| //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCParser/MCAsmLexer.h" |
| #include "llvm/MC/MCParser/MCAsmParser.h" |
| #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCTargetAsmParser.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| struct X86Operand; |
| |
| class X86AsmParser : public MCTargetAsmParser { |
| MCSubtargetInfo &STI; |
| MCAsmParser &Parser; |
| ParseInstructionInfo *InstInfo; |
| private: |
| MCAsmParser &getParser() const { return Parser; } |
| |
| MCAsmLexer &getLexer() const { return Parser.getLexer(); } |
| |
| bool Error(SMLoc L, const Twine &Msg, |
| ArrayRef<SMRange> Ranges = ArrayRef<SMRange>(), |
| bool MatchingInlineAsm = false) { |
| if (MatchingInlineAsm) return true; |
| return Parser.Error(L, Msg, Ranges); |
| } |
| |
| X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) { |
| Error(Loc, Msg); |
| return 0; |
| } |
| |
| X86Operand *ParseOperand(); |
| X86Operand *ParseATTOperand(); |
| X86Operand *ParseIntelOperand(); |
| X86Operand *ParseIntelOffsetOfOperator(SMLoc StartLoc); |
| X86Operand *ParseIntelOperator(SMLoc StartLoc, unsigned OpKind); |
| X86Operand *ParseIntelMemOperand(unsigned SegReg, SMLoc StartLoc); |
| X86Operand *ParseIntelBracExpression(unsigned SegReg, unsigned Size); |
| X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc); |
| |
| bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr **NewDisp, |
| SmallString<64> &Err); |
| |
| bool ParseDirectiveWord(unsigned Size, SMLoc L); |
| bool ParseDirectiveCode(StringRef IDVal, SMLoc L); |
| |
| bool processInstruction(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Ops); |
| |
| bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands, |
| MCStreamer &Out, unsigned &ErrorInfo, |
| bool MatchingInlineAsm); |
| |
| /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi) |
| /// in 64bit mode or (%esi) or %es:(%esi) in 32bit mode. |
| bool isSrcOp(X86Operand &Op); |
| |
| /// isDstOp - Returns true if operand is either (%rdi) or %es:(%rdi) |
| /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode. |
| bool isDstOp(X86Operand &Op); |
| |
| bool is64BitMode() const { |
| // FIXME: Can tablegen auto-generate this? |
| return (STI.getFeatureBits() & X86::Mode64Bit) != 0; |
| } |
| void SwitchMode() { |
| unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit)); |
| setAvailableFeatures(FB); |
| } |
| |
| /// @name Auto-generated Matcher Functions |
| /// { |
| |
| #define GET_ASSEMBLER_HEADER |
| #include "X86GenAsmMatcher.inc" |
| |
| /// } |
| |
| public: |
| X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser) |
| : MCTargetAsmParser(), STI(sti), Parser(parser), InstInfo(0) { |
| |
| // Initialize the set of available features. |
| setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); |
| } |
| virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); |
| |
| virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, |
| SMLoc NameLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands); |
| |
| virtual bool ParseDirective(AsmToken DirectiveID); |
| |
| bool isParsingIntelSyntax() { |
| return getParser().getAssemblerDialect(); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// @name Auto-generated Match Functions |
| /// { |
| |
| static unsigned MatchRegisterName(StringRef Name); |
| |
| /// } |
| |
| static bool isImmSExti16i8Value(uint64_t Value) { |
| return (( Value <= 0x000000000000007FULL)|| |
| (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)|| |
| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); |
| } |
| |
| static bool isImmSExti32i8Value(uint64_t Value) { |
| return (( Value <= 0x000000000000007FULL)|| |
| (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)|| |
| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); |
| } |
| |
| static bool isImmZExtu32u8Value(uint64_t Value) { |
| return (Value <= 0x00000000000000FFULL); |
| } |
| |
| static bool isImmSExti64i8Value(uint64_t Value) { |
| return (( Value <= 0x000000000000007FULL)|| |
| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); |
| } |
| |
| static bool isImmSExti64i32Value(uint64_t Value) { |
| return (( Value <= 0x000000007FFFFFFFULL)|| |
| (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); |
| } |
| namespace { |
| |
| /// X86Operand - Instances of this class represent a parsed X86 machine |
| /// instruction. |
| struct X86Operand : public MCParsedAsmOperand { |
| enum KindTy { |
| Token, |
| Register, |
| Immediate, |
| Memory |
| } Kind; |
| |
| SMLoc StartLoc, EndLoc; |
| SMLoc OffsetOfLoc; |
| bool AddressOf; |
| |
| struct TokOp { |
| const char *Data; |
| unsigned Length; |
| }; |
| |
| struct RegOp { |
| unsigned RegNo; |
| }; |
| |
| struct ImmOp { |
| const MCExpr *Val; |
| bool NeedAsmRewrite; |
| }; |
| |
| struct MemOp { |
| unsigned SegReg; |
| const MCExpr *Disp; |
| unsigned BaseReg; |
| unsigned IndexReg; |
| unsigned Scale; |
| unsigned Size; |
| bool NeedSizeDir; |
| }; |
| |
| union { |
| struct TokOp Tok; |
| struct RegOp Reg; |
| struct ImmOp Imm; |
| struct MemOp Mem; |
| }; |
| |
| X86Operand(KindTy K, SMLoc Start, SMLoc End) |
| : Kind(K), StartLoc(Start), EndLoc(End) {} |
| |
| /// getStartLoc - Get the location of the first token of this operand. |
| SMLoc getStartLoc() const { return StartLoc; } |
| /// getEndLoc - Get the location of the last token of this operand. |
| SMLoc getEndLoc() const { return EndLoc; } |
| /// getLocRange - Get the range between the first and last token of this |
| /// operand. |
| SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } |
| /// getOffsetOfLoc - Get the location of the offset operator. |
| SMLoc getOffsetOfLoc() const { return OffsetOfLoc; } |
| |
| virtual void print(raw_ostream &OS) const {} |
| |
| StringRef getToken() const { |
| assert(Kind == Token && "Invalid access!"); |
| return StringRef(Tok.Data, Tok.Length); |
| } |
| void setTokenValue(StringRef Value) { |
| assert(Kind == Token && "Invalid access!"); |
| Tok.Data = Value.data(); |
| Tok.Length = Value.size(); |
| } |
| |
| unsigned getReg() const { |
| assert(Kind == Register && "Invalid access!"); |
| return Reg.RegNo; |
| } |
| |
| const MCExpr *getImm() const { |
| assert(Kind == Immediate && "Invalid access!"); |
| return Imm.Val; |
| } |
| |
| bool needAsmRewrite() const { |
| assert(Kind == Immediate && "Invalid access!"); |
| return Imm.NeedAsmRewrite; |
| } |
| |
| const MCExpr *getMemDisp() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.Disp; |
| } |
| unsigned getMemSegReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.SegReg; |
| } |
| unsigned getMemBaseReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.BaseReg; |
| } |
| unsigned getMemIndexReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.IndexReg; |
| } |
| unsigned getMemScale() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.Scale; |
| } |
| |
| bool isToken() const {return Kind == Token; } |
| |
| bool isImm() const { return Kind == Immediate; } |
| |
| bool isImmSExti16i8() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| return isImmSExti16i8Value(CE->getValue()); |
| } |
| bool isImmSExti32i8() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| return isImmSExti32i8Value(CE->getValue()); |
| } |
| bool isImmZExtu32u8() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| return isImmZExtu32u8Value(CE->getValue()); |
| } |
| bool isImmSExti64i8() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| return isImmSExti64i8Value(CE->getValue()); |
| } |
| bool isImmSExti64i32() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| return isImmSExti64i32Value(CE->getValue()); |
| } |
| |
| unsigned getMemSize() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.Size; |
| } |
| |
| bool isOffsetOf() const { |
| return OffsetOfLoc.getPointer(); |
| } |
| |
| bool needAddressOf() const { |
| return AddressOf; |
| } |
| |
| bool needSizeDirective() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.NeedSizeDir; |
| } |
| |
| bool isMem() const { return Kind == Memory; } |
| bool isMem8() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 8); |
| } |
| bool isMem16() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 16); |
| } |
