF aren't always set the way we want. Determine which |
| // of these we need. |
| bool NeedCF = false; |
| bool NeedOF = false; |
| switch (X86CC) { |
| default: break; |
| case X86::COND_A: case X86::COND_AE: |
| case X86::COND_B: case X86::COND_BE: |
| NeedCF = true; |
| break; |
| case X86::COND_G: case X86::COND_GE: |
| case X86::COND_L: case X86::COND_LE: |
| case X86::COND_O: case X86::COND_NO: |
| NeedOF = true; |
| break; |
| } |
| |
| // See if we can use the EFLAGS value from the operand instead of |
| // doing a separate TEST. TEST always sets OF and CF to 0, so unless |
| // we prove that the arithmetic won't overflow, we can't use OF or CF. |
| if (Op.getResNo() != 0 || NeedOF || NeedCF) |
| // Emit a CMP with 0, which is the TEST pattern. |
| return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, |
| DAG.getConstant(0, Op.getValueType())); |
| |
| unsigned Opcode = 0; |
| unsigned NumOperands = 0; |
| |
| // Truncate operations may prevent the merge of the SETCC instruction |
| // and the arithmetic intruction before it. Attempt to truncate the operands |
| // of the arithmetic instruction and use a reduced bit-width instruction. |
| bool NeedTruncation = false; |
| SDValue ArithOp = Op; |
| if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { |
| SDValue Arith = Op->getOperand(0); |
| // Both the trunc and the arithmetic op need to have one user each. |
| if (Arith->hasOneUse()) |
| switch (Arith.getOpcode()) { |
| default: break; |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| NeedTruncation = true; |
| ArithOp = Arith; |
| } |
| } |
| } |
| |
| // NOTICE: In the code below we use ArithOp to hold the arithmetic operation |
| // which may be the result of a CAST. We use the variable 'Op', which is the |
| // non-casted variable when we check for possible users. |
| switch (ArithOp.getOpcode()) { |
| case ISD::ADD: |
| // Due to an isel shortcoming, be conservative if this add is likely to be |
| // selected as part of a load-modify-store instruction. When the root node |
| // in a match is a store, isel doesn't know how to remap non-chain non-flag |
| // uses of other nodes in the match, such as the ADD in this case. This |
| // leads to the ADD being left around and reselected, with the result being |
| // two adds in the output. Alas, even if none our users are stores, that |
| // doesn't prove we're O.K. Ergo, if we have any parents that aren't |
| // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require |
| // climbing the DAG back to the root, and it doesn't seem to be worth the |
| // effort. |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) |
| if (UI->getOpcode() != ISD::CopyToReg && |
| UI->getOpcode() != ISD::SETCC && |
| UI->getOpcode() != ISD::STORE) |
| goto default_case; |
| |
| if (ConstantSDNode *C = |
| dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) { |
| // An add of one will be selected as an INC. |
| if (C->getAPIntValue() == 1) { |
| Opcode = X86ISD::INC; |
| NumOperands = 1; |
| break; |
| } |
| |
| // An add of negative one (subtract of one) will be selected as a DEC. |
| if (C->getAPIntValue().isAllOnesValue()) { |
| Opcode = X86ISD::DEC; |
| NumOperands = 1; |
| break; |
| } |
| } |
| |
| // Otherwise use a regular EFLAGS-setting add. |
| Opcode = X86ISD::ADD; |
| NumOperands = 2; |
| break; |
| case ISD::AND: { |
| // If the primary and result isn't used, don't bother using X86ISD::AND, |
| // because a TEST instruction will be better. |
| bool NonFlagUse = false; |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| unsigned UOpNo = UI.getOperandNo(); |
| if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { |
| // Look pass truncate. |
| UOpNo = User->use_begin().getOperandNo(); |
| User = *User->use_begin(); |
| } |
| |
| if (User->getOpcode() != ISD::BRCOND && |
| User->getOpcode() != ISD::SETCC && |
| !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) { |
| NonFlagUse = true; |
| break; |
| } |
| } |
| |
| if (!NonFlagUse) |
| break; |
| } |
| // FALL THROUGH |
| case ISD::SUB: |
| case ISD::OR: |
| case ISD::XOR: |
| // Due to the ISEL shortcoming noted above, be conservative if this op is |
| // likely to be selected as part of a load-modify-store instruction. |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) |
| if (UI->getOpcode() == ISD::STORE) |
| goto default_case; |
| |
| // Otherwise use a regular EFLAGS-setting instruction. |
| switch (ArithOp.getOpcode()) { |
| default: llvm_unreachable("unexpected operator!"); |
| case ISD::SUB: Opcode = X86ISD::SUB; break; |
| case ISD::XOR: Opcode = X86ISD::XOR; break; |
| case ISD::AND: Opcode = X86ISD::AND; break; |
| case ISD::OR: { |
| if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) { |
| SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG); |
| if (EFLAGS.getNode()) |
| return EFLAGS; |
| } |
| Opcode = X86ISD::OR; |
| break; |
| } |
| } |
| |
| NumOperands = 2; |
| break; |
| case X86ISD::ADD: |
| case X86ISD::SUB: |
| case X86ISD::INC: |
| case X86ISD::DEC: |
| case X86ISD::OR: |
| case X86ISD::XOR: |
| case X86ISD::AND: |
| return SDValue(Op.getNode(), 1); |
| default: |
| default_case: |
| break; |
| } |
| |
| // If we found that truncation is beneficial, perform the truncation and |
| // update 'Op'. |
| if (NeedTruncation) { |
| EVT VT = Op.getValueType(); |
| SDValue WideVal = Op->getOperand(0); |
| EVT WideVT = WideVal.getValueType(); |
| unsigned ConvertedOp = 0; |
| // Use a target machine opcode to prevent further DAGCombine |
| // optimizations that may separate the arithmetic operations |
| // from the setcc node. |
| switch (WideVal.getOpcode()) { |
| default: break; |
| case ISD::ADD: ConvertedOp = X86ISD::ADD; break; |
| case ISD::SUB: ConvertedOp = X86ISD::SUB; break; |
| case ISD::AND: ConvertedOp = X86ISD::AND; break; |
| case ISD::OR: ConvertedOp = X86ISD::OR; break; |
| case ISD::XOR: ConvertedOp = X86ISD::XOR; break; |
| } |
| |
| if (ConvertedOp) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { |
| SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); |
| SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); |
| Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1); |
| } |
| } |
| } |
| |
| if (Opcode == 0) |
| // Emit a CMP with 0, which is the TEST pattern. |
| return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, |
| DAG.getConstant(0, Op.getValueType())); |
| |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| SmallVector<SDValue, 4> Ops; |
| for (unsigned i = 0; i != NumOperands; ++i) |
| Ops.push_back(Op.getOperand(i)); |
| |
| SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); |
| DAG.ReplaceAllUsesWith(Op, New); |
| return SDValue(New.getNode(), 1); |
| } |
| |
| /// Emit nodes that will be selected as "cmp Op0,Op1", or something |
| /// equivalent. |
| SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, |
| SelectionDAG &DAG) const { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) |
| if (C->getAPIntValue() == 0) |
| return EmitTest(Op0, X86CC, DAG); |
| |
| DebugLoc dl = Op0.getDebugLoc(); |
| if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || |
| Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { |
| // Use SUB instead of CMP to enable CSE between SUB and CMP. |
| SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); |
| SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, |
| Op0, Op1); |
| return SDValue(Sub.getNode(), 1); |
| } |
| return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); |
| } |
| |
| /// Convert a comparison if required by the subtarget. |
| SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, |
| SelectionDAG &DAG) const { |
| // If the subtarget does not support the FUCOMI instruction, floating-point |
| // comparisons have to be converted. |
| if (Subtarget->hasCMov() || |
| Cmp.getOpcode() != X86ISD::CMP || |
| !Cmp.getOperand(0).getValueType().isFloatingPoint() || |
| !Cmp.getOperand(1).getValueType().isFloatingPoint()) |
| return Cmp; |
| |
| // The instruction selector will select an FUCOM instruction instead of |
| // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence |
| // build an SDNode sequence that transfers the result from FPSW into EFLAGS: |
| // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) |
| DebugLoc dl = Cmp.getDebugLoc(); |
| SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); |
| SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); |
| SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, |
| DAG.getConstant(8, MVT::i8)); |
| SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); |
| return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); |
| } |
| |
| static bool isAllOnes(SDValue V) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); |
| return C && C->isAllOnesValue(); |
| } |
| |
| /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node |
| /// if it's possible. |
| SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, |
| DebugLoc dl, SelectionDAG &DAG) const { |
| SDValue Op0 = And.getOperand(0); |
| SDValue Op1 = And.getOperand(1); |
| if (Op0.getOpcode() == ISD::TRUNCATE) |
| Op0 = Op0.getOperand(0); |
| if (Op1.getOpcode() == ISD::TRUNCATE) |
| Op1 = Op1.getOperand(0); |
| |
| SDValue LHS, RHS; |
| if (Op1.getOpcode() == ISD::SHL) |
| std::swap(Op0, Op1); |
| if (Op0.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) |
| if (And00C->getZExtValue() == 1) { |
| // If we looked past a truncate, check that it's only truncating away |
| // known zeros. |
| unsigned BitWidth = Op0.getValueSizeInBits(); |
| unsigned AndBitWidth = And.getValueSizeInBits(); |
| if (BitWidth > AndBitWidth) { |
| APInt Zeros, Ones; |
| DAG.ComputeMaskedBits(Op0, Zeros, Ones); |
| if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) |
| return SDValue(); |
| } |
| LHS = Op1; |
| RHS = Op0.getOperand(1); |
| } |
| } else if (Op1.getOpcode() == ISD::Constant) { |
| ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); |
| uint64_t AndRHSVal = AndRHS->getZExtValue(); |
| SDValue AndLHS = Op0; |
| |
| if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { |
| LHS = AndLHS.getOperand(0); |
| RHS = AndLHS.getOperand(1); |
| } |
| |
| // Use BT if the immediate can't be encoded in a TEST instruction. |
| if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { |
| LHS = AndLHS; |
| RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType()); |
| } |
| } |
| |
| if (LHS.getNode()) { |
| // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip |
| // the condition code later. |
| bool Invert = false; |
| if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) { |
| Invert = true; |
| LHS = LHS.getOperand(0); |
| } |
| |
| // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT |
| // instruction. Since the shift amount is in-range-or-undefined, we know |
| // that doing a bittest on the i32 value is ok. We extend to i32 because |
| // the encoding for the i16 version is larger than the i32 version. |
| // Also promote i16 to i32 for performance / code size reason. |
| if (LHS.getValueType() == MVT::i8 || |
| LHS.getValueType() == MVT::i16) |
| LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); |
| |
| // If the operand types disagree, extend the shift amount to match. Since |
| // BT ignores high bits (like shifts) we can use anyextend. |
| if (LHS.getValueType() != RHS.getValueType()) |
| RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); |
| |
| SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); |
| X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; |
| // Flip the condition if the LHS was a not instruction |
| if (Invert) |
| Cond = X86::GetOppositeBranchCondition(Cond); |
| return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(Cond, MVT::i8), BT); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 |
| // ones, and then concatenate the result back. |
| static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getValueType().getSimpleVT(); |
| |
| assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && |
| "Unsupported value type for operation"); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue CC = Op.getOperand(2); |
| |
| // Extract the LHS vectors |
| SDValue LHS = Op.getOperand(0); |
| SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); |
| SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); |
| |
| // Extract the RHS vectors |
| SDValue RHS = Op.getOperand(1); |
| SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); |
| SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); |
| |
| // Issue the operation on the smaller types and concatenate the result back |
| MVT EltVT = VT.getVectorElementType(); |
| MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); |
| } |
| |
| static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| SDValue Cond; |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue CC = Op.getOperand(2); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (isFP) { |
| #ifndef NDEBUG |
| MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT(); |
| assert(EltVT == MVT::f32 || EltVT == MVT::f64); |
| #endif |
| |
| unsigned SSECC; |
| bool Swap = false; |
| |
| // SSE Condition code mapping: |
| // 0 - EQ |
| // 1 - LT |
| // 2 - LE |
| // 3 - UNORD |
| // 4 - NEQ |
| // 5 - NLT |
| // 6 - NLE |
| // 7 - ORD |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Unexpected SETCC condition"); |
| case ISD::SETOEQ: |
| case ISD::SETEQ: SSECC = 0; break; |
| case ISD::SETOGT: |
| case ISD::SETGT: Swap = true; // Fallthrough |
| case ISD::SETLT: |
| case ISD::SETOLT: SSECC = 1; break; |
| case ISD::SETOGE: |
| case ISD::SETGE: Swap = true; // Fallthrough |
| case ISD::SETLE: |
| case ISD::SETOLE: SSECC = 2; break; |
| case ISD::SETUO: SSECC = 3; break; |
| case ISD::SETUNE: |
| case ISD::SETNE: SSECC = 4; break; |
| case ISD::SETULE: Swap = true; // Fallthrough |
| case ISD::SETUGE: SSECC = 5; break; |
| case ISD::SETULT: Swap = true; // Fallthrough |
| case ISD::SETUGT: SSECC = 6; break; |
| case ISD::SETO: SSECC = 7; break; |
| case ISD::SETUEQ: |
| case ISD::SETONE: SSECC = 8; break; |
| } |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| // In the two special cases we can't handle, emit two comparisons. |
| if (SSECC == 8) { |
| unsigned CC0, CC1; |
| unsigned CombineOpc; |
| if (SetCCOpcode == ISD::SETUEQ) { |
| CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; |
| } else { |
| assert(SetCCOpcode == ISD::SETONE); |
| CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; |
| } |
| |
| SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, |
| DAG.getConstant(CC0, MVT::i8)); |
| SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, |
| DAG.getConstant(CC1, MVT::i8)); |
| return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); |
| } |
| // Handle all other FP comparisons here. |
| return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, |
| DAG.getConstant(SSECC, MVT::i8)); |
| } |
| |
| // Break 256-bit integer vector compare into smaller ones. |
| if (VT.is256BitVector() && !Subtarget->hasInt256()) |
| return Lower256IntVSETCC(Op, DAG); |
| |
| // We are handling one of the integer comparisons here. Since SSE only has |
| // GT and EQ comparisons for integer, swapping operands and multiple |
| // operations may be required for some comparisons. |
| unsigned Opc; |
| bool Swap = false, Invert = false, FlipSigns = false; |
| |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Unexpected SETCC condition"); |
| case ISD::SETNE: Invert = true; |
| case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break; |
| case ISD::SETLT: Swap = true; |
| case ISD::SETGT: Opc = X86ISD::PCMPGT; break; |
| case ISD::SETGE: Swap = true; |
| case ISD::SETLE: Opc = X86ISD::PCMPGT; Invert = true; break; |
| case ISD::SETULT: Swap = true; |
| case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break; |
| case ISD::SETUGE: Swap = true; |
| case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break; |
| } |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| // Check that the operation in question is available (most are plain SSE2, |
| // but PCMPGTQ and PCMPEQQ have different requirements). |
| if (VT == MVT::v2i64) { |
| if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) |
| return SDValue(); |
| if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) { |
| // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with |
| // pcmpeqd + pshufd + pand. |
| assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!"); |
| |
| // First cast everything to the right type, |
| Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0); |
| Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1); |
| |
| // Do the compare. |
| SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); |
| |
| // Make sure the lower and upper halves are both all-ones. |
| const int Mask[] = { 1, 0, 3, 2 }; |
| SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); |
| Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); |
| |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, MVT::v4i32); |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, Result); |
| } |
| } |
| |
| // Since SSE has no unsigned integer comparisons, we need to flip the sign |
| // bits of the inputs before performing those operations. |
| if (FlipSigns) { |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), |
| EltVT); |
| std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); |
| SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0], |
| SignBits.size()); |
| Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec); |
| Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec); |
| } |
| |
| SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); |
| |
| // If the logical-not of the result is required, perform that now. |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, VT); |
| |
| return Result; |
| } |
| |
| SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| |
| MVT VT = Op.getValueType().getSimpleVT(); |
| |
| if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); |
| |
| assert(VT == MVT::i8 && "SetCC type must be 8-bit integer"); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| |
| // Optimize to BT if possible. |
| // Lower (X & (1 << N)) == 0 to BT(X, N). |
| // Lower ((X >>u N) & 1) != 0 to BT(X, N). |
| // Lower ((X >>s N) & 1) != 0 to BT(X, N). |
| if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && |
| Op1.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(Op1)->isNullValue() && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); |
| if (NewSetCC.getNode()) |
| return NewSetCC; |
| } |
| |
| // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of |
| // these. |
| if (Op1.getOpcode() == ISD::Constant && |
| (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || |
| cast<ConstantSDNode>(Op1)->isNullValue()) && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| |
| // If the input is a setcc, then reuse the input setcc or use a new one with |
| // the inverted condition. |
| if (Op0.getOpcode() == X86ISD::SETCC) { |
| X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); |
| bool Invert = (CC == ISD::SETNE) ^ |
| cast<ConstantSDNode>(Op1)->isNullValue(); |
| if (!Invert) return Op0; |
| |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); |
| } |
| } |
| |
| bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint(); |
| unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); |
| if (X86CC == X86::COND_INVALID) |
| return SDValue(); |
| |
| SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG); |
| EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); |
| return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), EFLAGS); |
| } |
| |
| // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. |
| static bool isX86LogicalCmp(SDValue Op) { |
| unsigned Opc = Op.getNode()->getOpcode(); |
| if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || |
| Opc == X86ISD::SAHF) |
| return true; |
| if (Op.getResNo() == 1 && |
| (Opc == X86ISD::ADD || |
| Opc == X86ISD::SUB || |
| Opc == X86ISD::ADC || |
| Opc == X86ISD::SBB || |
| Opc == X86ISD::SMUL || |
| Opc == X86ISD::UMUL || |
| Opc == X86ISD::INC || |
| Opc == X86ISD::DEC || |
| Opc == X86ISD::OR || |
| Opc == X86ISD::XOR || |
| Opc == X86ISD::AND)) |
| return true; |
| |
| if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) |
| return true; |
| |
| return false; |
| } |
| |
| static bool isZero(SDValue V) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); |
| return C && C->isNullValue(); |
| } |
| |
| static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { |
| if (V.getOpcode() != ISD::TRUNCATE) |
| return false; |
| |
| SDValue VOp0 = V.getOperand(0); |
| unsigned InBits = VOp0.getValueSizeInBits(); |
| unsigned Bits = V.getValueSizeInBits(); |
| return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); |
| } |
| |
| SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| bool addTest = true; |
| SDValue Cond = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue Op2 = Op.getOperand(2); |
| DebugLoc DL = Op.getDebugLoc(); |
| SDValue CC; |
| |
| if (Cond.getOpcode() == ISD::SETCC) { |
| SDValue NewCond = LowerSETCC(Cond, DAG); |
| if (NewCond.getNode()) |
| Cond = NewCond; |
| } |
| |
| // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y |
| // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y |
| // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y |
| // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y |
| if (Cond.getOpcode() == X86ISD::SETCC && |
| Cond.getOperand(1).getOpcode() == X86ISD::CMP && |
| isZero(Cond.getOperand(1).getOperand(1))) { |
| SDValue Cmp = Cond.getOperand(1); |
| |
| unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); |
| |
| if ((isAllOnes(Op1) || isAllOnes(Op2)) && |
| (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { |
| SDValue Y = isAllOnes(Op2) ? Op1 : Op2; |
| |
| SDValue CmpOp0 = Cmp.getOperand(0); |
| // Apply further optimizations for special cases |
| // (select (x != 0), -1, 0) -> neg & sbb |
| // (select (x == 0), 0, -1) -> neg & sbb |
| if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y)) |
| if (YC->isNullValue() && |
| (isAllOnes(Op1) == (CondCode == X86::COND_NE))) { |
| SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); |
| SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, |
| DAG.getConstant(0, CmpOp0.getValueType()), |
| CmpOp0); |
| SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), |
| DAG.getConstant(X86::COND_B, MVT::i8), |
| SDValue(Neg.getNode(), 1)); |
| return Res; |
| } |
| |
| Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, |
| CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); |
| Cmp = ConvertCmpIfNecessary(Cmp, DAG); |
| |
| SDValue Res = // Res = 0 or -1. |
| DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), |
| DAG.getConstant(X86::COND_B, MVT::i8), Cmp); |
| |
| if (isAllOnes(Op1) != (CondCode == X86::COND_E)) |
| Res = DAG.getNOT(DL, Res, Res.getValueType()); |
| |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2); |
| if (N2C == 0 || !N2C->isNullValue()) |
| Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); |
| return Res; |
| } |
| } |
| |
| // Look past (and (setcc_carry (cmp ...)), 1). |
| if (Cond.getOpcode() == ISD::AND && |
| Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); |
| if (C && C->getAPIntValue() == 1) |
| Cond = Cond.getOperand(0); |
| } |
| |
| // If condition flag is set by a X86ISD::CMP, then use it as the condition |
| // setting operand in place of the X86ISD::SETCC. |
| unsigned CondOpcode = Cond.getOpcode(); |
| if (CondOpcode == X86ISD::SETCC || |
| CondOpcode == X86ISD::SETCC_CARRY) { |
| CC = Cond.getOperand(0); |
| |
| SDValue Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| |
| bool IllegalFPCMov = false; |
| if (VT.isFloatingPoint() && !VT.isVector() && |
| !isScalarFPTypeInSSEReg(VT)) // FPStack? |
| IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); |
| |
| if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || |
| Opc == X86ISD::BT) { // FIXME |
| Cond = Cmp; |
| addTest = false; |
| } |
| } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || |
| CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || |
| ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && |
| Cond.getOperand(0).getValueType() != MVT::i8)) { |
| SDValue LHS = Cond.getOperand(0); |
| SDValue RHS = Cond.getOperand(1); |
| unsigned X86Opcode; |
| unsigned X86Cond; |
| SDVTList VTs; |
| switch (CondOpcode) { |
| case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; |
| case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; |
| case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; |
| case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; |
| case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; |
| case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; |
| default: llvm_unreachable("unexpected overflowing operator"); |
| } |
| if (CondOpcode == ISD::UMULO) |
| VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), |
| MVT::i32); |
| else |
| VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); |
| |
| SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); |
| |
| if (CondOpcode == ISD::UMULO) |
| Cond = X86Op.getValue(2); |
| else |
| Cond = X86Op.getValue(1); |
| |
| CC = DAG.getConstant(X86Cond, MVT::i8); |
| addTest = false; |
| } |
| |
| if (addTest) { |
| // Look pass the truncate if the high bits are known zero. |
| if (isTruncWithZeroHighBitsInput(Cond, DAG)) |
| Cond = Cond.getOperand(0); |
| |
| // We know the result of AND is compared against zero. Try to match |
| // it to BT. |
| if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { |
| SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG); |
| if (NewSetCC.getNode()) { |
| CC = NewSetCC.getOperand(0); |
| Cond = NewSetCC.getOperand(1); |
| addTest = false; |
| } |
| } |
| } |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| Cond = EmitTest(Cond, X86::COND_NE, DAG); |
| } |
| |
| // a < b ? -1 : 0 -> RES = ~setcc_carry |
| // a < b ? 0 : -1 -> RES = setcc_carry |
| // a >= b ? -1 : 0 -> RES = setcc_carry |
| // a >= b ? 0 : -1 -> RES = ~setcc_carry |
| if (Cond.getOpcode() == X86ISD::SUB) { |
| Cond = ConvertCmpIfNecessary(Cond, DAG); |
| unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); |
| |
| if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && |
| (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) { |
| SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), |
| DAG.getConstant(X86::COND_B, MVT::i8), Cond); |
| if (isAllOnes(Op1) != (CondCode == X86::COND_B)) |
| return DAG.getNOT(DL, Res, Res.getValueType()); |
| return Res; |
| } |
| } |
| |
| // X86 doesn't have an i8 cmov. If both operands are the result of a truncate |
| // widen the cmov and push the truncate through. This avoids introducing a new |
| // branch during isel and doesn't add any extensions. |
| if (Op.getValueType() == MVT::i8 && |
| Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { |
| SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); |
| if (T1.getValueType() == T2.getValueType() && |
| // Blacklist CopyFromReg to avoid partial register stalls. |
| T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ |
| SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue); |
| SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond); |
| return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); |
| } |
| } |
| |
| // X86ISD::CMOV means set the result (which is operand 1) to the RHS if |
| // condition is true. |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| SDValue Ops[] = { Op2, Op1, CC, Cond }; |
| return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op, |
| SelectionDAG &DAG) const { |
| MVT VT = Op->getValueType(0).getSimpleVT(); |
| SDValue In = Op->getOperand(0); |
| MVT InVT = In.getValueType().getSimpleVT(); |
| DebugLoc dl = Op->getDebugLoc(); |
| |
| if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && |
| (VT != MVT::v8i32 || InVT != MVT::v8i16)) |
| return SDValue(); |
| |
| if (Subtarget->hasInt256()) |
| return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In); |
| |
| // Optimize vectors in AVX mode |
| // Sign extend v8i16 to v8i32 and |
| // v4i32 to v4i64 |
| // |
| // Divide input vector into two parts |
| // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} |
| // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 |
| // concat the vectors to original VT |
| |
| unsigned NumElems = InVT.getVectorNumElements(); |
| SDValue Undef = DAG.getUNDEF(InVT); |
| |
| SmallVector<int,8> ShufMask1(NumElems, -1); |
| for (unsigned i = 0; i != NumElems/2; ++i) |
| ShufMask1[i] = i; |
| |
| SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]); |
| |
| SmallVector<int,8> ShufMask2(NumElems, -1); |
| for (unsigned i = 0; i != NumElems/2; ++i) |
| ShufMask2[i] = i + NumElems/2; |
| |
| SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]); |
| |
| MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), |
| VT.getVectorNumElements()/2); |
| |
| OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo); |
| OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); |
| } |
| |
| // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or |
| // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart |
| // from the AND / OR. |
| static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { |
| Opc = Op.getOpcode(); |
| if (Opc != ISD::OR && Opc != ISD::AND) |
| return false; |
| return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(0).hasOneUse() && |
| Op.getOperand(1).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(1).hasOneUse()); |
| } |
| |
| // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and |
| // 1 and that the SETCC node has a single use. |
| static bool isXor1OfSetCC(SDValue Op) { |
| if (Op.getOpcode() != ISD::XOR) |
| return false; |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (N1C && N1C->getAPIntValue() == 1) { |
| return Op.getOperand(0).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(0).hasOneUse(); |
| } |
| return false; |
| } |
| |
| SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
| bool addTest = true; |
| SDValue Chain = Op.getOperand(0); |
| SDValue Cond = Op.getOperand(1); |
| SDValue Dest = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue CC; |
| bool Inverted = false; |
| |
| if (Cond.getOpcode() == ISD::SETCC) { |
| // Check for setcc([su]{add,sub,mul}o == 0). |
| if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && |
| isa<ConstantSDNode>(Cond.getOperand(1)) && |
| cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() && |
| Cond.getOperand(0).getResNo() == 1 && |
| (Cond.getOperand(0).getOpcode() == ISD::SADDO || |
| Cond.getOperand(0).getOpcode() == ISD::UADDO || |
| Cond.getOperand(0).getOpcode() == ISD::SSUBO || |
| Cond.getOperand(0).getOpcode() == ISD::USUBO || |
| Cond.getOperand(0).getOpcode() == ISD::SMULO || |
| Cond.getOperand(0).getOpcode() == ISD::UMULO)) { |
| Inverted = true; |
| Cond = Cond.getOperand(0); |
| } else { |
| SDValue NewCond = LowerSETCC(Cond, DAG); |
| if (NewCond.getNode()) |
| Cond = NewCond; |
| } |
| } |
| #if 0 |
| // FIXME: LowerXALUO doesn't handle these!! |
| else if (Cond.getOpcode() == X86ISD::ADD || |
| Cond.getOpcode() == X86ISD::SUB || |
| Cond.getOpcode() == X86ISD::SMUL || |
| Cond.getOpcode() == X86ISD::UMUL) |
| Cond = LowerXALUO(Cond, DAG); |
| #endif |
| |
| // Look pass (and (setcc_carry (cmp ...)), 1). |
| if (Cond.getOpcode() == ISD::AND && |
| Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); |
| if (C && C->getAPIntValue() == 1) |
| Cond = Cond.getOperand(0); |
| } |
| |
| // If condition flag is set by a X86ISD::CMP, then use it as the condition |
| // setting operand in place of the X86ISD::SETCC. |
| unsigned CondOpcode = Cond.getOpcode(); |
| if (CondOpcode == X86ISD::SETCC || |
| CondOpcode == X86ISD::SETCC_CARRY) { |
| CC = Cond.getOperand(0); |
| |
| SDValue Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? |
| if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { |
| Cond = Cmp; |
| addTest = false; |
| } else { |
| switch (cast<ConstantSDNode>(CC)->getZExtValue()) { |
| default: break; |
| case X86::COND_O: |
| case X86::COND_B: |
| // These can only come from an arithmetic instruction with overflow, |
| // e.g. SADDO, UADDO. |
| Cond = Cond.getNode()->getOperand(1); |
| addTest = false; |
| break; |
| } |
| } |
| } |
| CondOpcode = Cond.getOpcode(); |
| if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || |
| CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || |
| ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && |
| Cond.getOperand(0).getValueType() != MVT::i8)) { |
| SDValue LHS = Cond.getOperand(0); |
| SDValue RHS = Cond.getOperand(1); |
| unsigned X86Opcode; |
| unsigned X86Cond; |
| SDVTList VTs; |
| switch (CondOpcode) { |
| case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; |
| case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; |
| case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; |
| case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; |
| case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; |
| case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; |
| default: llvm_unreachable("unexpected overflowing operator"); |
| } |
| if (Inverted) |
| X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); |
| if (CondOpcode == ISD::UMULO) |
| VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), |
| MVT::i32); |
| else |
| VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); |
| |
| SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); |
| |
| if (CondOpcode == ISD::UMULO) |
| Cond = X86Op.getValue(2); |
| else |
| Cond = X86Op.getValue(1); |
| |
| CC = DAG.getConstant(X86Cond, MVT::i8); |
| addTest = false; |
| } else { |
| unsigned CondOpc; |
| if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { |
| SDValue Cmp = Cond.getOperand(0).getOperand(1); |
| if (CondOpc == ISD::OR) { |
| // Also, recognize the pattern generated by an FCMP_UNE. We can emit |
| // two branches instead of an explicit OR instruction with a |
| // separate test. |
| if (Cmp == Cond.getOperand(1).getOperand(1) && |
| isX86LogicalCmp(Cmp)) { |
| CC = Cond.getOperand(0).getOperand(0); |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| CC = Cond.getOperand(1).getOperand(0); |
| Cond = Cmp; |
| addTest = false; |
| } |
| } else { // ISD::AND |
| // Also, recognize the pattern generated by an FCMP_OEQ. We can emit |
| // two branches instead of an explicit AND instruction with a |
| // separate test. However, we only do this if this block doesn't |
| // have a fall-through edge, because this requires an explicit |
| // jmp when the condition is false. |
| if (Cmp == Cond.getOperand(1).getOperand(1) && |
| isX86LogicalCmp(Cmp) && |
| Op.getNode()->hasOneUse()) { |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, MVT::i8); |
| SDNode *User = *Op.getNode()->use_begin(); |
| // Look for an unconditional branch following this conditional branch. |
| // We need this because we need to reverse the successors in order |
| // to implement FCMP_OEQ. |
| if (User->getOpcode() == ISD::BR) { |
| SDValue FalseBB = User->getOperand(1); |
| SDNode *NewBR = |
| DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); |
| assert(NewBR == User); |
| (void)NewBR; |
| Dest = FalseBB; |
| |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, MVT::i8); |
| Cond = Cmp; |
| addTest = false; |
| } |
| } |
| } |
| } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { |
| // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. |
| // It should be transformed during dag combiner except when the condition |
| // is set by a arithmetics with overflow node. |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, MVT::i8); |
| Cond = Cond.getOperand(0).getOperand(1); |
| addTest = false; |
| } else if (Cond.getOpcode() == ISD::SETCC && |
| cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) { |
| // For FCMP_OEQ, we can emit |
| // two branches instead of an explicit AND instruction with a |
| // separate test. However, we only do this if this block doesn't |
| // have a fall-through edge, because this requires an explicit |
| // jmp when the condition is false. |
| if (Op.getNode()->hasOneUse()) { |
| SDNode *User = *Op.getNode()->use_begin(); |
| // Look for an unconditional branch following this conditional branch. |
| // We need this because we need to reverse the successors in order |
| // to implement FCMP_OEQ. |
| if (User->getOpcode() == ISD::BR) { |
| SDValue FalseBB = User->getOperand(1); |
| SDNode *NewBR = |
| DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); |
| assert(NewBR == User); |
| (void)NewBR; |
| Dest = FalseBB; |
| |
| SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, |
| Cond.getOperand(0), Cond.getOperand(1)); |
| Cmp = ConvertCmpIfNecessary(Cmp, DAG); |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| CC = DAG.getConstant(X86::COND_P, MVT::i8); |
| Cond = Cmp; |
| addTest = false; |
| } |
| } |
| } else if (Cond.getOpcode() == ISD::SETCC && |
| cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) { |
| // For FCMP_UNE, we can emit |
| // two branches instead of an explicit AND instruction with a |
| // separate test. However, we only do this if this block doesn't |
| // have a fall-through edge, because this requires an explicit |
| // jmp when the condition is false. |
| if (Op.getNode()->hasOneUse()) { |
| SDNode *User = *Op.getNode()->use_begin(); |
| // Look for an unconditional branch following this conditional branch. |
| // We need this because we need to reverse the successors in order |
| // to implement FCMP_UNE. |
| if (User->getOpcode() == ISD::BR) { |
| SDValue FalseBB = User->getOperand(1); |
| SDNode *NewBR = |
| DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); |
| assert(NewBR == User); |
| (void)NewBR; |
| |
| SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, |
| Cond.getOperand(0), Cond.getOperand(1)); |
| Cmp = ConvertCmpIfNecessary(Cmp, DAG); |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| CC = DAG.getConstant(X86::COND_NP, MVT::i8); |
| Cond = Cmp; |
| addTest = false; |
