| //===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This describes the calling conventions for the X86-32 and X86-64 |
| // architectures. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| /// CCIfSubtarget - Match if the current subtarget has a feature F. |
| class CCIfSubtarget<string F, CCAction A> |
| : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>; |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Conventions |
| //===----------------------------------------------------------------------===// |
| |
| // Return-value conventions common to all X86 CC's. |
| def RetCC_X86Common : CallingConv<[ |
| // Scalar values are returned in AX first, then DX. For i8, the ABI |
| // requires the values to be in AL and AH, however this code uses AL and DL |
| // instead. This is because using AH for the second register conflicts with |
| // the way LLVM does multiple return values -- a return of {i16,i8} would end |
| // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI |
| // for functions that return two i8 values are currently expected to pack the |
| // values into an i16 (which uses AX, and thus AL:AH). |
| // |
| // For code that doesn't care about the ABI, we allow returning more than two |
| // integer values in registers. |
| CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>, |
| CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, |
| CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, |
| CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>, |
| |
| // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 |
| // can only be used by ABI non-compliant code. If the target doesn't have XMM |
| // registers, it won't have vector types. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, |
| |
| // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 |
| // can only be used by ABI non-compliant code. This vector type is only |
| // supported while using the AVX target feature. |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, |
| |
| // MMX vector types are always returned in MM0. If the target doesn't have |
| // MM0, it doesn't support these vector types. |
| CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, |
| |
| // Long double types are always returned in ST0 (even with SSE). |
| CCIfType<[f80], CCAssignToReg<[ST0, ST1]>> |
| ]>; |
| |
| // X86-32 C return-value convention. |
| def RetCC_X86_32_C : CallingConv<[ |
| // The X86-32 calling convention returns FP values in ST0, unless marked |
| // with "inreg" (used here to distinguish one kind of reg from another, |
| // weirdly; this is really the sse-regparm calling convention) in which |
| // case they use XMM0, otherwise it is the same as the common X86 calling |
| // conv. |
| CCIfInReg<CCIfSubtarget<"hasSSE2()", |
| CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, |
| CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>, |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // X86-32 FastCC return-value convention. |
| def RetCC_X86_32_Fast : CallingConv<[ |
| // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has |
| // SSE2. |
| // This can happen when a float, 2 x float, or 3 x float vector is split by |
| // target lowering, and is returned in 1-3 sse regs. |
| CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, |
| CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, |
| |
| // For integers, ECX can be used as an extra return register |
| CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, |
| CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, |
| CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, |
| |
| // Otherwise, it is the same as the common X86 calling convention. |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // Intel_OCL_BI return-value convention. |
| def RetCC_Intel_OCL_BI : CallingConv<[ |
| // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. |
| CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, |
| |
| // 256-bit FP vectors |
| // No more than 4 registers |
| CCIfType<[v8f32, v4f64, v8i32, v4i64], |
| CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, |
| |
| // i32, i64 in the standard way |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // X86-32 HiPE return-value convention. |
| def RetCC_X86_32_HiPE : CallingConv<[ |
| // Promote all types to i32 |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Return: HP, P, VAL1, VAL2 |
| CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> |
| ]>; |
| |
| // X86-64 C return-value convention. |
| def RetCC_X86_64_C : CallingConv<[ |
| // The X86-64 calling convention always returns FP values in XMM0. |
| CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, |
| CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, |
| |
| // MMX vector types are always returned in XMM0. |
| CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // X86-Win64 C return-value convention. |
| def RetCC_X86_Win64_C : CallingConv<[ |
| // The X86-Win64 calling convention always returns __m64 values in RAX. |
| CCIfType<[x86mmx], CCBitConvertToType<i64>>, |
| |
| // Otherwise, everything is the same as 'normal' X86-64 C CC. |
| CCDelegateTo<RetCC_X86_64_C> |
| ]>; |
| |
| // X86-64 HiPE return-value convention. |
| def RetCC_X86_64_HiPE : CallingConv<[ |
| // Promote all types to i64 |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| // Return: HP, P, VAL1, VAL2 |
| CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> |
| ]>; |
| |
| // This is the root return-value convention for the X86-32 backend. |