| bool isMem32() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 32); |
| } |
| bool isMem64() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 64); |
| } |
| bool isMem80() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 80); |
| } |
| bool isMem128() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 128); |
| } |
| bool isMem256() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 256); |
| } |
| |
| bool isMemVX32() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 32) && |
| getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15; |
| } |
| bool isMemVY32() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 32) && |
| getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15; |
| } |
| bool isMemVX64() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 64) && |
| getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15; |
| } |
| bool isMemVY64() const { |
| return Kind == Memory && (!Mem.Size || Mem.Size == 64) && |
| getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15; |
| } |
| |
| bool isAbsMem() const { |
| return Kind == Memory && !getMemSegReg() && !getMemBaseReg() && |
| !getMemIndexReg() && getMemScale() == 1; |
| } |
| |
| bool isReg() const { return Kind == Register; } |
| |
| void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
| // Add as immediates when possible. |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue())); |
| else |
| Inst.addOperand(MCOperand::CreateExpr(Expr)); |
| } |
| |
| void addRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(getReg())); |
| } |
| |
| void addImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| addExpr(Inst, getImm()); |
| } |
| |
| void addMem8Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMem16Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMem32Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMem64Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMem80Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMem128Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMem256Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMemVX32Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMemVY32Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMemVX64Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| void addMemVY64Operands(MCInst &Inst, unsigned N) const { |
| addMemOperands(Inst, N); |
| } |
| |
| void addMemOperands(MCInst &Inst, unsigned N) const { |
| assert((N == 5) && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); |
| Inst.addOperand(MCOperand::CreateImm(getMemScale())); |
| Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); |
| addExpr(Inst, getMemDisp()); |
| Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); |
| } |
| |
| void addAbsMemOperands(MCInst &Inst, unsigned N) const { |
| assert((N == 1) && "Invalid number of operands!"); |
| // Add as immediates when possible. |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp())) |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue())); |
| else |
| Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); |
| } |
| |
| static X86Operand *CreateToken(StringRef Str, SMLoc Loc) { |
| SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size()); |
| X86Operand *Res = new X86Operand(Token, Loc, EndLoc); |
| Res->Tok.Data = Str.data(); |
| Res->Tok.Length = Str.size(); |
| return Res; |
| } |
| |
| static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc, |
| bool AddressOf = false, |
| SMLoc OffsetOfLoc = SMLoc()) { |
| X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc); |
| Res->Reg.RegNo = RegNo; |
| Res->AddressOf = AddressOf; |
| Res->OffsetOfLoc = OffsetOfLoc; |
| return Res; |
| } |
| |
| static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc, |
| bool NeedRewrite = true){ |
| X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc); |
| Res->Imm.Val = Val; |
| Res->Imm.NeedAsmRewrite = NeedRewrite; |
| return Res; |
| } |
| |
| /// Create an absolute memory operand. |
| static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc, |
| unsigned Size = 0, bool NeedSizeDir = false) { |
| X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); |
| Res->Mem.SegReg = 0; |
| Res->Mem.Disp = Disp; |
| Res->Mem.BaseReg = 0; |
| Res->Mem.IndexReg = 0; |
| Res->Mem.Scale = 1; |
| Res->Mem.Size = Size; |
| Res->Mem.NeedSizeDir = NeedSizeDir; |
| Res->AddressOf = false; |
| return Res; |
| } |
| |
| /// Create a generalized memory operand. |
| static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp, |
| unsigned BaseReg, unsigned IndexReg, |
| unsigned Scale, SMLoc StartLoc, SMLoc EndLoc, |
| unsigned Size = 0, bool NeedSizeDir = false) { |
| // We should never just have a displacement, that should be parsed as an |
| // absolute memory operand. |
| assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); |
| |
| // The scale should always be one of {1,2,4,8}. |
| assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && |
| "Invalid scale!"); |
| X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); |
| Res->Mem.SegReg = SegReg; |
| Res->Mem.Disp = Disp; |
| Res->Mem.BaseReg = BaseReg; |
| Res->Mem.IndexReg = IndexReg; |
| Res->Mem.Scale = Scale; |
| Res->Mem.Size = Size; |
| Res->Mem.NeedSizeDir = NeedSizeDir; |
| Res->AddressOf = false; |
| return Res; |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| bool X86AsmParser::isSrcOp(X86Operand &Op) { |
| unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI; |
| |
| return (Op.isMem() && |
| (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) && |
| isa<MCConstantExpr>(Op.Mem.Disp) && |
| cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && |
| Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0); |
| } |
| |
| bool X86AsmParser::isDstOp(X86Operand &Op) { |
| unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI; |
| |
| return Op.isMem() && |
| (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::ES) && |
| isa<MCConstantExpr>(Op.Mem.Disp) && |
| cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && |
| Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0; |
| } |
| |
| bool X86AsmParser::ParseRegister(unsigned &RegNo, |
| SMLoc &StartLoc, SMLoc &EndLoc) { |
| RegNo = 0; |
| const AsmToken &PercentTok = Parser.getTok(); |
| StartLoc = PercentTok.getLoc(); |
| |
| // If we encounter a %, ignore it. This code handles registers with and |
| // without the prefix, unprefixed registers can occur in cfi directives. |
| if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) |
| Parser.Lex(); // Eat percent token. |
| |
| const AsmToken &Tok = Parser.getTok(); |
| EndLoc = Tok.getEndLoc(); |
| |
| if (Tok.isNot(AsmToken::Identifier)) { |
| if (isParsingIntelSyntax()) return true; |
| return Error(StartLoc, "invalid register name", |
| SMRange(StartLoc, EndLoc)); |
| } |
| |
| RegNo = MatchRegisterName(Tok.getString()); |
| |
| // If the match failed, try the register name as lowercase. |
| if (RegNo == 0) |
| RegNo = MatchRegisterName(Tok.getString().lower()); |
| |
| if (!is64BitMode()) { |
| // FIXME: This should be done using Requires<In32BitMode> and |
| // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also |
| // checked. |
| // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a |
| // REX prefix. |
| if (RegNo == X86::RIZ || |
| X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) || |
| X86II::isX86_64NonExtLowByteReg(RegNo) || |
| X86II::isX86_64ExtendedReg(RegNo)) |
| return Error(StartLoc, "register %" |
| + Tok.getString() + " is only available in 64-bit mode", |
| SMRange(StartLoc, EndLoc)); |
| } |
| |
| // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. |
| if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { |
| RegNo = X86::ST0; |
| Parser.Lex(); // Eat 'st' |
| |
| // Check to see if we have '(4)' after %st. |
| if (getLexer().isNot(AsmToken::LParen)) |
| return false; |
| // Lex the paren. |
| getParser().Lex(); |
| |
| const AsmToken &IntTok = Parser.getTok(); |
| if (IntTok.isNot(AsmToken::Integer)) |
| return Error(IntTok.getLoc(), "expected stack index"); |
| switch (IntTok.getIntVal()) { |
| case 0: RegNo = X86::ST0; break; |
| case 1: RegNo = X86::ST1; break; |
| case 2: RegNo = X86::ST2; break; |