| Dest = FalseBB; |
| } |
| } |
| } |
| } |
| |
| if (addTest) { |
| // Look pass the truncate if the high bits are known zero. |
| if (isTruncWithZeroHighBitsInput(Cond, DAG)) |
| Cond = Cond.getOperand(0); |
| |
| // We know the result of AND is compared against zero. Try to match |
| // it to BT. |
| if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { |
| SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); |
| if (NewSetCC.getNode()) { |
| CC = NewSetCC.getOperand(0); |
| Cond = NewSetCC.getOperand(1); |
| addTest = false; |
| } |
| } |
| } |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| Cond = EmitTest(Cond, X86::COND_NE, DAG); |
| } |
| Cond = ConvertCmpIfNecessary(Cond, DAG); |
| return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cond); |
| } |
| |
| // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. |
| // Calls to _alloca is needed to probe the stack when allocating more than 4k |
| // bytes in one go. Touching the stack at 4K increments is necessary to ensure |
| // that the guard pages used by the OS virtual memory manager are allocated in |
| // correct sequence. |
| SDValue |
| X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() || |
| getTargetMachine().Options.EnableSegmentedStacks) && |
| "This should be used only on Windows targets or when segmented stacks " |
| "are being used"); |
| assert(!Subtarget->isTargetEnvMacho() && "Not implemented"); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Get the inputs. |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| // FIXME: Ensure alignment here |
| |
| bool Is64Bit = Subtarget->is64Bit(); |
| EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32; |
| |
| if (getTargetMachine().Options.EnableSegmentedStacks) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| if (Is64Bit) { |
| // The 64 bit implementation of segmented stacks needs to clobber both r10 |
| // r11. This makes it impossible to use it along with nested parameters. |
| const Function *F = MF.getFunction(); |
| |
| for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| if (I->hasNestAttr()) |
| report_fatal_error("Cannot use segmented stacks with functions that " |
| "have nested arguments."); |
| } |
| |
| const TargetRegisterClass *AddrRegClass = |
| getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32); |
| unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); |
| Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); |
| SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, |
| DAG.getRegister(Vreg, SPTy)); |
| SDValue Ops1[2] = { Value, Chain }; |
| return DAG.getMergeValues(Ops1, 2, dl); |
| } else { |
| SDValue Flag; |
| unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); |
| Flag = Chain.getValue(1); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); |
| Flag = Chain.getValue(1); |
| |
| Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), |
| SPTy).getValue(1); |
| |
| SDValue Ops1[2] = { Chain.getValue(0), Chain }; |
| return DAG.getMergeValues(Ops1, 2, dl); |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| getPointerTy()); |
| return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), |
| MachinePointerInfo(SV), false, false, 0); |
| } |
| |
| // __va_list_tag: |
| // gp_offset (0 - 6 * 8) |
| // fp_offset (48 - 48 + 8 * 16) |
| // overflow_arg_area (point to parameters coming in memory). |
| // reg_save_area |
| SmallVector<SDValue, 8> MemOps; |
| SDValue FIN = Op.getOperand(1); |
| // Store gp_offset |
| SDValue Store = DAG.getStore(Op.getOperand(0), DL, |
| DAG.getConstant(FuncInfo->getVarArgsGPOffset(), |
| MVT::i32), |
| FIN, MachinePointerInfo(SV), false, false, 0); |
| MemOps.push_back(Store); |
| |
| // Store fp_offset |
| FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| FIN, DAG.getIntPtrConstant(4)); |
| Store = DAG.getStore(Op.getOperand(0), DL, |
| DAG.getConstant(FuncInfo->getVarArgsFPOffset(), |
| MVT::i32), |
| FIN, MachinePointerInfo(SV, 4), false, false, 0); |
| MemOps.push_back(Store); |
| |
| // Store ptr to overflow_arg_area |
| FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| FIN, DAG.getIntPtrConstant(4)); |
| SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| getPointerTy()); |
| Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, |
| MachinePointerInfo(SV, 8), |
| false, false, 0); |
| MemOps.push_back(Store); |
| |
| // Store ptr to reg_save_area. |
| FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| FIN, DAG.getIntPtrConstant(8)); |
| SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), |
| getPointerTy()); |
| Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, |
| MachinePointerInfo(SV, 16), false, false, 0); |
| MemOps.push_back(Store); |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } |
| |
| SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| assert(Subtarget->is64Bit() && |
| "LowerVAARG only handles 64-bit va_arg!"); |
| assert((Subtarget->isTargetLinux() || |
| Subtarget->isTargetDarwin()) && |
| "Unhandled target in LowerVAARG"); |
| assert(Op.getNode()->getNumOperands() == 4); |
| SDValue Chain = Op.getOperand(0); |
| SDValue SrcPtr = Op.getOperand(1); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| unsigned Align = Op.getConstantOperandVal(3); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| EVT ArgVT = Op.getNode()->getValueType(0); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy); |
| uint8_t ArgMode; |
| |
| // Decide which area this value should be read from. |
| // TODO: Implement the AMD64 ABI in its entirety. This simple |
| // selection mechanism works only for the basic types. |
| if (ArgVT == MVT::f80) { |
| llvm_unreachable("va_arg for f80 not yet implemented"); |
| } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { |
| ArgMode = 2; // Argument passed in XMM register. Use fp_offset. |
| } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { |
| ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. |
| } else { |
| llvm_unreachable("Unhandled argument type in LowerVAARG"); |
| } |
| |
| if (ArgMode == 2) { |
| // Sanity Check: Make sure using fp_offset makes sense. |
| assert(!getTargetMachine().Options.UseSoftFloat && |
| !(DAG.getMachineFunction() |
| .getFunction()->getAttributes() |
| .hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::NoImplicitFloat)) && |
| Subtarget->hasSSE1()); |
| } |
| |
| // Insert VAARG_64 node into the DAG |
| // VAARG_64 returns two values: Variable Argument Address, Chain |
| SmallVector<SDValue, 11> InstOps; |
| InstOps.push_back(Chain); |
| InstOps.push_back(SrcPtr); |
| InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32)); |
| InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8)); |
| InstOps.push_back(DAG.getConstant(Align, MVT::i32)); |
| SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other); |
| SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, |
| VTs, &InstOps[0], InstOps.size(), |
| MVT::i64, |
| MachinePointerInfo(SV), |
| /*Align=*/0, |
| /*Volatile=*/false, |
| /*ReadMem=*/true, |
| /*WriteMem=*/true); |
| Chain = VAARG.getValue(1); |
| |
| // Load the next argument and return it |
| return DAG.getLoad(ArgVT, dl, |
| Chain, |
| VAARG, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| } |
| |
| static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| // X86-64 va_list is a struct { i32, i32, i8*, i8* }. |
| assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); |
| SDValue Chain = Op.getOperand(0); |
| SDValue DstPtr = Op.getOperand(1); |
| SDValue SrcPtr = Op.getOperand(2); |
| const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, |
| DAG.getIntPtrConstant(24), 8, /*isVolatile*/false, |
| false, |
| MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); |
| } |
| |
| // getTargetVShiftNode - Handle vector element shifts where the shift amount |
| // may or may not be a constant. Takes immediate version of shift as input. |
| static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT, |
| SDValue SrcOp, SDValue ShAmt, |
| SelectionDAG &DAG) { |
| assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32"); |
| |
| if (isa<ConstantSDNode>(ShAmt)) { |
| // Constant may be a TargetConstant. Use a regular constant. |
| uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue(); |
| switch (Opc) { |
| default: llvm_unreachable("Unknown target vector shift node"); |
| case X86ISD::VSHLI: |
| case X86ISD::VSRLI: |
| case X86ISD::VSRAI: |
| return DAG.getNode(Opc, dl, VT, SrcOp, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| } |
| } |
| |
| // Change opcode to non-immediate version |
| switch (Opc) { |
| default: llvm_unreachable("Unknown target vector shift node"); |
| case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; |
| case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; |
| case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; |
| } |
| |
| // Need to build a vector containing shift amount |
| // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0 |
| SDValue ShOps[4]; |
| ShOps[0] = ShAmt; |
| ShOps[1] = DAG.getConstant(0, MVT::i32); |
| ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32); |
| ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4); |
| |
| // The return type has to be a 128-bit type with the same element |
| // type as the input type. |
| MVT EltVT = VT.getVectorElementType().getSimpleVT(); |
| EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); |
| |
| ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt); |
| return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); |
| } |
| |
| static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| // Comparison intrinsics. |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| case Intrinsic::x86_sse2_comilt_sd: |
| case Intrinsic::x86_sse2_comile_sd: |
| case Intrinsic::x86_sse2_comigt_sd: |
| case Intrinsic::x86_sse2_comige_sd: |
| case Intrinsic::x86_sse2_comineq_sd: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| case Intrinsic::x86_sse2_ucomineq_sd: { |
| unsigned Opc; |
| ISD::CondCode CC; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse2_comilt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse2_comile_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse2_comigt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse2_comige_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse2_comineq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETNE; |
| break; |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_ucomineq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETNE; |
| break; |
| } |
| |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); |
| assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); |
| SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); |
| SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); |
| } |
| |
| // Arithmetic intrinsics. |
| case Intrinsic::x86_sse2_pmulu_dq: |
| case Intrinsic::x86_avx2_pmulu_dq: |
| return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| |
| // SSE2/AVX2 sub with unsigned saturation intrinsics |
| case Intrinsic::x86_sse2_psubus_b: |
| case Intrinsic::x86_sse2_psubus_w: |
| case Intrinsic::x86_avx2_psubus_b: |
| case Intrinsic::x86_avx2_psubus_w: |
| return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| |
| // SSE3/AVX horizontal add/sub intrinsics |
| case Intrinsic::x86_sse3_hadd_ps: |
| case Intrinsic::x86_sse3_hadd_pd: |
| case Intrinsic::x86_avx_hadd_ps_256: |
| case Intrinsic::x86_avx_hadd_pd_256: |
| case Intrinsic::x86_sse3_hsub_ps: |
| case Intrinsic::x86_sse3_hsub_pd: |
| case Intrinsic::x86_avx_hsub_ps_256: |
| case Intrinsic::x86_avx_hsub_pd_256: |
| case Intrinsic::x86_ssse3_phadd_w_128: |
| case Intrinsic::x86_ssse3_phadd_d_128: |
| case Intrinsic::x86_avx2_phadd_w: |
| case Intrinsic::x86_avx2_phadd_d: |
| case Intrinsic::x86_ssse3_phsub_w_128: |
| case Intrinsic::x86_ssse3_phsub_d_128: |
| case Intrinsic::x86_avx2_phsub_w: |
| case Intrinsic::x86_avx2_phsub_d: { |
| unsigned Opcode; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse3_hadd_ps: |
| case Intrinsic::x86_sse3_hadd_pd: |
| case Intrinsic::x86_avx_hadd_ps_256: |
| case Intrinsic::x86_avx_hadd_pd_256: |
| Opcode = X86ISD::FHADD; |
| break; |
| case Intrinsic::x86_sse3_hsub_ps: |
| case Intrinsic::x86_sse3_hsub_pd: |
| case Intrinsic::x86_avx_hsub_ps_256: |
| case Intrinsic::x86_avx_hsub_pd_256: |
| Opcode = X86ISD::FHSUB; |
| break; |
| case Intrinsic::x86_ssse3_phadd_w_128: |
| case Intrinsic::x86_ssse3_phadd_d_128: |
| case Intrinsic::x86_avx2_phadd_w: |
| case Intrinsic::x86_avx2_phadd_d: |
| Opcode = X86ISD::HADD; |
| break; |
| case Intrinsic::x86_ssse3_phsub_w_128: |
| case Intrinsic::x86_ssse3_phsub_d_128: |
| case Intrinsic::x86_avx2_phsub_w: |
| case Intrinsic::x86_avx2_phsub_d: |
| Opcode = X86ISD::HSUB; |
| break; |
| } |
| return DAG.getNode(Opcode, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| // SSE2/SSE41/AVX2 integer max/min intrinsics. |
| case Intrinsic::x86_sse2_pmaxu_b: |
| case Intrinsic::x86_sse41_pmaxuw: |
| case Intrinsic::x86_sse41_pmaxud: |
| case Intrinsic::x86_avx2_pmaxu_b: |
| case Intrinsic::x86_avx2_pmaxu_w: |
| case Intrinsic::x86_avx2_pmaxu_d: |
| case Intrinsic::x86_sse2_pminu_b: |
| case Intrinsic::x86_sse41_pminuw: |
| case Intrinsic::x86_sse41_pminud: |
| case Intrinsic::x86_avx2_pminu_b: |
| case Intrinsic::x86_avx2_pminu_w: |
| case Intrinsic::x86_avx2_pminu_d: |
| case Intrinsic::x86_sse41_pmaxsb: |
| case Intrinsic::x86_sse2_pmaxs_w: |
| case Intrinsic::x86_sse41_pmaxsd: |
| case Intrinsic::x86_avx2_pmaxs_b: |
| case Intrinsic::x86_avx2_pmaxs_w: |
| case Intrinsic::x86_avx2_pmaxs_d: |
| case Intrinsic::x86_sse41_pminsb: |
| case Intrinsic::x86_sse2_pmins_w: |
| case Intrinsic::x86_sse41_pminsd: |
| case Intrinsic::x86_avx2_pmins_b: |
| case Intrinsic::x86_avx2_pmins_w: |
| case Intrinsic::x86_avx2_pmins_d: { |
| unsigned Opcode; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse2_pmaxu_b: |
| case Intrinsic::x86_sse41_pmaxuw: |
| case Intrinsic::x86_sse41_pmaxud: |
| case Intrinsic::x86_avx2_pmaxu_b: |
| case Intrinsic::x86_avx2_pmaxu_w: |
| case Intrinsic::x86_avx2_pmaxu_d: |
| Opcode = X86ISD::UMAX; |
| break; |
| case Intrinsic::x86_sse2_pminu_b: |
| case Intrinsic::x86_sse41_pminuw: |
| case Intrinsic::x86_sse41_pminud: |
| case Intrinsic::x86_avx2_pminu_b: |
| case Intrinsic::x86_avx2_pminu_w: |
| case Intrinsic::x86_avx2_pminu_d: |
| Opcode = X86ISD::UMIN; |
| break; |
| case Intrinsic::x86_sse41_pmaxsb: |
| case Intrinsic::x86_sse2_pmaxs_w: |
| case Intrinsic::x86_sse41_pmaxsd: |
| case Intrinsic::x86_avx2_pmaxs_b: |
| case Intrinsic::x86_avx2_pmaxs_w: |
| case Intrinsic::x86_avx2_pmaxs_d: |
| Opcode = X86ISD::SMAX; |
| break; |
| case Intrinsic::x86_sse41_pminsb: |
| case Intrinsic::x86_sse2_pmins_w: |
| case Intrinsic::x86_sse41_pminsd: |
| case Intrinsic::x86_avx2_pmins_b: |
| case Intrinsic::x86_avx2_pmins_w: |
| case Intrinsic::x86_avx2_pmins_d: |
| Opcode = X86ISD::SMIN; |
| break; |
| } |
| return DAG.getNode(Opcode, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| // SSE/SSE2/AVX floating point max/min intrinsics. |
| case Intrinsic::x86_sse_max_ps: |
| case Intrinsic::x86_sse2_max_pd: |
| case Intrinsic::x86_avx_max_ps_256: |
| case Intrinsic::x86_avx_max_pd_256: |
| case Intrinsic::x86_sse_min_ps: |
| case Intrinsic::x86_sse2_min_pd: |
| case Intrinsic::x86_avx_min_ps_256: |
| case Intrinsic::x86_avx_min_pd_256: { |
| unsigned Opcode; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse_max_ps: |
| case Intrinsic::x86_sse2_max_pd: |
| case Intrinsic::x86_avx_max_ps_256: |
| case Intrinsic::x86_avx_max_pd_256: |
| Opcode = X86ISD::FMAX; |
| break; |
| case Intrinsic::x86_sse_min_ps: |
| case Intrinsic::x86_sse2_min_pd: |
| case Intrinsic::x86_avx_min_ps_256: |
| case Intrinsic::x86_avx_min_pd_256: |
| Opcode = X86ISD::FMIN; |
| break; |
| } |
| return DAG.getNode(Opcode, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| // AVX2 variable shift intrinsics |
| case Intrinsic::x86_avx2_psllv_d: |
| case Intrinsic::x86_avx2_psllv_q: |
| case Intrinsic::x86_avx2_psllv_d_256: |
| case Intrinsic::x86_avx2_psllv_q_256: |
| case Intrinsic::x86_avx2_psrlv_d: |
| case Intrinsic::x86_avx2_psrlv_q: |
| case Intrinsic::x86_avx2_psrlv_d_256: |
| case Intrinsic::x86_avx2_psrlv_q_256: |
| case Intrinsic::x86_avx2_psrav_d: |
| case Intrinsic::x86_avx2_psrav_d_256: { |
| unsigned Opcode; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_avx2_psllv_d: |
| case Intrinsic::x86_avx2_psllv_q: |
| case Intrinsic::x86_avx2_psllv_d_256: |
| case Intrinsic::x86_avx2_psllv_q_256: |
| Opcode = ISD::SHL; |
| break; |
| case Intrinsic::x86_avx2_psrlv_d: |
| case Intrinsic::x86_avx2_psrlv_q: |
| case Intrinsic::x86_avx2_psrlv_d_256: |
| case Intrinsic::x86_avx2_psrlv_q_256: |
| Opcode = ISD::SRL; |
| break; |
| case Intrinsic::x86_avx2_psrav_d: |
| case Intrinsic::x86_avx2_psrav_d_256: |
| Opcode = ISD::SRA; |
| break; |
| } |
| return DAG.getNode(Opcode, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| case Intrinsic::x86_ssse3_pshuf_b_128: |
| case Intrinsic::x86_avx2_pshuf_b: |
| return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| |
| case Intrinsic::x86_ssse3_psign_b_128: |
| case Intrinsic::x86_ssse3_psign_w_128: |
| case Intrinsic::x86_ssse3_psign_d_128: |
| case Intrinsic::x86_avx2_psign_b: |
| case Intrinsic::x86_avx2_psign_w: |
| case Intrinsic::x86_avx2_psign_d: |
| return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| |
| case Intrinsic::x86_sse41_insertps: |
| return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| |
| case Intrinsic::x86_avx_vperm2f128_ps_256: |
| case Intrinsic::x86_avx_vperm2f128_pd_256: |
| case Intrinsic::x86_avx_vperm2f128_si_256: |
| case Intrinsic::x86_avx2_vperm2i128: |
| return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| |
| case Intrinsic::x86_avx2_permd: |
| case Intrinsic::x86_avx2_permps: |
| // Operands intentionally swapped. Mask is last operand to intrinsic, |
| // but second operand for node/intruction. |
| return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), |
| Op.getOperand(2), Op.getOperand(1)); |
| |
| case Intrinsic::x86_sse_sqrt_ps: |
| case Intrinsic::x86_sse2_sqrt_pd: |
| case Intrinsic::x86_avx_sqrt_ps_256: |
| case Intrinsic::x86_avx_sqrt_pd_256: |
| return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1)); |
| |
| // ptest and testp intrinsics. The intrinsic these come from are designed to |
| // return an integer value, not just an instruction so lower it to the ptest |
| // or testp pattern and a setcc for the result. |
| case Intrinsic::x86_sse41_ptestz: |
| case Intrinsic::x86_sse41_ptestc: |
| case Intrinsic::x86_sse41_ptestnzc: |
| case Intrinsic::x86_avx_ptestz_256: |
| case Intrinsic::x86_avx_ptestc_256: |
| case Intrinsic::x86_avx_ptestnzc_256: |
| case Intrinsic::x86_avx_vtestz_ps: |
| case Intrinsic::x86_avx_vtestc_ps: |
| case Intrinsic::x86_avx_vtestnzc_ps: |
| case Intrinsic::x86_avx_vtestz_pd: |
| case Intrinsic::x86_avx_vtestc_pd: |
| case Intrinsic::x86_avx_vtestnzc_pd: |
| case Intrinsic::x86_avx_vtestz_ps_256: |
| case Intrinsic::x86_avx_vtestc_ps_256: |
| case Intrinsic::x86_avx_vtestnzc_ps_256: |
| case Intrinsic::x86_avx_vtestz_pd_256: |
| case Intrinsic::x86_avx_vtestc_pd_256: |
| case Intrinsic::x86_avx_vtestnzc_pd_256: { |
| bool IsTestPacked = false; |
| unsigned X86CC; |
| switch (IntNo) { |
| default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); |
| case Intrinsic::x86_avx_vtestz_ps: |
| case Intrinsic::x86_avx_vtestz_pd: |
| case Intrinsic::x86_avx_vtestz_ps_256: |
| case Intrinsic::x86_avx_vtestz_pd_256: |
| IsTestPacked = true; // Fallthrough |
| case Intrinsic::x86_sse41_ptestz: |
| case Intrinsic::x86_avx_ptestz_256: |
| // ZF = 1 |
| X86CC = X86::COND_E; |
| break; |
| case Intrinsic::x86_avx_vtestc_ps: |
| case Intrinsic::x86_avx_vtestc_pd: |
| case Intrinsic::x86_avx_vtestc_ps_256: |
| case Intrinsic::x86_avx_vtestc_pd_256: |
| IsTestPacked = true; // Fallthrough |
| case Intrinsic::x86_sse41_ptestc: |
| case Intrinsic::x86_avx_ptestc_256: |
| // CF = 1 |
| X86CC = X86::COND_B; |
| break; |
| case Intrinsic::x86_avx_vtestnzc_ps: |
| case Intrinsic::x86_avx_vtestnzc_pd: |
| case Intrinsic::x86_avx_vtestnzc_ps_256: |
| case Intrinsic::x86_avx_vtestnzc_pd_256: |
| IsTestPacked = true; // Fallthrough |
| case Intrinsic::x86_sse41_ptestnzc: |
| case Intrinsic::x86_avx_ptestnzc_256: |
| // ZF and CF = 0 |
| X86CC = X86::COND_A; |
| break; |
| } |
| |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; |
| SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); |
| SDValue CC = DAG.getConstant(X86CC, MVT::i8); |
| SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); |
| } |
| |
| // SSE/AVX shift intrinsics |
| case Intrinsic::x86_sse2_psll_w: |
| case Intrinsic::x86_sse2_psll_d: |
| case Intrinsic::x86_sse2_psll_q: |
| case Intrinsic::x86_avx2_psll_w: |
| case Intrinsic::x86_avx2_psll_d: |
| case Intrinsic::x86_avx2_psll_q: |
| case Intrinsic::x86_sse2_psrl_w: |
| case Intrinsic::x86_sse2_psrl_d: |
| case Intrinsic::x86_sse2_psrl_q: |
| case Intrinsic::x86_avx2_psrl_w: |
| case Intrinsic::x86_avx2_psrl_d: |
| case Intrinsic::x86_avx2_psrl_q: |
| case Intrinsic::x86_sse2_psra_w: |
| case Intrinsic::x86_sse2_psra_d: |
| case Intrinsic::x86_avx2_psra_w: |
| case Intrinsic::x86_avx2_psra_d: { |
| unsigned Opcode; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse2_psll_w: |
| case Intrinsic::x86_sse2_psll_d: |
| case Intrinsic::x86_sse2_psll_q: |
| case Intrinsic::x86_avx2_psll_w: |
| case Intrinsic::x86_avx2_psll_d: |
| case Intrinsic::x86_avx2_psll_q: |
| Opcode = X86ISD::VSHL; |
| break; |
| case Intrinsic::x86_sse2_psrl_w: |
| case Intrinsic::x86_sse2_psrl_d: |
| case Intrinsic::x86_sse2_psrl_q: |
| case Intrinsic::x86_avx2_psrl_w: |
| case Intrinsic::x86_avx2_psrl_d: |
| case Intrinsic::x86_avx2_psrl_q: |
| Opcode = X86ISD::VSRL; |
| break; |
| case Intrinsic::x86_sse2_psra_w: |
| case Intrinsic::x86_sse2_psra_d: |
| case Intrinsic::x86_avx2_psra_w: |
| case Intrinsic::x86_avx2_psra_d: |
| Opcode = X86ISD::VSRA; |
| break; |
| } |
| return DAG.getNode(Opcode, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| // SSE/AVX immediate shift intrinsics |
| case Intrinsic::x86_sse2_pslli_w: |
| case Intrinsic::x86_sse2_pslli_d: |
| case Intrinsic::x86_sse2_pslli_q: |
| case Intrinsic::x86_avx2_pslli_w: |
| case Intrinsic::x86_avx2_pslli_d: |
| case Intrinsic::x86_avx2_pslli_q: |
| case Intrinsic::x86_sse2_psrli_w: |
| case Intrinsic::x86_sse2_psrli_d: |
| case Intrinsic::x86_sse2_psrli_q: |
| case Intrinsic::x86_avx2_psrli_w: |
| case Intrinsic::x86_avx2_psrli_d: |
| case Intrinsic::x86_avx2_psrli_q: |
| case Intrinsic::x86_sse2_psrai_w: |
| case Intrinsic::x86_sse2_psrai_d: |
| case Intrinsic::x86_avx2_psrai_w: |
| case Intrinsic::x86_avx2_psrai_d: { |
| unsigned Opcode; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse2_pslli_w: |
| case Intrinsic::x86_sse2_pslli_d: |
| case Intrinsic::x86_sse2_pslli_q: |
| case Intrinsic::x86_avx2_pslli_w: |
| case Intrinsic::x86_avx2_pslli_d: |
| case Intrinsic::x86_avx2_pslli_q: |
| Opcode = X86ISD::VSHLI; |
| break; |
| case Intrinsic::x86_sse2_psrli_w: |
| case Intrinsic::x86_sse2_psrli_d: |
| case Intrinsic::x86_sse2_psrli_q: |
| case Intrinsic::x86_avx2_psrli_w: |
| case Intrinsic::x86_avx2_psrli_d: |
| case Intrinsic::x86_avx2_psrli_q: |
| Opcode = X86ISD::VSRLI; |
| break; |
| case Intrinsic::x86_sse2_psrai_w: |
| case Intrinsic::x86_sse2_psrai_d: |
| case Intrinsic::x86_avx2_psrai_w: |
| case Intrinsic::x86_avx2_psrai_d: |
| Opcode = X86ISD::VSRAI; |
| break; |
| } |
| return getTargetVShiftNode(Opcode, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2), DAG); |
| } |
| |
| case Intrinsic::x86_sse42_pcmpistria128: |
| case Intrinsic::x86_sse42_pcmpestria128: |
| case Intrinsic::x86_sse42_pcmpistric128: |
| case Intrinsic::x86_sse42_pcmpestric128: |
| case Intrinsic::x86_sse42_pcmpistrio128: |
| case Intrinsic::x86_sse42_pcmpestrio128: |
| case Intrinsic::x86_sse42_pcmpistris128: |
| case Intrinsic::x86_sse42_pcmpestris128: |
| case Intrinsic::x86_sse42_pcmpistriz128: |
| case Intrinsic::x86_sse42_pcmpestriz128: { |
| unsigned Opcode; |
| unsigned X86CC; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse42_pcmpistria128: |
| Opcode = X86ISD::PCMPISTRI; |
| X86CC = X86::COND_A; |
| break; |
| case Intrinsic::x86_sse42_pcmpestria128: |
| Opcode = X86ISD::PCMPESTRI; |
| X86CC = X86::COND_A; |
| break; |
| case Intrinsic::x86_sse42_pcmpistric128: |
| Opcode = X86ISD::PCMPISTRI; |
| X86CC = X86::COND_B; |
| break; |
| case Intrinsic::x86_sse42_pcmpestric128: |
| Opcode = X86ISD::PCMPESTRI; |
| X86CC = X86::COND_B; |
| break; |
| case Intrinsic::x86_sse42_pcmpistrio128: |
| Opcode = X86ISD::PCMPISTRI; |
| X86CC = X86::COND_O; |
| break; |
| case Intrinsic::x86_sse42_pcmpestrio128: |
| Opcode = X86ISD::PCMPESTRI; |
| X86CC = X86::COND_O; |
| break; |
| case Intrinsic::x86_sse42_pcmpistris128: |
| Opcode = X86ISD::PCMPISTRI; |
| X86CC = X86::COND_S; |
| break; |
| case Intrinsic::x86_sse42_pcmpestris128: |
| Opcode = X86ISD::PCMPESTRI; |
| X86CC = X86::COND_S; |
| break; |
| case Intrinsic::x86_sse42_pcmpistriz128: |
| Opcode = X86ISD::PCMPISTRI; |
| X86CC = X86::COND_E; |
| break; |
| case Intrinsic::x86_sse42_pcmpestriz128: |
| Opcode = X86ISD::PCMPESTRI; |
| X86CC = X86::COND_E; |
| break; |
| } |
| SmallVector<SDValue, 5> NewOps; |
| NewOps.append(Op->op_begin()+1, Op->op_end()); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size()); |
| SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), |
| SDValue(PCMP.getNode(), 1)); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); |
| } |
| |
| case Intrinsic::x86_sse42_pcmpistri128: |
| case Intrinsic::x86_sse42_pcmpestri128: { |
| unsigned Opcode; |
| if (IntNo == Intrinsic::x86_sse42_pcmpistri128) |
| Opcode = X86ISD::PCMPISTRI; |
| else |
| Opcode = X86ISD::PCMPESTRI; |
| |
| SmallVector<SDValue, 5> NewOps; |
| NewOps.append(Op->op_begin()+1, Op->op_end()); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size()); |
| } |
| case Intrinsic::x86_fma_vfmadd_ps: |
| case Intrinsic::x86_fma_vfmadd_pd: |
| case Intrinsic::x86_fma_vfmsub_ps: |
| case Intrinsic::x86_fma_vfmsub_pd: |
| case Intrinsic::x86_fma_vfnmadd_ps: |
| case Intrinsic::x86_fma_vfnmadd_pd: |
| case Intrinsic::x86_fma_vfnmsub_ps: |
| case Intrinsic::x86_fma_vfnmsub_pd: |
| case Intrinsic::x86_fma_vfmaddsub_ps: |
| case Intrinsic::x86_fma_vfmaddsub_pd: |
| case Intrinsic::x86_fma_vfmsubadd_ps: |
| case Intrinsic::x86_fma_vfmsubadd_pd: |
| case Intrinsic::x86_fma_vfmadd_ps_256: |
| case Intrinsic::x86_fma_vfmadd_pd_256: |
| case Intrinsic::x86_fma_vfmsub_ps_256: |
| case Intrinsic::x86_fma_vfmsub_pd_256: |
| case Intrinsic::x86_fma_vfnmadd_ps_256: |
| case Intrinsic::x86_fma_vfnmadd_pd_256: |
| case Intrinsic::x86_fma_vfnmsub_ps_256: |
| case Intrinsic::x86_fma_vfnmsub_pd_256: |
| case Intrinsic::x86_fma_vfmaddsub_ps_256: |
| case Intrinsic::x86_fma_vfmaddsub_pd_256: |
| case Intrinsic::x86_fma_vfmsubadd_ps_256: |
| case Intrinsic::x86_fma_vfmsubadd_pd_256: { |
| unsigned Opc; |
| switch (IntNo) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_fma_vfmadd_ps: |
| case Intrinsic::x86_fma_vfmadd_pd: |
| case Intrinsic::x86_fma_vfmadd_ps_256: |
| case Intrinsic::x86_fma_vfmadd_pd_256: |
| Opc = X86ISD::FMADD; |
| break; |
| case Intrinsic::x86_fma_vfmsub_ps: |
| case Intrinsic::x86_fma_vfmsub_pd: |
| case Intrinsic::x86_fma_vfmsub_ps_256: |
| case Intrinsic::x86_fma_vfmsub_pd_256: |
| Opc = X86ISD::FMSUB; |
| break; |
| case Intrinsic::x86_fma_vfnmadd_ps: |
| case Intrinsic::x86_fma_vfnmadd_pd: |
| case Intrinsic::x86_fma_vfnmadd_ps_256: |
| case Intrinsic::x86_fma_vfnmadd_pd_256: |
| Opc = X86ISD::FNMADD; |
| break; |
| case Intrinsic::x86_fma_vfnmsub_ps: |
| case Intrinsic::x86_fma_vfnmsub_pd: |
| case Intrinsic::x86_fma_vfnmsub_ps_256: |
| case Intrinsic::x86_fma_vfnmsub_pd_256: |
| Opc = X86ISD::FNMSUB; |
| break; |
| case Intrinsic::x86_fma_vfmaddsub_ps: |
| case Intrinsic::x86_fma_vfmaddsub_pd: |
| case Intrinsic::x86_fma_vfmaddsub_ps_256: |
| case Intrinsic::x86_fma_vfmaddsub_pd_256: |
| Opc = X86ISD::FMADDSUB; |
| break; |
| case Intrinsic::x86_fma_vfmsubadd_ps: |
| case Intrinsic::x86_fma_vfmsubadd_pd: |
| case Intrinsic::x86_fma_vfmsubadd_ps_256: |
| case Intrinsic::x86_fma_vfmsubadd_pd_256: |
| Opc = X86ISD::FMSUBADD; |
| break; |
| } |
| |
| return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3)); |
| } |
| } |
| } |
| |
| static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| |
| // RDRAND intrinsics. |
| case Intrinsic::x86_rdrand_16: |
| case Intrinsic::x86_rdrand_32: |
| case Intrinsic::x86_rdrand_64: { |
| // Emit the node with the right value type. |
| SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); |
| SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0)); |
| |
| // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise |
| // return the value from Rand, which is always 0, casted to i32. |
| SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), |
| DAG.getConstant(1, Op->getValueType(1)), |
| DAG.getConstant(X86::COND_B, MVT::i32), |
| SDValue(Result.getNode(), 1) }; |
| SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, |
| DAG.getVTList(Op->getValueType(1), MVT::Glue), |
| Ops, 4); |
| |
| // Return { result, isValid, chain }. |
| return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, |
| SDValue(Result.getNode(), 2)); |
| } |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setReturnAddressIsTaken(true); |
| |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT PtrVT = getPointerTy(); |
| |
| if (Depth > 0) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = |
| DAG.getConstant(RegInfo->getSlotSize(), PtrVT); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, PtrVT, |
| FrameAddr, Offset), |
| MachinePointerInfo(), false, false, false, 0); |
| } |
| |
| // Just load the return address. |
| SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| RetAddrFI, MachinePointerInfo(), false, false, false, 0); |
| } |
| |
| SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP; |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| return FrameAddr; |
| } |
| |
| SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, |
| SelectionDAG &DAG) const { |
| return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize()); |
| } |
| |
| SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Offset = Op.getOperand(1); |
| SDValue Handler = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, |
| Subtarget->is64Bit() ? X86::RBP : X86::EBP, |
| getPointerTy()); |
| unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); |
| |
| SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame, |
| DAG.getIntPtrConstant(RegInfo->getSlotSize())); |
| StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset); |
| Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), |
| false, false, 0); |
| Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); |
| |
| return DAG.getNode(X86ISD::EH_RETURN, dl, |
| MVT::Other, |
| Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); |
| } |
| |
| SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc DL = Op.getDebugLoc(); |
| return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, |
| DAG.getVTList(MVT::i32, MVT::Other), |
| Op.getOperand(0), Op.getOperand(1)); |
| } |
| |
| SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc DL = Op.getDebugLoc(); |
| return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, |
| Op.getOperand(0), Op.getOperand(1)); |
| } |
| |
| static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { |
| return Op.getOperand(0); |
| } |
| |
| SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Root = Op.getOperand(0); |
| SDValue Trmp = Op.getOperand(1); // trampoline |
| SDValue FPtr = Op.getOperand(2); // nested function |
| SDValue Nest = Op.getOperand(3); // 'nest' parameter value |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); |
| |
| if (Subtarget->is64Bit()) { |
| SDValue OutChains[6]; |
| |
| // Large code-model. |
| const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. |
| const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. |
| |
| const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; |
| const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; |
| |
| const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix |
| |
| // Load the pointer to the nested function into R11. |
| unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 |
| SDValue Addr = Trmp; |
| OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), |
| Addr, MachinePointerInfo(TrmpAddr), |
| false, false, 0); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(2, MVT::i64)); |
| OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, |
| MachinePointerInfo(TrmpAddr, 2), |
| false, false, 2); |
| |
| // Load the 'nest' parameter value into R10. |
| // R10 is specified in X86CallingConv.td |
| OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(10, MVT::i64)); |
| OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), |
| Addr, MachinePointerInfo(TrmpAddr, 10), |
| false, false, 0); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(12, MVT::i64)); |
| OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, |
| MachinePointerInfo(TrmpAddr, 12), |
| false, false, 2); |
| |
| // Jump to the nested function. |
| OpCode = (JMP64r << 8) | REX_WB; // jmpq *... |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(20, MVT::i64)); |
| OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), |
| Addr, MachinePointerInfo(TrmpAddr, 20), |
| false, false, 0); |
| |
| unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(22, MVT::i64)); |
| OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, |
| MachinePointerInfo(TrmpAddr, 22), |
| false, false, 0); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6); |
| } else { |
| const Function *Func = |
| cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); |
| CallingConv::ID CC = Func->getCallingConv(); |
| unsigned NestReg; |
| |
| switch (CC) { |
| default: |
| llvm_unreachable("Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::X86_StdCall: { |
| // Pass 'nest' parameter in ECX. |
| // Must be kept in sync with X86CallingConv.td |
| NestReg = X86::ECX; |
| |
| // Check that ECX wasn't needed by an 'inreg' parameter. |
| FunctionType *FTy = Func->getFunctionType(); |
| const AttributeSet &Attrs = Func->getAttributes(); |
| |
| if (!Attrs.isEmpty() && !Func->isVarArg()) { |
| unsigned InRegCount = 0; |
| unsigned Idx = 1; |
| |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I, ++Idx) |
| if (Attrs.hasAttribute(Idx, Attribute::InReg)) |
| // FIXME: should only count parameters that are lowered to integers. |
| InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; |
| |
| if (InRegCount > 2) { |
| report_fatal_error("Nest register in use - reduce number of inreg" |
| " parameters!"); |
| } |
| } |
| break; |
| } |
| case CallingConv::X86_FastCall: |
| case CallingConv::X86_ThisCall: |
| case CallingConv::Fast: |
| // Pass 'nest' parameter in EAX. |
| // Must be kept in sync with X86CallingConv.td |
| NestReg = X86::EAX; |
| break; |
| } |
| |
| SDValue OutChains[4]; |
| SDValue Addr, Disp; |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(10, MVT::i32)); |
| Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); |
| |
| // This is storing the opcode for MOV32ri. |
| const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. |
| const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; |
| OutChains[0] = DAG.getStore(Root, dl, |
| DAG.getConstant(MOV32ri|N86Reg, MVT::i8), |
| Trmp, MachinePointerInfo(TrmpAddr), |
| false, false, 0); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(1, MVT::i32)); |
| OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, |
| MachinePointerInfo(TrmpAddr, 1), |
| false, false, 1); |
| |
| const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(5, MVT::i32)); |
| OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, |
| MachinePointerInfo(TrmpAddr, 5), |
| false, false, 1); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(6, MVT::i32)); |
| OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, |
| MachinePointerInfo(TrmpAddr, 6), |
| false, false, 1); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4); |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, |
| SelectionDAG &DAG) const { |
| /* |
| The rounding mode is in bits 11:10 of FPSR, and has the following |
| settings: |
| 00 Round to nearest |
| 01 Round to -inf |
| 10 Round to +inf |
| 11 Round to 0 |
| |
| FLT_ROUNDS, on the other hand, expects the following: |
| -1 Undefined |
| 0 Round to 0 |
| 1 Round to nearest |
| 2 Round to +inf |
| 3 Round to -inf |
| |
| To perform the conversion, we do: |
| (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) |
| */ |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetMachine &TM = MF.getTarget(); |
| const TargetFrameLowering &TFI = *TM.getFrameLowering(); |
| unsigned StackAlignment = TFI.getStackAlignment(); |
| EVT VT = Op.getValueType(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| // Save FP Control Word to stack slot |
| int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), |
| MachineMemOperand::MOStore, 2, 2); |
| |
| SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; |
| SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, |
| DAG.getVTList(MVT::Other), |
| Ops, 2, MVT::i16, MMO); |
| |
| // Load FP Control Word from stack slot |
| SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, |
| MachinePointerInfo(), false, false, false, 0); |
| |
| // Transform as necessary |
| SDValue CWD1 = |
| DAG.getNode(ISD::SRL, DL, MVT::i16, |
| DAG.getNode(ISD::AND, DL, MVT::i16, |
| CWD, DAG.getConstant(0x800, MVT::i16)), |
| DAG.getConstant(11, MVT::i8)); |
| SDValue CWD2 = |
| DAG.getNode(ISD::SRL, DL, MVT::i16, |
| DAG.getNode(ISD::AND, DL, MVT::i16, |
| CWD, DAG.getConstant(0x400, MVT::i16)), |
| DAG.getConstant(9, MVT::i8)); |
| |
| SDValue RetVal = |
| DAG.getNode(ISD::AND, DL, MVT::i16, |
| DAG.getNode(ISD::ADD, DL, MVT::i16, |
| DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), |