| def RetCC_X86_32 : CallingConv<[ |
| // If FastCC, use RetCC_X86_32_Fast. |
| CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, |
| // If HiPE, use RetCC_X86_32_HiPE. |
| CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>, |
| |
| // Otherwise, use RetCC_X86_32_C. |
| CCDelegateTo<RetCC_X86_32_C> |
| ]>; |
| |
| // This is the root return-value convention for the X86-64 backend. |
| def RetCC_X86_64 : CallingConv<[ |
| // HiPE uses RetCC_X86_64_HiPE |
| CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>, |
| // Mingw64 and native Win64 use Win64 CC |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, |
| |
| // Otherwise, drop to normal X86-64 CC |
| CCDelegateTo<RetCC_X86_64_C> |
| ]>; |
| |
| // This is the return-value convention used for the entire X86 backend. |
| def RetCC_X86 : CallingConv<[ |
| |
| // Check if this is the Intel OpenCL built-ins calling convention |
| CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>, |
| |
| CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>, |
| CCDelegateTo<RetCC_X86_32> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // X86-64 Argument Calling Conventions |
| //===----------------------------------------------------------------------===// |
| |
| def CC_X86_64_C : CallingConv<[ |
| // Handles byval parameters. |
| CCIfByVal<CCPassByVal<8, 8>>, |
| |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // The 'nest' parameter, if any, is passed in R10. |
| CCIfNest<CCAssignToReg<[R10]>>, |
| |
| // The first 6 integer arguments are passed in integer registers. |
| CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, |
| CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, |
| |
| // The first 8 MMX vector arguments are passed in XMM registers on Darwin. |
| CCIfType<[x86mmx], |
| CCIfSubtarget<"isTargetDarwin()", |
| CCIfSubtarget<"hasSSE2()", |
| CCPromoteToType<v2i64>>>>, |
| |
| // The first 8 FP/Vector arguments are passed in XMM registers. |
| CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCIfSubtarget<"hasSSE1()", |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, |
| |
| // The first 8 256-bit vector arguments are passed in YMM registers, unless |
| // this is a vararg function. |
| // FIXME: This isn't precisely correct; the x86-64 ABI document says that |
| // fixed arguments to vararg functions are supposed to be passed in |
| // registers. Actually modeling that would be a lot of work, though. |
| CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCIfSubtarget<"hasAVX()", |
| CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, |
| YMM4, YMM5, YMM6, YMM7]>>>>, |
| |
| // Integer/FP values get stored in stack slots that are 8 bytes in size and |
| // 8-byte aligned if there are no more registers to hold them. |
| CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, |
| |
| // Long doubles get stack slots whose size and alignment depends on the |
| // subtarget. |
| CCIfType<[f80], CCAssignToStack<0, 0>>, |
| |
| // Vectors get 16-byte stack slots that are 16-byte aligned. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, |
| |
| // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCAssignToStack<32, 32>> |
| ]>; |
| |
| // Calling convention used on Win64 |
| def CC_X86_Win64_C : CallingConv<[ |
| // FIXME: Handle byval stuff. |
| // FIXME: Handle varargs. |
| |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // The 'nest' parameter, if any, is passed in R10. |
| CCIfNest<CCAssignToReg<[R10]>>, |
| |
| // 128 bit vectors are passed by pointer |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, |
| |
| |
| // 256 bit vectors are passed by pointer |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>, |
| |
| // The first 4 MMX vector arguments are passed in GPRs. |
| CCIfType<[x86mmx], CCBitConvertToType<i64>>, |
| |
| // The first 4 integer arguments are passed in integer registers. |
| CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], |
| [XMM0, XMM1, XMM2, XMM3]>>, |
| |
| // Do not pass the sret argument in RCX, the Win64 thiscall calling |
| // convention requires "this" to be passed in RCX. |
| CCIfCC<"CallingConv::X86_ThisCall", |
| CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ], |
| [XMM1, XMM2, XMM3]>>>>, |
| |
| CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], |
| [XMM0, XMM1, XMM2, XMM3]>>, |
| |
| // The first 4 FP/Vector arguments are passed in XMM registers. |
| CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], |
| [RCX , RDX , R8 , R9 ]>>, |
| |
| // Integer/FP values get stored in stack slots that are 8 bytes in size and |
| // 8-byte aligned if there are no more registers to hold them. |
| CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, |
| |
| // Long doubles get stack slots whose size and alignment depends on the |
| // subtarget. |
| CCIfType<[f80], CCAssignToStack<0, 0>> |
| ]>; |
| |
| def CC_X86_64_GHC : CallingConv<[ |
| // Promote i8/i16/i32 arguments to i64. |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim |
| CCIfType<[i64], |
| CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, |
| |
| // Pass in STG registers: F1, F2, F3, F4, D1, D2 |
| CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCIfSubtarget<"hasSSE1()", |
| CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>> |
| ]>; |
| |
| def CC_X86_64_HiPE : CallingConv<[ |
| // Promote i8/i16/i32 arguments to i64. |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3 |
| CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>, |
| |