| case 3: RegNo = X86::ST3; break; |
| case 4: RegNo = X86::ST4; break; |
| case 5: RegNo = X86::ST5; break; |
| case 6: RegNo = X86::ST6; break; |
| case 7: RegNo = X86::ST7; break; |
| default: return Error(IntTok.getLoc(), "invalid stack index"); |
| } |
| |
| if (getParser().Lex().isNot(AsmToken::RParen)) |
| return Error(Parser.getTok().getLoc(), "expected ')'"); |
| |
| EndLoc = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat ')' |
| return false; |
| } |
| |
| EndLoc = Parser.getTok().getEndLoc(); |
| |
| // If this is "db[0-7]", match it as an alias |
| // for dr[0-7]. |
| if (RegNo == 0 && Tok.getString().size() == 3 && |
| Tok.getString().startswith("db")) { |
| switch (Tok.getString()[2]) { |
| case '0': RegNo = X86::DR0; break; |
| case '1': RegNo = X86::DR1; break; |
| case '2': RegNo = X86::DR2; break; |
| case '3': RegNo = X86::DR3; break; |
| case '4': RegNo = X86::DR4; break; |
| case '5': RegNo = X86::DR5; break; |
| case '6': RegNo = X86::DR6; break; |
| case '7': RegNo = X86::DR7; break; |
| } |
| |
| if (RegNo != 0) { |
| EndLoc = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat it. |
| return false; |
| } |
| } |
| |
| if (RegNo == 0) { |
| if (isParsingIntelSyntax()) return true; |
| return Error(StartLoc, "invalid register name", |
| SMRange(StartLoc, EndLoc)); |
| } |
| |
| Parser.Lex(); // Eat identifier token. |
| return false; |
| } |
| |
| X86Operand *X86AsmParser::ParseOperand() { |
| if (isParsingIntelSyntax()) |
| return ParseIntelOperand(); |
| return ParseATTOperand(); |
| } |
| |
| /// getIntelMemOperandSize - Return intel memory operand size. |
| static unsigned getIntelMemOperandSize(StringRef OpStr) { |
| unsigned Size = StringSwitch<unsigned>(OpStr) |
| .Cases("BYTE", "byte", 8) |
| .Cases("WORD", "word", 16) |
| .Cases("DWORD", "dword", 32) |
| .Cases("QWORD", "qword", 64) |
| .Cases("XWORD", "xword", 80) |
| .Cases("XMMWORD", "xmmword", 128) |
| .Cases("YMMWORD", "ymmword", 256) |
| .Default(0); |
| return Size; |
| } |
| |
| enum IntelBracExprState { |
| IBES_START, |
| IBES_LBRAC, |
| IBES_RBRAC, |
| IBES_REGISTER, |
| IBES_REGISTER_STAR, |
| IBES_REGISTER_STAR_INTEGER, |
| IBES_INTEGER, |
| IBES_INTEGER_STAR, |
| IBES_INDEX_REGISTER, |
| IBES_IDENTIFIER, |
| IBES_DISP_EXPR, |
| IBES_MINUS, |
| IBES_ERROR |
| }; |
| |
| class IntelBracExprStateMachine { |
| IntelBracExprState State; |
| unsigned BaseReg, IndexReg, Scale; |
| int64_t Disp; |
| |
| unsigned TmpReg; |
| int64_t TmpInteger; |
| |
| bool isPlus; |
| |
| public: |
| IntelBracExprStateMachine(MCAsmParser &parser) : |
| State(IBES_START), BaseReg(0), IndexReg(0), Scale(1), Disp(0), |
| TmpReg(0), TmpInteger(0), isPlus(true) {} |
| |
| unsigned getBaseReg() { return BaseReg; } |
| unsigned getIndexReg() { return IndexReg; } |
| unsigned getScale() { return Scale; } |
| int64_t getDisp() { return Disp; } |
| bool isValidEndState() { return State == IBES_RBRAC; } |
| |
| void onPlus() { |
| switch (State) { |
| default: |
| State = IBES_ERROR; |
| break; |
| case IBES_INTEGER: |
| State = IBES_START; |
| if (isPlus) |
| Disp += TmpInteger; |
| else |
| Disp -= TmpInteger; |
| break; |
| case IBES_REGISTER: |
| State = IBES_START; |
| // If we already have a BaseReg, then assume this is the IndexReg with a |
| // scale of 1. |
| if (!BaseReg) { |
| BaseReg = TmpReg; |
| } else { |
| assert (!IndexReg && "BaseReg/IndexReg already set!"); |
| IndexReg = TmpReg; |
| Scale = 1; |
| } |
| break; |
| case IBES_INDEX_REGISTER: |
| State = IBES_START; |
| break; |
| } |
| isPlus = true; |
| } |
| void onMinus() { |
| switch (State) { |
| default: |
| State = IBES_ERROR; |
| break; |
| case IBES_START: |
| State = IBES_MINUS; |
| break; |
| case IBES_INTEGER: |
| State = IBES_START; |
| if (isPlus) |
| Disp += TmpInteger; |
| else |
| Disp -= TmpInteger; |
| break; |
| case IBES_REGISTER: |
| State = IBES_START; |
| // If we already have a BaseReg, then assume this is the IndexReg with a |
| // scale of 1. |
| if (!BaseReg) { |
| BaseReg = TmpReg; |
| } else { |
| assert (!IndexReg && "BaseReg/IndexReg already set!"); |
| IndexReg = TmpReg; |
| Scale = 1; |
| } |
| break; |
| case IBES_INDEX_REGISTER: |
| State = IBES_START; |
| break; |
| } |
| isPlus = false; |
| } |
| void onRegister(unsigned Reg) { |
| switch (State) { |
| default: |
| State = IBES_ERROR; |
| break; |
| case IBES_START: |
| State = IBES_REGISTER; |
| TmpReg = Reg; |
| break; |
| case IBES_INTEGER_STAR: |
| assert (!IndexReg && "IndexReg already set!"); |
| State = IBES_INDEX_REGISTER; |
| IndexReg = Reg; |
| Scale = TmpInteger; |
| break; |
| } |
| } |
| void onDispExpr() { |
| switch (State) { |
| default: |
| State = IBES_ERROR; |
| break; |
| case IBES_START: |
| State = IBES_DISP_EXPR; |
| break; |
| } |
| } |
| void onInteger(int64_t TmpInt) { |
| switch (State) { |
| default: |
| State = IBES_ERROR; |
| break; |
| case IBES_START: |
| State = IBES_INTEGER; |
| TmpInteger = TmpInt; |
| break; |
| case IBES_MINUS: |
| State = IBES_INTEGER; |
| TmpInteger = TmpInt; |
| break; |
| case IBES_REGISTER_STAR: |
| assert (!IndexReg && "IndexReg already set!"); |
| State = IBES_INDEX_REGISTER; |
| IndexReg = TmpReg; |
| Scale = TmpInt; |
| break; |
| } |
| } |
| void onStar() { |
| switch (State) { |
| default: |
| State = IBES_ERROR; |
| break; |
| case IBES_INTEGER: |
| State = IBES_INTEGER_STAR; |
| break; |
| case IBES_REGISTER: |
| State = IBES_REGISTER_STAR; |
| break; |
| } |
| } |
| void onLBrac() { |
| switch (State) { |
| default: |
| State = IBES_ERROR; |
| break; |
| case IBES_RBRAC: |
| State = IBES_START; |
| isPlus = true; |
| break; |
| } |
| } |
| void onRBrac() { |
| switch (State) { |
| default: |
| State = IBES_ERROR; |
| break; |
| case IBES_DISP_EXPR: |
| State = IBES_RBRAC; |
| break; |
| case IBES_INTEGER: |
| State = IBES_RBRAC; |
| if (isPlus) |
| Disp += TmpInteger; |
| else |
| Disp -= TmpInteger; |
| break; |
| case IBES_REGISTER: |
| State = IBES_RBRAC; |
| // If we already have a BaseReg, then assume this is the IndexReg with a |
| // scale of 1. |
| if (!BaseReg) { |
| BaseReg = TmpReg; |
| } else { |
| assert (!IndexReg && "BaseReg/IndexReg already set!"); |
| IndexReg = TmpReg; |
| Scale = 1; |
| } |
| break; |
| case IBES_INDEX_REGISTER: |
| State = IBES_RBRAC; |
| break; |
| } |
| } |
| }; |
| |
| X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, |
| unsigned Size) { |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc Start = Tok.getLoc(), End = Tok.getEndLoc(); |
| |
| // Eat '[' |
| if (getLexer().isNot(AsmToken::LBrac)) |
| return ErrorOperand(Start, "Expected '[' token!"); |
| Parser.Lex(); |
| |
| unsigned TmpReg = 0; |
| |
| // Try to handle '[' 'symbol' ']' |
| if (getLexer().is(AsmToken::Identifier)) { |
| if (ParseRegister(TmpReg, Start, End)) { |
| const MCExpr *Disp; |
| if (getParser().parseExpression(Disp, End)) |
| return 0; |
| |
| if (getLexer().isNot(AsmToken::RBrac)) |
| return ErrorOperand(Parser.getTok().getLoc(), "Expected ']' token!"); |
| // Adjust the EndLoc due to the ']'. |
| End = SMLoc::getFromPointer(Parser.getTok().getEndLoc().getPointer()-1); |
| Parser.Lex(); |
| return X86Operand::CreateMem(Disp, Start, End, Size); |
| } |
| } |
| |
| // Parse [ BaseReg + Scale*IndexReg + Disp ]. |
| bool Done = false; |
| IntelBracExprStateMachine SM(Parser); |
| |
| // If we parsed a register, then the end loc has already been set and |
| // the identifier has already been lexed. We also need to update the |
| // state. |
| if (TmpReg) |
| SM.onRegister(TmpReg); |
| |
| const MCExpr *Disp = 0; |
| while (!Done) { |
| bool UpdateLocLex = true; |
| |
| // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an |
| // identifier. Don't try an parse it as a register. |
| if (Tok.getString().startswith(".")) |
| break; |
| |
| switch (getLexer().getKind()) { |
| default: { |
| if (SM.isValidEndState()) { |
| Done = true; |
| break; |
| } |
| return ErrorOperand(Tok.getLoc(), "Unexpected token!"); |
| } |
| case AsmToken::Identifier: { |
| // This could be a register or a displacement expression. |
| if(!ParseRegister(TmpReg, Start, End)) { |
| SM.onRegister(TmpReg); |
| UpdateLocLex = false; |