| DAG.getConstant(1, MVT::i16)), |
| DAG.getConstant(3, MVT::i16)); |
| |
| return DAG.getNode((VT.getSizeInBits() < 16 ? |
| ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); |
| } |
| |
| static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| EVT OpVT = VT; |
| unsigned NumBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| Op = Op.getOperand(0); |
| if (VT == MVT::i8) { |
| // Zero extend to i32 since there is not an i8 bsr. |
| OpVT = MVT::i32; |
| Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); |
| } |
| |
| // Issue a bsr (scan bits in reverse) which also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); |
| |
| // If src is zero (i.e. bsr sets ZF), returns NumBits. |
| SDValue Ops[] = { |
| Op, |
| DAG.getConstant(NumBits+NumBits-1, OpVT), |
| DAG.getConstant(X86::COND_E, MVT::i8), |
| Op.getValue(1) |
| }; |
| Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); |
| |
| // Finally xor with NumBits-1. |
| Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); |
| |
| if (VT == MVT::i8) |
| Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); |
| return Op; |
| } |
| |
| static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| EVT OpVT = VT; |
| unsigned NumBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| Op = Op.getOperand(0); |
| if (VT == MVT::i8) { |
| // Zero extend to i32 since there is not an i8 bsr. |
| OpVT = MVT::i32; |
| Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); |
| } |
| |
| // Issue a bsr (scan bits in reverse). |
| SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); |
| |
| // And xor with NumBits-1. |
| Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); |
| |
| if (VT == MVT::i8) |
| Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); |
| return Op; |
| } |
| |
| static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| unsigned NumBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| Op = Op.getOperand(0); |
| |
| // Issue a bsf (scan bits forward) which also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); |
| |
| // If src is zero (i.e. bsf sets ZF), returns NumBits. |
| SDValue Ops[] = { |
| Op, |
| DAG.getConstant(NumBits, VT), |
| DAG.getConstant(X86::COND_E, MVT::i8), |
| Op.getValue(1) |
| }; |
| return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops)); |
| } |
| |
| // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit |
| // ones, and then concatenate the result back. |
| static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| |
| assert(VT.is256BitVector() && VT.isInteger() && |
| "Unsupported value type for operation"); |
| |
| unsigned NumElems = VT.getVectorNumElements(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Extract the LHS vectors |
| SDValue LHS = Op.getOperand(0); |
| SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); |
| SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); |
| |
| // Extract the RHS vectors |
| SDValue RHS = Op.getOperand(1); |
| SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); |
| SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); |
| |
| MVT EltVT = VT.getVectorElementType().getSimpleVT(); |
| EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), |
| DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); |
| } |
| |
| static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getValueType().is256BitVector() && |
| Op.getValueType().isInteger() && |
| "Only handle AVX 256-bit vector integer operation"); |
| return Lower256IntArith(Op, DAG); |
| } |
| |
| static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getValueType().is256BitVector() && |
| Op.getValueType().isInteger() && |
| "Only handle AVX 256-bit vector integer operation"); |
| return Lower256IntArith(Op, DAG); |
| } |
| |
| static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| |
| // Decompose 256-bit ops into smaller 128-bit ops. |
| if (VT.is256BitVector() && !Subtarget->hasInt256()) |
| return Lower256IntArith(Op, DAG); |
| |
| SDValue A = Op.getOperand(0); |
| SDValue B = Op.getOperand(1); |
| |
| // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. |
| if (VT == MVT::v4i32) { |
| assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() && |
| "Should not custom lower when pmuldq is available!"); |
| |
| // Extract the odd parts. |
| const int UnpackMask[] = { 1, -1, 3, -1 }; |
| SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); |
| SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); |
| |
| // Multiply the even parts. |
| SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); |
| // Now multiply odd parts. |
| SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); |
| |
| Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens); |
| Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds); |
| |
| // Merge the two vectors back together with a shuffle. This expands into 2 |
| // shuffles. |
| const int ShufMask[] = { 0, 4, 2, 6 }; |
| return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); |
| } |
| |
| assert((VT == MVT::v2i64 || VT == MVT::v4i64) && |
| "Only know how to lower V2I64/V4I64 multiply"); |
| |
| // Ahi = psrlqi(a, 32); |
| // Bhi = psrlqi(b, 32); |
| // |
| // AloBlo = pmuludq(a, b); |
| // AloBhi = pmuludq(a, Bhi); |
| // AhiBlo = pmuludq(Ahi, b); |
| |
| // AloBhi = psllqi(AloBhi, 32); |
| // AhiBlo = psllqi(AhiBlo, 32); |
| // return AloBlo + AloBhi + AhiBlo; |
| |
| SDValue ShAmt = DAG.getConstant(32, MVT::i32); |
| |
| SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt); |
| SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt); |
| |
| // Bit cast to 32-bit vectors for MULUDQ |
| EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32; |
| A = DAG.getNode(ISD::BITCAST, dl, MulVT, A); |
| B = DAG.getNode(ISD::BITCAST, dl, MulVT, B); |
| Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi); |
| Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi); |
| |
| SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); |
| SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); |
| SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); |
| |
| AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt); |
| AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt); |
| |
| SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); |
| return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); |
| } |
| |
| SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| EVT EltTy = VT.getVectorElementType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| SDValue N0 = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Lower sdiv X, pow2-const. |
| BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| APInt SplatValue, SplatUndef; |
| unsigned MinSplatBits; |
| bool HasAnyUndefs; |
| if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs)) |
| return SDValue(); |
| |
| if ((SplatValue != 0) && |
| (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) { |
| unsigned lg2 = SplatValue.countTrailingZeros(); |
| // Splat the sign bit. |
| SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32); |
| SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG); |
| // Add (N0 < 0) ? abs2 - 1 : 0; |
| SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32); |
| SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG); |
| SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL); |
| SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32); |
| SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG); |
| |
| // If we're dividing by a positive value, we're done. Otherwise, we must |
| // negate the result. |
| if (SplatValue.isNonNegative()) |
| return SRA; |
| |
| SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy)); |
| SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts); |
| return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA); |
| } |
| return SDValue(); |
| } |
| |
| SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue R = Op.getOperand(0); |
| SDValue Amt = Op.getOperand(1); |
| |
| if (!Subtarget->hasSSE2()) |
| return SDValue(); |
| |
| // Optimize shl/srl/sra with constant shift amount. |
| if (isSplatVector(Amt.getNode())) { |
| SDValue SclrAmt = Amt->getOperand(0); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) { |
| uint64_t ShiftAmt = C->getZExtValue(); |
| |
| if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || |
| (Subtarget->hasInt256() && |
| (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) { |
| if (Op.getOpcode() == ISD::SHL) |
| return DAG.getNode(X86ISD::VSHLI, dl, VT, R, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| if (Op.getOpcode() == ISD::SRL) |
| return DAG.getNode(X86ISD::VSRLI, dl, VT, R, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64) |
| return DAG.getNode(X86ISD::VSRAI, dl, VT, R, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| } |
| |
| if (VT == MVT::v16i8) { |
| if (Op.getOpcode() == ISD::SHL) { |
| // Make a large shift. |
| SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); |
| // Zero out the rightmost bits. |
| SmallVector<SDValue, 16> V(16, |
| DAG.getConstant(uint8_t(-1U << ShiftAmt), |
| MVT::i8)); |
| return DAG.getNode(ISD::AND, dl, VT, SHL, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16)); |
| } |
| if (Op.getOpcode() == ISD::SRL) { |
| // Make a large shift. |
| SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); |
| // Zero out the leftmost bits. |
| SmallVector<SDValue, 16> V(16, |
| DAG.getConstant(uint8_t(-1U) >> ShiftAmt, |
| MVT::i8)); |
| return DAG.getNode(ISD::AND, dl, VT, SRL, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16)); |
| } |
| if (Op.getOpcode() == ISD::SRA) { |
| if (ShiftAmt == 7) { |
| // R s>> 7 === R s< 0 |
| SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); |
| return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); |
| } |
| |
| // R s>> a === ((R u>> a) ^ m) - m |
| SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); |
| SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt, |
| MVT::i8)); |
| SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16); |
| Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); |
| Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); |
| return Res; |
| } |
| llvm_unreachable("Unknown shift opcode."); |
| } |
| |
| if (Subtarget->hasInt256() && VT == MVT::v32i8) { |
| if (Op.getOpcode() == ISD::SHL) { |
| // Make a large shift. |
| SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); |
| // Zero out the rightmost bits. |
| SmallVector<SDValue, 32> V(32, |
| DAG.getConstant(uint8_t(-1U << ShiftAmt), |
| MVT::i8)); |
| return DAG.getNode(ISD::AND, dl, VT, SHL, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32)); |
| } |
| if (Op.getOpcode() == ISD::SRL) { |
| // Make a large shift. |
| SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); |
| // Zero out the leftmost bits. |
| SmallVector<SDValue, 32> V(32, |
| DAG.getConstant(uint8_t(-1U) >> ShiftAmt, |
| MVT::i8)); |
| return DAG.getNode(ISD::AND, dl, VT, SRL, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32)); |
| } |
| if (Op.getOpcode() == ISD::SRA) { |
| if (ShiftAmt == 7) { |
| // R s>> 7 === R s< 0 |
| SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); |
| return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); |
| } |
| |
| // R s>> a === ((R u>> a) ^ m) - m |
| SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); |
| SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt, |
| MVT::i8)); |
| SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32); |
| Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); |
| Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); |
| return Res; |
| } |
| llvm_unreachable("Unknown shift opcode."); |
| } |
| } |
| } |
| |
| // Lower SHL with variable shift amount. |
| if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { |
| Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT)); |
| |
| Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT)); |
| Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op); |
| Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); |
| return DAG.getNode(ISD::MUL, dl, VT, Op, R); |
| } |
| if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) { |
| assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq."); |
| |
| // a = a << 5; |
| Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT)); |
| Op = DAG.getNode(ISD::BITCAST, dl, VT, Op); |
| |
| // Turn 'a' into a mask suitable for VSELECT |
| SDValue VSelM = DAG.getConstant(0x80, VT); |
| SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); |
| OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); |
| |
| SDValue CM1 = DAG.getConstant(0x0f, VT); |
| SDValue CM2 = DAG.getConstant(0x3f, VT); |
| |
| // r = VSELECT(r, psllw(r & (char16)15, 4), a); |
| SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1); |
| M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M, |
| DAG.getConstant(4, MVT::i32), DAG); |
| M = DAG.getNode(ISD::BITCAST, dl, VT, M); |
| R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); |
| |
| // a += a |
| Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); |
| OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); |
| OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); |
| |
| // r = VSELECT(r, psllw(r & (char16)63, 2), a); |
| M = DAG.getNode(ISD::AND, dl, VT, R, CM2); |
| M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M, |
| DAG.getConstant(2, MVT::i32), DAG); |
| M = DAG.getNode(ISD::BITCAST, dl, VT, M); |
| R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); |
| |
| // a += a |
| Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); |
| OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); |
| OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); |
| |
| // return VSELECT(r, r+r, a); |
| R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, |
| DAG.getNode(ISD::ADD, dl, VT, R, R), R); |
| return R; |
| } |
| |
| // Decompose 256-bit shifts into smaller 128-bit shifts. |
| if (VT.is256BitVector()) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| MVT EltVT = VT.getVectorElementType().getSimpleVT(); |
| EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); |
| |
| // Extract the two vectors |
| SDValue V1 = Extract128BitVector(R, 0, DAG, dl); |
| SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl); |
| |
| // Recreate the shift amount vectors |
| SDValue Amt1, Amt2; |
| if (Amt.getOpcode() == ISD::BUILD_VECTOR) { |
| // Constant shift amount |
| SmallVector<SDValue, 4> Amt1Csts; |
| SmallVector<SDValue, 4> Amt2Csts; |
| for (unsigned i = 0; i != NumElems/2; ++i) |
| Amt1Csts.push_back(Amt->getOperand(i)); |
| for (unsigned i = NumElems/2; i != NumElems; ++i) |
| Amt2Csts.push_back(Amt->getOperand(i)); |
| |
| Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, |
| &Amt1Csts[0], NumElems/2); |
| Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, |
| &Amt2Csts[0], NumElems/2); |
| } else { |
| // Variable shift amount |
| Amt1 = Extract128BitVector(Amt, 0, DAG, dl); |
| Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl); |
| } |
| |
| // Issue new vector shifts for the smaller types |
| V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1); |
| V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2); |
| |
| // Concatenate the result back |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { |
| // Lower the "add/sub/mul with overflow" instruction into a regular ins plus |
| // a "setcc" instruction that checks the overflow flag. The "brcond" lowering |
| // looks for this combo and may remove the "setcc" instruction if the "setcc" |
| // has only one use. |
| SDNode *N = Op.getNode(); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| unsigned BaseOp = 0; |
| unsigned Cond = 0; |
| DebugLoc DL = Op.getDebugLoc(); |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Unknown ovf instruction!"); |
| case ISD::SADDO: |
| // A subtract of one will be selected as a INC. Note that INC doesn't |
| // set CF, so we can't do this for UADDO. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) |
| if (C->isOne()) { |
| BaseOp = X86ISD::INC; |
| Cond = X86::COND_O; |
| break; |
| } |
| BaseOp = X86ISD::ADD; |
| Cond = X86::COND_O; |
| break; |
| case ISD::UADDO: |
| BaseOp = X86ISD::ADD; |
| Cond = X86::COND_B; |
| break; |
| case ISD::SSUBO: |
| // A subtract of one will be selected as a DEC. Note that DEC doesn't |
| // set CF, so we can't do this for USUBO. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) |
| if (C->isOne()) { |
| BaseOp = X86ISD::DEC; |
| Cond = X86::COND_O; |
| break; |
| } |
| BaseOp = X86ISD::SUB; |
| Cond = X86::COND_O; |
| break; |
| case ISD::USUBO: |
| BaseOp = X86ISD::SUB; |
| Cond = X86::COND_B; |
| break; |
| case ISD::SMULO: |
| BaseOp = X86ISD::SMUL; |
| Cond = X86::COND_O; |
| break; |
| case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs |
| SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), |
| MVT::i32); |
| SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); |
| |
| SDValue SetCC = |
| DAG.getNode(X86ISD::SETCC, DL, MVT::i8, |
| DAG.getConstant(X86::COND_O, MVT::i32), |
| SDValue(Sum.getNode(), 2)); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); |
| } |
| } |
| |
| // Also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); |
| SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); |
| |
| SDValue SetCC = |
| DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), |
| DAG.getConstant(Cond, MVT::i32), |
| SDValue(Sum.getNode(), 1)); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); |
| } |
| |
| SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| EVT VT = Op.getValueType(); |
| |
| if (!Subtarget->hasSSE2() || !VT.isVector()) |
| return SDValue(); |
| |
| unsigned BitsDiff = VT.getScalarType().getSizeInBits() - |
| ExtraVT.getScalarType().getSizeInBits(); |
| SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32); |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return SDValue(); |
| case MVT::v8i32: |
| case MVT::v16i16: |
| if (!Subtarget->hasFp256()) |
| return SDValue(); |
| if (!Subtarget->hasInt256()) { |
| // needs to be split |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| // Extract the LHS vectors |
| SDValue LHS = Op.getOperand(0); |
| SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); |
| SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); |
| |
| MVT EltVT = VT.getVectorElementType().getSimpleVT(); |
| EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); |
| |
| EVT ExtraEltVT = ExtraVT.getVectorElementType(); |
| unsigned ExtraNumElems = ExtraVT.getVectorNumElements(); |
| ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT, |
| ExtraNumElems/2); |
| SDValue Extra = DAG.getValueType(ExtraVT); |
| |
| LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra); |
| LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2); |
| } |
| // fall through |
| case MVT::v4i32: |
| case MVT::v8i16: { |
| SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, |
| Op.getOperand(0), ShAmt, DAG); |
| return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG); |
| } |
| } |
| } |
| |
| static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Go ahead and emit the fence on x86-64 even if we asked for no-sse2. |
| // There isn't any reason to disable it if the target processor supports it. |
| if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Zero = DAG.getConstant(0, MVT::i32); |
| SDValue Ops[] = { |
| DAG.getRegister(X86::ESP, MVT::i32), // Base |
| DAG.getTargetConstant(1, MVT::i8), // Scale |
| DAG.getRegister(0, MVT::i32), // Index |
| DAG.getTargetConstant(0, MVT::i32), // Disp |
| DAG.getRegister(0, MVT::i32), // Segment. |
| Zero, |
| Chain |
| }; |
| SDNode *Res = |
| DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops, |
| array_lengthof(Ops)); |
| return SDValue(Res, 0); |
| } |
| |
| unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); |
| if (!isDev) |
| return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); |
| |
| unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); |
| unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); |
| |
| // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>; |
| if (!Op1 && !Op2 && !Op3 && Op4) |
| return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0)); |
| |
| // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>; |
| if (Op1 && !Op2 && !Op3 && !Op4) |
| return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0)); |
| |
| // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)), |
| // (MFENCE)>; |
| return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); |
| } |
| |
| static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( |
| cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); |
| SynchronizationScope FenceScope = static_cast<SynchronizationScope>( |
| cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); |
| |
| // The only fence that needs an instruction is a sequentially-consistent |
| // cross-thread fence. |
| if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) { |
| // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for |
| // no-sse2). There isn't any reason to disable it if the target processor |
| // supports it. |
| if (Subtarget->hasSSE2() || Subtarget->is64Bit()) |
| return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue Zero = DAG.getConstant(0, MVT::i32); |
| SDValue Ops[] = { |
| DAG.getRegister(X86::ESP, MVT::i32), // Base |
| DAG.getTargetConstant(1, MVT::i8), // Scale |
| DAG.getRegister(0, MVT::i32), // Index |
| DAG.getTargetConstant(0, MVT::i32), // Disp |
| DAG.getRegister(0, MVT::i32), // Segment. |
| Zero, |
| Chain |
| }; |
| SDNode *Res = |
| DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops, |
| array_lengthof(Ops)); |
| return SDValue(Res, 0); |
| } |
| |
| // MEMBARRIER is a compiler barrier; it codegens to a no-op. |
| return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); |
| } |
| |
| static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| EVT T = Op.getValueType(); |
| DebugLoc DL = Op.getDebugLoc(); |
| unsigned Reg = 0; |
| unsigned size = 0; |
| switch(T.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid value type!"); |
| case MVT::i8: Reg = X86::AL; size = 1; break; |
| case MVT::i16: Reg = X86::AX; size = 2; break; |
| case MVT::i32: Reg = X86::EAX; size = 4; break; |
| case MVT::i64: |
| assert(Subtarget->is64Bit() && "Node not type legal!"); |
| Reg = X86::RAX; size = 8; |
| break; |
| } |
| SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, |
| Op.getOperand(2), SDValue()); |
| SDValue Ops[] = { cpIn.getValue(0), |
| Op.getOperand(1), |
| Op.getOperand(3), |
| DAG.getTargetConstant(size, MVT::i8), |
| cpIn.getValue(1) }; |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); |
| SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, |
| Ops, 5, T, MMO); |
| SDValue cpOut = |
| DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); |
| return cpOut; |
| } |
| |
| static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget, |
| SelectionDAG &DAG) { |
| assert(Subtarget->is64Bit() && "Result not type legalized?"); |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue TheChain = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); |
| SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); |
| SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, |
| rax.getValue(2)); |
| SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, |
| DAG.getConstant(32, MVT::i8)); |
| SDValue Ops[] = { |
| DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), |
| rdx.getValue(1) |
| }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { |
| EVT SrcVT = Op.getOperand(0).getValueType(); |
| EVT DstVT = Op.getValueType(); |
| assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && |
| Subtarget->hasMMX() && "Unexpected custom BITCAST"); |
| assert((DstVT == MVT::i64 || |
| (DstVT.isVector() && DstVT.getSizeInBits()==64)) && |
| "Unexpected custom BITCAST"); |
| // i64 <=> MMX conversions are Legal. |
| if (SrcVT==MVT::i64 && DstVT.isVector()) |
| return Op; |
| if (DstVT==MVT::i64 && SrcVT.isVector()) |
| return Op; |
| // MMX <=> MMX conversions are Legal. |
| if (SrcVT.isVector() && DstVT.isVector()) |
| return Op; |
| // All other conversions need to be expanded. |
| return SDValue(); |
| } |
| |
| static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { |
| SDNode *Node = Op.getNode(); |
| DebugLoc dl = Node->getDebugLoc(); |
| EVT T = Node->getValueType(0); |
| SDValue negOp = DAG.getNode(ISD::SUB, dl, T, |
| DAG.getConstant(0, T), Node->getOperand(2)); |
| return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, |
| cast<AtomicSDNode>(Node)->getMemoryVT(), |
| Node->getOperand(0), |
| Node->getOperand(1), negOp, |
| cast<AtomicSDNode>(Node)->getSrcValue(), |
| cast<AtomicSDNode>(Node)->getAlignment(), |
| cast<AtomicSDNode>(Node)->getOrdering(), |
| cast<AtomicSDNode>(Node)->getSynchScope()); |
| } |
| |
| static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { |
| SDNode *Node = Op.getNode(); |
| DebugLoc dl = Node->getDebugLoc(); |
| EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); |
| |
| // Convert seq_cst store -> xchg |
| // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) |
| // FIXME: On 32-bit, store -> fist or movq would be more efficient |
| // (The only way to get a 16-byte store is cmpxchg16b) |
| // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. |
| if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent || |
| !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { |
| SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, |
| cast<AtomicSDNode>(Node)->getMemoryVT(), |
| Node->getOperand(0), |
| Node->getOperand(1), Node->getOperand(2), |
| cast<AtomicSDNode>(Node)->getMemOperand(), |
| cast<AtomicSDNode>(Node)->getOrdering(), |
| cast<AtomicSDNode>(Node)->getSynchScope()); |
| return Swap.getValue(1); |
| } |
| // Other atomic stores have a simple pattern. |
| return Op; |
| } |
| |
| static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getNode()->getValueType(0); |
| |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| |
| unsigned Opc; |
| bool ExtraOp = false; |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Invalid code"); |
| case ISD::ADDC: Opc = X86ISD::ADD; break; |
| case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; |
| case ISD::SUBC: Opc = X86ISD::SUB; break; |
| case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; |
| } |
| |
| if (!ExtraOp) |
| return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), |
| Op.getOperand(1)); |
| return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit()); |
| |
| // For MacOSX, we want to call an alternative entry point: __sincos_stret, |
| // which returns the values in two XMM registers. |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Arg = Op.getOperand(0); |
| EVT ArgVT = Arg.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| |
| ArgListTy Args; |
| ArgListEntry Entry; |
| |
| Entry.Node = Arg; |
| Entry.Ty = ArgTy; |
| Entry.isSExt = false; |
| Entry.isZExt = false; |
| Args.push_back(Entry); |
| |
| // Only optimize x86_64 for now. i386 is a bit messy. For f32, |
| // the small struct {f32, f32} is returned in (eax, edx). For f64, |
| // the results are returned via SRet in memory. |
| const char *LibcallName = (ArgVT == MVT::f64) |
| ? "__sincos_stret" : "__sincosf_stret"; |
| SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy()); |
| |
| StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL); |
| TargetLowering:: |
| CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, |
| false, false, false, false, 0, |
| CallingConv::C, /*isTaillCall=*/false, |
| /*doesNotRet=*/false, /*isReturnValueUsed*/true, |
| Callee, Args, DAG, dl); |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| return CallResult.first; |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Should not custom lower this!"); |
| case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG); |
| case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, Subtarget, DAG); |
| case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG); |
| case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op, Subtarget, DAG); |
| case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); |
| case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG); |
| case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); |
| case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); |
| case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, DAG); |
| case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG); |
| case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, DAG); |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); |
| case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); |
| case ISD::FABS: return LowerFABS(Op, DAG); |
| case ISD::FNEG: return LowerFNEG(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::VAARG: return LowerVAARG(Op, DAG); |
| case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); |
| case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); |
| case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); |
| case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); |
| case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); |
| case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); |
| case ISD::CTLZ: return LowerCTLZ(Op, DAG); |
| case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG); |
| case ISD::CTTZ: return LowerCTTZ(Op, DAG); |
| case ISD::MUL: return LowerMUL(Op, Subtarget, DAG); |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::SHL: return LowerShift(Op, DAG); |
| case ISD::SADDO: |
| case ISD::UADDO: |
| case ISD::SSUBO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: return LowerXALUO(Op, DAG); |
| case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); |
| case ISD::BITCAST: return LowerBITCAST(Op, DAG); |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUBC: |
| case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); |
| case ISD::ADD: return LowerADD(Op, DAG); |
| case ISD::SUB: return LowerSUB(Op, DAG); |
| case ISD::SDIV: return LowerSDIV(Op, DAG); |
| case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); |
| } |
| } |
| |
| static void ReplaceATOMIC_LOAD(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) { |
| DebugLoc dl = Node->getDebugLoc(); |
| EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); |
| |
| // Convert wide load -> cmpxchg8b/cmpxchg16b |
| // FIXME: On 32-bit, load -> fild or movq would be more efficient |
| // (The only way to get a 16-byte load is cmpxchg16b) |
| // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment. |
| SDValue Zero = DAG.getConstant(0, VT); |
| SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT, |
| Node->getOperand(0), |
| Node->getOperand(1), Zero, Zero, |
| cast<AtomicSDNode>(Node)->getMemOperand(), |
| cast<AtomicSDNode>(Node)->getOrdering(), |
| cast<AtomicSDNode>(Node)->getSynchScope()); |
| Results.push_back(Swap.getValue(0)); |
| Results.push_back(Swap.getValue(1)); |
| } |
| |
| static void |
| ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG, unsigned NewOp) { |
| DebugLoc dl = Node->getDebugLoc(); |
| assert (Node->getValueType(0) == MVT::i64 && |
| "Only know how to expand i64 atomics"); |
| |
| SDValue Chain = Node->getOperand(0); |
| SDValue In1 = Node->getOperand(1); |
| SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Node->getOperand(2), DAG.getIntPtrConstant(0)); |
| SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Node->getOperand(2), DAG.getIntPtrConstant(1)); |
| SDValue Ops[] = { Chain, In1, In2L, In2H }; |
| SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); |
| SDValue Result = |
| DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64, |
| cast<MemSDNode>(Node)->getMemOperand()); |
| SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); |
| Results.push_back(Result.getValue(2)); |
| } |
| |
| /// ReplaceNodeResults - Replace a node with an illegal result type |
| /// with a new node built out of custom code. |
| void X86TargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = N->getDebugLoc(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Do not know how to custom type legalize this operation!"); |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUBC: |
| case ISD::SUBE: |
| // We don't want to expand or promote these. |
| return; |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: { |
| bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; |
| |
| if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType())) |
| return; |
| |
| std::pair<SDValue,SDValue> Vals = |
| FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); |
| SDValue FIST = Vals.first, StackSlot = Vals.second; |
| if (FIST.getNode() != 0) { |
| EVT VT = N->getValueType(0); |
| // Return a load from the stack slot. |
| if (StackSlot.getNode() != 0) |
| Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, |
| MachinePointerInfo(), |
| false, false, false, 0)); |
| else |
| Results.push_back(FIST); |
| } |
| return; |
| } |
| case ISD::UINT_TO_FP: { |
| assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); |
| if (N->getOperand(0).getValueType() != MVT::v2i32 || |
| N->getValueType(0) != MVT::v2f32) |
| return; |
| SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, |
| N->getOperand(0)); |
| SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), |
| MVT::f64); |
| SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias); |
| SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias)); |
| Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or); |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); |
| Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); |
| return; |
| } |
| case ISD::FP_ROUND: { |
| if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) |
| return; |
| SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); |
| Results.push_back(V); |
| return; |
| } |
| case ISD::READCYCLECOUNTER: { |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue TheChain = N->getOperand(0); |
| SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); |
| SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, |
| rd.getValue(1)); |
| SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, |
| eax.getValue(2)); |
| // Use a buildpair to merge the two 32-bit values into a 64-bit one. |
| SDValue Ops[] = { eax, edx }; |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2)); |
| Results.push_back(edx.getValue(1)); |
| return; |
| } |
| case ISD::ATOMIC_CMP_SWAP: { |
| EVT T = N->getValueType(0); |
| assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); |
| bool Regs64bit = T == MVT::i128; |
| EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; |
| SDValue cpInL, cpInH; |
| cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), |
| DAG.getConstant(0, HalfT)); |
| cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), |
| DAG.getConstant(1, HalfT)); |
| cpInL = DAG.getCopyToReg(N->getOperand(0), dl, |
| Regs64bit ? X86::RAX : X86::EAX, |
| cpInL, SDValue()); |
| cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, |
| Regs64bit ? X86::RDX : X86::EDX, |
| cpInH, cpInL.getValue(1)); |
| SDValue swapInL, swapInH; |
| swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), |
| DAG.getConstant(0, HalfT)); |
| swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), |
| DAG.getConstant(1, HalfT)); |
| swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, |
| Regs64bit ? X86::RBX : X86::EBX, |
| swapInL, cpInH.getValue(1)); |
| swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, |
| Regs64bit ? X86::RCX : X86::ECX, |
| swapInH, swapInL.getValue(1)); |
| SDValue Ops[] = { swapInH.getValue(0), |
| N->getOperand(1), |
| swapInH.getValue(1) }; |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); |
| unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG : |
| X86ISD::LCMPXCHG8_DAG; |
| SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, |
| Ops, 3, T, MMO); |
| SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, |
| Regs64bit ? X86::RAX : X86::EAX, |
| HalfT, Result.getValue(1)); |
| SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, |
| Regs64bit ? X86::RDX : X86::EDX, |
| HalfT, cpOutL.getValue(2)); |
| SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2)); |
| Results.push_back(cpOutH.getValue(1)); |
| return; |
| } |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_SWAP: { |
| unsigned Opc; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("Unexpected opcode"); |
| case ISD::ATOMIC_LOAD_ADD: |
| Opc = X86ISD::ATOMADD64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_AND: |
| Opc = X86ISD::ATOMAND64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_NAND: |
| Opc = X86ISD::ATOMNAND64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_OR: |
| Opc = X86ISD::ATOMOR64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_SUB: |
| Opc = X86ISD::ATOMSUB64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_XOR: |
| Opc = X86ISD::ATOMXOR64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_MAX: |
| Opc = X86ISD::ATOMMAX64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_MIN: |
| Opc = X86ISD::ATOMMIN64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_UMAX: |
| Opc = X86ISD::ATOMUMAX64_DAG; |
| break; |
| case ISD::ATOMIC_LOAD_UMIN: |
| Opc = X86ISD::ATOMUMIN64_DAG; |
| break; |
| case ISD::ATOMIC_SWAP: |
| Opc = X86ISD::ATOMSWAP64_DAG; |
| break; |
| } |
| ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc); |
| return; |
| } |
| case ISD::ATOMIC_LOAD: |
| ReplaceATOMIC_LOAD(N, Results, DAG); |
| } |
| } |
| |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return NULL; |
| case X86ISD::BSF: return "X86ISD::BSF"; |
| case X86ISD::BSR: return "X86ISD::BSR"; |
| case X86ISD::SHLD: return "X86ISD::SHLD"; |
| case X86ISD::SHRD: return "X86ISD::SHRD"; |
| case X86ISD::FAND: return "X86ISD::FAND"; |
| case X86ISD::FOR: return "X86ISD::FOR"; |
| case X86ISD::FXOR: return "X86ISD::FXOR"; |
| case X86ISD::FSRL: return "X86ISD::FSRL"; |
| case X86ISD::FILD: return "X86ISD::FILD"; |
| case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; |