| break; |
| } else if (!getParser().parseExpression(Disp, End)) { |
| SM.onDispExpr(); |
| UpdateLocLex = false; |
| break; |
| } |
| return ErrorOperand(Tok.getLoc(), "Unexpected identifier!"); |
| } |
| case AsmToken::Integer: { |
| int64_t Val = Tok.getIntVal(); |
| SM.onInteger(Val); |
| break; |
| } |
| case AsmToken::Plus: SM.onPlus(); break; |
| case AsmToken::Minus: SM.onMinus(); break; |
| case AsmToken::Star: SM.onStar(); break; |
| case AsmToken::LBrac: SM.onLBrac(); break; |
| case AsmToken::RBrac: SM.onRBrac(); break; |
| } |
| if (!Done && UpdateLocLex) { |
| End = Tok.getLoc(); |
| Parser.Lex(); // Consume the token. |
| } |
| } |
| |
| if (!Disp) |
| Disp = MCConstantExpr::Create(SM.getDisp(), getContext()); |
| |
| // Parse the dot operator (e.g., [ebx].foo.bar). |
| if (Tok.getString().startswith(".")) { |
| SmallString<64> Err; |
| const MCExpr *NewDisp; |
| if (ParseIntelDotOperator(Disp, &NewDisp, Err)) |
| return ErrorOperand(Tok.getLoc(), Err); |
| |
| End = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat the field. |
| Disp = NewDisp; |
| } |
| |
| int BaseReg = SM.getBaseReg(); |
| int IndexReg = SM.getIndexReg(); |
| |
| // handle [-42] |
| if (!BaseReg && !IndexReg) { |
| if (!SegReg) |
| return X86Operand::CreateMem(Disp, Start, End); |
| else |
| return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size); |
| } |
| |
| int Scale = SM.getScale(); |
| return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, |
| Start, End, Size); |
| } |
| |
| /// ParseIntelMemOperand - Parse intel style memory operand. |
| X86Operand *X86AsmParser::ParseIntelMemOperand(unsigned SegReg, SMLoc Start) { |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc End; |
| |
| unsigned Size = getIntelMemOperandSize(Tok.getString()); |
| if (Size) { |
| Parser.Lex(); |
| assert ((Tok.getString() == "PTR" || Tok.getString() == "ptr") && |
| "Unexpected token!"); |
| Parser.Lex(); |
| } |
| |
| if (getLexer().is(AsmToken::LBrac)) |
| return ParseIntelBracExpression(SegReg, Size); |
| |
| if (!ParseRegister(SegReg, Start, End)) { |
| // Handel SegReg : [ ... ] |
| if (getLexer().isNot(AsmToken::Colon)) |
| return ErrorOperand(Start, "Expected ':' token!"); |
| Parser.Lex(); // Eat : |
| if (getLexer().isNot(AsmToken::LBrac)) |
| return ErrorOperand(Start, "Expected '[' token!"); |
| return ParseIntelBracExpression(SegReg, Size); |
| } |
| |
| const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); |
| if (getParser().parseExpression(Disp, End)) |
| return 0; |
| |
| bool NeedSizeDir = false; |
| bool IsVarDecl = false; |
| if (isParsingInlineAsm()) { |
| if (const MCSymbolRefExpr *SymRef = dyn_cast<MCSymbolRefExpr>(Disp)) { |
| const MCSymbol &Sym = SymRef->getSymbol(); |
| // FIXME: The SemaLookup will fail if the name is anything other then an |
| // identifier. |
| // FIXME: Pass a valid SMLoc. |
| unsigned tLength, tSize, tType; |
| SemaCallback->LookupInlineAsmIdentifier(Sym.getName(), NULL, tLength, |
| tSize, tType, IsVarDecl); |
| if (!Size) |
| Size = tType * 8; // Size is in terms of bits in this context. |
| NeedSizeDir = Size > 0; |
| } |
| } |
| if (!isParsingInlineAsm()) |
| return X86Operand::CreateMem(Disp, Start, End, Size); |
| else { |
| // If this is not a VarDecl then assume it is a FuncDecl or some other label |
| // reference. We need an 'r' constraint here, so we need to create register |
| // operand to ensure proper matching. Just pick a GPR based on the size of |
| // a pointer. |
| if (!IsVarDecl) { |
| unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX; |
| return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true); |
| } |
| |
| // When parsing inline assembly we set the base register to a non-zero value |
| // as we don't know the actual value at this time. This is necessary to |
| // get the matching correct in some cases. |
| return X86Operand::CreateMem(/*SegReg*/0, Disp, /*BaseReg*/1, /*IndexReg*/0, |
| /*Scale*/1, Start, End, Size, NeedSizeDir); |
| } |
| } |
| |
| /// Parse the '.' operator. |
| bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp, |
| const MCExpr **NewDisp, |
| SmallString<64> &Err) { |
| AsmToken Tok = *&Parser.getTok(); |
| uint64_t OrigDispVal, DotDispVal; |
| |
| // FIXME: Handle non-constant expressions. |
| if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp)) { |
| OrigDispVal = OrigDisp->getValue(); |
| } else { |
| Err = "Non-constant offsets are not supported!"; |
| return true; |
| } |
| |
| // Drop the '.'. |
| StringRef DotDispStr = Tok.getString().drop_front(1); |
| |
| // .Imm gets lexed as a real. |
| if (Tok.is(AsmToken::Real)) { |
| APInt DotDisp; |
| DotDispStr.getAsInteger(10, DotDisp); |
| DotDispVal = DotDisp.getZExtValue(); |
| } else if (Tok.is(AsmToken::Identifier)) { |
| // We should only see an identifier when parsing the original inline asm. |
| // The front-end should rewrite this in terms of immediates. |
| assert (isParsingInlineAsm() && "Unexpected field name!"); |
| |
| unsigned DotDisp; |
| std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.'); |
| if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second, |
| DotDisp)) { |
| Err = "Unable to lookup field reference!"; |
| return true; |
| } |
| DotDispVal = DotDisp; |
| } else { |
| Err = "Unexpected token type!"; |
| return true; |
| } |
| |
| if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) { |
| SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data()); |
| unsigned Len = DotDispStr.size(); |
| unsigned Val = OrigDispVal + DotDispVal; |
| InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len, |
| Val)); |
| } |
| |
| *NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext()); |
| return false; |
| } |
| |
| /// Parse the 'offset' operator. This operator is used to specify the |
| /// location rather then the content of a variable. |
| X86Operand *X86AsmParser::ParseIntelOffsetOfOperator(SMLoc Start) { |
| SMLoc OffsetOfLoc = Start; |
| Parser.Lex(); // Eat offset. |
| Start = Parser.getTok().getLoc(); |
| assert (Parser.getTok().is(AsmToken::Identifier) && "Expected an identifier"); |
| |
| SMLoc End; |
| const MCExpr *Val; |
| if (getParser().parseExpression(Val, End)) |
| return ErrorOperand(Start, "Unable to parse expression!"); |
| |
| // Don't emit the offset operator. |
| InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7)); |
| |
| // The offset operator will have an 'r' constraint, thus we need to create |
| // register operand to ensure proper matching. Just pick a GPR based on |
| // the size of a pointer. |
| unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX; |
| return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true, |
| OffsetOfLoc); |
| } |
| |
| enum IntelOperatorKind { |
| IOK_LENGTH, |
| IOK_SIZE, |
| IOK_TYPE |
| }; |
| |
| /// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator |
| /// returns the number of elements in an array. It returns the value 1 for |
| /// non-array variables. The SIZE operator returns the size of a C or C++ |
| /// variable. A variable's size is the product of its LENGTH and TYPE. The |
| /// TYPE operator returns the size of a C or C++ type or variable. If the |
| /// variable is an array, TYPE returns the size of a single element. |
| X86Operand *X86AsmParser::ParseIntelOperator(SMLoc Start, unsigned OpKind) { |
| SMLoc TypeLoc = Start; |
| Parser.Lex(); // Eat offset. |
| Start = Parser.getTok().getLoc(); |
| assert (Parser.getTok().is(AsmToken::Identifier) && "Expected an identifier"); |
| |
| SMLoc End; |
| const MCExpr *Val; |
| if (getParser().parseExpression(Val, End)) |
| return 0; |
| |
| unsigned Length = 0, Size = 0, Type = 0; |
| if (const MCSymbolRefExpr *SymRef = dyn_cast<MCSymbolRefExpr>(Val)) { |
| const MCSymbol &Sym = SymRef->getSymbol(); |
| // FIXME: The SemaLookup will fail if the name is anything other then an |
| // identifier. |
| // FIXME: Pass a valid SMLoc. |
| bool IsVarDecl; |
| if (!SemaCallback->LookupInlineAsmIdentifier(Sym.getName(), NULL, Length, |
| Size, Type, IsVarDecl)) |
| return ErrorOperand(Start, "Unable to lookup expr!"); |
| } |
| unsigned CVal; |
| switch(OpKind) { |
| default: llvm_unreachable("Unexpected operand kind!"); |