| case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; |
| case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; |
| case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; |
| case X86ISD::FLD: return "X86ISD::FLD"; |
| case X86ISD::FST: return "X86ISD::FST"; |
| case X86ISD::CALL: return "X86ISD::CALL"; |
| case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; |
| case X86ISD::BT: return "X86ISD::BT"; |
| case X86ISD::CMP: return "X86ISD::CMP"; |
| case X86ISD::COMI: return "X86ISD::COMI"; |
| case X86ISD::UCOMI: return "X86ISD::UCOMI"; |
| case X86ISD::SETCC: return "X86ISD::SETCC"; |
| case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; |
| case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd"; |
| case X86ISD::FSETCCss: return "X86ISD::FSETCCss"; |
| case X86ISD::CMOV: return "X86ISD::CMOV"; |
| case X86ISD::BRCOND: return "X86ISD::BRCOND"; |
| case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; |
| case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; |
| case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; |
| case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; |
| case X86ISD::Wrapper: return "X86ISD::Wrapper"; |
| case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; |
| case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; |
| case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; |
| case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; |
| case X86ISD::PINSRB: return "X86ISD::PINSRB"; |
| case X86ISD::PINSRW: return "X86ISD::PINSRW"; |
| case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; |
| case X86ISD::ANDNP: return "X86ISD::ANDNP"; |
| case X86ISD::PSIGN: return "X86ISD::PSIGN"; |
| case X86ISD::BLENDV: return "X86ISD::BLENDV"; |
| case X86ISD::BLENDI: return "X86ISD::BLENDI"; |
| case X86ISD::SUBUS: return "X86ISD::SUBUS"; |
| case X86ISD::HADD: return "X86ISD::HADD"; |
| case X86ISD::HSUB: return "X86ISD::HSUB"; |
| case X86ISD::FHADD: return "X86ISD::FHADD"; |
| case X86ISD::FHSUB: return "X86ISD::FHSUB"; |
| case X86ISD::UMAX: return "X86ISD::UMAX"; |
| case X86ISD::UMIN: return "X86ISD::UMIN"; |
| case X86ISD::SMAX: return "X86ISD::SMAX"; |
| case X86ISD::SMIN: return "X86ISD::SMIN"; |
| case X86ISD::FMAX: return "X86ISD::FMAX"; |
| case X86ISD::FMIN: return "X86ISD::FMIN"; |
| case X86ISD::FMAXC: return "X86ISD::FMAXC"; |
| case X86ISD::FMINC: return "X86ISD::FMINC"; |
| case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; |
| case X86ISD::FRCP: return "X86ISD::FRCP"; |
| case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; |
| case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR"; |
| case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; |
| case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP"; |
| case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP"; |
| case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; |
| case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; |
| case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; |
| case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r"; |
| case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; |
| case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; |
| case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG"; |
| case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG"; |
| case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG"; |
| case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG"; |
| case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG"; |
| case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG"; |
| case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; |
| case X86ISD::VSEXT_MOVL: return "X86ISD::VSEXT_MOVL"; |
| case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; |
| case X86ISD::VZEXT: return "X86ISD::VZEXT"; |
| case X86ISD::VSEXT: return "X86ISD::VSEXT"; |
| case X86ISD::VFPEXT: return "X86ISD::VFPEXT"; |
| case X86ISD::VFPROUND: return "X86ISD::VFPROUND"; |
| case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ"; |
| case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ"; |
| case X86ISD::VSHL: return "X86ISD::VSHL"; |
| case X86ISD::VSRL: return "X86ISD::VSRL"; |
| case X86ISD::VSRA: return "X86ISD::VSRA"; |
| case X86ISD::VSHLI: return "X86ISD::VSHLI"; |
| case X86ISD::VSRLI: return "X86ISD::VSRLI"; |
| case X86ISD::VSRAI: return "X86ISD::VSRAI"; |
| case X86ISD::CMPP: return "X86ISD::CMPP"; |
| case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ"; |
| case X86ISD::PCMPGT: return "X86ISD::PCMPGT"; |
| case X86ISD::ADD: return "X86ISD::ADD"; |
| case X86ISD::SUB: return "X86ISD::SUB"; |
| case X86ISD::ADC: return "X86ISD::ADC"; |
| case X86ISD::SBB: return "X86ISD::SBB"; |
| case X86ISD::SMUL: return "X86ISD::SMUL"; |
| case X86ISD::UMUL: return "X86ISD::UMUL"; |
| case X86ISD::INC: return "X86ISD::INC"; |
| case X86ISD::DEC: return "X86ISD::DEC"; |
| case X86ISD::OR: return "X86ISD::OR"; |
| case X86ISD::XOR: return "X86ISD::XOR"; |
| case X86ISD::AND: return "X86ISD::AND"; |
| case X86ISD::BLSI: return "X86ISD::BLSI"; |
| case X86ISD::BLSMSK: return "X86ISD::BLSMSK"; |
| case X86ISD::BLSR: return "X86ISD::BLSR"; |
| case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; |
| case X86ISD::PTEST: return "X86ISD::PTEST"; |
| case X86ISD::TESTP: return "X86ISD::TESTP"; |
| case X86ISD::PALIGNR: return "X86ISD::PALIGNR"; |
| case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; |
| case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; |
| case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; |
| case X86ISD::SHUFP: return "X86ISD::SHUFP"; |
| case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; |
| case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD"; |
| case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; |
| case X86ISD::MOVLPS: return "X86ISD::MOVLPS"; |
| case X86ISD::MOVLPD: return "X86ISD::MOVLPD"; |
| case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; |
| case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; |
| case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; |
| case X86ISD::MOVSD: return "X86ISD::MOVSD"; |
| case X86ISD::MOVSS: return "X86ISD::MOVSS"; |
| case X86ISD::UNPCKL: return "X86ISD::UNPCKL"; |
| case X86ISD::UNPCKH: return "X86ISD::UNPCKH"; |
| case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST"; |
| case X86ISD::VPERMILP: return "X86ISD::VPERMILP"; |
| case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128"; |
| case X86ISD::VPERMV: return "X86ISD::VPERMV"; |
| case X86ISD::VPERMI: return "X86ISD::VPERMI"; |
| case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ"; |
| case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; |
| case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; |
| case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; |
| case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER"; |
| case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA"; |
| case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL"; |
| case X86ISD::SAHF: return "X86ISD::SAHF"; |
| case X86ISD::RDRAND: return "X86ISD::RDRAND"; |
| case X86ISD::FMADD: return "X86ISD::FMADD"; |
| case X86ISD::FMSUB: return "X86ISD::FMSUB"; |
| case X86ISD::FNMADD: return "X86ISD::FNMADD"; |
| case X86ISD::FNMSUB: return "X86ISD::FNMSUB"; |
| case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB"; |
| case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; |
| case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI"; |
| case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI"; |
| } |
| } |
| |
| // isLegalAddressingMode - Return true if the addressing mode represented |
| // by AM is legal for this target, for a load/store of the specified type. |
| bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| Type *Ty) const { |
| // X86 supports extremely general addressing modes. |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| Reloc::Model R = getTargetMachine().getRelocationModel(); |
| |
| // X86 allows a sign-extended 32-bit immediate field as a displacement. |
| if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) |
| return false; |
| |
| if (AM.BaseGV) { |
| unsigned GVFlags = |
| Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); |
| |
| // If a reference to this global requires an extra load, we can't fold it. |
| if (isGlobalStubReference(GVFlags)) |
| return false; |
| |
| // If BaseGV requires a register for the PIC base, we cannot also have a |
| // BaseReg specified. |
| if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) |
| return false; |
| |
| // If lower 4G is not available, then we must use rip-relative addressing. |
| if ((M != CodeModel::Small || R != Reloc::Static) && |
| Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) |
| return false; |
| } |
| |
| switch (AM.Scale) { |
| case 0: |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| // These scales always work. |
| break; |
| case 3: |
| case 5: |
| case 9: |
| // These scales are formed with basereg+scalereg. Only accept if there is |
| // no basereg yet. |
| if (AM.HasBaseReg) |
| return false; |
| break; |
| default: // Other stuff never works. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| return false; |
| unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
| return NumBits1 > NumBits2; |
| } |
| |
| bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| return isInt<32>(Imm); |
| } |
| |
| bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| // Can also use sub to handle negated immediates. |
| return isInt<32>(Imm); |
| } |
| |
| bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { |
| if (!VT1.isInteger() || !VT2.isInteger()) |
| return false; |
| unsigned NumBits1 = VT1.getSizeInBits(); |
| unsigned NumBits2 = VT2.getSizeInBits(); |
| return NumBits1 > NumBits2; |
| } |
| |
| bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { |
| // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. |
| return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); |
| } |
| |
| bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { |
| // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. |
| return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); |
| } |
| |
| bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| EVT VT1 = Val.getValueType(); |
| if (isZExtFree(VT1, VT2)) |
| return true; |
| |
| if (Val.getOpcode() != ISD::LOAD) |
| return false; |
| |
| if (!VT1.isSimple() || !VT1.isInteger() || |
| !VT2.isSimple() || !VT2.isInteger()) |
| return false; |
| |
| switch (VT1.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| // X86 has 8, 16, and 32-bit zero-extending loads. |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { |
| // i16 instructions are longer (0x66 prefix) and potentially slower. |
| return !(VT1 == MVT::i32 && VT2 == MVT::i16); |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool |
| X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, |
| EVT VT) const { |
| // Very little shuffling can be done for 64-bit vectors right now. |
| if (VT.getSizeInBits() == 64) |
| return false; |
| |
| // FIXME: pshufb, blends, shifts. |
| return (VT.getVectorNumElements() == 2 || |
| ShuffleVectorSDNode::isSplatMask(&M[0], VT) || |
| isMOVLMask(M, VT) || |
| isSHUFPMask(M, VT, Subtarget->hasFp256()) || |
| isPSHUFDMask(M, VT) || |
| isPSHUFHWMask(M, VT, Subtarget->hasInt256()) || |
| isPSHUFLWMask(M, VT, Subtarget->hasInt256()) || |
| isPALIGNRMask(M, VT, Subtarget) || |
| isUNPCKLMask(M, VT, Subtarget->hasInt256()) || |
| isUNPCKHMask(M, VT, Subtarget->hasInt256()) || |
| isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) || |
| isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256())); |
| } |
| |
| bool |
| X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, |
| EVT VT) const { |
| unsigned NumElts = VT.getVectorNumElements(); |
| // FIXME: This collection of masks seems suspect. |
| if (NumElts == 2) |
| return true; |
| if (NumElts == 4 && VT.is128BitVector()) { |
| return (isMOVLMask(Mask, VT) || |
| isCommutedMOVLMask(Mask, VT, true) || |
| isSHUFPMask(Mask, VT, Subtarget->hasFp256()) || |
| isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true)); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// Utility function to emit xbegin specifying the start of an RTM region. |
| static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB, |
| const TargetInstrInfo *TII) { |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| MachineFunction::iterator I = MBB; |
| ++I; |
| |
| // For the v = xbegin(), we generate |
| // |
| // thisMBB: |
| // xbegin sinkMBB |
| // |
| // mainMBB: |
| // eax = -1 |
| // |
| // sinkMBB: |
| // v = eax |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineFunction *MF = MBB->getParent(); |
| MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(I, mainMBB); |
| MF->insert(I, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), MBB, |
| llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // thisMBB: |
| // xbegin sinkMBB |
| // # fallthrough to mainMBB |
| // # abortion to sinkMBB |
| BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB); |
| thisMBB->addSuccessor(mainMBB); |
| thisMBB->addSuccessor(sinkMBB); |
| |
| // mainMBB: |
| // EAX = -1 |
| BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1); |
| mainMBB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // EAX is live into the sinkMBB |
| sinkMBB->addLiveIn(X86::EAX); |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, |
| TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) |
| .addReg(X86::EAX); |
| |
| MI->eraseFromParent(); |
| return sinkMBB; |
| } |
| |
| // Get CMPXCHG opcode for the specified data type. |
| static unsigned getCmpXChgOpcode(EVT VT) { |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::i8: return X86::LCMPXCHG8; |
| case MVT::i16: return X86::LCMPXCHG16; |
| case MVT::i32: return X86::LCMPXCHG32; |
| case MVT::i64: return X86::LCMPXCHG64; |
| default: |
| break; |
| } |
| llvm_unreachable("Invalid operand size!"); |
| } |
| |
| // Get LOAD opcode for the specified data type. |
| static unsigned getLoadOpcode(EVT VT) { |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::i8: return X86::MOV8rm; |
| case MVT::i16: return X86::MOV16rm; |
| case MVT::i32: return X86::MOV32rm; |
| case MVT::i64: return X86::MOV64rm; |
| default: |
| break; |
| } |
| llvm_unreachable("Invalid operand size!"); |
| } |
| |
| // Get opcode of the non-atomic one from the specified atomic instruction. |
| static unsigned getNonAtomicOpcode(unsigned Opc) { |
| switch (Opc) { |
| case X86::ATOMAND8: return X86::AND8rr; |
| case X86::ATOMAND16: return X86::AND16rr; |
| case X86::ATOMAND32: return X86::AND32rr; |
| case X86::ATOMAND64: return X86::AND64rr; |
| case X86::ATOMOR8: return X86::OR8rr; |
| case X86::ATOMOR16: return X86::OR16rr; |
| case X86::ATOMOR32: return X86::OR32rr; |
| case X86::ATOMOR64: return X86::OR64rr; |
| case X86::ATOMXOR8: return X86::XOR8rr; |
| case X86::ATOMXOR16: return X86::XOR16rr; |
| case X86::ATOMXOR32: return X86::XOR32rr; |
| case X86::ATOMXOR64: return X86::XOR64rr; |
| } |
| llvm_unreachable("Unhandled atomic-load-op opcode!"); |
| } |
| |
| // Get opcode of the non-atomic one from the specified atomic instruction with |
| // extra opcode. |
| static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc, |
| unsigned &ExtraOpc) { |
| switch (Opc) { |
| case X86::ATOMNAND8: ExtraOpc = X86::NOT8r; return X86::AND8rr; |
| case X86::ATOMNAND16: ExtraOpc = X86::NOT16r; return X86::AND16rr; |
| case X86::ATOMNAND32: ExtraOpc = X86::NOT32r; return X86::AND32rr; |
| case X86::ATOMNAND64: ExtraOpc = X86::NOT64r; return X86::AND64rr; |
| case X86::ATOMMAX8: ExtraOpc = X86::CMP8rr; return X86::CMOVL32rr; |
| case X86::ATOMMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr; |
| case X86::ATOMMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr; |
| case X86::ATOMMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr; |
| case X86::ATOMMIN8: ExtraOpc = X86::CMP8rr; return X86::CMOVG32rr; |
| case X86::ATOMMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr; |
| case X86::ATOMMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr; |
| case X86::ATOMMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr; |
| case X86::ATOMUMAX8: ExtraOpc = X86::CMP8rr; return X86::CMOVB32rr; |
| case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr; |
| case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr; |
| case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr; |
| case X86::ATOMUMIN8: ExtraOpc = X86::CMP8rr; return X86::CMOVA32rr; |
| case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr; |
| case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr; |
| case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr; |
| } |
| llvm_unreachable("Unhandled atomic-load-op opcode!"); |
| } |
| |
| // Get opcode of the non-atomic one from the specified atomic instruction for |
| // 64-bit data type on 32-bit target. |
| static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) { |
| switch (Opc) { |
| case X86::ATOMAND6432: HiOpc = X86::AND32rr; return X86::AND32rr; |
| case X86::ATOMOR6432: HiOpc = X86::OR32rr; return X86::OR32rr; |
| case X86::ATOMXOR6432: HiOpc = X86::XOR32rr; return X86::XOR32rr; |
| case X86::ATOMADD6432: HiOpc = X86::ADC32rr; return X86::ADD32rr; |
| case X86::ATOMSUB6432: HiOpc = X86::SBB32rr; return X86::SUB32rr; |
| case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr; |
| case X86::ATOMMAX6432: HiOpc = X86::SETLr; return X86::SETLr; |
| case X86::ATOMMIN6432: HiOpc = X86::SETGr; return X86::SETGr; |
| case X86::ATOMUMAX6432: HiOpc = X86::SETBr; return X86::SETBr; |
| case X86::ATOMUMIN6432: HiOpc = X86::SETAr; return X86::SETAr; |
| } |
| llvm_unreachable("Unhandled atomic-load-op opcode!"); |
| } |
| |
| // Get opcode of the non-atomic one from the specified atomic instruction for |
| // 64-bit data type on 32-bit target with extra opcode. |
| static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc, |
| unsigned &HiOpc, |
| unsigned &ExtraOpc) { |
| switch (Opc) { |
| case X86::ATOMNAND6432: |
| ExtraOpc = X86::NOT32r; |
| HiOpc = X86::AND32rr; |
| return X86::AND32rr; |
| } |
| llvm_unreachable("Unhandled atomic-load-op opcode!"); |
| } |
| |
| // Get pseudo CMOV opcode from the specified data type. |
| static unsigned getPseudoCMOVOpc(EVT VT) { |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::i8: return X86::CMOV_GR8; |
| case MVT::i16: return X86::CMOV_GR16; |
| case MVT::i32: return X86::CMOV_GR32; |
| default: |
| break; |
| } |
| llvm_unreachable("Unknown CMOV opcode!"); |
| } |
| |
| // EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions. |
| // They will be translated into a spin-loop or compare-exchange loop from |
| // |
| // ... |
| // dst = atomic-fetch-op MI.addr, MI.val |
| // ... |
| // |
| // to |
| // |
| // ... |
| // t1 = LOAD MI.addr |
| // loop: |
| // t4 = phi(t1, t3 / loop) |
| // t2 = OP MI.val, t4 |
| // EAX = t4 |
| // LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined] |
| // t3 = EAX |
| // JNE loop |
| // sink: |
| // dst = t3 |
| // ... |
| MachineBasicBlock * |
| X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| MachineFunction::iterator I = MBB; |
| ++I; |
| |
| assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 && |
| "Unexpected number of operands"); |
| |
| assert(MI->hasOneMemOperand() && |
| "Expected atomic-load-op to have one memoperand"); |
| |
| // Memory Reference |
| MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); |
| |
| unsigned DstReg, SrcReg; |
| unsigned MemOpndSlot; |
| |
| unsigned CurOp = 0; |
| |
| DstReg = MI->getOperand(CurOp++).getReg(); |
| MemOpndSlot = CurOp; |
| CurOp += X86::AddrNumOperands; |
| SrcReg = MI->getOperand(CurOp++).getReg(); |
| |
| const TargetRegisterClass *RC = MRI.getRegClass(DstReg); |
| MVT::SimpleValueType VT = *RC->vt_begin(); |
| unsigned t1 = MRI.createVirtualRegister(RC); |
| unsigned t2 = MRI.createVirtualRegister(RC); |
| unsigned t3 = MRI.createVirtualRegister(RC); |
| unsigned t4 = MRI.createVirtualRegister(RC); |
| unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT); |
| |
| unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT); |
| unsigned LOADOpc = getLoadOpcode(VT); |
| |
| // For the atomic load-arith operator, we generate |
| // |
| // thisMBB: |
| // t1 = LOAD [MI.addr] |
| // mainMBB: |
| // t4 = phi(t1 / thisMBB, t3 / mainMBB) |
| // t1 = OP MI.val, EAX |
| // EAX = t4 |
| // LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined] |
| // t3 = EAX |
| // JNE mainMBB |
| // sinkMBB: |
| // dst = t3 |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(I, mainMBB); |
| MF->insert(I, sinkMBB); |
| |
| MachineInstrBuilder MIB; |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), MBB, |
| llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // thisMBB: |
| MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); |
| if (NewMO.isReg()) |
| NewMO.setIsKill(false); |
| MIB.addOperand(NewMO); |
| } |
| for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) { |
| unsigned flags = (*MMOI)->getFlags(); |
| flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad; |
| MachineMemOperand *MMO = |
| MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags, |
| (*MMOI)->getSize(), |
| (*MMOI)->getBaseAlignment(), |
| (*MMOI)->getTBAAInfo(), |
| (*MMOI)->getRanges()); |
| MIB.addMemOperand(MMO); |
| } |
| |
| thisMBB->addSuccessor(mainMBB); |
| |
| // mainMBB: |
| MachineBasicBlock *origMainMBB = mainMBB; |
| |
| // Add a PHI. |
| MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4) |
| .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB); |
| |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| default: |
| llvm_unreachable("Unhandled atomic-load-op opcode!"); |
| case X86::ATOMAND8: |
| case X86::ATOMAND16: |
| case X86::ATOMAND32: |
| case X86::ATOMAND64: |
| case X86::ATOMOR8: |
| case X86::ATOMOR16: |
| case X86::ATOMOR32: |
| case X86::ATOMOR64: |
| case X86::ATOMXOR8: |
| case X86::ATOMXOR16: |
| case X86::ATOMXOR32: |
| case X86::ATOMXOR64: { |
| unsigned ARITHOpc = getNonAtomicOpcode(Opc); |
| BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg) |
| .addReg(t4); |
| break; |
| } |
| case X86::ATOMNAND8: |
| case X86::ATOMNAND16: |
| case X86::ATOMNAND32: |
| case X86::ATOMNAND64: { |
| unsigned Tmp = MRI.createVirtualRegister(RC); |
| unsigned NOTOpc; |
| unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc); |
| BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg) |
| .addReg(t4); |
| BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp); |
| break; |
| } |
| case X86::ATOMMAX8: |
| case X86::ATOMMAX16: |
| case X86::ATOMMAX32: |
| case X86::ATOMMAX64: |
| case X86::ATOMMIN8: |
| case X86::ATOMMIN16: |
| case X86::ATOMMIN32: |
| case X86::ATOMMIN64: |
| case X86::ATOMUMAX8: |
| case X86::ATOMUMAX16: |
| case X86::ATOMUMAX32: |
| case X86::ATOMUMAX64: |
| case X86::ATOMUMIN8: |
| case X86::ATOMUMIN16: |
| case X86::ATOMUMIN32: |
| case X86::ATOMUMIN64: { |
| unsigned CMPOpc; |
| unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc); |
| |
| BuildMI(mainMBB, DL, TII->get(CMPOpc)) |
| .addReg(SrcReg) |
| .addReg(t4); |
| |
| if (Subtarget->hasCMov()) { |
| if (VT != MVT::i8) { |
| // Native support |
| BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2) |
| .addReg(SrcReg) |
| .addReg(t4); |
| } else { |
| // Promote i8 to i32 to use CMOV32 |
| const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); |
| const TargetRegisterClass *RC32 = |
| TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit); |
| unsigned SrcReg32 = MRI.createVirtualRegister(RC32); |
| unsigned AccReg32 = MRI.createVirtualRegister(RC32); |
| unsigned Tmp = MRI.createVirtualRegister(RC32); |
| |
| unsigned Undef = MRI.createVirtualRegister(RC32); |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef); |
| |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32) |
| .addReg(Undef) |
| .addReg(SrcReg) |
| .addImm(X86::sub_8bit); |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32) |
| .addReg(Undef) |
| .addReg(t4) |
| .addImm(X86::sub_8bit); |
| |
| BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp) |
| .addReg(SrcReg32) |
| .addReg(AccReg32); |
| |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2) |
| .addReg(Tmp, 0, X86::sub_8bit); |
| } |
| } else { |
| // Use pseudo select and lower them. |
| assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && |
| "Invalid atomic-load-op transformation!"); |
| unsigned SelOpc = getPseudoCMOVOpc(VT); |
| X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc); |
| assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!"); |
| MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2) |
| .addReg(SrcReg).addReg(t4) |
| .addImm(CC); |
| mainMBB = EmitLoweredSelect(MIB, mainMBB); |
| // Replace the original PHI node as mainMBB is changed after CMOV |
| // lowering. |
| BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4) |
| .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB); |
| Phi->eraseFromParent(); |
| } |
| break; |
| } |
| } |
| |
| // Copy PhyReg back from virtual register. |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg) |
| .addReg(t4); |
| |
| MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc)); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); |
| if (NewMO.isReg()) |
| NewMO.setIsKill(false); |
| MIB.addOperand(NewMO); |
| } |
| MIB.addReg(t2); |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| |
| // Copy PhyReg back to virtual register. |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3) |
| .addReg(PhyReg); |
| |
| BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB); |
| |
| mainMBB->addSuccessor(origMainMBB); |
| mainMBB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, |
| TII->get(TargetOpcode::COPY), DstReg) |
| .addReg(t3); |
| |
| MI->eraseFromParent(); |
| return sinkMBB; |
| } |
| |
| // EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic |
| // instructions. They will be translated into a spin-loop or compare-exchange |
| // loop from |
| // |
| // ... |
| // dst = atomic-fetch-op MI.addr, MI.val |
| // ... |
| // |
| // to |
| // |
| // ... |
| // t1L = LOAD [MI.addr + 0] |
| // t1H = LOAD [MI.addr + 4] |
| // loop: |
| // t4L = phi(t1L, t3L / loop) |
| // t4H = phi(t1H, t3H / loop) |
| // t2L = OP MI.val.lo, t4L |
| // t2H = OP MI.val.hi, t4H |
| // EAX = t4L |
| // EDX = t4H |
| // EBX = t2L |
| // ECX = t2H |
| // LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined] |
| // t3L = EAX |
| // t3H = EDX |
| // JNE loop |
| // sink: |
| // dstL = t3L |
| // dstH = t3H |
| // ... |
| MachineBasicBlock * |
| X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| MachineFunction::iterator I = MBB; |
| ++I; |
| |
| assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 && |
| "Unexpected number of operands"); |
| |
| assert(MI->hasOneMemOperand() && |
| "Expected atomic-load-op32 to have one memoperand"); |
| |
| // Memory Reference |
| MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); |
| |
| unsigned DstLoReg, DstHiReg; |
| unsigned SrcLoReg, SrcHiReg; |
| unsigned MemOpndSlot; |
| |
| unsigned CurOp = 0; |
| |
| DstLoReg = MI->getOperand(CurOp++).getReg(); |
| DstHiReg = MI->getOperand(CurOp++).getReg(); |
| MemOpndSlot = CurOp; |
| CurOp += X86::AddrNumOperands; |
| SrcLoReg = MI->getOperand(CurOp++).getReg(); |
| SrcHiReg = MI->getOperand(CurOp++).getReg(); |
| |
| const TargetRegisterClass *RC = &X86::GR32RegClass; |
| const TargetRegisterClass *RC8 = &X86::GR8RegClass; |
| |
| unsigned t1L = MRI.createVirtualRegister(RC); |
| unsigned t1H = MRI.createVirtualRegister(RC); |
| unsigned t2L = MRI.createVirtualRegister(RC); |
| unsigned t2H = MRI.createVirtualRegister(RC); |
| unsigned t3L = MRI.createVirtualRegister(RC); |
| unsigned t3H = MRI.createVirtualRegister(RC); |
| unsigned t4L = MRI.createVirtualRegister(RC); |
| unsigned t4H = MRI.createVirtualRegister(RC); |
| |
| unsigned LCMPXCHGOpc = X86::LCMPXCHG8B; |
| unsigned LOADOpc = X86::MOV32rm; |
| |
| // For the atomic load-arith operator, we generate |
| // |
| // thisMBB: |
| // t1L = LOAD [MI.addr + 0] |
| // t1H = LOAD [MI.addr + 4] |
| // mainMBB: |
| // t4L = phi(t1L / thisMBB, t3L / mainMBB) |
| // t4H = phi(t1H / thisMBB, t3H / mainMBB) |
| // t2L = OP MI.val.lo, t4L |
| // t2H = OP MI.val.hi, t4H |
| // EBX = t2L |
| // ECX = t2H |
| // LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined] |
| // t3L = EAX |
| // t3H = EDX |
| // JNE loop |
| // sinkMBB: |
| // dstL = t3L |
| // dstH = t3H |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(I, mainMBB); |
| MF->insert(I, sinkMBB); |
| |
| MachineInstrBuilder MIB; |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), MBB, |
| llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // thisMBB: |
| // Lo |
| MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); |
| if (NewMO.isReg()) |
| NewMO.setIsKill(false); |
| MIB.addOperand(NewMO); |
| } |
| for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) { |
| unsigned flags = (*MMOI)->getFlags(); |
| flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad; |
| MachineMemOperand *MMO = |
| MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags, |
| (*MMOI)->getSize(), |
| (*MMOI)->getBaseAlignment(), |
| (*MMOI)->getTBAAInfo(), |
| (*MMOI)->getRanges()); |
| MIB.addMemOperand(MMO); |
| }; |
| MachineInstr *LowMI = MIB; |
| |
| // Hi |
| MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) { |
| MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32) |
| } else { |
| MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); |
| if (NewMO.isReg()) |
| NewMO.setIsKill(false); |
| MIB.addOperand(NewMO); |
| } |
| } |
| MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end()); |
| |
| thisMBB->addSuccessor(mainMBB); |
| |
| // mainMBB: |
| MachineBasicBlock *origMainMBB = mainMBB; |
| |
| // Add PHIs. |
| MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L) |
| .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB); |
| MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H) |
| .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB); |
| |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| default: |
| llvm_unreachable("Unhandled atomic-load-op6432 opcode!"); |
| case X86::ATOMAND6432: |
| case X86::ATOMOR6432: |
| case X86::ATOMXOR6432: |
| case X86::ATOMADD6432: |
| case X86::ATOMSUB6432: { |
| unsigned HiOpc; |
| unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); |
| BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L) |
| .addReg(SrcLoReg); |
| BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H) |
| .addReg(SrcHiReg); |
| break; |
| } |
| case X86::ATOMNAND6432: { |
| unsigned HiOpc, NOTOpc; |
| unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc); |
| unsigned TmpL = MRI.createVirtualRegister(RC); |
| unsigned TmpH = MRI.createVirtualRegister(RC); |
| BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg) |
| .addReg(t4L); |
| BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg) |
| .addReg(t4H); |
| BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL); |
| BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH); |
| break; |
| } |
| case X86::ATOMMAX6432: |
| case X86::ATOMMIN6432: |
| case X86::ATOMUMAX6432: |
| case X86::ATOMUMIN6432: { |
| unsigned HiOpc; |
| unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); |
| unsigned cL = MRI.createVirtualRegister(RC8); |
| unsigned cH = MRI.createVirtualRegister(RC8); |
| unsigned cL32 = MRI.createVirtualRegister(RC); |
| unsigned cH32 = MRI.createVirtualRegister(RC); |
| unsigned cc = MRI.createVirtualRegister(RC); |
| // cl := cmp src_lo, lo |
| BuildMI(mainMBB, DL, TII->get(X86::CMP32rr)) |
| .addReg(SrcLoReg).addReg(t4L); |
| BuildMI(mainMBB, DL, TII->get(LoOpc), cL); |
| BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL); |
| // ch := cmp src_hi, hi |
| BuildMI(mainMBB, DL, TII->get(X86::CMP32rr)) |
| .addReg(SrcHiReg).addReg(t4H); |
| BuildMI(mainMBB, DL, TII->get(HiOpc), cH); |
| BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH); |
| // cc := if (src_hi == hi) ? cl : ch; |
| if (Subtarget->hasCMov()) { |
| BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc) |
| .addReg(cH32).addReg(cL32); |
| } else { |
| MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc) |
| .addReg(cH32).addReg(cL32) |
| .addImm(X86::COND_E); |
| mainMBB = EmitLoweredSelect(MIB, mainMBB); |
| } |
| BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc); |
| if (Subtarget->hasCMov()) { |
| BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L) |
| .addReg(SrcLoReg).addReg(t4L); |
| BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H) |
| .addReg(SrcHiReg).addReg(t4H); |
| } else { |
| MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L) |
| .addReg(SrcLoReg).addReg(t4L) |
| .addImm(X86::COND_NE); |
| mainMBB = EmitLoweredSelect(MIB, mainMBB); |
| // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the |
| // 2nd CMOV lowering. |
| mainMBB->addLiveIn(X86::EFLAGS); |
| MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H) |
| .addReg(SrcHiReg).addReg(t4H) |
| .addImm(X86::COND_NE); |
| mainMBB = EmitLoweredSelect(MIB, mainMBB); |
| // Replace the original PHI node as mainMBB is changed after CMOV |
| // lowering. |
| BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L) |
| .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB); |
| BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H) |
| .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB); |
| PhiL->eraseFromParent(); |
| PhiH->eraseFromParent(); |
| } |
| break; |
| } |
| case X86::ATOMSWAP6432: { |
| unsigned HiOpc; |
| unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); |
| BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg); |
| BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg); |
| break; |
| } |
| } |
| |
| // Copy EDX:EAX back from HiReg:LoReg |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L); |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H); |
| // Copy ECX:EBX from t1H:t1L |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L); |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H); |
| |
| MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc)); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); |
| if (NewMO.isReg()) |
| NewMO.setIsKill(false); |
| MIB.addOperand(NewMO); |
| } |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| |
| // Copy EDX:EAX back to t3H:t3L |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX); |
| BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX); |
| |
| BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB); |
| |
| mainMBB->addSuccessor(origMainMBB); |
| mainMBB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, |
| TII->get(TargetOpcode::COPY), DstLoReg) |
| .addReg(t3L); |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, |
| TII->get(TargetOpcode::COPY), DstHiReg) |
| .addReg(t3H); |
| |
| MI->eraseFromParent(); |
| return sinkMBB; |
| } |
| |
| // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 |
| // or XMM0_V32I8 in AVX all of this code can be replaced with that |
| // in the .td file. |
| static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB, |
| const TargetInstrInfo *TII) { |
| unsigned Opc; |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("illegal opcode!"); |
| case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break; |
| case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break; |
| case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break; |
| case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break; |
| case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break; |
| case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break; |
| case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break; |
| case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break; |
| } |
| |
| DebugLoc dl = MI->getDebugLoc(); |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); |
| |
| unsigned NumArgs = MI->getNumOperands(); |
| for (unsigned i = 1; i < NumArgs; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!(Op.isReg() && Op.isImplicit())) |
| MIB.addOperand(Op); |
| } |
| if (MI->hasOneMemOperand()) |
| MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); |
| |
| BuildMI(*BB, MI, dl, |
| TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) |
| .addReg(X86::XMM0); |
| |
| MI->eraseFromParent(); |
| return BB; |
| } |
| |
| // FIXME: Custom handling because TableGen doesn't support multiple implicit |
| // defs in an instruction pattern |
| static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB, |
| const TargetInstrInfo *TII) { |
| unsigned Opc; |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("illegal opcode!"); |
| case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break; |
| case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break; |
| case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break; |
| case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break; |
| case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break; |
| case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break; |
| case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break; |
| case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break; |
| } |
| |
| DebugLoc dl = MI->getDebugLoc(); |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); |
| |
| unsigned NumArgs = MI->getNumOperands(); // remove the results |
| for (unsigned i = 1; i < NumArgs; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!(Op.isReg() && Op.isImplicit())) |
| MIB.addOperand(Op); |
| } |
| if (MI->hasOneMemOperand()) |
| MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); |
| |
| BuildMI(*BB, MI, dl, |
| TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) |
| .addReg(X86::ECX); |
| |
| MI->eraseFromParent(); |
| return BB; |
| } |
| |
| static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB, |
| const TargetInstrInfo *TII, |