| case IOK_LENGTH: CVal = Length; break; |
| case IOK_SIZE: CVal = Size; break; |
| case IOK_TYPE: CVal = Type; break; |
| } |
| |
| // Rewrite the type operator and the C or C++ type or variable in terms of an |
| // immediate. E.g. TYPE foo -> $$4 |
| unsigned Len = End.getPointer() - TypeLoc.getPointer(); |
| InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal)); |
| |
| const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext()); |
| return X86Operand::CreateImm(Imm, Start, End, /*NeedAsmRewrite*/false); |
| } |
| |
| X86Operand *X86AsmParser::ParseIntelOperand() { |
| SMLoc Start = Parser.getTok().getLoc(), End; |
| StringRef AsmTokStr = Parser.getTok().getString(); |
| |
| // Offset, length, type and size operators. |
| if (isParsingInlineAsm()) { |
| if (AsmTokStr == "offset" || AsmTokStr == "OFFSET") |
| return ParseIntelOffsetOfOperator(Start); |
| if (AsmTokStr == "length" || AsmTokStr == "LENGTH") |
| return ParseIntelOperator(Start, IOK_LENGTH); |
| if (AsmTokStr == "size" || AsmTokStr == "SIZE") |
| return ParseIntelOperator(Start, IOK_SIZE); |
| if (AsmTokStr == "type" || AsmTokStr == "TYPE") |
| return ParseIntelOperator(Start, IOK_TYPE); |
| } |
| |
| // Immediate. |
| if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Real) || |
| getLexer().is(AsmToken::Minus)) { |
| const MCExpr *Val; |
| if (!getParser().parseExpression(Val, End)) { |
| return X86Operand::CreateImm(Val, Start, End); |
| } |
| } |
| |
| // Register. |
| unsigned RegNo = 0; |
| if (!ParseRegister(RegNo, Start, End)) { |
| // If this is a segment register followed by a ':', then this is the start |
| // of a memory reference, otherwise this is a normal register reference. |
| if (getLexer().isNot(AsmToken::Colon)) |
| return X86Operand::CreateReg(RegNo, Start, End); |
| |
| getParser().Lex(); // Eat the colon. |
| return ParseIntelMemOperand(RegNo, Start); |
| } |
| |
| // Memory operand. |
| return ParseIntelMemOperand(0, Start); |
| } |
| |
| X86Operand *X86AsmParser::ParseATTOperand() { |
| switch (getLexer().getKind()) { |
| default: |
| // Parse a memory operand with no segment register. |
| return ParseMemOperand(0, Parser.getTok().getLoc()); |
| case AsmToken::Percent: { |
| // Read the register. |
| unsigned RegNo; |
| SMLoc Start, End; |
| if (ParseRegister(RegNo, Start, End)) return 0; |
| if (RegNo == X86::EIZ || RegNo == X86::RIZ) { |
| Error(Start, "%eiz and %riz can only be used as index registers", |
| SMRange(Start, End)); |
| return 0; |
| } |
| |
| // If this is a segment register followed by a ':', then this is the start |
| // of a memory reference, otherwise this is a normal register reference. |
| if (getLexer().isNot(AsmToken::Colon)) |
| return X86Operand::CreateReg(RegNo, Start, End); |
| |
| |
| getParser().Lex(); // Eat the colon. |
| return ParseMemOperand(RegNo, Start); |
| } |
| case AsmToken::Dollar: { |
| // $42 -> immediate. |
| SMLoc Start = Parser.getTok().getLoc(), End; |
| Parser.Lex(); |
| const MCExpr *Val; |
| if (getParser().parseExpression(Val, End)) |
| return 0; |
| return X86Operand::CreateImm(Val, Start, End); |
| } |
| } |
| } |
| |
| /// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix |
| /// has already been parsed if present. |
| X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { |
| |
| // We have to disambiguate a parenthesized expression "(4+5)" from the start |
| // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The |
| // only way to do this without lookahead is to eat the '(' and see what is |
| // after it. |
| const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); |
| if (getLexer().isNot(AsmToken::LParen)) { |
| SMLoc ExprEnd; |
| if (getParser().parseExpression(Disp, ExprEnd)) return 0; |
| |
| // After parsing the base expression we could either have a parenthesized |
| // memory address or not. If not, return now. If so, eat the (. |
| if (getLexer().isNot(AsmToken::LParen)) { |
| // Unless we have a segment register, treat this as an immediate. |
| if (SegReg == 0) |
| return X86Operand::CreateMem(Disp, MemStart, ExprEnd); |
| return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); |
| } |
| |
| // Eat the '('. |
| Parser.Lex(); |
| } else { |
| // Okay, we have a '('. We don't know if this is an expression or not, but |
| // so we have to eat the ( to see beyond it. |
| SMLoc LParenLoc = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat the '('. |
| |
| if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { |
| // Nothing to do here, fall into the code below with the '(' part of the |
| // memory operand consumed. |
| } else { |
| SMLoc ExprEnd; |
| |
| // It must be an parenthesized expression, parse it now. |
| if (getParser().parseParenExpression(Disp, ExprEnd)) |
| return 0; |
| |
| // After parsing the base expression we could either have a parenthesized |
| // memory address or not. If not, return now. If so, eat the (. |
| if (getLexer().isNot(AsmToken::LParen)) { |
| // Unless we have a segment register, treat this as an immediate. |
| if (SegReg == 0) |
| return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd); |
| return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); |
| } |
| |
| // Eat the '('. |
| Parser.Lex(); |
| } |
| } |
| |
| // If we reached here, then we just ate the ( of the memory operand. Process |
| // the rest of the memory operand. |
| unsigned BaseReg = 0, IndexReg = 0, Scale = 1; |
| SMLoc IndexLoc; |
| |
| if (getLexer().is(AsmToken::Percent)) { |
| SMLoc StartLoc, EndLoc; |
| if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0; |
| if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) { |
| Error(StartLoc, "eiz and riz can only be used as index registers", |
| SMRange(StartLoc, EndLoc)); |
| return 0; |
| } |
| } |
| |
| if (getLexer().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the comma. |
| IndexLoc = Parser.getTok().getLoc(); |
| |
| // Following the comma we should have either an index register, or a scale |
| // value. We don't support the later form, but we want to parse it |
| // correctly. |
| // |
| // Not that even though it would be completely consistent to support syntax |
| // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. |
| if (getLexer().is(AsmToken::Percent)) { |
| SMLoc L; |
| if (ParseRegister(IndexReg, L, L)) return 0; |
| |
| if (getLexer().isNot(AsmToken::RParen)) { |
| // Parse the scale amount: |
| // ::= ',' [scale-expression] |
| if (getLexer().isNot(AsmToken::Comma)) { |
| Error(Parser.getTok().getLoc(), |
| "expected comma in scale expression"); |
| return 0; |
| } |
| Parser.Lex(); // Eat the comma. |
| |
| if (getLexer().isNot(AsmToken::RParen)) { |
| SMLoc Loc = Parser.getTok().getLoc(); |
| |
| int64_t ScaleVal; |
| if (getParser().parseAbsoluteExpression(ScaleVal)){ |
| Error(Loc, "expected scale expression"); |
| return 0; |
| } |
| |
| // Validate the scale amount. |
| if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){ |
| Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); |
| return 0; |
| } |
| Scale = (unsigned)ScaleVal; |
| } |
| } |
| } else if (getLexer().isNot(AsmToken::RParen)) { |
| // A scale amount without an index is ignored. |
| // index. |
| SMLoc Loc = Parser.getTok().getLoc(); |
| |
| int64_t Value; |
| if (getParser().parseAbsoluteExpression(Value)) |
| return 0; |
| |
| if (Value != 1) |
| Warning(Loc, "scale factor without index register is ignored"); |
| Scale = 1; |
| } |
| } |
| |
| // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. |
| if (getLexer().isNot(AsmToken::RParen)) { |
| Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); |
| return 0; |
| } |
| SMLoc MemEnd = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat the ')'. |
| |
| // If we have both a base register and an index register make sure they are |
| // both 64-bit or 32-bit registers. |
| // To support VSIB, IndexReg can be 128-bit or 256-bit registers. |
| if (BaseReg != 0 && IndexReg != 0) { |
| if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) && |
| (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) && |
| IndexReg != X86::RIZ) { |
| Error(IndexLoc, "index register is 32-bit, but base register is 64-bit"); |
| return 0; |
| } |
| if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) && |
| (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) && |
| IndexReg != X86::EIZ){ |
| Error(IndexLoc, "index register is 64-bit, but base register is 32-bit"); |
| return 0; |
| } |
| } |
| |
| return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, |
| MemStart, MemEnd); |
| } |
| |
| bool X86AsmParser:: |
| ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| InstInfo = &Info; |
| StringRef PatchedName = Name; |
| |
| // FIXME: Hack to recognize setneb as setne. |
| if (PatchedName.startswith("set") && PatchedName.endswith("b") && |
| PatchedName != "setb" && PatchedName != "setnb") |
| PatchedName = PatchedName.substr(0, Name.size()-1); |
| |
| // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}. |
| const MCExpr *ExtraImmOp = 0; |
| if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && |
| (PatchedName.endswith("ss") || PatchedName.endswith("sd") || |
| PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { |
| bool IsVCMP = PatchedName[0] == 'v'; |
| unsigned SSECCIdx = IsVCMP ? 4 : 3; |
| unsigned SSEComparisonCode = StringSwitch<unsigned>( |
| PatchedName.slice(SSECCIdx, PatchedName.size() - 2)) |
| .Case("eq", 0x00) |
| .Case("lt", 0x01) |
| .Case("le", 0x02) |
| .Case("unord", 0x03) |
| .Case("neq", 0x04) |
| .Case("nlt", 0x05) |
| .Case("nle", 0x06) |
| .Case("ord", 0x07) |
| /* AVX only from here */ |
| .Case("eq_uq", 0x08) |
| .Case("nge", 0x09) |
| .Case("ngt", 0x0A) |
| .Case("false", 0x0B) |
| .Case("neq_oq", 0x0C) |
| .Case("ge", 0x0D) |
| .Case("gt", 0x0E) |
| .Case("true", 0x0F) |
| .Case("eq_os", 0x10) |
| .Case("lt_oq", 0x11) |
| .Case("le_oq", 0x12) |
| .Case("unord_s", 0x13) |
| .Case("neq_us", 0x14) |
| .Case("nlt_uq", 0x15) |
| .Case("nle_uq", 0x16) |
| .Case("ord_s", 0x17) |
| .Case("eq_us", 0x18) |
| .Case("nge_uq", 0x19) |
| .Case("ngt_uq", 0x1A) |
| .Case("false_os", 0x1B) |
| .Case("neq_os", 0x1C) |
| .Case("ge_oq", 0x1D) |
| .Case("gt_oq", 0x1E) |
| .Case("true_us", 0x1F) |
| .Default(~0U); |
| if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) { |
| ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode, |
| getParser().getContext()); |
| if (PatchedName.endswith("ss")) { |
| PatchedName = IsVCMP ? "vcmpss" : "cmpss"; |
| } else if (PatchedName.endswith("sd")) { |
| PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; |
| } else if (PatchedName.endswith("ps")) { |
| PatchedName = IsVCMP ? "vcmpps" : "cmpps"; |
| } else { |
| assert(PatchedName.endswith("pd") && "Unexpected mnemonic!"); |
| PatchedName = IsVCMP ? "vcmppd" : "cmppd"; |
| } |
| } |
| } |
| |
| Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); |
| |
| if (ExtraImmOp && !isParsingIntelSyntax()) |
| Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); |
| |
| // Determine whether this is an instruction prefix. |
| bool isPrefix = |
| Name == "lock" || Name == "rep" || |
| Name == "repe" || Name == "repz" || |
| Name == "repne" || Name == "repnz" || |
| Name == "rex64" || Name == "data16"; |
| |
| |
| // This does the actual operand parsing. Don't parse any more if we have a |
| // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we |
| // just want to parse the "lock" as the first instruction and the "incl" as |
| // the next one. |
| if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { |
| |
| // Parse '*' modifier. |
| if (getLexer().is(AsmToken::Star)) { |
| SMLoc Loc = Parser.getTok().getLoc(); |
| Operands.push_back(X86Operand::CreateToken("*", Loc)); |
| Parser.Lex(); // Eat the star. |
| } |
| |
| // Read the first operand. |
| if (X86Operand *Op = ParseOperand()) |
| Operands.push_back(Op); |
| else { |
| Parser.eatToEndOfStatement(); |
| return true; |
| } |
| |
| while (getLexer().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the comma. |
| |
| // Parse and remember the operand. |
| if (X86Operand *Op = ParseOperand()) |
| Operands.push_back(Op); |
| else { |
| Parser.eatToEndOfStatement(); |
| return true; |
| } |
| } |
| |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| SMLoc Loc = getLexer().getLoc(); |
| Parser.eatToEndOfStatement(); |
| return Error(Loc, "unexpected token in argument list"); |
| } |
| } |
| |
| if (getLexer().is(AsmToken::EndOfStatement)) |
| Parser.Lex(); // Consume the EndOfStatement |
| else if (isPrefix && getLexer().is(AsmToken::Slash)) |
| Parser.Lex(); // Consume the prefix separator Slash |
| |
| if (ExtraImmOp && isParsingIntelSyntax()) |
| Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); |
| |
| // This is a terrible hack to handle "out[bwl]? %al, (%dx)" -> |
| // "outb %al, %dx". Out doesn't take a memory form, but this is a widely |
| // documented form in various unofficial manuals, so a lot of code uses it. |
| if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") && |
| Operands.size() == 3) { |
| X86Operand &Op = *(X86Operand*)Operands.back(); |
| if (Op.isMem() && Op.Mem.SegReg == 0 && |
| isa<MCConstantExpr>(Op.Mem.Disp) && |
| cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && |
| Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { |
| SMLoc Loc = Op.getEndLoc(); |
| Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); |
| delete &Op; |
| } |
| } |
| // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al". |
| if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") && |
| Operands.size() == 3) { |
| X86Operand &Op = *(X86Operand*)Operands.begin()[1]; |
| if (Op.isMem() && Op.Mem.SegReg == 0 && |
| isa<MCConstantExpr>(Op.Mem.Disp) && |
| cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && |
| Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { |
| SMLoc Loc = Op.getEndLoc(); |
| Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); |
| delete &Op; |
| } |
| } |
| // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]" |
| if (Name.startswith("ins") && Operands.size() == 3 && |
| (Name == "insb" || Name == "insw" || Name == "insl")) { |
| X86Operand &Op = *(X86Operand*)Operands.begin()[1]; |
| X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; |
| if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete &Op; |
| delete &Op2; |
| } |
| } |
| |
| // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]" |
| if (Name.startswith("outs") && Operands.size() == 3 && |
| (Name == "outsb" || Name == "outsw" || Name == "outsl")) { |
| X86Operand &Op = *(X86Operand*)Operands.begin()[1]; |
| X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; |
| if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete &Op; |
| delete &Op2; |
| } |
| } |
| |
| // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]" |
| if (Name.startswith("movs") && Operands.size() == 3 && |
| (Name == "movsb" || Name == "movsw" || Name == "movsl" || |
| (is64BitMode() && Name == "movsq"))) { |
| X86Operand &Op = *(X86Operand*)Operands.begin()[1]; |
| X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; |
| if (isSrcOp(Op) && isDstOp(Op2)) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete &Op; |
| delete &Op2; |
| } |
| } |
| // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]" |
| if (Name.startswith("lods") && Operands.size() == 3 && |
| (Name == "lods" || Name == "lodsb" || Name == "lodsw" || |
| Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) { |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); |
| X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]); |
| if (isSrcOp(*Op1) && Op2->isReg()) { |
| const char *ins; |
| unsigned reg = Op2->getReg(); |
| bool isLods = Name == "lods"; |
| if (reg == X86::AL && (isLods || Name == "lodsb")) |
| ins = "lodsb"; |
| else if (reg == X86::AX && (isLods || Name == "lodsw")) |
| ins = "lodsw"; |
| else if (reg == X86::EAX && (isLods || Name == "lodsl")) |
| ins = "lodsl"; |
| else if (reg == X86::RAX && (isLods || Name == "lodsq")) |
| ins = "lodsq"; |
| else |
| ins = NULL; |
| if (ins != NULL) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete Op1; |
| delete Op2; |
| if (Name != ins) |
| static_cast<X86Operand*>(Operands[0])->setTokenValue(ins); |
| } |
| } |
| } |
| // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]" |