| const X86Subtarget* Subtarget) { |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| // Address into RAX/EAX, other two args into ECX, EDX. |
| unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; |
| unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); |
| for (int i = 0; i < X86::AddrNumOperands; ++i) |
| MIB.addOperand(MI->getOperand(i)); |
| |
| unsigned ValOps = X86::AddrNumOperands; |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) |
| .addReg(MI->getOperand(ValOps).getReg()); |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) |
| .addReg(MI->getOperand(ValOps+1).getReg()); |
| |
| // The instruction doesn't actually take any operands though. |
| BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); |
| |
| MI->eraseFromParent(); // The pseudo is gone now. |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitVAARG64WithCustomInserter( |
| MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| // Emit va_arg instruction on X86-64. |
| |
| // Operands to this pseudo-instruction: |
| // 0 ) Output : destination address (reg) |
| // 1-5) Input : va_list address (addr, i64mem) |
| // 6 ) ArgSize : Size (in bytes) of vararg type |
| // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset |
| // 8 ) Align : Alignment of type |
| // 9 ) EFLAGS (implicit-def) |
| |
| assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); |
| assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands"); |
| |
| unsigned DestReg = MI->getOperand(0).getReg(); |
| MachineOperand &Base = MI->getOperand(1); |
| MachineOperand &Scale = MI->getOperand(2); |
| MachineOperand &Index = MI->getOperand(3); |
| MachineOperand &Disp = MI->getOperand(4); |
| MachineOperand &Segment = MI->getOperand(5); |
| unsigned ArgSize = MI->getOperand(6).getImm(); |
| unsigned ArgMode = MI->getOperand(7).getImm(); |
| unsigned Align = MI->getOperand(8).getImm(); |
| |
| // Memory Reference |
| assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); |
| MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); |
| |
| // Machine Information |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
| const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); |
| const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| // struct va_list { |
| // i32 gp_offset |
| // i32 fp_offset |
| // i64 overflow_area (address) |
| // i64 reg_save_area (address) |
| // } |
| // sizeof(va_list) = 24 |
| // alignment(va_list) = 8 |
| |
| unsigned TotalNumIntRegs = 6; |
| unsigned TotalNumXMMRegs = 8; |
| bool UseGPOffset = (ArgMode == 1); |
| bool UseFPOffset = (ArgMode == 2); |
| unsigned MaxOffset = TotalNumIntRegs * 8 + |
| (UseFPOffset ? TotalNumXMMRegs * 16 : 0); |
| |
| /* Align ArgSize to a multiple of 8 */ |
| unsigned ArgSizeA8 = (ArgSize + 7) & ~7; |
| bool NeedsAlign = (Align > 8); |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *overflowMBB; |
| MachineBasicBlock *offsetMBB; |
| MachineBasicBlock *endMBB; |
| |
| unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB |
| unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB |
| unsigned OffsetReg = 0; |
| |
| if (!UseGPOffset && !UseFPOffset) { |
| // If we only pull from the overflow region, we don't create a branch. |
| // We don't need to alter control flow. |
| OffsetDestReg = 0; // unused |
| OverflowDestReg = DestReg; |
| |
| offsetMBB = NULL; |
| overflowMBB = thisMBB; |
| endMBB = thisMBB; |
| } else { |
| // First emit code to check if gp_offset (or fp_offset) is below the bound. |
| // If so, pull the argument from reg_save_area. (branch to offsetMBB) |
| // If not, pull from overflow_area. (branch to overflowMBB) |
| // |
| // thisMBB |
| // | . |
| // | . |
| // offsetMBB overflowMBB |
| // | . |
| // | . |
| // endMBB |
| |
| // Registers for the PHI in endMBB |
| OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); |
| OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); |
| |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineFunction *MF = MBB->getParent(); |
| overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| endMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| |
| MachineFunction::iterator MBBIter = MBB; |
| ++MBBIter; |
| |
| // Insert the new basic blocks |
| MF->insert(MBBIter, offsetMBB); |
| MF->insert(MBBIter, overflowMBB); |
| MF->insert(MBBIter, endMBB); |
| |
| // Transfer the remainder of MBB and its successor edges to endMBB. |
| endMBB->splice(endMBB->begin(), thisMBB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| thisMBB->end()); |
| endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); |
| |
| // Make offsetMBB and overflowMBB successors of thisMBB |
| thisMBB->addSuccessor(offsetMBB); |
| thisMBB->addSuccessor(overflowMBB); |
| |
| // endMBB is a successor of both offsetMBB and overflowMBB |
| offsetMBB->addSuccessor(endMBB); |
| overflowMBB->addSuccessor(endMBB); |
| |
| // Load the offset value into a register |
| OffsetReg = MRI.createVirtualRegister(OffsetRegClass); |
| BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) |
| .addOperand(Base) |
| .addOperand(Scale) |
| .addOperand(Index) |
| .addDisp(Disp, UseFPOffset ? 4 : 0) |
| .addOperand(Segment) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // Check if there is enough room left to pull this argument. |
| BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) |
| .addReg(OffsetReg) |
| .addImm(MaxOffset + 8 - ArgSizeA8); |
| |
| // Branch to "overflowMBB" if offset >= max |
| // Fall through to "offsetMBB" otherwise |
| BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) |
| .addMBB(overflowMBB); |
| } |
| |
| // In offsetMBB, emit code to use the reg_save_area. |
| if (offsetMBB) { |
| assert(OffsetReg != 0); |
| |
| // Read the reg_save_area address. |
| unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); |
| BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) |
| .addOperand(Base) |
| .addOperand(Scale) |
| .addOperand(Index) |
| .addDisp(Disp, 16) |
| .addOperand(Segment) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // Zero-extend the offset |
| unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); |
| BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) |
| .addImm(0) |
| .addReg(OffsetReg) |
| .addImm(X86::sub_32bit); |
| |
| // Add the offset to the reg_save_area to get the final address. |
| BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) |
| .addReg(OffsetReg64) |
| .addReg(RegSaveReg); |
| |
| // Compute the offset for the next argument |
| unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); |
| BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) |
| .addReg(OffsetReg) |
| .addImm(UseFPOffset ? 16 : 8); |
| |
| // Store it back into the va_list. |
| BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) |
| .addOperand(Base) |
| .addOperand(Scale) |
| .addOperand(Index) |
| .addDisp(Disp, UseFPOffset ? 4 : 0) |
| .addOperand(Segment) |
| .addReg(NextOffsetReg) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // Jump to endMBB |
| BuildMI(offsetMBB, DL, TII->get(X86::JMP_4)) |
| .addMBB(endMBB); |
| } |
| |
| // |
| // Emit code to use overflow area |
| // |
| |
| // Load the overflow_area address into a register. |
| unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); |
| BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) |
| .addOperand(Base) |
| .addOperand(Scale) |
| .addOperand(Index) |
| .addDisp(Disp, 8) |
| .addOperand(Segment) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // If we need to align it, do so. Otherwise, just copy the address |
| // to OverflowDestReg. |
| if (NeedsAlign) { |
| // Align the overflow address |
| assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); |
| unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); |
| |
| // aligned_addr = (addr + (align-1)) & ~(align-1) |
| BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) |
| .addReg(OverflowAddrReg) |
| .addImm(Align-1); |
| |
| BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) |
| .addReg(TmpReg) |
| .addImm(~(uint64_t)(Align-1)); |
| } else { |
| BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) |
| .addReg(OverflowAddrReg); |
| } |
| |
| // Compute the next overflow address after this argument. |
| // (the overflow address should be kept 8-byte aligned) |
| unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); |
| BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) |
| .addReg(OverflowDestReg) |
| .addImm(ArgSizeA8); |
| |
| // Store the new overflow address. |
| BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) |
| .addOperand(Base) |
| .addOperand(Scale) |
| .addOperand(Index) |
| .addDisp(Disp, 8) |
| .addOperand(Segment) |
| .addReg(NextAddrReg) |
| .setMemRefs(MMOBegin, MMOEnd); |
| |
| // If we branched, emit the PHI to the front of endMBB. |
| if (offsetMBB) { |
| BuildMI(*endMBB, endMBB->begin(), DL, |
| TII->get(X86::PHI), DestReg) |
| .addReg(OffsetDestReg).addMBB(offsetMBB) |
| .addReg(OverflowDestReg).addMBB(overflowMBB); |
| } |
| |
| // Erase the pseudo instruction |
| MI->eraseFromParent(); |
| |
| return endMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( |
| MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| // Emit code to save XMM registers to the stack. The ABI says that the |
| // number of registers to save is given in %al, so it's theoretically |
| // possible to do an indirect jump trick to avoid saving all of them, |
| // however this code takes a simpler approach and just executes all |
| // of the stores if %al is non-zero. It's less code, and it's probably |
| // easier on the hardware branch predictor, and stores aren't all that |
| // expensive anyway. |
| |
| // Create the new basic blocks. One block contains all the XMM stores, |
| // and one block is the final destination regardless of whether any |
| // stores were performed. |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineFunction *F = MBB->getParent(); |
| MachineFunction::iterator MBBIter = MBB; |
| ++MBBIter; |
| MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(MBBIter, XMMSaveMBB); |
| F->insert(MBBIter, EndMBB); |
| |
| // Transfer the remainder of MBB and its successor edges to EndMBB. |
| EndMBB->splice(EndMBB->begin(), MBB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| MBB->end()); |
| EndMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // The original block will now fall through to the XMM save block. |
| MBB->addSuccessor(XMMSaveMBB); |
| // The XMMSaveMBB will fall through to the end block. |
| XMMSaveMBB->addSuccessor(EndMBB); |
| |
| // Now add the instructions. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| unsigned CountReg = MI->getOperand(0).getReg(); |
| int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); |
| int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); |
| |
| if (!Subtarget->isTargetWin64()) { |
| // If %al is 0, branch around the XMM save block. |
| BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); |
| BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB); |
| MBB->addSuccessor(EndMBB); |
| } |
| |
| unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; |
| // In the XMM save block, save all the XMM argument registers. |
| for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { |
| int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; |
| MachineMemOperand *MMO = |
| F->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset), |
| MachineMemOperand::MOStore, |
| /*Size=*/16, /*Align=*/16); |
| BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) |
| .addFrameIndex(RegSaveFrameIndex) |
| .addImm(/*Scale=*/1) |
| .addReg(/*IndexReg=*/0) |
| .addImm(/*Disp=*/Offset) |
| .addReg(/*Segment=*/0) |
| .addReg(MI->getOperand(i).getReg()) |
| .addMemOperand(MMO); |
| } |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| |
| return EndMBB; |
| } |
| |
| // The EFLAGS operand of SelectItr might be missing a kill marker |
| // because there were multiple uses of EFLAGS, and ISel didn't know |
| // which to mark. Figure out whether SelectItr should have had a |
| // kill marker, and set it if it should. Returns the correct kill |
| // marker value. |
| static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, |
| MachineBasicBlock* BB, |
| const TargetRegisterInfo* TRI) { |
| // Scan forward through BB for a use/def of EFLAGS. |
| MachineBasicBlock::iterator miI(llvm::next(SelectItr)); |
| for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { |
| const MachineInstr& mi = *miI; |
| if (mi.readsRegister(X86::EFLAGS)) |
| return false; |
| if (mi.definesRegister(X86::EFLAGS)) |
| break; // Should have kill-flag - update below. |
| } |
| |
| // If we hit the end of the block, check whether EFLAGS is live into a |
| // successor. |
| if (miI == BB->end()) { |
| for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), |
| sEnd = BB->succ_end(); |
| sItr != sEnd; ++sItr) { |
| MachineBasicBlock* succ = *sItr; |
| if (succ->isLiveIn(X86::EFLAGS)) |
| return false; |
| } |
| } |
| |
| // We found a def, or hit the end of the basic block and EFLAGS wasn't live |
| // out. SelectMI should have a kill flag on EFLAGS. |
| SelectItr->addRegisterKilled(X86::EFLAGS, TRI); |
| return true; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| |
| // If the EFLAGS register isn't dead in the terminator, then claim that it's |
| // live into the sink and copy blocks. |
| const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); |
| if (!MI->killsRegister(X86::EFLAGS) && |
| !checkAndUpdateEFLAGSKill(MI, BB, TRI)) { |
| copy0MBB->addLiveIn(X86::EFLAGS); |
| sinkMBB->addLiveIn(X86::EFLAGS); |
| } |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // Create the conditional branch instruction. |
| unsigned Opc = |
| X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); |
| BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| copy0MBB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, |
| TII->get(X86::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| return sinkMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB, |
| bool Is64Bit) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| MachineFunction *MF = BB->getParent(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| |
| assert(getTargetMachine().Options.EnableSegmentedStacks); |
| |
| unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; |
| unsigned TlsOffset = Is64Bit ? 0x70 : 0x30; |
| |
| // BB: |
| // ... [Till the alloca] |
| // If stacklet is not large enough, jump to mallocMBB |
| // |
| // bumpMBB: |
| // Allocate by subtracting from RSP |
| // Jump to continueMBB |
| // |
| // mallocMBB: |
| // Allocate by call to runtime |
| // |
| // continueMBB: |
| // ... |
| // [rest of original BB] |
| // |
| |
| MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetRegisterClass *AddrRegClass = |
| getRegClassFor(Is64Bit ? MVT::i64:MVT::i32); |
| |
| unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), |
| bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), |
| tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), |
| SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), |
| sizeVReg = MI->getOperand(1).getReg(), |
| physSPReg = Is64Bit ? X86::RSP : X86::ESP; |
| |
| MachineFunction::iterator MBBIter = BB; |
| ++MBBIter; |
| |
| MF->insert(MBBIter, bumpMBB); |
| MF->insert(MBBIter, mallocMBB); |
| MF->insert(MBBIter, continueMBB); |
| |
| continueMBB->splice(continueMBB->begin(), BB, llvm::next |
| (MachineBasicBlock::iterator(MI)), BB->end()); |
| continueMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Add code to the main basic block to check if the stack limit has been hit, |
| // and if so, jump to mallocMBB otherwise to bumpMBB. |
| BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); |
| BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) |
| .addReg(tmpSPVReg).addReg(sizeVReg); |
| BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr)) |
| .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) |
| .addReg(SPLimitVReg); |
| BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB); |
| |
| // bumpMBB simply decreases the stack pointer, since we know the current |
| // stacklet has enough space. |
| BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) |
| .addReg(SPLimitVReg); |
| BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) |
| .addReg(SPLimitVReg); |
| BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB); |
| |
| // Calls into a routine in libgcc to allocate more space from the heap. |
| const uint32_t *RegMask = |
| getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C); |
| if (Is64Bit) { |
| BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) |
| .addReg(sizeVReg); |
| BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) |
| .addExternalSymbol("__morestack_allocate_stack_space") |
| .addRegMask(RegMask) |
| .addReg(X86::RDI, RegState::Implicit) |
| .addReg(X86::RAX, RegState::ImplicitDefine); |
| } else { |
| BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) |
| .addImm(12); |
| BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); |
| BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) |
| .addExternalSymbol("__morestack_allocate_stack_space") |
| .addRegMask(RegMask) |
| .addReg(X86::EAX, RegState::ImplicitDefine); |
| } |
| |
| if (!Is64Bit) |
| BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) |
| .addImm(16); |
| |
| BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) |
| .addReg(Is64Bit ? X86::RAX : X86::EAX); |
| BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB); |
| |
| // Set up the CFG correctly. |
| BB->addSuccessor(bumpMBB); |
| BB->addSuccessor(mallocMBB); |
| mallocMBB->addSuccessor(continueMBB); |
| bumpMBB->addSuccessor(continueMBB); |
| |
| // Take care of the PHI nodes. |
| BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), |
| MI->getOperand(0).getReg()) |
| .addReg(mallocPtrVReg).addMBB(mallocMBB) |
| .addReg(bumpSPPtrVReg).addMBB(bumpMBB); |
| |
| // Delete the original pseudo instruction. |
| MI->eraseFromParent(); |
| |
| // And we're done. |
| return continueMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| assert(!Subtarget->isTargetEnvMacho()); |
| |
| // The lowering is pretty easy: we're just emitting the call to _alloca. The |
| // non-trivial part is impdef of ESP. |
| |
| if (Subtarget->isTargetWin64()) { |
| if (Subtarget->isTargetCygMing()) { |
| // ___chkstk(Mingw64): |
| // Clobbers R10, R11, RAX and EFLAGS. |
| // Updates RSP. |
| BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) |
| .addExternalSymbol("___chkstk") |
| .addReg(X86::RAX, RegState::Implicit) |
| .addReg(X86::RSP, RegState::Implicit) |
| .addReg(X86::RAX, RegState::Define | RegState::Implicit) |
| .addReg(X86::RSP, RegState::Define | RegState::Implicit) |
| .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); |
| } else { |
| // __chkstk(MSVCRT): does not update stack pointer. |
| // Clobbers R10, R11 and EFLAGS. |
| // FIXME: RAX(allocated size) might be reused and not killed. |
| BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) |
| .addExternalSymbol("__chkstk") |
| .addReg(X86::RAX, RegState::Implicit) |
| .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); |
| // RAX has the offset to subtracted from RSP. |
| BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP) |
| .addReg(X86::RSP) |
| .addReg(X86::RAX); |
| } |
| } else { |
| const char *StackProbeSymbol = |
| Subtarget->isTargetWindows() ? "_chkstk" : "_alloca"; |
| |
| BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) |
| .addExternalSymbol(StackProbeSymbol) |
| .addReg(X86::EAX, RegState::Implicit) |
| .addReg(X86::ESP, RegState::Implicit) |
| .addReg(X86::EAX, RegState::Define | RegState::Implicit) |
| .addReg(X86::ESP, RegState::Define | RegState::Implicit) |
| .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); |
| } |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| // This is pretty easy. We're taking the value that we received from |
| // our load from the relocation, sticking it in either RDI (x86-64) |
| // or EAX and doing an indirect call. The return value will then |
| // be in the normal return register. |
| const X86InstrInfo *TII |
| = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo()); |
| DebugLoc DL = MI->getDebugLoc(); |
| MachineFunction *F = BB->getParent(); |
| |
| assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); |
| assert(MI->getOperand(3).isGlobal() && "This should be a global"); |
| |
| // Get a register mask for the lowered call. |
| // FIXME: The 32-bit calls have non-standard calling conventions. Use a |
| // proper register mask. |
| const uint32_t *RegMask = |
| getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C); |
| if (Subtarget->is64Bit()) { |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, |
| TII->get(X86::MOV64rm), X86::RDI) |
| .addReg(X86::RIP) |
| .addImm(0).addReg(0) |
| .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, |
| MI->getOperand(3).getTargetFlags()) |
| .addReg(0); |
| MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); |
| addDirectMem(MIB, X86::RDI); |
| MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); |
| } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, |
| TII->get(X86::MOV32rm), X86::EAX) |
| .addReg(0) |
| .addImm(0).addReg(0) |
| .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, |
| MI->getOperand(3).getTargetFlags()) |
| .addReg(0); |
| MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); |
| addDirectMem(MIB, X86::EAX); |
| MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, |
| TII->get(X86::MOV32rm), X86::EAX) |
| .addReg(TII->getGlobalBaseReg(F)) |
| .addImm(0).addReg(0) |
| .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, |
| MI->getOperand(3).getTargetFlags()) |
| .addReg(0); |
| MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); |
| addDirectMem(MIB, X86::EAX); |
| MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); |
| } |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI->getDebugLoc(); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| MachineFunction::iterator I = MBB; |
| ++I; |
| |
| // Memory Reference |
| MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); |
| |
| unsigned DstReg; |
| unsigned MemOpndSlot = 0; |
| |
| unsigned CurOp = 0; |
| |
| DstReg = MI->getOperand(CurOp++).getReg(); |
| const TargetRegisterClass *RC = MRI.getRegClass(DstReg); |
| assert(RC->hasType(MVT::i32) && "Invalid destination!"); |
| unsigned mainDstReg = MRI.createVirtualRegister(RC); |
| unsigned restoreDstReg = MRI.createVirtualRegister(RC); |
| |
| MemOpndSlot = CurOp; |
| |
| MVT PVT = getPointerTy(); |
| assert((PVT == MVT::i64 || PVT == MVT::i32) && |
| "Invalid Pointer Size!"); |
| |
| // For v = setjmp(buf), we generate |
| // |
| // thisMBB: |
| // buf[LabelOffset] = restoreMBB |
| // SjLjSetup restoreMBB |
| // |
| // mainMBB: |
| // v_main = 0 |
| // |
| // sinkMBB: |
| // v = phi(main, restore) |
| // |
| // restoreMBB: |
| // v_restore = 1 |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(I, mainMBB); |
| MF->insert(I, sinkMBB); |
| MF->push_back(restoreMBB); |
| |
| MachineInstrBuilder MIB; |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), MBB, |
| llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // thisMBB: |
| unsigned PtrStoreOpc = 0; |
| unsigned LabelReg = 0; |
| const int64_t LabelOffset = 1 * PVT.getStoreSize(); |
| Reloc::Model RM = getTargetMachine().getRelocationModel(); |
| bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) && |
| (RM == Reloc::Static || RM == Reloc::DynamicNoPIC); |
| |
| // Prepare IP either in reg or imm. |
| if (!UseImmLabel) { |
| PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; |
| const TargetRegisterClass *PtrRC = getRegClassFor(PVT); |
| LabelReg = MRI.createVirtualRegister(PtrRC); |
| if (Subtarget->is64Bit()) { |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) |
| .addReg(X86::RIP) |
| .addImm(0) |
| .addReg(0) |
| .addMBB(restoreMBB) |
| .addReg(0); |
| } else { |
| const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII); |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) |
| .addReg(XII->getGlobalBaseReg(MF)) |
| .addImm(0) |
| .addReg(0) |
| .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference()) |
| .addReg(0); |
| } |
| } else |
| PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; |
| // Store IP |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) |
| MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset); |
| else |
| MIB.addOperand(MI->getOperand(MemOpndSlot + i)); |
| } |
| if (!UseImmLabel) |
| MIB.addReg(LabelReg); |
| else |
| MIB.addMBB(restoreMBB); |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| // Setup |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) |
| .addMBB(restoreMBB); |
| MIB.addRegMask(RegInfo->getNoPreservedMask()); |
| thisMBB->addSuccessor(mainMBB); |
| thisMBB->addSuccessor(restoreMBB); |
| |
| // mainMBB: |
| // EAX = 0 |
| BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); |
| mainMBB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, |
| TII->get(X86::PHI), DstReg) |
| .addReg(mainDstReg).addMBB(mainMBB) |
| .addReg(restoreDstReg).addMBB(restoreMBB); |
| |
| // restoreMBB: |
| BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); |
| BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB); |
| restoreMBB->addSuccessor(sinkMBB); |
| |
| MI->eraseFromParent(); |
| return sinkMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI->getDebugLoc(); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| // Memory Reference |
| MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); |
| MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); |
| |
| MVT PVT = getPointerTy(); |
| assert((PVT == MVT::i64 || PVT == MVT::i32) && |
| "Invalid Pointer Size!"); |
| |
| const TargetRegisterClass *RC = |
| (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; |
| unsigned Tmp = MRI.createVirtualRegister(RC); |
| // Since FP is only updated here but NOT referenced, it's treated as GPR. |
| unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; |
| unsigned SP = RegInfo->getStackRegister(); |
| |
| MachineInstrBuilder MIB; |
| |
| const int64_t LabelOffset = 1 * PVT.getStoreSize(); |
| const int64_t SPOffset = 2 * PVT.getStoreSize(); |
| |
| unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; |
| unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; |
| |
| // Reload FP |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) |
| MIB.addOperand(MI->getOperand(i)); |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| // Reload IP |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) |
| MIB.addDisp(MI->getOperand(i), LabelOffset); |
| else |
| MIB.addOperand(MI->getOperand(i)); |
| } |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| // Reload SP |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP); |
| for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { |
| if (i == X86::AddrDisp) |
| MIB.addDisp(MI->getOperand(i), SPOffset); |
| else |
| MIB.addOperand(MI->getOperand(i)); |
| } |
| MIB.setMemRefs(MMOBegin, MMOEnd); |
| // Jump |
| BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); |
| |
| MI->eraseFromParent(); |
| return MBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("Unexpected instr type to insert"); |
| case X86::TAILJMPd64: |
| case X86::TAILJMPr64: |
| case X86::TAILJMPm64: |
| llvm_unreachable("TAILJMP64 would not be touched here."); |
| case X86::TCRETURNdi64: |
| case X86::TCRETURNri64: |
| case X86::TCRETURNmi64: |
| return BB; |
| case X86::WIN_ALLOCA: |
| return EmitLoweredWinAlloca(MI, BB); |
| case X86::SEG_ALLOCA_32: |
| return EmitLoweredSegAlloca(MI, BB, false); |
| case X86::SEG_ALLOCA_64: |
| return EmitLoweredSegAlloca(MI, BB, true); |
| case X86::TLSCall_32: |
| case X86::TLSCall_64: |
| return EmitLoweredTLSCall(MI, BB); |
| case X86::CMOV_GR8: |
| case X86::CMOV_FR32: |
| case X86::CMOV_FR64: |
| case X86::CMOV_V4F32: |
| case X86::CMOV_V2F64: |
| case X86::CMOV_V2I64: |
| case X86::CMOV_V8F32: |
| case X86::CMOV_V4F64: |
| case X86::CMOV_V4I64: |
| case X86::CMOV_GR16: |
| case X86::CMOV_GR32: |
| case X86::CMOV_RFP32: |
| case X86::CMOV_RFP64: |
| case X86::CMOV_RFP80: |
| return EmitLoweredSelect(MI, BB); |
| |
| case X86::FP32_TO_INT16_IN_MEM: |
| case X86::FP32_TO_INT32_IN_MEM: |
| case X86::FP32_TO_INT64_IN_MEM: |
| case X86::FP64_TO_INT16_IN_MEM: |
| case X86::FP64_TO_INT32_IN_MEM: |
| case X86::FP64_TO_INT64_IN_MEM: |
| case X86::FP80_TO_INT16_IN_MEM: |
| case X86::FP80_TO_INT32_IN_MEM: |
| case X86::FP80_TO_INT64_IN_MEM: { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| MachineFunction *F = BB->getParent(); |
| int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); |
| addFrameReference(BuildMI(*BB, MI, DL, |
| TII->get(X86::FNSTCW16m)), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned OldCW = |
| F->getRegInfo().createVirtualRegister(&X86::GR16RegClass); |
| addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), |
| CWFrameIdx); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) |
| .addImm(0xC7F); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(*BB, MI, DL, |
| TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) |
| .addReg(OldCW); |
| |
| // Get the X86 opcode to use. |
| unsigned Opc; |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("illegal opcode!"); |
| case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; |
| case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; |
| case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; |
| case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; |
| case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; |
| case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; |
| case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; |
| case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; |
| case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; |
| } |
| |
| X86AddressMode AM; |
| MachineOperand &Op = MI->getOperand(0); |
| if (Op.isReg()) { |
| AM.BaseType = X86AddressMode::RegBase; |
| AM.Base.Reg = Op.getReg(); |
| } else { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = Op.getIndex(); |
| } |
| Op = MI->getOperand(1); |
| if (Op.isImm()) |
| AM.Scale = Op.getImm(); |
| Op = MI->getOperand(2); |
| if (Op.isImm()) |
| AM.IndexReg = Op.getImm(); |
| Op = MI->getOperand(3); |
| if (Op.isGlobal()) { |
| AM.GV = Op.getGlobal(); |
| } else { |
| AM.Disp = Op.getImm(); |
| } |
| addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) |
| .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); |
| |
| // Reload the original control word now. |
| addFrameReference(BuildMI(*BB, MI, DL, |
| TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| // String/text processing lowering. |
| case X86::PCMPISTRM128REG: |
| case X86::VPCMPISTRM128REG: |
| case X86::PCMPISTRM128MEM: |
| case X86::VPCMPISTRM128MEM: |
| case X86::PCMPESTRM128REG: |
| case X86::VPCMPESTRM128REG: |
| case X86::PCMPESTRM128MEM: |
| case X86::VPCMPESTRM128MEM: |
| assert(Subtarget->hasSSE42() && |
| "Target must have SSE4.2 or AVX features enabled"); |
| return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo()); |
| |
| // String/text processing lowering. |
| case X86::PCMPISTRIREG: |
| case X86::VPCMPISTRIREG: |
| case X86::PCMPISTRIMEM: |
| case X86::VPCMPISTRIMEM: |
| case X86::PCMPESTRIREG: |
| case X86::VPCMPESTRIREG: |
| case X86::PCMPESTRIMEM: |
| case X86::VPCMPESTRIMEM: |
| assert(Subtarget->hasSSE42() && |
| "Target must have SSE4.2 or AVX features enabled"); |
| return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo()); |
| |
| // Thread synchronization. |
| case X86::MONITOR: |
| return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget); |
| |
| // xbegin |
| case X86::XBEGIN: |
| return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo()); |
| |
| // Atomic Lowering. |
| case X86::ATOMAND8: |
| case X86::ATOMAND16: |
| case X86::ATOMAND32: |
| case X86::ATOMAND64: |
| // Fall through |
| case X86::ATOMOR8: |
| case X86::ATOMOR16: |
| case X86::ATOMOR32: |
| case X86::ATOMOR64: |
| // Fall through |
| case X86::ATOMXOR16: |
| case X86::ATOMXOR8: |
| case X86::ATOMXOR32: |
| case X86::ATOMXOR64: |
| // Fall through |
| case X86::ATOMNAND8: |
| case X86::ATOMNAND16: |
| case X86::ATOMNAND32: |
| case X86::ATOMNAND64: |
| // Fall through |
| case X86::ATOMMAX8: |
| case X86::ATOMMAX16: |
| case X86::ATOMMAX32: |
| case X86::ATOMMAX64: |
| // Fall through |
| case X86::ATOMMIN8: |
| case X86::ATOMMIN16: |
| case X86::ATOMMIN32: |
| case X86::ATOMMIN64: |
| // Fall through |
| case X86::ATOMUMAX8: |
| case X86::ATOMUMAX16: |
| case X86::ATOMUMAX32: |
| case X86::ATOMUMAX64: |
| // Fall through |
| case X86::ATOMUMIN8: |
| case X86::ATOMUMIN16: |
| case X86::ATOMUMIN32: |
| case X86::ATOMUMIN64: |
| return EmitAtomicLoadArith(MI, BB); |
| |
| // This group does 64-bit operations on a 32-bit host. |
| case X86::ATOMAND6432: |
| case X86::ATOMOR6432: |
| case X86::ATOMXOR6432: |
| case X86::ATOMNAND6432: |
| case X86::ATOMADD6432: |
| case X86::ATOMSUB6432: |
| case X86::ATOMMAX6432: |
| case X86::ATOMMIN6432: |
| case X86::ATOMUMAX6432: |
| case X86::ATOMUMIN6432: |
| case X86::ATOMSWAP6432: |
| return EmitAtomicLoadArith6432(MI, BB); |
| |
| case X86::VASTART_SAVE_XMM_REGS: |
| return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); |
| |
| case X86::VAARG_64: |
| return EmitVAARG64WithCustomInserter(MI, BB); |
| |
| case X86::EH_SjLj_SetJmp32: |
| case X86::EH_SjLj_SetJmp64: |
| return emitEHSjLjSetJmp(MI, BB); |
| |
| case X86::EH_SjLj_LongJmp32: |
| case X86::EH_SjLj_LongJmp64: |
| return emitEHSjLjLongJmp(MI, BB); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| unsigned BitWidth = KnownZero.getBitWidth(); |
| unsigned Opc = Op.getOpcode(); |
| assert((Opc >= ISD::BUILTIN_OP_END || |
| Opc == ISD::INTRINSIC_WO_CHAIN || |
| Opc == ISD::INTRINSIC_W_CHAIN || |
| Opc == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| |
| KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. |
| switch (Opc) { |
| default: break; |
| case X86ISD::ADD: |
| case X86ISD::SUB: |
| case X86ISD::ADC: |
| case X86ISD::SBB: |
| case X86ISD::SMUL: |
| case X86ISD::UMUL: |
| case X86ISD::INC: |
| case X86ISD::DEC: |
| case X86ISD::OR: |
| case X86ISD::XOR: |
| case X86ISD::AND: |
| // These nodes' second result is a boolean. |
| if (Op.getResNo() == 0) |
| break; |
| // Fallthrough |
| case X86ISD::SETCC: |
| KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); |
| break; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned NumLoBits = 0; |
| switch (IntId) { |
| default: break; |
| case Intrinsic::x86_sse_movmsk_ps: |
| case Intrinsic::x86_avx_movmsk_ps_256: |
| case Intrinsic::x86_sse2_movmsk_pd: |
| case Intrinsic::x86_avx_movmsk_pd_256: |
| case Intrinsic::x86_mmx_pmovmskb: |
| case Intrinsic::x86_sse2_pmovmskb_128: |
| case Intrinsic::x86_avx2_pmovmskb: { |
| // High bits of movmskp{s|d}, pmovmskb are known zero. |
| switch (IntId) { |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break; |
| case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break; |
| case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break; |
| case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break; |
| case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break; |
| case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break; |
| case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break; |
| } |
| KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits); |
| break; |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, |
| unsigned Depth) const { |
| // SETCC_CARRY sets the dest to ~0 for true or 0 for false. |
| if (Op.getOpcode() == X86ISD::SETCC_CARRY) |
| return Op.getValueType().getScalarType().getSizeInBits(); |
| |
| // Fallback case. |
| return 1; |
| } |
| |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the |
| /// node is a GlobalAddress + offset. |
| bool X86TargetLowering::isGAPlusOffset(SDNode *N, |
| const GlobalValue* &GA, |
| int64_t &Offset) const { |
| if (N->getOpcode() == X86ISD::Wrapper) { |
| if (isa<GlobalAddressSDNode>(N->getOperand(0))) { |
| GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); |
| Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); |
| return true; |
| } |
| } |
| return TargetLowering::isGAPlusOffset(N, GA, Offset); |
| } |
| |
| /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the |
| /// same as extracting the high 128-bit part of 256-bit vector and then |
| /// inserting the result into the low part of a new 256-bit vector |
| static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) { |
| EVT VT = SVOp->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> |
| for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j) |
| if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || |
| SVOp->getMaskElt(j) >= 0) |
| return false; |
| |
| return true; |
| } |
| |
| /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the |
| /// same as extracting the low 128-bit part of 256-bit vector and then |
| /// inserting the result into the high part of a new 256-bit vector |
| static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) { |
| EVT VT = SVOp->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> |
| for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j) |
| if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || |
| SVOp->getMaskElt(j) >= 0) |
| return false; |
| |
| return true; |
| } |
| |
| /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors. |
| static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget* Subtarget) { |
| DebugLoc dl = N->getDebugLoc(); |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| EVT VT = SVOp->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (V1.getOpcode() == ISD::CONCAT_VECTORS && |
| V2.getOpcode() == ISD::CONCAT_VECTORS) { |
| // |
| // 0,0,0,... |
| // | |
| // V UNDEF BUILD_VECTOR UNDEF |
| // \ / \ / |
| // CONCAT_VECTOR CONCAT_VECTOR |
| // \ / |
| // \ / |
| // RESULT: V + zero extended |
| // |
| if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR || |
| V2.getOperand(1).getOpcode() != ISD::UNDEF || |
| V1.getOperand(1).getOpcode() != ISD::UNDEF) |