| if (Name.startswith("stos") && Operands.size() == 3 && |
| (Name == "stos" || Name == "stosb" || Name == "stosw" || |
| Name == "stosl" || (is64BitMode() && Name == "stosq"))) { |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); |
| X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]); |
| if (isDstOp(*Op2) && Op1->isReg()) { |
| const char *ins; |
| unsigned reg = Op1->getReg(); |
| bool isStos = Name == "stos"; |
| if (reg == X86::AL && (isStos || Name == "stosb")) |
| ins = "stosb"; |
| else if (reg == X86::AX && (isStos || Name == "stosw")) |
| ins = "stosw"; |
| else if (reg == X86::EAX && (isStos || Name == "stosl")) |
| ins = "stosl"; |
| else if (reg == X86::RAX && (isStos || Name == "stosq")) |
| ins = "stosq"; |
| else |
| ins = NULL; |
| if (ins != NULL) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete Op1; |
| delete Op2; |
| if (Name != ins) |
| static_cast<X86Operand*>(Operands[0])->setTokenValue(ins); |
| } |
| } |
| } |
| |
| // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to |
| // "shift <op>". |
| if ((Name.startswith("shr") || Name.startswith("sar") || |
| Name.startswith("shl") || Name.startswith("sal") || |
| Name.startswith("rcl") || Name.startswith("rcr") || |
| Name.startswith("rol") || Name.startswith("ror")) && |
| Operands.size() == 3) { |
| if (isParsingIntelSyntax()) { |
| // Intel syntax |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[2]); |
| if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && |
| cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) { |
| delete Operands[2]; |
| Operands.pop_back(); |
| } |
| } else { |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); |
| if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && |
| cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) { |
| delete Operands[1]; |
| Operands.erase(Operands.begin() + 1); |
| } |
| } |
| } |
| |
| // Transforms "int $3" into "int3" as a size optimization. We can't write an |
| // instalias with an immediate operand yet. |
| if (Name == "int" && Operands.size() == 2) { |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); |
| if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && |
| cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) { |
| delete Operands[1]; |
| Operands.erase(Operands.begin() + 1); |
| static_cast<X86Operand*>(Operands[0])->setTokenValue("int3"); |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg, |
| bool isCmp) { |
| MCInst TmpInst; |
| TmpInst.setOpcode(Opcode); |
| if (!isCmp) |
| TmpInst.addOperand(MCOperand::CreateReg(Reg)); |
| TmpInst.addOperand(MCOperand::CreateReg(Reg)); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode, |
| bool isCmp = false) { |
| if (!Inst.getOperand(0).isImm() || |
| !isImmSExti16i8Value(Inst.getOperand(0).getImm())) |
| return false; |
| |
| return convertToSExti8(Inst, Opcode, X86::AX, isCmp); |
| } |
| |
| static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode, |
| bool isCmp = false) { |
| if (!Inst.getOperand(0).isImm() || |
| !isImmSExti32i8Value(Inst.getOperand(0).getImm())) |
| return false; |
| |
| return convertToSExti8(Inst, Opcode, X86::EAX, isCmp); |
| } |
| |
| static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode, |
| bool isCmp = false) { |
| if (!Inst.getOperand(0).isImm() || |
| !isImmSExti64i8Value(Inst.getOperand(0).getImm())) |
| return false; |
| |
| return convertToSExti8(Inst, Opcode, X86::RAX, isCmp); |
| } |
| |
| bool X86AsmParser:: |
| processInstruction(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Ops) { |
| switch (Inst.getOpcode()) { |
| default: return false; |
| case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8); |
| case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8); |
| case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8); |
| case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8); |
| case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8); |
| case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8); |
| case X86::OR16i16: return convert16i16to16ri8(Inst, X86::OR16ri8); |
| case X86::OR32i32: return convert32i32to32ri8(Inst, X86::OR32ri8); |
| case X86::OR64i32: return convert64i32to64ri8(Inst, X86::OR64ri8); |
| case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true); |
| case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true); |
| case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true); |
| case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8); |
| case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8); |
| case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8); |
| case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8); |
| case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8); |
| case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8); |
| case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8); |
| case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8); |
| case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8); |
| case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8); |
| case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8); |
| case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8); |
| } |
| } |
| |
| static const char *getSubtargetFeatureName(unsigned Val); |
| bool X86AsmParser:: |
| MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands, |
| MCStreamer &Out, unsigned &ErrorInfo, |
| bool MatchingInlineAsm) { |
| assert(!Operands.empty() && "Unexpect empty operand list!"); |
| X86Operand *Op = static_cast<X86Operand*>(Operands[0]); |
| assert(Op->isToken() && "Leading operand should always be a mnemonic!"); |
| ArrayRef<SMRange> EmptyRanges = ArrayRef<SMRange>(); |
| |
| // First, handle aliases that expand to multiple instructions. |
| // FIXME: This should be replaced with a real .td file alias mechanism. |
| // Also, MatchInstructionImpl should actually *do* the EmitInstruction |
| // call. |
| if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" || |
| Op->getToken() == "fstsww" || Op->getToken() == "fstcww" || |
| Op->getToken() == "finit" || Op->getToken() == "fsave" || |
| Op->getToken() == "fstenv" || Op->getToken() == "fclex") { |
| MCInst Inst; |
| Inst.setOpcode(X86::WAIT); |
| Inst.setLoc(IDLoc); |
| if (!MatchingInlineAsm) |
| Out.EmitInstruction(Inst); |
| |
| const char *Repl = |
| StringSwitch<const char*>(Op->getToken()) |
| .Case("finit", "fninit") |
| .Case("fsave", "fnsave") |
| .Case("fstcw", "fnstcw") |
| .Case("fstcww", "fnstcw") |
| .Case("fstenv", "fnstenv") |
| .Case("fstsw", "fnstsw") |
| .Case("fstsww", "fnstsw") |
| .Case("fclex", "fnclex") |
| .Default(0); |
| assert(Repl && "Unknown wait-prefixed instruction"); |
| delete Operands[0]; |
| Operands[0] = X86Operand::CreateToken(Repl, IDLoc); |
| } |
| |
| bool WasOriginallyInvalidOperand = false; |
| MCInst Inst; |
| |
| // First, try a direct match. |
| switch (MatchInstructionImpl(Operands, Inst, |
| ErrorInfo, MatchingInlineAsm, |
| isParsingIntelSyntax())) { |
| default: break; |
| case Match_Success: |
| // Some instructions need post-processing to, for example, tweak which |
| // encoding is selected. Loop on it while changes happen so the |
| // individual transformations can chain off each other. |
| if (!MatchingInlineAsm) |
| while (processInstruction(Inst, Operands)) |
| ; |
| |
| Inst.setLoc(IDLoc); |
| if (!MatchingInlineAsm) |
| Out.EmitInstruction(Inst); |
| Opcode = Inst.getOpcode(); |
| return false; |
| case Match_MissingFeature: { |
| assert(ErrorInfo && "Unknown missing feature!"); |
| // Special case the error message for the very common case where only |
| // a single subtarget feature is missing. |
| std::string Msg = "instruction requires:"; |
| unsigned Mask = 1; |
| for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { |
| if (ErrorInfo & Mask) { |
| Msg += " "; |
| Msg += getSubtargetFeatureName(ErrorInfo & Mask); |
| } |
| Mask <<= 1; |
| } |
| return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm); |
| } |
| case Match_InvalidOperand: |
| WasOriginallyInvalidOperand = true; |
| break; |
| case Match_MnemonicFail: |
| break; |
| } |
| |
| // FIXME: Ideally, we would only attempt suffix matches for things which are |
| // valid prefixes, and we could just infer the right unambiguous |
| // type. However, that requires substantially more matcher support than the |
| // following hack. |
| |
| // Change the operand to point to a temporary token. |
| StringRef Base = Op->getToken(); |
| SmallString<16> Tmp; |
| Tmp += Base; |
| Tmp += ' '; |
| Op->setTokenValue(Tmp.str()); |
| |
| // If this instruction starts with an 'f', then it is a floating point stack |
| // instruction. These come in up to three forms for 32-bit, 64-bit, and |
| // 80-bit floating point, which use the suffixes s,l,t respectively. |
| // |
| // Otherwise, we assume that this may be an integer instruction, which comes |
| // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively. |
| const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0"; |
| |
| // Check for the various suffix matches. |
| Tmp[Base.size()] = Suffixes[0]; |
| unsigned ErrorInfoIgnore; |
| unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings. |
| unsigned Match1, Match2, Match3, Match4; |
| |
| Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, |
| isParsingIntelSyntax()); |
| // If this returned as a missing feature failure, remember that. |
| if (Match1 == Match_MissingFeature) |
| ErrorInfoMissingFeature = ErrorInfoIgnore; |
| Tmp[Base.size()] = Suffixes[1]; |
| Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, |
| isParsingIntelSyntax()); |
| // If this returned as a missing feature failure, remember that. |
| if (Match2 == Match_MissingFeature) |
| ErrorInfoMissingFeature = ErrorInfoIgnore; |
| Tmp[Base.size()] = Suffixes[2]; |
| Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, |
| isParsingIntelSyntax()); |
| // If this returned as a missing feature failure, remember that. |
| if (Match3 == Match_MissingFeature) |
| ErrorInfoMissingFeature = ErrorInfoIgnore; |
| Tmp[Base.size()] = Suffixes[3]; |
| Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, |
| isParsingIntelSyntax()); |
| // If this returned as a missing feature failure, remember that. |
| if (Match4 == Match_MissingFeature) |
| ErrorInfoMissingFeature = ErrorInfoIgnore; |
| |
| // Restore the old token. |
| Op->setTokenValue(Base); |
| |
| // If exactly one matched, then we treat that as a successful match (and the |
| // instruction will already have been filled in correctly, since the failing |
| // matches won't have modified it). |
| unsigned NumSuccessfulMatches = |
| (Match1 == Match_Success) + (Match2 == Match_Success) + |
| (Match3 == Match_Success) + (Match4 == Match_Success); |
| if (NumSuccessfulMatches == 1) { |
| Inst.setLoc(IDLoc); |
| if (!MatchingInlineAsm) |
| Out.EmitInstruction(Inst); |
| Opcode = Inst.getOpcode(); |
| return false; |
| } |
| |
| // Otherwise, the match failed, try to produce a decent error message. |
| |
| // If we had multiple suffix matches, then identify this as an ambiguous |
| // match. |
| if (NumSuccessfulMatches > 1) { |
| char MatchChars[4]; |
| unsigned NumMatches = 0; |
| if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0]; |
| if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1]; |
| if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2]; |
| if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3]; |
| |
| SmallString<126> Msg; |
| raw_svector_ostream OS(Msg); |
| OS << "ambiguous instructions require an explicit suffix (could be "; |
| for (unsigned i = 0; i != NumMatches; ++i) { |
| if (i != 0) |
| OS << ", "; |
| if (i + 1 == NumMatches) |
| OS << "or "; |
| OS << "'" << Base << MatchChars[i] << "'"; |
| } |
| OS << ")"; |
| Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm); |
| return true; |
| } |
| |
| // Okay, we know that none of the variants matched successfully. |
| |
| // If all of the instructions reported an invalid mnemonic, then the original |
| // mnemonic was invalid. |
| if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) && |
| (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) { |
| if (!WasOriginallyInvalidOperand) { |
| ArrayRef<SMRange> Ranges = MatchingInlineAsm ? EmptyRanges : |
| Op->getLocRange(); |
| return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'", |
| Ranges, MatchingInlineAsm); |
| } |
| |
| // Recover location info for the operand if we know which was the problem. |
| if (ErrorInfo != ~0U) { |
| if (ErrorInfo >= Operands.size()) |
| return Error(IDLoc, "too few operands for instruction", |
| EmptyRanges, MatchingInlineAsm); |
| |
| X86Operand *Operand = (X86Operand*)Operands[ErrorInfo]; |
| if (Operand->getStartLoc().isValid()) { |
| SMRange OperandRange = Operand->getLocRange(); |
| return Error(Operand->getStartLoc(), "invalid operand for instruction", |
| OperandRange, MatchingInlineAsm); |
| } |
| } |
| |
| return Error(IDLoc, "invalid operand for instruction", EmptyRanges, |
| MatchingInlineAsm); |
| } |
| |
| // If one instruction matched with a missing feature, report this as a |
| // missing feature. |
| if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) + |
| (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){ |
| std::string Msg = "instruction requires:"; |
| unsigned Mask = 1; |
| for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) { |
| if (ErrorInfoMissingFeature & Mask) { |
| Msg += " "; |
| Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask); |
| } |
| Mask <<= 1; |
| } |
| return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm); |
| } |
| |
| // If one instruction matched with an invalid operand, report this as an |
| // operand failure. |
| if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) + |
| (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){ |
| Error(IDLoc, "invalid operand for instruction", EmptyRanges, |
| MatchingInlineAsm); |
| return true; |
| } |
| |
| // If all of these were an outright failure, report it in a useless way. |
| Error(IDLoc, "unknown use of instruction mnemonic without a size suffix", |
| EmptyRanges, MatchingInlineAsm); |
| return true; |
| } |
| |
| |
| bool X86AsmParser::ParseDirective(AsmToken DirectiveID) { |
| StringRef IDVal = DirectiveID.getIdentifier(); |
| if (IDVal == ".word") |
| return ParseDirectiveWord(2, DirectiveID.getLoc()); |
| else if (IDVal.startswith(".code")) |
| return ParseDirectiveCode(IDVal, DirectiveID.getLoc()); |
| else if (IDVal.startswith(".att_syntax")) { |
| getParser().setAssemblerDialect(0); |
| return false; |
| } else if (IDVal.startswith(".intel_syntax")) { |
| getParser().setAssemblerDialect(1); |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| if(Parser.getTok().getString() == "noprefix") { |
| // FIXME : Handle noprefix |
| Parser.Lex(); |
| } else |
| return true; |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| /// ParseDirectiveWord |
| /// ::= .word [ expression (, expression)* ] |
| bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| for (;;) { |
| const MCExpr *Value; |
| if (getParser().parseExpression(Value)) |
| return true; |
| |
| getParser().getStreamer().EmitValue(Value, Size); |
| |
| if (getLexer().is(AsmToken::EndOfStatement)) |
| break; |
| |
| // FIXME: Improve diagnostic. |
| if (getLexer().isNot(AsmToken::Comma)) |
| return Error(L, "unexpected token in directive"); |
| Parser.Lex(); |
| } |
| } |
| |
| Parser.Lex(); |
| return false; |
| } |
| |
| /// ParseDirectiveCode |
| /// ::= .code32 | .code64 |
| bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) { |
| if (IDVal == ".code32") { |
| Parser.Lex(); |
| if (is64BitMode()) { |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); |
| } |
| } else if (IDVal == ".code64") { |
| Parser.Lex(); |
| if (!is64BitMode()) { |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64); |
| } |
| } else { |
| return Error(L, "unexpected directive " + IDVal); |
| } |
| |
| return false; |
| } |
| |
| // Force static initialization. |
| extern "C" void LLVMInitializeX86AsmParser() { |
| RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target); |
| RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target); |
| } |
| |
| #define GET_REGISTER_MATCHER |
| #define GET_MATCHER_IMPLEMENTATION |
| #define GET_SUBTARGET_FEATURE_NAME |
| #include "X86GenAsmMatcher.inc" |