| return SDValue(); |
| |
| if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode())) |
| return SDValue(); |
| |
| // To match the shuffle mask, the first half of the mask should |
| // be exactly the first vector, and all the rest a splat with the |
| // first element of the second one. |
| for (unsigned i = 0; i != NumElems/2; ++i) |
| if (!isUndefOrEqual(SVOp->getMaskElt(i), i) || |
| !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems)) |
| return SDValue(); |
| |
| // If V1 is coming from a vector load then just fold to a VZEXT_LOAD. |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) { |
| if (Ld->hasNUsesOfValue(1, 0)) { |
| SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other); |
| SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() }; |
| SDValue ResNode = |
| DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2, |
| Ld->getMemoryVT(), |
| Ld->getPointerInfo(), |
| Ld->getAlignment(), |
| false/*isVolatile*/, true/*ReadMem*/, |
| false/*WriteMem*/); |
| |
| // Make sure the newly-created LOAD is in the same position as Ld in |
| // terms of dependency. We create a TokenFactor for Ld and ResNode, |
| // and update uses of Ld's output chain to use the TokenFactor. |
| if (Ld->hasAnyUseOfValue(1)) { |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); |
| DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1), |
| SDValue(ResNode.getNode(), 1)); |
| } |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, ResNode); |
| } |
| } |
| |
| // Emit a zeroed vector and insert the desired subvector on its |
| // first half. |
| SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); |
| SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl); |
| return DCI.CombineTo(N, InsV); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Combine some shuffles into subvector extracts and inserts: |
| // |
| |
| // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> |
| if (isShuffleHigh128VectorInsertLow(SVOp)) { |
| SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl); |
| SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl); |
| return DCI.CombineTo(N, InsV); |
| } |
| |
| // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> |
| if (isShuffleLow128VectorInsertHigh(SVOp)) { |
| SDValue V = Extract128BitVector(V1, 0, DAG, dl); |
| SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl); |
| return DCI.CombineTo(N, InsV); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformShuffleCombine - Performs several different shuffle combines. |
| static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| DebugLoc dl = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| |
| // Don't create instructions with illegal types after legalize types has run. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) |
| return SDValue(); |
| |
| // Combine 256-bit vector shuffles. This is only profitable when in AVX mode |
| if (Subtarget->hasFp256() && VT.is256BitVector() && |
| N->getOpcode() == ISD::VECTOR_SHUFFLE) |
| return PerformShuffleCombine256(N, DAG, DCI, Subtarget); |
| |
| // Only handle 128 wide vector from here on. |
| if (!VT.is128BitVector()) |
| return SDValue(); |
| |
| // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, |
| // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are |
| // consecutive, non-overlapping, and in the right order. |
| SmallVector<SDValue, 16> Elts; |
| for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) |
| Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); |
| |
| return EltsFromConsecutiveLoads(VT, Elts, dl, DAG); |
| } |
| |
| /// PerformTruncateCombine - Converts truncate operation to |
| /// a sequence of vector shuffle operations. |
| /// It is possible when we truncate 256-bit vector to 128-bit vector |
| static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| return SDValue(); |
| } |
| |
| /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target |
| /// specific shuffle of a load can be folded into a single element load. |
| /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but |
| /// shuffles have been customed lowered so we need to handle those here. |
| static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue InVec = N->getOperand(0); |
| SDValue EltNo = N->getOperand(1); |
| |
| if (!isa<ConstantSDNode>(EltNo)) |
| return SDValue(); |
| |
| EVT VT = InVec.getValueType(); |
| |
| bool HasShuffleIntoBitcast = false; |
| if (InVec.getOpcode() == ISD::BITCAST) { |
| // Don't duplicate a load with other uses. |
| if (!InVec.hasOneUse()) |
| return SDValue(); |
| EVT BCVT = InVec.getOperand(0).getValueType(); |
| if (BCVT.getVectorNumElements() != VT.getVectorNumElements()) |
| return SDValue(); |
| InVec = InVec.getOperand(0); |
| HasShuffleIntoBitcast = true; |
| } |
| |
| if (!isTargetShuffle(InVec.getOpcode())) |
| return SDValue(); |
| |
| // Don't duplicate a load with other uses. |
| if (!InVec.hasOneUse()) |
| return SDValue(); |
| |
| SmallVector<int, 16> ShuffleMask; |
| bool UnaryShuffle; |
| if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask, |
| UnaryShuffle)) |
| return SDValue(); |
| |
| // Select the input vector, guarding against out of range extract vector. |
| unsigned NumElems = VT.getVectorNumElements(); |
| int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); |
| int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt]; |
| SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0) |
| : InVec.getOperand(1); |
| |
| // If inputs to shuffle are the same for both ops, then allow 2 uses |
| unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1; |
| |
| if (LdNode.getOpcode() == ISD::BITCAST) { |
| // Don't duplicate a load with other uses. |
| if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) |
| return SDValue(); |
| |
| AllowedUses = 1; // only allow 1 load use if we have a bitcast |
| LdNode = LdNode.getOperand(0); |
| } |
| |
| if (!ISD::isNormalLoad(LdNode.getNode())) |
| return SDValue(); |
| |
| LoadSDNode *LN0 = cast<LoadSDNode>(LdNode); |
| |
| if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) |
| return SDValue(); |
| |
| if (HasShuffleIntoBitcast) { |
| // If there's a bitcast before the shuffle, check if the load type and |
| // alignment is valid. |
| unsigned Align = LN0->getAlignment(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned NewAlign = TLI.getDataLayout()-> |
| getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); |
| |
| if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT)) |
| return SDValue(); |
| } |
| |
| // All checks match so transform back to vector_shuffle so that DAG combiner |
| // can finish the job |
| DebugLoc dl = N->getDebugLoc(); |
| |
| // Create shuffle node taking into account the case that its a unary shuffle |
| SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1); |
| Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl, |
| InVec.getOperand(0), Shuffle, |
| &ShuffleMask[0]); |
| Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, |
| EltNo); |
| } |
| |
| /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index |
| /// generation and convert it from being a bunch of shuffles and extracts |
| /// to a simple store and scalar loads to extract the elements. |
| static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI); |
| if (NewOp.getNode()) |
| return NewOp; |
| |
| SDValue InputVector = N->getOperand(0); |
| // Detect whether we are trying to convert from mmx to i32 and the bitcast |
| // from mmx to v2i32 has a single usage. |
| if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST && |
| InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx && |
| InputVector.hasOneUse() && N->getValueType(0) == MVT::i32) |
| return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(), |
| N->getValueType(0), |
| InputVector.getNode()->getOperand(0)); |
| |
| // Only operate on vectors of 4 elements, where the alternative shuffling |
| // gets to be more expensive. |
| if (InputVector.getValueType() != MVT::v4i32) |
| return SDValue(); |
| |
| // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a |
| // single use which is a sign-extend or zero-extend, and all elements are |
| // used. |
| SmallVector<SDNode *, 4> Uses; |
| unsigned ExtractedElements = 0; |
| for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), |
| UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { |
| if (UI.getUse().getResNo() != InputVector.getResNo()) |
| return SDValue(); |
| |
| SDNode *Extract = *UI; |
| if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| if (Extract->getValueType(0) != MVT::i32) |
| return SDValue(); |
| if (!Extract->hasOneUse()) |
| return SDValue(); |
| if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && |
| Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| if (!isa<ConstantSDNode>(Extract->getOperand(1))) |
| return SDValue(); |
| |
| // Record which element was extracted. |
| ExtractedElements |= |
| 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); |
| |
| Uses.push_back(Extract); |
| } |
| |
| // If not all the elements were used, this may not be worthwhile. |
| if (ExtractedElements != 15) |
| return SDValue(); |
| |
| // Ok, we've now decided to do the transformation. |
| DebugLoc dl = InputVector.getDebugLoc(); |
| |
| // Store the value to a temporary stack slot. |
| SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); |
| SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, |
| MachinePointerInfo(), false, false, 0); |
| |
| // Replace each use (extract) with a load of the appropriate element. |
| for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), |
| UE = Uses.end(); UI != UE; ++UI) { |
| SDNode *Extract = *UI; |
| |
| // cOMpute the element's address. |
| SDValue Idx = Extract->getOperand(1); |
| unsigned EltSize = |
| InputVector.getValueType().getVectorElementType().getSizeInBits()/8; |
| uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy()); |
| |
| SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), |
| StackPtr, OffsetVal); |
| |
| // Load the scalar. |
| SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, |
| ScalarAddr, MachinePointerInfo(), |
| false, false, false, 0); |
| |
| // Replace the exact with the load. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar); |
| } |
| |
| // The replacement was made in place; don't return anything. |
| return SDValue(); |
| } |
| |
| /// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match. |
| static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, |
| SDValue RHS, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| if (!VT.isVector()) |
| return 0; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return 0; |
| case MVT::v32i8: |
| case MVT::v16i16: |
| case MVT::v8i32: |
| if (!Subtarget->hasAVX2()) |
| return 0; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| if (!Subtarget->hasSSE2()) |
| return 0; |
| } |
| |
| // SSE2 has only a small subset of the operations. |
| bool hasUnsigned = Subtarget->hasSSE41() || |
| (Subtarget->hasSSE2() && VT == MVT::v16i8); |
| bool hasSigned = Subtarget->hasSSE41() || |
| (Subtarget->hasSSE2() && VT == MVT::v8i16); |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| // Check for x CC y ? x : y. |
| if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && |
| DAG.isEqualTo(RHS, Cond.getOperand(1))) { |
| switch (CC) { |
| default: break; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| return hasUnsigned ? X86ISD::UMIN : 0; |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| return hasUnsigned ? X86ISD::UMAX : 0; |
| case ISD::SETLT: |
| case ISD::SETLE: |
| return hasSigned ? X86ISD::SMIN : 0; |
| case ISD::SETGT: |
| case ISD::SETGE: |
| return hasSigned ? X86ISD::SMAX : 0; |
| } |
| // Check for x CC y ? y : x -- a min/max with reversed arms. |
| } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && |
| DAG.isEqualTo(RHS, Cond.getOperand(0))) { |
| switch (CC) { |
| default: break; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| return hasUnsigned ? X86ISD::UMAX : 0; |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| return hasUnsigned ? X86ISD::UMIN : 0; |
| case ISD::SETLT: |
| case ISD::SETLE: |
| return hasSigned ? X86ISD::SMAX : 0; |
| case ISD::SETGT: |
| case ISD::SETGE: |
| return hasSigned ? X86ISD::SMIN : 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT |
| /// nodes. |
| static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| DebugLoc DL = N->getDebugLoc(); |
| SDValue Cond = N->getOperand(0); |
| // Get the LHS/RHS of the select. |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| EVT VT = LHS.getValueType(); |
| |
| // If we have SSE[12] support, try to form min/max nodes. SSE min/max |
| // instructions match the semantics of the common C idiom x<y?x:y but not |
| // x<=y?x:y, because of how they handle negative zero (which can be |
| // ignored in unsafe-math mode). |
| if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() && |
| VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) && |
| (Subtarget->hasSSE2() || |
| (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| unsigned Opcode = 0; |
| // Check for x CC y ? x : y. |
| if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && |
| DAG.isEqualTo(RHS, Cond.getOperand(1))) { |
| switch (CC) { |
| default: break; |
| case ISD::SETULT: |
| // Converting this to a min would handle NaNs incorrectly, and swapping |
| // the operands would cause it to handle comparisons between positive |
| // and negative zero incorrectly. |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) |
| break; |
| std::swap(LHS, RHS); |
| } |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETOLE: |
| // Converting this to a min would handle comparisons between positive |
| // and negative zero incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) |
| break; |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETULE: |
| // Converting this to a min would handle both negative zeros and NaNs |
| // incorrectly, but we can swap the operands to fix both. |
| std::swap(LHS, RHS); |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETOGE: |
| // Converting this to a max would handle comparisons between positive |
| // and negative zero incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) |
| break; |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETUGT: |
| // Converting this to a max would handle NaNs incorrectly, and swapping |
| // the operands would cause it to handle comparisons between positive |
| // and negative zero incorrectly. |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) |
| break; |
| std::swap(LHS, RHS); |
| } |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETUGE: |
| // Converting this to a max would handle both negative zeros and NaNs |
| // incorrectly, but we can swap the operands to fix both. |
| std::swap(LHS, RHS); |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| // Check for x CC y ? y : x -- a min/max with reversed arms. |
| } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && |
| DAG.isEqualTo(RHS, Cond.getOperand(0))) { |
| switch (CC) { |
| default: break; |
| case ISD::SETOGE: |
| // Converting this to a min would handle comparisons between positive |
| // and negative zero incorrectly, and swapping the operands would |
| // cause it to handle NaNs incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) |
| break; |
| std::swap(LHS, RHS); |
| } |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETUGT: |
| // Converting this to a min would handle NaNs incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) |
| break; |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETUGE: |
| // Converting this to a min would handle both negative zeros and NaNs |
| // incorrectly, but we can swap the operands to fix both. |
| std::swap(LHS, RHS); |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETULT: |
| // Converting this to a max would handle NaNs incorrectly. |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) |
| break; |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETOLE: |
| // Converting this to a max would handle comparisons between positive |
| // and negative zero incorrectly, and swapping the operands would |
| // cause it to handle NaNs incorrectly. |
| if (!DAG.getTarget().Options.UnsafeFPMath && |
| !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { |
| if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) |
| break; |
| std::swap(LHS, RHS); |
| } |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETULE: |
| // Converting this to a max would handle both negative zeros and NaNs |
| // incorrectly, but we can swap the operands to fix both. |
| std::swap(LHS, RHS); |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| } |
| |
| if (Opcode) |
| return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); |
| } |
| |
| // If this is a select between two integer constants, try to do some |
| // optimizations. |
| if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { |
| if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) |
| // Don't do this for crazy integer types. |
| if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { |
| // If this is efficiently invertible, canonicalize the LHSC/RHSC values |
| // so that TrueC (the true value) is larger than FalseC. |
| bool NeedsCondInvert = false; |
| |
| if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && |
| // Efficiently invertible. |
| (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. |
| (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. |
| isa<ConstantSDNode>(Cond.getOperand(1))))) { |
| NeedsCondInvert = true; |
| std::swap(TrueC, FalseC); |
| } |
| |
| // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. |
| if (FalseC->getAPIntValue() == 0 && |
| TrueC->getAPIntValue().isPowerOf2()) { |
| if (NeedsCondInvert) // Invert the condition if needed. |
| Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(1, Cond.getValueType())); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); |
| |
| unsigned ShAmt = TrueC->getAPIntValue().logBase2(); |
| return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, |
| DAG.getConstant(ShAmt, MVT::i8)); |
| } |
| |
| // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. |
| if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { |
| if (NeedsCondInvert) // Invert the condition if needed. |
| Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(1, Cond.getValueType())); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, |
| FalseC->getValueType(0), Cond); |
| return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| } |
| |
| // Optimize cases that will turn into an LEA instruction. This requires |
| // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). |
| if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { |
| uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); |
| if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; |
| |
| bool isFastMultiplier = false; |
| if (Diff < 10) { |
| switch ((unsigned char)Diff) { |
| default: break; |
| case 1: // result = add base, cond |
| case 2: // result = lea base( , cond*2) |
| case 3: // result = lea base(cond, cond*2) |
| case 4: // result = lea base( , cond*4) |
| case 5: // result = lea base(cond, cond*4) |
| case 8: // result = lea base( , cond*8) |
| case 9: // result = lea base(cond, cond*8) |
| isFastMultiplier = true; |
| break; |
| } |
| } |
| |
| if (isFastMultiplier) { |
| APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); |
| if (NeedsCondInvert) // Invert the condition if needed. |
| Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(1, Cond.getValueType())); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), |
| Cond); |
| // Scale the condition by the difference. |
| if (Diff != 1) |
| Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(Diff, Cond.getValueType())); |
| |
| // Add the base if non-zero. |
| if (FalseC->getAPIntValue() != 0) |
| Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| return Cond; |
| } |
| } |
| } |
| } |
| |
| // Canonicalize max and min: |
| // (x > y) ? x : y -> (x >= y) ? x : y |
| // (x < y) ? x : y -> (x <= y) ? x : y |
| // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates |
| // the need for an extra compare |
| // against zero. e.g. |
| // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 |
| // subl %esi, %edi |
| // testl %edi, %edi |
| // movl $0, %eax |
| // cmovgl %edi, %eax |
| // => |
| // xorl %eax, %eax |
| // subl %esi, $edi |
| // cmovsl %eax, %edi |
| if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && |
| DAG.isEqualTo(LHS, Cond.getOperand(0)) && |
| DAG.isEqualTo(RHS, Cond.getOperand(1))) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| switch (CC) { |
| default: break; |
| case ISD::SETLT: |
| case ISD::SETGT: { |
| ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; |
| Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(), |
| Cond.getOperand(0), Cond.getOperand(1), NewCC); |
| return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS); |
| } |
| } |
| } |
| |
| // Match VSELECTs into subs with unsigned saturation. |
| if (!DCI.isBeforeLegalize() && |
| N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && |
| // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. |
| ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || |
| (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| // Check if one of the arms of the VSELECT is a zero vector. If it's on the |
| // left side invert the predicate to simplify logic below. |
| SDValue Other; |
| if (ISD::isBuildVectorAllZeros(LHS.getNode())) { |
| Other = RHS; |
| CC = ISD::getSetCCInverse(CC, true); |
| } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { |
| Other = LHS; |
| } |
| |
| if (Other.getNode() && Other->getNumOperands() == 2 && |
| DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { |
| SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); |
| SDValue CondRHS = Cond->getOperand(1); |
| |
| // Look for a general sub with unsigned saturation first. |
| // x >= y ? x-y : 0 --> subus x, y |
| // x > y ? x-y : 0 --> subus x, y |
| if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && |
| Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) |
| return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); |
| |
| // If the RHS is a constant we have to reverse the const canonicalization. |
| // x > C-1 ? x+-C : 0 --> subus x, C |
| if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && |
| isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) { |
| APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue(); |
| if (CondRHS.getConstantOperandVal(0) == -A-1) |
| return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, |
| DAG.getConstant(-A, VT)); |
| } |
| |
| // Another special case: If C was a sign bit, the sub has been |
| // canonicalized into a xor. |
| // FIXME: Would it be better to use ComputeMaskedBits to determine whether |
| // it's safe to decanonicalize the xor? |
| // x s< 0 ? x^C : 0 --> subus x, C |
| if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && |
| ISD::isBuildVectorAllZeros(CondRHS.getNode()) && |
| isSplatVector(OpRHS.getNode())) { |
| APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue(); |
| if (A.isSignBit()) |
| return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); |
| } |
| } |
| } |
| |
| // Try to match a min/max vector operation. |
| if (!DCI.isBeforeLegalize() && |
| N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) |
| if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget)) |
| return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS); |
| |
| // If we know that this node is legal then we know that it is going to be |
| // matched by one of the SSE/AVX BLEND instructions. These instructions only |
| // depend on the highest bit in each word. Try to use SimplifyDemandedBits |
| // to simplify previous instructions. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && |
| !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) { |
| unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits(); |
| |
| // Don't optimize vector selects that map to mask-registers. |
| if (BitWidth == 1) |
| return SDValue(); |
| |
| assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); |
| APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1); |
| |
| APInt KnownZero, KnownOne; |
| TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), |
| DCI.isBeforeLegalizeOps()); |
| if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) || |
| TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO)) |
| DCI.CommitTargetLoweringOpt(TLO); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Check whether a boolean test is testing a boolean value generated by |
| // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition |
| // code. |
| // |
| // Simplify the following patterns: |
| // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or |
| // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) |
| // to (Op EFLAGS Cond) |
| // |
| // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or |
| // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) |
| // to (Op EFLAGS !Cond) |
| // |
| // where Op could be BRCOND or CMOV. |
| // |
| static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { |
| // Quit if not CMP and SUB with its value result used. |
| if (Cmp.getOpcode() != X86ISD::CMP && |
| (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0))) |
| return SDValue(); |
| |
| // Quit if not used as a boolean value. |
| if (CC != X86::COND_E && CC != X86::COND_NE) |
| return SDValue(); |
| |
| // Check CMP operands. One of them should be 0 or 1 and the other should be |
| // an SetCC or extended from it. |
| SDValue Op1 = Cmp.getOperand(0); |
| SDValue Op2 = Cmp.getOperand(1); |
| |
| SDValue SetCC; |
| const ConstantSDNode* C = 0; |
| bool needOppositeCond = (CC == X86::COND_E); |
| |
| if ((C = dyn_cast<ConstantSDNode>(Op1))) |
| SetCC = Op2; |
| else if ((C = dyn_cast<ConstantSDNode>(Op2))) |
| SetCC = Op1; |
| else // Quit if all operands are not constants. |
| return SDValue(); |
| |
| if (C->getZExtValue() == 1) |
| needOppositeCond = !needOppositeCond; |
| else if (C->getZExtValue() != 0) |
| // Quit if the constant is neither 0 or 1. |
| return SDValue(); |
| |
| // Skip 'zext' node. |
| if (SetCC.getOpcode() == ISD::ZERO_EXTEND) |
| SetCC = SetCC.getOperand(0); |
| |
| switch (SetCC.getOpcode()) { |
| case X86ISD::SETCC: |
| // Set the condition code or opposite one if necessary. |
| CC = X86::CondCode(SetCC.getConstantOperandVal(0)); |
| if (needOppositeCond) |
| CC = X86::GetOppositeBranchCondition(CC); |
| return SetCC.getOperand(1); |
| case X86ISD::CMOV: { |
| // Check whether false/true value has canonical one, i.e. 0 or 1. |
| ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0)); |
| ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1)); |
| // Quit if true value is not a constant. |
| if (!TVal) |
| return SDValue(); |
| // Quit if false value is not a constant. |
| if (!FVal) { |
| // A special case for rdrand, where 0 is set if false cond is found. |
| SDValue Op = SetCC.getOperand(0); |
| if (Op.getOpcode() != X86ISD::RDRAND) |
| return SDValue(); |
| } |
| // Quit if false value is not the constant 0 or 1. |
| bool FValIsFalse = true; |
| if (FVal && FVal->getZExtValue() != 0) { |
| if (FVal->getZExtValue() != 1) |
| return SDValue(); |
| // If FVal is 1, opposite cond is needed. |
| needOppositeCond = !needOppositeCond; |
| FValIsFalse = false; |
| } |
| // Quit if TVal is not the constant opposite of FVal. |
| if (FValIsFalse && TVal->getZExtValue() != 1) |
| return SDValue(); |
| if (!FValIsFalse && TVal->getZExtValue() != 0) |
| return SDValue(); |
| CC = X86::CondCode(SetCC.getConstantOperandVal(2)); |
| if (needOppositeCond) |
| CC = X86::GetOppositeBranchCondition(CC); |
| return SetCC.getOperand(3); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] |
| static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| DebugLoc DL = N->getDebugLoc(); |
| |
| // If the flag operand isn't dead, don't touch this CMOV. |
| if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) |
| return SDValue(); |
| |
| SDValue FalseOp = N->getOperand(0); |
| SDValue TrueOp = N->getOperand(1); |
| X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); |
| SDValue Cond = N->getOperand(3); |
| |
| if (CC == X86::COND_E || CC == X86::COND_NE) { |
| switch (Cond.getOpcode()) { |
| default: break; |
| case X86ISD::BSR: |
| case X86ISD::BSF: |
| // If operand of BSR / BSF are proven never zero, then ZF cannot be set. |
| if (DAG.isKnownNeverZero(Cond.getOperand(0))) |
| return (CC == X86::COND_E) ? FalseOp : TrueOp; |
| } |
| } |
| |
| SDValue Flags; |
| |
| Flags = checkBoolTestSetCCCombine(Cond, CC); |
| if (Flags.getNode() && |
| // Extra check as FCMOV only supports a subset of X86 cond. |
| (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) { |
| SDValue Ops[] = { FalseOp, TrueOp, |
| DAG.getConstant(CC, MVT::i8), Flags }; |
| return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), |
| Ops, array_lengthof(Ops)); |
| } |
| |
| // If this is a select between two integer constants, try to do some |
| // optimizations. Note that the operands are ordered the opposite of SELECT |
| // operands. |
| if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) { |
| if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) { |
| // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is |
| // larger than FalseC (the false value). |
| if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { |
| CC = X86::GetOppositeBranchCondition(CC); |
| std::swap(TrueC, FalseC); |
| std::swap(TrueOp, FalseOp); |
| } |
| |
| // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. |
| // This is efficient for any integer data type (including i8/i16) and |
| // shift amount. |
| if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { |
| Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, |
| DAG.getConstant(CC, MVT::i8), Cond); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); |
| |
| unsigned ShAmt = TrueC->getAPIntValue().logBase2(); |
| Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(ShAmt, MVT::i8)); |
| if (N->getNumValues() == 2) // Dead flag value? |
| return DCI.CombineTo(N, Cond, SDValue()); |
| return Cond; |
| } |
| |
| // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient |
| // for any integer data type, including i8/i16. |
| if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { |
| Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, |
| DAG.getConstant(CC, MVT::i8), Cond); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, |
| FalseC->getValueType(0), Cond); |
| Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| |
| if (N->getNumValues() == 2) // Dead flag value? |
| return DCI.CombineTo(N, Cond, SDValue()); |
| return Cond; |
| } |
| |
| // Optimize cases that will turn into an LEA instruction. This requires |
| // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). |
| if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { |
| uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); |
| if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; |
| |
| bool isFastMultiplier = false; |
| if (Diff < 10) { |
| switch ((unsigned char)Diff) { |
| default: break; |
| case 1: // result = add base, cond |
| case 2: // result = lea base( , cond*2) |
| case 3: // result = lea base(cond, cond*2) |
| case 4: // result = lea base( , cond*4) |
| case 5: // result = lea base(cond, cond*4) |
| case 8: // result = lea base( , cond*8) |
| case 9: // result = lea base(cond, cond*8) |
| isFastMultiplier = true; |
| break; |
| } |
| } |
| |
| if (isFastMultiplier) { |
| APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); |
| Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, |
| DAG.getConstant(CC, MVT::i8), Cond); |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), |
| Cond); |
| // Scale the condition by the difference. |
| if (Diff != 1) |
| Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(Diff, Cond.getValueType())); |
| |
| // Add the base if non-zero. |
| if (FalseC->getAPIntValue() != 0) |
| Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| if (N->getNumValues() == 2) // Dead flag value? |
| return DCI.CombineTo(N, Cond, SDValue()); |
| return Cond; |
| } |
| } |
| } |
| } |
| |
| // Handle these cases: |
| // (select (x != c), e, c) -> select (x != c), e, x), |
| // (select (x == c), c, e) -> select (x == c), x, e) |
| // where the c is an integer constant, and the "select" is the combination |
| // of CMOV and CMP. |
| // |
| // The rationale for this change is that the conditional-move from a constant |
| // needs two instructions, however, conditional-move from a register needs |
| // only one instruction. |
| // |
| // CAVEAT: By replacing a constant with a symbolic value, it may obscure |
| // some instruction-combining opportunities. This opt needs to be |
| // postponed as late as possible. |
| // |
| if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { |
| // the DCI.xxxx conditions are provided to postpone the optimization as |
| // late as possible. |
| |
| ConstantSDNode *CmpAgainst = 0; |
| if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && |
| (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) && |
| !isa<ConstantSDNode>(Cond.getOperand(0))) { |
| |
| if (CC == X86::COND_NE && |
| CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) { |
| CC = X86::GetOppositeBranchCondition(CC); |
| std::swap(TrueOp, FalseOp); |
| } |
| |
| if (CC == X86::COND_E && |
| CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) { |
| SDValue Ops[] = { FalseOp, Cond.getOperand(0), |
| DAG.getConstant(CC, MVT::i8), Cond }; |
| return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops, |
| array_lengthof(Ops)); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformMulCombine - Optimize a single multiply with constant into two |
| /// in order to implement it with two cheaper instructions, e.g. |
| /// LEA + SHL, LEA + LEA. |
| static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| uint64_t MulAmt = C->getZExtValue(); |
| if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) |
| return SDValue(); |
| |
| uint64_t MulAmt1 = 0; |
| uint64_t MulAmt2 = 0; |
| if ((MulAmt % 9) == 0) { |
| MulAmt1 = 9; |
| MulAmt2 = MulAmt / 9; |
| } else if ((MulAmt % 5) == 0) { |
| MulAmt1 = 5; |
| MulAmt2 = MulAmt / 5; |
| } else if ((MulAmt % 3) == 0) { |
| MulAmt1 = 3; |
| MulAmt2 = MulAmt / 3; |
| } |
| if (MulAmt2 && |
| (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ |
| DebugLoc DL = N->getDebugLoc(); |
| |
| if (isPowerOf2_64(MulAmt2) && |
| !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) |
| // If second multiplifer is pow2, issue it first. We want the multiply by |
| // 3, 5, or 9 to be folded into the addressing mode unless the lone use |
| // is an add. |
| std::swap(MulAmt1, MulAmt2); |
| |
| SDValue NewMul; |
| if (isPowerOf2_64(MulAmt1)) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); |
| else |
| NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), |
| DAG.getConstant(MulAmt1, VT)); |
| |
| if (isPowerOf2_64(MulAmt2)) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, |
| DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); |
| else |
| NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, |
| DAG.getConstant(MulAmt2, VT)); |
| |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, NewMul, false); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| EVT VT = N0.getValueType(); |
| |
| // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) |
| // since the result of setcc_c is all zero's or all ones. |
| if (VT.isInteger() && !VT.isVector() && |
| N1C && N0.getOpcode() == ISD::AND && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == X86ISD::SETCC_CARRY || |
| ((N00.getOpcode() == ISD::ANY_EXTEND || |
| N00.getOpcode() == ISD::ZERO_EXTEND) && |
| N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| APInt ShAmt = N1C->getAPIntValue(); |
| Mask = Mask.shl(ShAmt); |
| if (Mask != 0) |
| return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, |
| N00, DAG.getConstant(Mask, VT)); |
| } |
| } |
| |
| // Hardware support for vector shifts is sparse which makes us scalarize the |
| // vector operations in many cases. Also, on sandybridge ADD is faster than |
| // shl. |
| // (shl V, 1) -> add V,V |
| if (isSplatVector(N1.getNode())) { |
| assert(N0.getValueType().isVector() && "Invalid vector shift type"); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0)); |
| // We shift all of the values by one. In many cases we do not have |
| // hardware support for this operation. This is better expressed as an ADD |
| // of two values. |
| if (N1C && (1 == N1C->getZExtValue())) { |
| return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts |
| /// when possible. |
| static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (N->getOpcode() == ISD::SHL) { |
| SDValue V = PerformSHLCombine(N, DAG); |
| if (V.getNode()) return V; |
| } |
| |
| // On X86 with SSE2 support, we can transform this to a vector shift if |
| // all elements are shifted by the same amount. We can't do this in legalize |
| // because the a constant vector is typically transformed to a constant pool |
| // so we have no knowledge of the shift amount. |
| if (!Subtarget->hasSSE2()) |
| return SDValue(); |
| |
| if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 && |
| (!Subtarget->hasInt256() || |
| (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16))) |
| return SDValue(); |
| |
| SDValue ShAmtOp = N->getOperand(1); |
| EVT EltVT = VT.getVectorElementType(); |
| DebugLoc DL = N->getDebugLoc(); |
| SDValue BaseShAmt = SDValue(); |
| if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned i = 0; |
| for (; i != NumElts; ++i) { |
| SDValue Arg = ShAmtOp.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| BaseShAmt = Arg; |
| break; |
| } |
| // Handle the case where the build_vector is all undef |
| // FIXME: Should DAG allow this? |
| if (i == NumElts) |
| return SDValue(); |
| |
| for (; i != NumElts; ++i) { |
| SDValue Arg = ShAmtOp.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| if (Arg != BaseShAmt) { |
| return SDValue(); |
| } |
| } |
| } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && |
| cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) { |
| SDValue InVec = ShAmtOp.getOperand(0); |
| if (InVec.getOpcode() == ISD::BUILD_VECTOR) { |
| unsigned NumElts = InVec.getValueType().getVectorNumElements(); |
| unsigned i = 0; |
| for (; i != NumElts; ++i) { |
| SDValue Arg = InVec.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| BaseShAmt = Arg; |
| break; |
| } |
| } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { |
| unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); |
| if (C->getZExtValue() == SplatIdx) |
| BaseShAmt = InVec.getOperand(1); |
| } |
| } |
| if (BaseShAmt.getNode() == 0) { |
| // Don't create instructions with illegal types after legalize |
| // types has run. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) && |
| !DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, |
| DAG.getIntPtrConstant(0)); |
| } |
| } else |
| return SDValue(); |
| |
| // The shift amount is an i32. |
| if (EltVT.bitsGT(MVT::i32)) |
| BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); |
| else if (EltVT.bitsLT(MVT::i32)) |
| BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt); |
| |
| // The shift amount is identical so we can do a vector shift. |
| SDValue ValOp = N->getOperand(0); |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Unknown shift opcode!"); |
| case ISD::SHL: |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return SDValue(); |
| case MVT::v2i64: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v4i64: |
| case MVT::v8i32: |
| case MVT::v16i16: |
| return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG); |
| } |
| case ISD::SRA: |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return SDValue(); |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v8i32: |
| case MVT::v16i16: |
| return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG); |
| } |
| case ISD::SRL: |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return SDValue(); |
| case MVT::v2i64: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v4i64: |
| case MVT::v8i32: |
| case MVT::v16i16: |
| return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG); |
| } |
| } |
| } |
| |
| // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..)) |
| // where both setccs reference the same FP CMP, and rewrite for CMPEQSS |
| // and friends. Likewise for OR -> CMPNEQSS. |
| static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| unsigned opcode; |
| |
| // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but |
| // we're requiring SSE2 for both. |
| if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue CMP0 = N0->getOperand(1); |
| SDValue CMP1 = N1->getOperand(1); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| // The SETCCs should both refer to the same CMP. |
| if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) |
| return SDValue(); |
| |
| SDValue CMP00 = CMP0->getOperand(0); |
| SDValue CMP01 = CMP0->getOperand(1); |
| EVT VT = CMP00.getValueType(); |
| |
| if (VT == MVT::f32 || VT == MVT::f64) { |
| bool ExpectingFlags = false; |
| // Check for any users that want flags: |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| !ExpectingFlags && UI != UE; ++UI) |
| switch (UI->getOpcode()) { |
| default: |
| case ISD::BR_CC: |
| case ISD::BRCOND: |
| case ISD::SELECT: |
| ExpectingFlags = true; |
| break; |
| case ISD::CopyToReg: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| break; |
| } |
| |
| if (!ExpectingFlags) { |
| enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); |
| enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); |
| |
| if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { |
| X86::CondCode tmp = cc0; |
| cc0 = cc1; |
| cc1 = tmp; |
| } |
| |
| if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) || |
| (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { |
| bool is64BitFP = (CMP00.getValueType() == MVT::f64); |
| X86ISD::NodeType NTOperator = is64BitFP ? |
| X86ISD::FSETCCsd : X86ISD::FSETCCss; |
| // FIXME: need symbolic constants for these magic numbers. |
| // See X86ATTInstPrinter.cpp:printSSECC(). |
| unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; |
| SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01, |
| DAG.getConstant(x86cc, MVT::i8)); |
| SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32, |
| OnesOrZeroesF); |
| SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI, |
| DAG.getConstant(1, MVT::i32)); |
| SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed); |
| return OneBitOfTruth; |
| } |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector |
| /// so it can be folded inside ANDNP. |
| static bool CanFoldXORWithAllOnes(const SDNode *N) { |
| EVT VT = N->getValueType(0); |
| |
| // Match direct AllOnes for 128 and 256-bit vectors |
| if (ISD::isBuildVectorAllOnes(N)) |
| return true; |
| |
| // Look through a bit convert. |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0).getNode(); |
| |
| // Sometimes the operand may come from a insert_subvector building a 256-bit |
| // allones vector |
| if (VT.is256BitVector() && |
| N->getOpcode() == ISD::INSERT_SUBVECTOR) { |
| SDValue V1 = N->getOperand(0); |
| SDValue V2 = N->getOperand(1); |
| |
| if (V1.getOpcode() == ISD::INSERT_SUBVECTOR && |
| V1.getOperand(0).getOpcode() == ISD::UNDEF && |
| ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) && |
| ISD::isBuildVectorAllOnes(V2.getNode())) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized |
| // register. In most cases we actually compare or select YMM-sized registers |
| // and mixing the two types creates horrible code. This method optimizes |
| // some of the transition sequences. |
| static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (!VT.is256BitVector()) |
| return SDValue(); |
| |
| assert((N->getOpcode() == ISD::ANY_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND || |
| N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); |
| |
| SDValue Narrow = N->getOperand(0); |
| EVT NarrowVT = Narrow->getValueType(0); |
| if (!NarrowVT.is128BitVector()) |
| return SDValue(); |
| |
| if (Narrow->getOpcode() != ISD::XOR && |
| Narrow->getOpcode() != ISD::AND && |
| Narrow->getOpcode() != ISD::OR) |
| return SDValue(); |
| |
| SDValue N0 = Narrow->getOperand(0); |
| SDValue N1 = Narrow->getOperand(1); |
| DebugLoc DL = Narrow->getDebugLoc(); |
| |
| // The Left side has to be a trunc. |
| if (N0.getOpcode() != ISD::TRUNCATE) |
| return SDValue(); |
| |
| // The type of the truncated inputs. |
| EVT WideVT = N0->getOperand(0)->getValueType(0); |
| if (WideVT != VT) |
| return SDValue(); |
| |
| // The right side has to be a 'trunc' or a constant vector. |
| bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE; |
| bool RHSConst = (isSplatVector(N1.getNode()) && |
| isa<ConstantSDNode>(N1->getOperand(0))); |
| if (!RHSTrunc && !RHSConst) |
| return SDValue(); |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT)) |
| return SDValue(); |
| |
| // Set N0 and N1 to hold the inputs to the new wide operation. |
| N0 = N0->getOperand(0); |
| if (RHSConst) { |
| N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(), |
| N1->getOperand(0)); |
| SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1); |
| N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size()); |
| } else if (RHSTrunc) { |
| N1 = N1->getOperand(0); |
| } |
| |
| // Generate the wide operation. |
| SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1); |
| unsigned Opcode = N->getOpcode(); |
| switch (Opcode) { |
| case ISD::ANY_EXTEND: |
| return Op; |
| case ISD::ZERO_EXTEND: { |
| unsigned InBits = NarrowVT.getScalarType().getSizeInBits(); |
| APInt Mask = APInt::getAllOnesValue(InBits); |
| Mask = Mask.zext(VT.getScalarType().getSizeInBits()); |
| return DAG.getNode(ISD::AND, DL, VT, |
| Op, DAG.getConstant(Mask, VT)); |
| } |
| case ISD::SIGN_EXTEND: |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, |
| Op, DAG.getValueType(NarrowVT)); |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| } |
| } |
| |
| static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); |
| if (R.getNode()) |
| return R; |
| |
| // Create BLSI, and BLSR instructions |
| // BLSI is X & (-X) |
| // BLSR is X & (X-1) |
| if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| // Check LHS for neg |
| if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 && |
| isZero(N0.getOperand(0))) |
| return DAG.getNode(X86ISD::BLSI, DL, VT, N1); |
| |
| // Check RHS for neg |
| if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 && |
| isZero(N1.getOperand(0))) |
| return DAG.getNode(X86ISD::BLSI, DL, VT, N0); |
| |
| // Check LHS for X-1 |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 && |
| isAllOnes(N0.getOperand(1))) |
| return DAG.getNode(X86ISD::BLSR, DL, VT, N1); |
| |
| // Check RHS for X-1 |
| if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 && |
| isAllOnes(N1.getOperand(1))) |
| return DAG.getNode(X86ISD::BLSR, DL, VT, N0); |
| |
| return SDValue(); |
| } |
| |
| // Want to form ANDNP nodes: |
| // 1) In the hopes of then easily combining them with OR and AND nodes |
| // to form PBLEND/PSIGN. |
| // 2) To match ANDN packed intrinsics |
| if (VT != MVT::v2i64 && VT != MVT::v4i64) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| // Check LHS for vnot |
| if (N0.getOpcode() == ISD::XOR && |
| //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) |
| CanFoldXORWithAllOnes(N0.getOperand(1).getNode())) |
| return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); |
| |
| // Check RHS for vnot |
| if (N1.getOpcode() == ISD::XOR && |
| //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) |
| CanFoldXORWithAllOnes(N1.getOperand(1).getNode())) |
| return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); |
| if (R.getNode()) |
| return R; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // look for psign/blend |
| if (VT == MVT::v2i64 || VT == MVT::v4i64) { |
| if (!Subtarget->hasSSSE3() || |
| (VT == MVT::v4i64 && !Subtarget->hasInt256())) |
| return SDValue(); |
| |
| // Canonicalize pandn to RHS |
| if (N0.getOpcode() == X86ISD::ANDNP) |
| std::swap(N0, N1); |
| // or (and (m, y), (pandn m, x)) |
| if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) { |
| SDValue Mask = N1.getOperand(0); |
| SDValue X = N1.getOperand(1); |
| SDValue Y; |
| if (N0.getOperand(0) == Mask) |
| Y = N0.getOperand(1); |
| if (N0.getOperand(1) == Mask) |
| Y = N0.getOperand(0); |
| |
| // Check to see if the mask appeared in both the AND and ANDNP and |
| if (!Y.getNode()) |
| return SDValue(); |
| |
| // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. |
| // Look through mask bitcast. |
| if (Mask.getOpcode() == ISD::BITCAST) |
| Mask = Mask.getOperand(0); |
| if (X.getOpcode() == ISD::BITCAST) |
| X = X.getOperand(0); |
| if (Y.getOpcode() == ISD::BITCAST) |
| Y = Y.getOperand(0); |
| |
| EVT MaskVT = Mask.getValueType(); |
| |
| // Validate that the Mask operand is a vector sra node. |
| // FIXME: what to do for bytes, since there is a psignb/pblendvb, but |
| // there is no psrai.b |
| if (Mask.getOpcode() != X86ISD::VSRAI) |
| return SDValue(); |
| |
| // Check that the SRA is all signbits. |
| SDValue SraC = Mask.getOperand(1); |
| unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue(); |
| unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); |
| if ((SraAmt + 1) != EltBits) |
| return SDValue(); |
| |
| DebugLoc DL = N->getDebugLoc(); |
| |
| // Now we know we at least have a plendvb with the mask val. See if |
| // we can form a psignb/w/d. |
| // psign = x.type == y.type == mask.type && y = sub(0, x); |
| if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && |
| ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && |
| X.getValueType() == MaskVT && Y.getValueType() == MaskVT) { |
| assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && |
| "Unsupported VT for PSIGN"); |
| Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0)); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Mask); |
| } |
| // PBLENDVB only available on SSE 4.1 |
| if (!Subtarget->hasSSE41()) |
| return SDValue(); |
| |
| EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; |
| |
| X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X); |
| Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y); |
| Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask); |
| Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Mask); |
| } |
| } |
| |
| if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) |
| if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) |
| return SDValue(); |
| if (!N0.hasOneUse() || !N1.hasOneUse()) |
| return SDValue(); |
| |
| SDValue ShAmt0 = N0.getOperand(1); |
| if (ShAmt0.getValueType() != MVT::i8) |
| return SDValue(); |
| SDValue ShAmt1 = N1.getOperand(1); |
| if (ShAmt1.getValueType() != MVT::i8) |
| return SDValue(); |
| if (ShAmt0.getOpcode() == ISD::TRUNCATE) |
| ShAmt0 = ShAmt0.getOperand(0); |
| if (ShAmt1.getOpcode() == ISD::TRUNCATE) |
| ShAmt1 = ShAmt1.getOperand(0); |
| |
| DebugLoc DL = N->getDebugLoc(); |
| unsigned Opc = X86ISD::SHLD; |
| SDValue Op0 = N0.getOperand(0); |
| SDValue Op1 = N1.getOperand(0); |
| if (ShAmt0.getOpcode() == ISD::SUB) { |
| Opc = X86ISD::SHRD; |
| std::swap(Op0, Op1); |
| std::swap(ShAmt0, ShAmt1); |
| } |
| |
| unsigned Bits = VT.getSizeInBits(); |
| if (ShAmt1.getOpcode() == ISD::SUB) { |
| SDValue Sum = ShAmt1.getOperand(0); |
| if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { |
| SDValue ShAmt1Op1 = ShAmt1.getOperand(1); |
| if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) |
| ShAmt1Op1 = ShAmt1Op1.getOperand(0); |
| if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) |
| return DAG.getNode(Opc, DL, VT, |
| Op0, Op1, |
| DAG.getNode(ISD::TRUNCATE, DL, |
| MVT::i8, ShAmt0)); |
| } |
| } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { |
| ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); |
| if (ShAmt0C && |
| ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) |
| return DAG.getNode(Opc, DL, VT, |
| N0.getOperand(0), N1.getOperand(0), |
| DAG.getNode(ISD::TRUNCATE, DL, |
| MVT::i8, ShAmt0)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Generate NEG and CMOV for integer abs. |
| static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| |
| // Since X86 does not have CMOV for 8-bit integer, we don't convert |
| // 8-bit integer abs to NEG and CMOV. |
| if (VT.isInteger() && VT.getSizeInBits() == 8) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) |
| // and change it to SUB and CMOV. |
| if (VT.isInteger() && N->getOpcode() == ISD::XOR && |
| N0.getOpcode() == ISD::ADD && |
| N0.getOperand(1) == N1 && |
| N1.getOpcode() == ISD::SRA && |
| N1.getOperand(0) == N0.getOperand(0)) |
| if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) |
| if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) { |
| // Generate SUB & CMOV. |
| SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), |
| DAG.getConstant(0, VT), N0.getOperand(0)); |
| |
| SDValue Ops[] = { N0.getOperand(0), Neg, |
| DAG.getConstant(X86::COND_GE, MVT::i8), |
| SDValue(Neg.getNode(), 1) }; |
| return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), |
| Ops, array_lengthof(Ops)); |
| } |
| return SDValue(); |
| } |
| |
| // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes |
| static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| if (Subtarget->hasCMov()) { |
| SDValue RV = performIntegerAbsCombine(N, DAG); |
| if (RV.getNode()) |
| return RV; |
| } |
| |
| // Try forming BMI if it is available. |
| if (!Subtarget->hasBMI()) |
| return SDValue(); |
| |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions"); |
| |
| // Create BLSMSK instructions by finding X ^ (X-1) |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 && |
| isAllOnes(N0.getOperand(1))) |
| return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1); |
| |
| if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 && |
| isAllOnes(N1.getOperand(1))) |
| return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0); |
| |
| return SDValue(); |
| } |
| |
| /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes. |
| static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| LoadSDNode *Ld = cast<LoadSDNode>(N); |
| EVT RegVT = Ld->getValueType(0); |
| EVT MemVT = Ld->getMemoryVT(); |
| DebugLoc dl = Ld->getDebugLoc(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned RegSz = RegVT.getSizeInBits(); |
| |
| ISD::LoadExtType Ext = Ld->getExtensionType(); |
| unsigned Alignment = Ld->getAlignment(); |
| bool IsAligned = Alignment == 0 || Alignment == MemVT.getSizeInBits()/8; |
| |
| // On Sandybridge unaligned 256bit loads are inefficient. |
| if (RegVT.is256BitVector() && !Subtarget->hasInt256() && |
| !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) { |
| unsigned NumElems = RegVT.getVectorNumElements(); |
| if (NumElems < 2) |
| return SDValue(); |
| |
| SDValue Ptr = Ld->getBasePtr(); |
| SDValue Increment = DAG.getConstant(16, TLI.getPointerTy()); |
| |
| EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), |
| NumElems/2); |
| SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, |
| Ld->getPointerInfo(), Ld->isVolatile(), |
| Ld->isNonTemporal(), Ld->isInvariant(), |
| Alignment); |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); |
| SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, |
| Ld->getPointerInfo(), Ld->isVolatile(), |
| Ld->isNonTemporal(), Ld->isInvariant(), |
| std::max(Alignment/2U, 1U)); |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| Load1.getValue(1), |
| Load2.getValue(1)); |
| |
| SDValue NewVec = DAG.getUNDEF(RegVT); |
| NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl); |
| NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl); |
| return DCI.CombineTo(N, NewVec, TF, true); |
| } |
| |
| // If this is a vector EXT Load then attempt to optimize it using a |
| // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the |
| // expansion is still better than scalar code. |
| // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll |
| // emit a shuffle and a arithmetic shift. |
| // TODO: It is possible to support ZExt by zeroing the undef values |
| // during the shuffle phase or after the shuffle. |
| if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() && |
| (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) { |
| assert(MemVT != RegVT && "Cannot extend to the same type"); |
| assert(MemVT.isVector() && "Must load a vector from memory"); |
| |
| unsigned NumElems = RegVT.getVectorNumElements(); |
| unsigned MemSz = MemVT.getSizeInBits(); |
| assert(RegSz > MemSz && "Register size must be greater than the mem size"); |
| |
| if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) |
| return SDValue(); |
| |
| // All sizes must be a power of two. |
| if (!isPowerOf2_32(RegSz * MemSz * NumElems)) |
| return SDValue(); |
| |
| // Attempt to load the original value using scalar loads. |
| // Find the largest scalar type that divides the total loaded size. |
| MVT SclrLoadTy = MVT::i8; |
| for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; |
| tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { |
| MVT Tp = (MVT::SimpleValueType)tp; |
| if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { |
| SclrLoadTy = Tp; |
| } |
| } |
| |
| // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. |
| if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && |
| (64 <= MemSz)) |
| SclrLoadTy = MVT::f64; |
| |
| // Calculate the number of scalar loads that we need to perform |
| // in order to load our vector from memory. |
| unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); |
| if (Ext == ISD::SEXTLOAD && NumLoads > 1) |
| return SDValue(); |
| |
| unsigned loadRegZize = RegSz; |
| if (Ext == ISD::SEXTLOAD && RegSz == 256) |
| loadRegZize /= 2; |
| |
| // Represent our vector as a sequence of elements which are the |
| // largest scalar that we can load. |
| EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy, |
| loadRegZize/SclrLoadTy.getSizeInBits()); |
| |
| // Represent the data using the same element type that is stored in |
| // memory. In practice, we ''widen'' MemVT. |
| EVT WideVecVT = |
| EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), |
| loadRegZize/MemVT.getScalarType().getSizeInBits()); |
| |
| assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && |
| "Invalid vector type"); |
| |
| // We can't shuffle using an illegal type. |
| if (!TLI.isTypeLegal(WideVecVT)) |
| return SDValue(); |
| |
| SmallVector<SDValue, 8> Chains; |
| SDValue Ptr = Ld->getBasePtr(); |
| SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8, |
| TLI.getPointerTy()); |
| SDValue Res = DAG.getUNDEF(LoadUnitVecVT); |
| |
| for (unsigned i = 0; i < NumLoads; ++i) { |
| // Perform a single load. |
| SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), |
| Ptr, Ld->getPointerInfo(), |
| Ld->isVolatile(), Ld->isNonTemporal(), |
| Ld->isInvariant(), Ld->getAlignment()); |
| Chains.push_back(ScalarLoad.getValue(1)); |
| // Create the first element type using SCALAR_TO_VECTOR in order to avoid |
| // another round of DAGCombining. |
| if (i == 0) |
| Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); |
| else |
| Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, |
| ScalarLoad, DAG.getIntPtrConstant(i)); |
| |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); |
| } |
| |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], |
| Chains.size()); |
| |
| // Bitcast the loaded value to a vector of the original element type, in |
| // the size of the target vector type. |
| SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res); |
| unsigned SizeRatio = RegSz/MemSz; |
| |
| if (Ext == ISD::SEXTLOAD) { |
| // If we have SSE4.1 we can directly emit a VSEXT node. |
| if (Subtarget->hasSSE41()) { |
| SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec); |
| return DCI.CombineTo(N, Sext, TF, true); |
| } |
| |
| // Otherwise we'll shuffle the small elements in the high bits of the |
| // larger type and perform an arithmetic shift. If the shift is not legal |
| // it's better to scalarize. |
| if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT)) |
| return SDValue(); |
| |
| // Redistribute the loaded elements into the different locations. |
| SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i*SizeRatio + SizeRatio-1] = i; |
| |
| SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, |
| DAG.getUNDEF(WideVecVT), |
| &ShuffleVec[0]); |
| |
| Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); |
| |
| // Build the arithmetic shift. |
| unsigned Amt = RegVT.getVectorElementType().getSizeInBits() - |
| MemVT.getVectorElementType().getSizeInBits(); |
| Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff, |
| DAG.getConstant(Amt, RegVT)); |
| |
| return DCI.CombineTo(N, Shuff, TF, true); |
| } |
| |
| // Redistribute the loaded elements into the different locations. |
| SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i*SizeRatio] = i; |
| |
| SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, |
| DAG.getUNDEF(WideVecVT), |
| &ShuffleVec[0]); |
| |
| // Bitcast to the requested type. |
| Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); |
| // Replace the original load with the new sequence |
| // and return the new chain. |
| return DCI.CombineTo(N, Shuff, TF, true); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. |
| static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| StoreSDNode *St = cast<StoreSDNode>(N); |
| EVT VT = St->getValue().getValueType(); |
| EVT StVT = St->getMemoryVT(); |
| DebugLoc dl = St->getDebugLoc(); |
| SDValue StoredVal = St->getOperand(1); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned Alignment = St->getAlignment(); |
| bool IsAligned = Alignment == 0 || Alignment == VT.getSizeInBits()/8; |
| |
| // If we are saving a concatenation of two XMM registers, perform two stores. |
| // On Sandy Bridge, 256-bit memory operations are executed by two |
| // 128-bit ports. However, on Haswell it is better to issue a single 256-bit |
| // memory operation. |
| if (VT.is256BitVector() && !Subtarget->hasInt256() && |
| StVT == VT && !IsAligned) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| if (NumElems < 2) |
| return SDValue(); |
| |
| SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl); |
| SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl); |
| |
| SDValue Stride = DAG.getConstant(16, TLI.getPointerTy()); |
| SDValue Ptr0 = St->getBasePtr(); |
| SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride); |
| |
| SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, |
| St->getPointerInfo(), St->isVolatile(), |
| St->isNonTemporal(), Alignment); |
| SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, |
| St->getPointerInfo(), St->isVolatile(), |
| St->isNonTemporal(), |
| std::max(Alignment/2U, 1U)); |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); |
| } |
| |
| // Optimize trunc store (of multiple scalars) to shuffle and store. |
| // First, pack all of the elements in one place. Next, store to memory |
| // in fewer chunks. |
| if (St->isTruncatingStore() && VT.isVector()) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| assert(StVT != VT && "Cannot truncate to the same type"); |
| unsigned FromSz = VT.getVectorElementType().getSizeInBits(); |
| unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); |
| |
| // From, To sizes and ElemCount must be pow of two |
| if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); |
| // We are going to use the original vector elt for storing. |
| // Accumulated smaller vector elements must be a multiple of the store size. |
| if (0 != (NumElems * FromSz) % ToSz) return SDValue(); |
| |
| unsigned SizeRatio = FromSz / ToSz; |
| |
| assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); |
| |
| // Create a type on which we perform the shuffle |
| EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), |
| StVT.getScalarType(), NumElems*SizeRatio); |
| |
| assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); |
| |
| SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue()); |
| SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); |
| for (unsigned i = 0; i != NumElems; ++i) |
| ShuffleVec[i] = i * SizeRatio; |
| |
| // Can't shuffle using an illegal type. |
| if (!TLI.isTypeLegal(WideVecVT)) |
| return SDValue(); |
| |
| SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, |
| DAG.getUNDEF(WideVecVT), |
| &ShuffleVec[0]); |
| // At this point all of the data is stored at the bottom of the |
| // register. We now need to save it to mem. |
| |
| // Find the largest store unit |
| MVT StoreType = MVT::i8; |
| for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; |
| tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { |
| MVT Tp = (MVT::SimpleValueType)tp; |
| if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) |
| StoreType = Tp; |
| } |
| |
| // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. |
| if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && |
| (64 <= NumElems * ToSz)) |
| StoreType = MVT::f64; |
| |
| // Bitcast the original vector into a vector of store-size units |
| EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), |
| StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); |
| assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); |
| SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff); |
| SmallVector<SDValue, 8> Chains; |
| SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, |
| TLI.getPointerTy()); |
| SDValue Ptr = St->getBasePtr(); |
| |
| // Perform one or more big stores into memory. |
| for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { |
| SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| StoreType, ShuffWide, |
| DAG.getIntPtrConstant(i)); |
| SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr, |
| St->getPointerInfo(), St->isVolatile(), |
| St->isNonTemporal(), St->getAlignment()); |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); |
| Chains.push_back(Ch); |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], |
| Chains.size()); |
| } |
| |
| // Turn load->store of MMX types into GPR load/stores. This avoids clobbering |
| // the FP state in cases where an emms may be missing. |
| // A preferable solution to the general problem is to figure out the right |
| // places to insert EMMS. This qualifies as a quick hack. |
| |
| // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. |
| if (VT.getSizeInBits() != 64) |
| return SDValue(); |
| |
| const Function *F = DAG.getMachineFunction().getFunction(); |
| bool NoImplicitFloatOps = F->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); |
| bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps |
| && Subtarget->hasSSE2(); |
| if ((VT.isVector() || |
| (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && |
| isa<LoadSDNode>(St->getValue()) && |
| !cast<LoadSDNode>(St->getValue())->isVolatile() && |
| St->getChain().hasOneUse() && !St->isVolatile()) { |
| SDNode* LdVal = St->getValue().getNode(); |
| LoadSDNode *Ld = 0; |
| int TokenFactorIndex = -1; |
| SmallVector<SDValue, 8> Ops; |
| SDNode* ChainVal = St->getChain().getNode(); |
| // Must be a store of a load. We currently handle two cases: the load |
| // is a direct child, and it's under an intervening TokenFactor. It is |
| // possible to dig deeper under nested TokenFactors. |
| if (ChainVal == LdVal) |
| Ld = cast<LoadSDNode>(St->getChain()); |
| else if (St->getValue().hasOneUse() && |
| ChainVal->getOpcode() == ISD::TokenFactor) { |
| for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) { |
| if (ChainVal->getOperand(i).getNode() == LdVal) { |
| TokenFactorIndex = i; |
| Ld = cast<LoadSDNode>(St->getValue()); |
| } else |
| Ops.push_back(ChainVal->getOperand(i)); |
| } |
| } |
| |
| if (!Ld || !ISD::isNormalLoad(Ld)) |
| return SDValue(); |
| |
| // If this is not the MMX case, i.e. we are just turning i64 load/store |
| // into f64 load/store, avoid the transformation if there are multiple |
| // uses of the loaded value. |
| if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) |
| return SDValue(); |
| |
| DebugLoc LdDL = Ld->getDebugLoc(); |
| DebugLoc StDL = N->getDebugLoc(); |
| // If we are a 64-bit capable x86, lower to a single movq load/store pair. |
| // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store |
| // pair instead. |
| if (Subtarget->is64Bit() || F64IsLegal) { |
| EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; |
| SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), |
| Ld->getPointerInfo(), Ld->isVolatile(), |
| Ld->isNonTemporal(), Ld->isInvariant(), |
| Ld->getAlignment()); |
| SDValue NewChain = NewLd.getValue(1); |
| if (TokenFactorIndex != -1) { |
| Ops.push_back(NewChain); |
| NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], |
| Ops.size()); |
| } |
| return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), |
| St->getPointerInfo(), |
| St->isVolatile(), St->isNonTemporal(), |
| St->getAlignment()); |
| } |
| |
| // Otherwise, lower to two pairs of 32-bit loads / stores. |
| SDValue LoAddr = Ld->getBasePtr(); |
| SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, |
| DAG.getConstant(4, MVT::i32)); |
| |
| SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, |
| Ld->getPointerInfo(), |
| Ld->isVolatile(), Ld->isNonTemporal(), |
| Ld->isInvariant(), Ld->getAlignment()); |
| SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, |
| Ld->getPointerInfo().getWithOffset(4), |
| Ld->isVolatile(), Ld->isNonTemporal(), |
| Ld->isInvariant(), |
| MinAlign(Ld->getAlignment(), 4)); |
| |
| SDValue NewChain = LoLd.getValue(1); |
| if (TokenFactorIndex != -1) { |
| Ops.push_back(LoLd); |
| Ops.push_back(HiLd); |
| NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], |
| Ops.size()); |
| } |
| |
| LoAddr = St->getBasePtr(); |
| HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, |
| DAG.getConstant(4, MVT::i32)); |
| |
| SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, |
| St->getPointerInfo(), |
| St->isVolatile(), St->isNonTemporal(), |
| St->getAlignment()); |
| SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, |
| St->getPointerInfo().getWithOffset(4), |
| St->isVolatile(), |
| St->isNonTemporal(), |
| MinAlign(St->getAlignment(), 4)); |
| return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); |
| } |
| return SDValue(); |
| } |
| |
| /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal" |
| /// and return the operands for the horizontal operation in LHS and RHS. A |
| /// horizontal operation performs the binary operation on successive elements |
| /// of its first operand, then on successive elements of its second operand, |
| /// returning the resulting values in a vector. For example, if |
| /// A = < float a0, float a1, float a2, float a3 > |
| /// and |
| /// B = < float b0, float b1, float b2, float b3 > |
| /// then the result of doing a horizontal operation on A and B is |
| /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. |
| /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form |
| /// A horizontal-op B, for some already available A and B, and if so then LHS is |
| /// set to A, RHS to B, and the routine returns 'true'. |
| /// Note that the binary operation should have the property that if one of the |
| /// operands is UNDEF then the result is UNDEF. |
| static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { |
| // Look for the following pattern: if |
| // A = < float a0, float a1, float a2, float a3 > |
| // B = < float b0, float b1, float b2, float b3 > |
| // and |
| // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> |
| // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> |
| // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > |
| // which is A horizontal-op B. |
| |
| // At least one of the operands should be a vector shuffle. |
| if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && |
| RHS.getOpcode() != ISD::VECTOR_SHUFFLE) |
| return false; |
| |
| EVT VT = LHS.getValueType(); |
| |
| assert((VT.is128BitVector() || VT.is256BitVector()) && |
| "Unsupported vector type for horizontal add/sub"); |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to |
| // operate independently on 128-bit lanes. |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned NumLanes = VT.getSizeInBits()/128; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| assert((NumLaneElts % 2 == 0) && |
| "Vector type should have an even number of elements in each lane"); |
| unsigned HalfLaneElts = NumLaneElts/2; |
| |
| // View LHS in the form |
| // LHS = VECTOR_SHUFFLE A, B, LMask |
| // If LHS is not a shuffle then pretend it is the shuffle |
| // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> |
| // NOTE: in what follows a default initialized SDValue represents an UNDEF of |
| // type VT. |
| SDValue A, B; |
| SmallVector<int, 16> LMask(NumElts); |
| if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| if (LHS.getOperand(0).getOpcode() != ISD::UNDEF) |
| A = LHS.getOperand(0); |
| if (LHS.getOperand(1).getOpcode() != ISD::UNDEF) |
| B = LHS.getOperand(1); |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(); |
| std::copy(Mask.begin(), Mask.end(), LMask.begin()); |
| } else { |
| if (LHS.getOpcode() != ISD::UNDEF) |
| A = LHS; |
| for (unsigned i = 0; i != NumElts; ++i) |
| LMask[i] = i; |
| } |
| |
| // Likewise, view RHS in the form |
| // RHS = VECTOR_SHUFFLE C, D, RMask |
| SDValue C, D; |
| SmallVector<int, 16> RMask(NumElts); |
| if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| if (RHS.getOperand(0).getOpcode() != ISD::UNDEF) |
| C = RHS.getOperand(0); |
| if (RHS.getOperand(1).getOpcode() != ISD::UNDEF) |
| D = RHS.getOperand(1); |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(); |
| std::copy(Mask.begin(), Mask.end(), RMask.begin()); |
| } else { |
| if (RHS.getOpcode() != ISD::UNDEF) |
| C = RHS; |
| for (unsigned i = 0; i != NumElts; ++i) |
| RMask[i] = i; |
| } |
| |
| // Check that the shuffles are both shuffling the same vectors. |
| if (!(A == C && B == D) && !(A == D && B == C)) |
| return false; |
| |
| // If everything is UNDEF then bail out: it would be better to fold to UNDEF. |
| if (!A.getNode() && !B.getNode()) |
| return false; |
| |
| // If A and B occur in reverse order in RHS, then "swap" them (which means |
| // rewriting the mask). |
| if (A != C) |
| CommuteVectorShuffleMask(RMask, NumElts); |
| |
| // At this point LHS and RHS are equivalent to |
| // LHS = VECTOR_SHUFFLE A, B, LMask |
| // RHS = VECTOR_SHUFFLE A, B, RMask |
| // Check that the masks correspond to performing a horizontal operation. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| int LIdx = LMask[i], RIdx = RMask[i]; |
| |
| // Ignore any UNDEF components. |
| if (LIdx < 0 || RIdx < 0 || |
| (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || |
| (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) |
| continue; |
| |
| // Check that successive elements are being operated on. If not, this is |
| // not a horizontal operation. |
| unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs |
| unsigned LaneStart = (i/NumLaneElts) * NumLaneElts; |
| int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart; |
| if (!(LIdx == Index && RIdx == Index + 1) && |
| !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) |
| return false; |
| } |
| |
| LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. |
| RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. |
| return true; |
| } |
| |
| /// PerformFADDCombine - Do target-specific dag combines on floating point adds. |
| static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // Try to synthesize horizontal adds from adds of shuffles. |
| if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || |
| (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && |
| isHorizontalBinOp(LHS, RHS, true)) |
| return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS); |
| return SDValue(); |
| } |
| |
| /// PerformFSUBCombine - Do target-specific dag combines on floating point subs. |
| static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // Try to synthesize horizontal subs from subs of shuffles. |
| if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || |
| (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && |
| isHorizontalBinOp(LHS, RHS, false)) |
| return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS); |
| return SDValue(); |
| } |
| |
| /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and |
| /// X86ISD::FXOR nodes. |
| static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { |
| assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); |
| // F[X]OR(0.0, x) -> x |
| // F[X]OR(x, 0.0) -> x |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(1); |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(0); |
| return SDValue(); |
| } |
| |
| /// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and |
| /// X86ISD::FMAX nodes. |
| static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) { |
| assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); |
| |
| // Only perform optimizations if UnsafeMath is used. |
| if (!DAG.getTarget().Options.UnsafeFPMath) |
| return SDValue(); |
| |
| // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes |
| // into FMINC and FMAXC, which are Commutative operations. |
| unsigned NewOp = 0; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unknown opcode"); |
| case X86ISD::FMIN: NewOp = X86ISD::FMINC; break; |
| case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break; |
| } |
| |
| return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0), |
| N->getOperand(0), N->getOperand(1)); |
| } |
| |
| /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. |
| static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { |
| // FAND(0.0, x) -> 0.0 |
| // FAND(x, 0.0) -> 0.0 |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(0); |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(1); |
| return SDValue(); |
| } |
| |
| static SDValue PerformBTCombine(SDNode *N, |
| SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // BT ignores high bits in the bit index operand. |
| SDValue Op1 = N->getOperand(1); |
| if (Op1.hasOneUse()) { |
| unsigned BitWidth = Op1.getValueSizeInBits(); |
| APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); |
| APInt KnownZero, KnownOne; |
| TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || |
| TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) |
| DCI.CommitTargetLoweringOpt(TLO); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { |
| SDValue Op = N->getOperand(0); |
| if (Op.getOpcode() == ISD::BITCAST) |
| Op = Op.getOperand(0); |
| EVT VT = N->getValueType(0), OpVT = Op.getValueType(); |
| if (Op.getOpcode() == X86ISD::VZEXT_LOAD && |
| VT.getVectorElementType().getSizeInBits() == |
| OpVT.getVectorElementType().getSizeInBits()) { |
| return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the |
| // both SSE and AVX2 since there is no sign-extended shift right |
| // operation on a vector with 64-bit elements. |
| //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> |
| // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) |
| if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND)) { |
| SDValue N00 = N0.getOperand(0); |
| |
| // EXTLOAD has a better solution on AVX2, |
| // it may be replaced with X86ISD::VSEXT node. |
| if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256()) |
| if (!ISD::isNormalLoad(N00.getNode())) |
| return SDValue(); |
| |
| if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { |
| SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, |
| N00, N1); |
| return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); |
| } |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| if (!DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| if (!Subtarget->hasFp256()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT.isVector() && VT.getSizeInBits() == 256) { |
| SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); |
| if (R.getNode()) |
| return R; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget* Subtarget) { |
| DebugLoc dl = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| EVT ScalarVT = VT.getScalarType(); |
| if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || |
| (!Subtarget->hasFMA() && !Subtarget->hasFMA4())) |
| return SDValue(); |
| |
| SDValue A = N->getOperand(0); |
| SDValue B = N->getOperand(1); |
| SDValue C = N->getOperand(2); |
| |
| bool NegA = (A.getOpcode() == ISD::FNEG); |
| bool NegB = (B.getOpcode() == ISD::FNEG); |
| bool NegC = (C.getOpcode() == ISD::FNEG); |
| |
| // Negative multiplication when NegA xor NegB |
| bool NegMul = (NegA != NegB); |
| if (NegA) |
| A = A.getOperand(0); |
| if (NegB) |
| B = B.getOperand(0); |
| if (NegC) |
| C = C.getOperand(0); |
| |
| unsigned Opcode; |
| if (!NegMul) |
| Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB; |
| else |
| Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB; |
| |
| return DAG.getNode(Opcode, dl, VT, A, B, C); |
| } |
| |
| static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> |
| // (and (i32 x86isd::setcc_carry), 1) |
| // This eliminates the zext. This transformation is necessary because |
| // ISD::SETCC is always legalized to i8. |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| if (N0.getOpcode() == ISD::AND && |
| N0.hasOneUse() && |
| N0.getOperand(0).hasOneUse()) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == X86ISD::SETCC_CARRY) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C || C->getZExtValue() != 1) |
| return SDValue(); |
| return DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, |
| N00.getOperand(0), N00.getOperand(1)), |
| DAG.getConstant(1, VT)); |
| } |
| } |
| |
| if (VT.is256BitVector()) { |
| SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); |
| if (R.getNode()) |
| return R; |
| } |
| |
| return SDValue(); |
| } |
| |
| // Optimize x == -y --> x+y == 0 |
| // x != -y --> x+y != 0 |
| static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB) |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0))) |
| if (C->getAPIntValue() == 0 && LHS.hasOneUse()) { |
| SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(), |
| LHS.getValueType(), RHS, LHS.getOperand(1)); |
| return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0), |
| addV, DAG.getConstant(0, addV.getValueType()), CC); |
| } |
| if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB) |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0))) |
| if (C->getAPIntValue() == 0 && RHS.hasOneUse()) { |
| SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(), |
| RHS.getValueType(), LHS, RHS.getOperand(1)); |
| return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0), |
| addV, DAG.getConstant(0, addV.getValueType()), CC); |
| } |
| return SDValue(); |
| } |
| |
| // Helper function of PerformSETCCCombine. It is to materialize "setb reg" |
| // as "sbb reg,reg", since it can be extended without zext and produces |
| // an all-ones bit which is more useful than 0/1 in some cases. |
| static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) { |
| return DAG.getNode(ISD::AND, DL, MVT::i8, |
| DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, |
| DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS), |
| DAG.getConstant(1, MVT::i8)); |
| } |
| |
| // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT |
| static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| DebugLoc DL = N->getDebugLoc(); |
| X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); |
| SDValue EFLAGS = N->getOperand(1); |
| |
| if (CC == X86::COND_A) { |
| // Try to convert COND_A into COND_B in an attempt to facilitate |
| // materializing "setb reg". |
| // |
| // Do not flip "e > c", where "c" is a constant, because Cmp instruction |
| // cannot take an immediate as its first operand. |
| // |
| if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && |
| EFLAGS.getValueType().isInteger() && |
| !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { |
| SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(), |
| EFLAGS.getNode()->getVTList(), |
| EFLAGS.getOperand(1), EFLAGS.getOperand(0)); |
| SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); |
| return MaterializeSETB(DL, NewEFLAGS, DAG); |
| } |
| } |
| |
| // Materialize "setb reg" as "sbb reg,reg", since it can be extended without |
| // a zext and produces an all-ones bit which is more useful than 0/1 in some |
| // cases. |
| if (CC == X86::COND_B) |
| return MaterializeSETB(DL, EFLAGS, DAG); |
| |
| SDValue Flags; |
| |
| Flags = checkBoolTestSetCCCombine(EFLAGS, CC); |
| if (Flags.getNode()) { |
| SDValue Cond = DAG.getConstant(CC, MVT::i8); |
| return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Optimize branch condition evaluation. |
| // |
| static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| DebugLoc DL = N->getDebugLoc(); |
| SDValue Chain = N->getOperand(0); |
| SDValue Dest = N->getOperand(1); |
| SDValue EFLAGS = N->getOperand(3); |
| X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); |
| |
| SDValue Flags; |
| |
| Flags = checkBoolTestSetCCCombine(EFLAGS, CC); |
| if (Flags.getNode()) { |
| SDValue Cond = DAG.getConstant(CC, MVT::i8); |
| return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, |
| Flags); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, |
| const X86TargetLowering *XTLI) { |
| SDValue Op0 = N->getOperand(0); |
| EVT InVT = Op0->getValueType(0); |
| |
| // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32)) |
| if (InVT == MVT::v8i8 || InVT == MVT::v4i8) { |
| DebugLoc dl = N->getDebugLoc(); |
| MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32; |
| SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); |
| return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P); |
| } |
| |
| // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have |
| // a 32-bit target where SSE doesn't support i64->FP operations. |
| if (Op0.getOpcode() == ISD::LOAD) { |
| LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode()); |
| EVT VT = Ld->getValueType(0); |
| if (!Ld->isVolatile() && !N->getValueType(0).isVector() && |
| ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && |
| !XTLI->getSubtarget()->is64Bit() && |
| !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { |
| SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0), |
| Ld->getChain(), Op0, DAG); |
| DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); |
| return FILDChain; |
| } |
| } |
| return SDValue(); |
| } |
| |
| // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS |
| static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, |
| X86TargetLowering::DAGCombinerInfo &DCI) { |
| // If the LHS and RHS of the ADC node are zero, then it can't overflow and |
| // the result is either zero or one (depending on the input carry bit). |
| // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. |
| if (X86::isZeroNode(N->getOperand(0)) && |
| X86::isZeroNode(N->getOperand(1)) && |
| // We don't have a good way to replace an EFLAGS use, so only do this when |
| // dead right now. |
| SDValue(N, 1).use_empty()) { |
| DebugLoc DL = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| SDValue CarryOut = DAG.getConstant(0, N->getValueType(1)); |
| SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, |
| DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, |
| DAG.getConstant(X86::COND_B,MVT::i8), |
| N->getOperand(2)), |
| DAG.getConstant(1, VT)); |
| return DCI.CombineTo(N, Res1, CarryOut); |
| } |
| |
| return SDValue(); |
| } |
| |
| // fold (add Y, (sete X, 0)) -> adc 0, Y |
| // (add Y, (setne X, 0)) -> sbb -1, Y |
| // (sub (sete X, 0), Y) -> sbb 0, Y |
| // (sub (setne X, 0), Y) -> adc -1, Y |
| static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) { |
| DebugLoc DL = N->getDebugLoc(); |
| |
| // Look through ZExts. |
| SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); |
| if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) |
| return SDValue(); |
| |
| SDValue SetCC = Ext.getOperand(0); |
| if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) |
| return SDValue(); |
| |
| X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); |
| if (CC != X86::COND_E && CC != X86::COND_NE) |
| return SDValue(); |
| |
| SDValue Cmp = SetCC.getOperand(1); |
| if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || |
| !X86::isZeroNode(Cmp.getOperand(1)) || |
| !Cmp.getOperand(0).getValueType().isInteger()) |
| return SDValue(); |
| |
| SDValue CmpOp0 = Cmp.getOperand(0); |
| SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, |
| DAG.getConstant(1, CmpOp0.getValueType())); |
| |
| SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); |
| if (CC == X86::COND_NE) |
| return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, |
| DL, OtherVal.getValueType(), OtherVal, |
| DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp); |
| return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, |
| DL, OtherVal.getValueType(), OtherVal, |
| DAG.getConstant(0, OtherVal.getValueType()), NewCmp); |
| } |
| |
| /// PerformADDCombine - Do target-specific dag combines on integer adds. |
| static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| // Try to synthesize horizontal adds from adds of shuffles. |
| if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || |
| (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && |
| isHorizontalBinOp(Op0, Op1, true)) |
| return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1); |
| |
| return OptimizeConditionalInDecrement(N, DAG); |
| } |
| |
| static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| // X86 can't encode an immediate LHS of a sub. See if we can push the |
| // negation into a preceding instruction. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) { |
| // If the RHS of the sub is a XOR with one use and a constant, invert the |
| // immediate. Then add one to the LHS of the sub so we can turn |
| // X-Y -> X+~Y+1, saving one register. |
| if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && |
| isa<ConstantSDNode>(Op1.getOperand(1))) { |
| APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue(); |
| EVT VT = Op0.getValueType(); |
| SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT, |
| Op1.getOperand(0), |
| DAG.getConstant(~XorC, VT)); |
| return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor, |
| DAG.getConstant(C->getAPIntValue()+1, VT)); |
| } |
| } |
| |
| // Try to synthesize horizontal adds from adds of shuffles. |
| EVT VT = N->getValueType(0); |
| if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || |
| (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && |
| isHorizontalBinOp(Op0, Op1, true)) |
| return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1); |
| |
| return OptimizeConditionalInDecrement(N, DAG); |
| } |
| |
| /// performVZEXTCombine - Performs build vector combines |
| static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const X86Subtarget *Subtarget) { |
| // (vzext (bitcast (vzext (x)) -> (vzext x) |
| SDValue In = N->getOperand(0); |
| while (In.getOpcode() == ISD::BITCAST) |
| In = In.getOperand(0); |
| |
| if (In.getOpcode() != X86ISD::VZEXT) |
| return SDValue(); |
| |
| return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), |
| In.getOperand(0)); |
| } |
| |
| SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::EXTRACT_VECTOR_ELT: |
| return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI); |
| case ISD::VSELECT: |
| case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget); |
| case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget); |
| case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget); |
| case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget); |
| case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI); |
| case ISD::MUL: return PerformMulCombine(N, DAG, DCI); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget); |
| case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget); |
| case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget); |
| case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget); |
| case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget); |
| case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); |
| case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this); |
| case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget); |
| case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget); |
| case X86ISD::FXOR: |
| case X86ISD::FOR: return PerformFORCombine(N, DAG); |
| case X86ISD::FMIN: |
| case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG); |
| case X86ISD::FAND: return PerformFANDCombine(N, DAG); |
| case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); |
| case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget); |
| case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget); |
| case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); |
| case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG,DCI,Subtarget); |
| case ISD::SETCC: return PerformISDSETCCCombine(N, DAG); |
| case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget); |
| case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget); |
| case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget); |
| case X86ISD::SHUFP: // Handle all target specific shuffles |
| case X86ISD::PALIGNR: |
| case X86ISD::UNPCKH: |
| case X86ISD::UNPCKL: |
| case X86ISD::MOVHLPS: |
| case X86ISD::MOVLHPS: |
| case X86ISD::PSHUFD: |
| case X86ISD::PSHUFHW: |
| case X86ISD::PSHUFLW: |
| case X86ISD::MOVSS: |
| case X86ISD::MOVSD: |
| case X86ISD::VPERMILP: |
| case X86ISD::VPERM2X128: |
| case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget); |
| case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// isTypeDesirableForOp - Return true if the target has native support for |
| /// the specified value type and it is 'desirable' to use the type for the |
| /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 |
| /// instruction encodings are longer and some i16 instructions are slow. |
| bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { |
| if (!isTypeLegal(VT)) |
| return false; |
| if (VT != MVT::i16) |
| return true; |
| |
| switch (Opc) { |
| default: |
| return true; |
| case ISD::LOAD: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SUB: |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| return false; |
| } |
| } |
| |
| /// IsDesirableToPromoteOp - This method query the target whether it is |
| /// beneficial for dag combiner to promote the specified node. If true, it |
| /// should return the desired promotion type by reference. |
| bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { |
| EVT VT = Op.getValueType(); |
| if (VT != MVT::i16) |
| return false; |
| |
| bool Promote = false; |
| bool Commute = false; |
| switch (Op.getOpcode()) { |
| default: break; |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| // If the non-extending load has a single use and it's not live out, then it |
| // might be folded. |
| if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& |
| Op.hasOneUse()*/) { |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) { |
| // The only case where we'd want to promote LOAD (rather then it being |
| // promoted as an operand is when it's only use is liveout. |
| if (UI->getOpcode() != ISD::CopyToReg) |
| return false; |
| } |
| } |
| Promote = true; |
| break; |
| } |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| Promote = true; |
| break; |
| case ISD::SHL: |
| case ISD::SRL: { |
| SDValue N0 = Op.getOperand(0); |
| // Look out for (store (shl (load), x)). |
| if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) |
| return false; |
| Promote = true; |
| break; |
| } |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| Commute = true; |
| // fallthrough |
| case ISD::SUB: { |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| if (!Commute && MayFoldLoad(N1)) |
| return false; |
| // Avoid disabling potential load folding opportunities. |
| if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) |
| return false; |
| if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) |
| return false; |
| Promote = true; |
| } |
| } |
| |
| PVT = MVT::i32; |
| return Promote; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| // Helper to match a string separated by whitespace. |
| bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) { |
| s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace. |
| |
| for (unsigned i = 0, e = args.size(); i != e; ++i) { |
| StringRef piece(*args[i]); |
| if (!s.startswith(piece)) // Check if the piece matches. |
| return false; |
| |
| s = s.substr(piece.size()); |
| StringRef::size_type pos = s.find_first_not_of(" \t"); |
| if (pos == 0) // We matched a prefix. |
| return false; |
| |
| s = s.substr(pos); |
| } |
| |
| return s.empty(); |
| } |
| const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={}; |
| } |
| |
| bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { |
| InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); |
| |
| std::string AsmStr = IA->getAsmString(); |
| |
| IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); |
| if (!Ty || Ty->getBitWidth() % 16 != 0) |
| return false; |
| |
| // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" |
| SmallVector<StringRef, 4> AsmPieces; |
| SplitString(AsmStr, AsmPieces, ";\n"); |
| |
| switch (AsmPieces.size()) { |
| default: return false; |
| case 1: |
| // FIXME: this should verify that we are targeting a 486 or better. If not, |
| // we will turn this bswap into something that will be lowered to logical |
| // ops instead of emitting the bswap asm. For now, we don't support 486 or |
| // lower so don't worry about this. |
| // bswap $0 |
| if (matchAsm(AsmPieces[0], "bswap", "$0") || |
| matchAsm(AsmPieces[0], "bswapl", "$0") || |
| matchAsm(AsmPieces[0], "bswapq", "$0") || |
| matchAsm(AsmPieces[0], "bswap", "${0:q}") || |
| matchAsm(AsmPieces[0], "bswapl", "${0:q}") || |
| matchAsm(AsmPieces[0], "bswapq", "${0:q}")) { |
| // No need to check constraints, nothing other than the equivalent of |
| // "=r,0" would be valid here. |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| |
| // rorw $$8, ${0:w} --> llvm.bswap.i16 |
| if (CI->getType()->isIntegerTy(16) && |
| IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && |
| (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") || |
| matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) { |
| AsmPieces.clear(); |
| const std::string &ConstraintsStr = IA->getConstraintString(); |
| SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); |
| array_pod_sort(AsmPieces.begin(), AsmPieces.end()); |
| if (AsmPieces.size() == 4 && |
| AsmPieces[0] == "~{cc}" && |
| AsmPieces[1] == "~{dirflag}" && |
| AsmPieces[2] == "~{flags}" && |
| AsmPieces[3] == "~{fpsr}") |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| break; |
| case 3: |
| if (CI->getType()->isIntegerTy(32) && |
| IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && |
| matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") && |
| matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") && |
| matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) { |
| AsmPieces.clear(); |
| const std::string &ConstraintsStr = IA->getConstraintString(); |
| SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); |
| array_pod_sort(AsmPieces.begin(), AsmPieces.end()); |
| if (AsmPieces.size() == 4 && |
| AsmPieces[0] == "~{cc}" && |
| AsmPieces[1] == "~{dirflag}" && |
| AsmPieces[2] == "~{flags}" && |
| AsmPieces[3] == "~{fpsr}") |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| |
| if (CI->getType()->isIntegerTy(64)) { |
| InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); |
| if (Constraints.size() >= 2 && |
| Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && |
| Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { |
| // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 |
| if (matchAsm(AsmPieces[0], "bswap", "%eax") && |
| matchAsm(AsmPieces[1], "bswap", "%edx") && |
| matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx")) |
| return IntrinsicLowering::LowerToByteSwap(CI); |
| } |
| } |
| break; |
| } |
| return false; |
| } |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| X86TargetLowering::ConstraintType |
| X86TargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'R': |
| case 'q': |
| case 'Q': |
| case 'f': |
| case 't': |
| case 'u': |
| case 'y': |
| case 'x': |
| case 'Y': |
| case 'l': |
| return C_RegisterClass; |
| case 'a': |
| case 'b': |
| case 'c': |
| case 'd': |
| case 'S': |
| case 'D': |
| case 'A': |
| return C_Register; |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'G': |
| case 'C': |
| case 'e': |
| case 'Z': |
| return C_Other; |
| default: |
| break; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| X86TargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (CallOperandVal == NULL) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| case 'R': |
| case 'q': |
| case 'Q': |
| case 'a': |
| case 'b': |
| case 'c': |
| case 'd': |
| case 'S': |
| case 'D': |
| case 'A': |
| if (CallOperandVal->getType()->isIntegerTy()) |
| weight = CW_SpecificReg; |
| break; |
| case 'f': |
| case 't': |
| case 'u': |
| if (type->isFloatingPointTy()) |
| weight = CW_SpecificReg; |
| break; |
| case 'y': |
| if (type->isX86_MMXTy() && Subtarget->hasMMX()) |
| weight = CW_SpecificReg; |
| break; |
| case 'x': |
| case 'Y': |
| if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || |
| ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256())) |
| weight = CW_Register; |
| break; |
| case 'I': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { |
| if (C->getZExtValue() <= 31) |
| weight = CW_Constant; |
| } |
| break; |
| case 'J': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() <= 63) |
| weight = CW_Constant; |
| } |
| break; |
| case 'K': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) |
| weight = CW_Constant; |
| } |
| break; |
| case 'L': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) |
| weight = CW_Constant; |
| } |
| break; |
| case 'M': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() <= 3) |
| weight = CW_Constant; |
| } |
| break; |
| case 'N': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() <= 0xff) |
| weight = CW_Constant; |
| } |
| break; |
| case 'G': |
| case 'C': |
| if (dyn_cast<ConstantFP>(CallOperandVal)) { |
| weight = CW_Constant; |
| } |
| break; |
| case 'e': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if ((C->getSExtValue() >= -0x80000000LL) && |
| (C->getSExtValue() <= 0x7fffffffLL)) |
| weight = CW_Constant; |
| } |
| break; |
| case 'Z': |
| if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { |
| if (C->getZExtValue() <= 0xffffffff) |
| weight = CW_Constant; |
| } |
| break; |
| } |
| return weight; |
| } |
| |
| /// LowerXConstraint - try to replace an X constraint, which matches anything, |
| /// with another that has more specific requirements based on the type of the |
| /// corresponding operand. |
| const char *X86TargetLowering:: |
| LowerXConstraint(EVT ConstraintVT) const { |
| // FP X constraints get lowered to SSE1/2 registers if available, otherwise |
| // 'f' like normal targets. |
| if (ConstraintVT.isFloatingPoint()) { |
| if (Subtarget->hasSSE2()) |
| return "Y"; |
| if (Subtarget->hasSSE1()) |
| return "x"; |
| } |
| |
| return TargetLowering::LowerXConstraint(ConstraintVT); |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(0, 0); |
| |
| // Only support length 1 constraints for now. |
| if (Constraint.length() > 1) return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: break; |
| case 'I': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 31) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'J': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 63) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'K': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (isInt<8>(C->getSExtValue())) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'N': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 255) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'e': { |
| // 32-bit signed value |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), |
| C->getSExtValue())) { |
| // Widen to 64 bits here to get it sign extended. |
| Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); |
| break; |
| } |
| // FIXME gcc accepts some relocatable values here too, but only in certain |
| // memory models; it's complicated. |
| } |
| return; |
| } |
| case 'Z': { |
| // 32-bit unsigned value |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), |
| C->getZExtValue())) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| // FIXME gcc accepts some relocatable values here too, but only in certain |
| // memory models; it's complicated. |
| return; |
| } |
| case 'i': { |
| // Literal immediates are always ok. |
| if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { |
| // Widen to 64 bits here to get it sign extended. |
| Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); |
| break; |
| } |
| |
| // In any sort of PIC mode addresses need to be computed at runtime by |
| // adding in a register or some sort of table lookup. These can't |
| // be used as immediates. |
| if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) |
| return; |
| |
| // If we are in non-pic codegen mode, we allow the address of a global (with |
| // an optional displacement) to be used with 'i'. |
| GlobalAddressSDNode *GA = 0; |
| int64_t Offset = 0; |
| |
| // Match either (GA), (GA+C), (GA+C1+C2), etc. |
| while (1) { |
| if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { |
| Offset += GA->getOffset(); |
| break; |
| } else if (Op.getOpcode() == ISD::ADD) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Offset += C->getZExtValue(); |
| Op = Op.getOperand(0); |
| continue; |
| } |
| } else if (Op.getOpcode() == ISD::SUB) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Offset += -C->getZExtValue(); |
| Op = Op.getOperand(0); |
| continue; |
| } |
| } |
| |
| // Otherwise, this isn't something we can handle, reject it. |
| return; |
| } |
| |
| const GlobalValue *GV = GA->getGlobal(); |
| // If we require an extra load to get this address, as in PIC mode, we |
| // can't accept it. |
| if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, |
| getTargetMachine()))) |
| return; |
| |
| Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(), |
| GA->getValueType(0), Offset); |
| break; |
| } |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const { |
| // First, see if this is a constraint that directly corresponds to an LLVM |
| // register class. |
| if (Constraint.size() == 1) { |
| // GCC Constraint Letters |
| switch (Constraint[0]) { |
| default: break; |
| // TODO: Slight differences here in allocation order and leaving |
| // RIP in the class. Do they matter any more here than they do |
| // in the normal allocation? |
| case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. |
| if (Subtarget->is64Bit()) { |
| if (VT == MVT::i32 || VT == MVT::f32) |
| return std::make_pair(0U, &X86::GR32RegClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, &X86::GR16RegClass); |
| if (VT == MVT::i8 || VT == MVT::i1) |
| return std::make_pair(0U, &X86::GR8RegClass); |
| if (VT == MVT::i64 || VT == MVT::f64) |
| return std::make_pair(0U, &X86::GR64RegClass); |
| break; |
| } |
| // 32-bit fallthrough |
| case 'Q': // Q_REGS |
| if (VT == MVT::i32 || VT == MVT::f32) |
| return std::make_pair(0U, &X86::GR32_ABCDRegClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, &X86::GR16_ABCDRegClass); |
| if (VT == MVT::i8 || VT == MVT::i1) |
| return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); |
| if (VT == MVT::i64) |
| return std::make_pair(0U, &X86::GR64_ABCDRegClass); |
| break; |
| case 'r': // GENERAL_REGS |
| case 'l': // INDEX_REGS |
| if (VT == MVT::i8 || VT == MVT::i1) |
| return std::make_pair(0U, &X86::GR8RegClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, &X86::GR16RegClass); |
| if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit()) |
| return std::make_pair(0U, &X86::GR32RegClass); |
| return std::make_pair(0U, &X86::GR64RegClass); |
| case 'R': // LEGACY_REGS |
| if (VT == MVT::i8 || VT == MVT::i1) |
| return std::make_pair(0U, &X86::GR8_NOREXRegClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, &X86::GR16_NOREXRegClass); |
| if (VT == MVT::i32 || !Subtarget->is64Bit()) |
| return std::make_pair(0U, &X86::GR32_NOREXRegClass); |
| return std::make_pair(0U, &X86::GR64_NOREXRegClass); |
| case 'f': // FP Stack registers. |
| // If SSE is enabled for this VT, use f80 to ensure the isel moves the |
| // value to the correct fpstack register class. |
| if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) |
| return std::make_pair(0U, &X86::RFP32RegClass); |
| if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) |
| return std::make_pair(0U, &X86::RFP64RegClass); |
| return std::make_pair(0U, &X86::RFP80RegClass); |
| case 'y': // MMX_REGS if MMX allowed. |
| if (!Subtarget->hasMMX()) break; |
| return std::make_pair(0U, &X86::VR64RegClass); |
| case 'Y': // SSE_REGS if SSE2 allowed |
| if (!Subtarget->hasSSE2()) break; |
| // FALL THROUGH. |
| case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed |
| if (!Subtarget->hasSSE1()) break; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: break; |
| // Scalar SSE types. |
| case MVT::f32: |
| case MVT::i32: |
| return std::make_pair(0U, &X86::FR32RegClass); |
| case MVT::f64: |
| case MVT::i64: |
| return std::make_pair(0U, &X86::FR64RegClass); |
| // Vector types. |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| return std::make_pair(0U, &X86::VR128RegClass); |
| // AVX types. |
| case MVT::v32i8: |
| case MVT::v16i16: |
| case MVT::v8i32: |
| case MVT::v4i64: |
| case MVT::v8f32: |
| case MVT::v4f64: |
| return std::make_pair(0U, &X86::VR256RegClass); |
| } |
| break; |
| } |
| } |
| |
| // Use the default implementation in TargetLowering to convert the register |
| // constraint into a member of a register class. |
| std::pair<unsigned, const TargetRegisterClass*> Res; |
| Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| |
| // Not found as a standard register? |
| if (Res.second == 0) { |
| // Map st(0) -> st(7) -> ST0 |
| if (Constraint.size() == 7 && Constraint[0] == '{' && |
| std::tolower(Constraint[1]) == 's' && |
| std::tolower(Constraint[2]) == 't' && |
| Constraint[3] == '(' && |
| (Constraint[4] >= '0' && Constraint[4] <= '7') && |
| Constraint[5] == ')' && |
| Constraint[6] == '}') { |
| |
| Res.first = X86::ST0+Constraint[4]-'0'; |
| Res.second = &X86::RFP80RegClass; |
| return Res; |
| } |
| |
| // GCC allows "st(0)" to be called just plain "st". |
| if (StringRef("{st}").equals_lower(Constraint)) { |
| Res.first = X86::ST0; |
| Res.second = &X86::RFP80RegClass; |
| return Res; |
| } |
| |
| // flags -> EFLAGS |
| if (StringRef("{flags}").equals_lower(Constraint)) { |
| Res.first = X86::EFLAGS; |
| Res.second = &X86::CCRRegClass; |
| return Res; |
| } |
| |
| // 'A' means EAX + EDX. |
| if (Constraint == "A") { |
| Res.first = X86::EAX; |
| Res.second = &X86::GR32_ADRegClass; |
| return Res; |
| } |
| return Res; |
| } |
| |
| // Otherwise, check to see if this is a register class of the wrong value |
| // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to |
| // turn into {ax},{dx}. |
| if (Res.second->hasType(VT)) |
| return Res; // Correct type already, nothing to do. |
| |
| // All of the single-register GCC register classes map their values onto |
| // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we |
| // really want an 8-bit or 32-bit register, map to the appropriate register |
| // class and return the appropriate register. |
| if (Res.second == &X86::GR16RegClass) { |
| if (VT == MVT::i8 || VT == MVT::i1) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::AL; break; |
| case X86::DX: DestReg = X86::DL; break; |
| case X86::CX: DestReg = X86::CL; break; |
| case X86::BX: DestReg = X86::BL; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = &X86::GR8RegClass; |
| } |
| } else if (VT == MVT::i32 || VT == MVT::f32) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::EAX; break; |
| case X86::DX: DestReg = X86::EDX; break; |
| case X86::CX: DestReg = X86::ECX; break; |
| case X86::BX: DestReg = X86::EBX; break; |
| case X86::SI: DestReg = X86::ESI; break; |
| case X86::DI: DestReg = X86::EDI; break; |
| case X86::BP: DestReg = X86::EBP; break; |
| case X86::SP: DestReg = X86::ESP; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = &X86::GR32RegClass; |
| } |
| } else if (VT == MVT::i64 || VT == MVT::f64) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::RAX; break; |
| case X86::DX: DestReg = X86::RDX; break; |
| case X86::CX: DestReg = X86::RCX; break; |
| case X86::BX: DestReg = X86::RBX; break; |
| case X86::SI: DestReg = X86::RSI; break; |
| case X86::DI: DestReg = X86::RDI; break; |
| case X86::BP: DestReg = X86::RBP; break; |
| case X86::SP: DestReg = X86::RSP; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = &X86::GR64RegClass; |
| } |
| } |
| } else if (Res.second == &X86::FR32RegClass || |
| Res.second == &X86::FR64RegClass || |
| Res.second == &X86::VR128RegClass) { |
| // Handle references to XMM physical registers that got mapped into the |
| // wrong class. This can happen with constraints like {xmm0} where the |
| // target independent register mapper will just pick the first match it can |
| // find, ignoring the required type. |
| |
| if (VT == MVT::f32 || VT == MVT::i32) |
| Res.second = &X86::FR32RegClass; |
| else if (VT == MVT::f64 || VT == MVT::i64) |
| Res.second = &X86::FR64RegClass; |
| else if (X86::VR128RegClass.hasType(VT)) |
| Res.second = &X86::VR128RegClass; |
| else if (X86::VR256RegClass.hasType(VT)) |
| Res.second = &X86::VR256RegClass; |
| } |
| |
| return Res; |
| } |