| // Integer/FP values get stored in stack slots that are 8 bytes in size and |
| // 8-byte aligned if there are no more registers to hold them. |
| CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // X86 C Calling Convention |
| //===----------------------------------------------------------------------===// |
| |
| /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP |
| /// values are spilled on the stack, and the first 4 vector values go in XMM |
| /// regs. |
| def CC_X86_32_Common : CallingConv<[ |
| // Handles byval parameters. |
| CCIfByVal<CCPassByVal<4, 4>>, |
| |
| // The first 3 float or double arguments, if marked 'inreg' and if the call |
| // is not a vararg call and if SSE2 is available, are passed in SSE registers. |
| CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], |
| CCIfSubtarget<"hasSSE2()", |
| CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>, |
| |
| // The first 3 __m64 vector arguments are passed in mmx registers if the |
| // call is not a vararg call. |
| CCIfNotVarArg<CCIfType<[x86mmx], |
| CCAssignToReg<[MM0, MM1, MM2]>>>, |
| |
| // Integer/Float values get stored in stack slots that are 4 bytes in |
| // size and 4-byte aligned. |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>>, |
| |
| // Doubles get 8-byte slots that are 4-byte aligned. |
| CCIfType<[f64], CCAssignToStack<8, 4>>, |
| |
| // Long doubles get slots whose size depends on the subtarget. |
| CCIfType<[f80], CCAssignToStack<0, 4>>, |
| |
| // The first 4 SSE vector arguments are passed in XMM registers. |
| CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>, |
| |
| // The first 4 AVX 256-bit vector arguments are passed in YMM registers. |
| CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCIfSubtarget<"hasAVX()", |
| CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>, |
| |
| // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, |
| |
| // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCAssignToStack<32, 32>>, |
| |
| // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are |
| // passed in the parameter area. |
| CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>; |
| |
| def CC_X86_32_C : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // The 'nest' parameter, if any, is passed in ECX. |
| CCIfNest<CCAssignToReg<[ECX]>>, |
| |
| // The first 3 integer arguments, if marked 'inreg' and if the call is not |
| // a vararg call, are passed in integer registers. |
| CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_32_FastCall : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // The 'nest' parameter, if any, is passed in EAX. |
| CCIfNest<CCAssignToReg<[EAX]>>, |
| |
| // The first 2 integer arguments are passed in ECX/EDX |
| CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_32_ThisCall : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Pass sret arguments indirectly through EAX |
| CCIfSRet<CCAssignToReg<[EAX]>>, |
| |
| // The first integer argument is passed in ECX |
| CCIfType<[i32], CCAssignToReg<[ECX]>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_32_FastCC : CallingConv<[ |
| // Handles byval parameters. Note that we can't rely on the delegation |
| // to CC_X86_32_Common for this because that happens after code that |
| // puts arguments in registers. |
| CCIfByVal<CCPassByVal<4, 4>>, |
| |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // The 'nest' parameter, if any, is passed in EAX. |
| CCIfNest<CCAssignToReg<[EAX]>>, |
| |
| // The first 2 integer arguments are passed in ECX/EDX |
| CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, |
| |
| // The first 3 float or double arguments, if the call is not a vararg |
| // call and if SSE2 is available, are passed in SSE registers. |
| CCIfNotVarArg<CCIfType<[f32,f64], |
| CCIfSubtarget<"hasSSE2()", |
| CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, |
| |
| // Doubles get 8-byte slots that are 8-byte aligned. |
| CCIfType<[f64], CCAssignToStack<8, 8>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_32_GHC : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Pass in STG registers: Base, Sp, Hp, R1 |
| CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> |
| ]>; |
| |
| def CC_X86_32_HiPE : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2 |
| CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>, |
| |
| // Integer/Float values get stored in stack slots that are 4 bytes in |
| // size and 4-byte aligned. |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>> |
| ]>; |
| |
| // X86-64 Intel OpenCL built-ins calling convention. |
| def CC_Intel_OCL_BI : CallingConv<[ |
| |
| CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, |
| CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>, |
| |
| CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>, |
| CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>, |
| |
| CCIfType<[i32], CCAssignToStack<4, 4>>, |
| |
| // The SSE vector arguments are passed in XMM registers. |
| CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, |
| |
| // The 256-bit vector arguments are passed in YMM registers. |
| CCIfType<[v8f32, v4f64, v8i32, v4i64], |
| CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, |
| |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, |
| CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>, |
| CCDelegateTo<CC_X86_32_C> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Root Argument Calling Conventions |
| //===----------------------------------------------------------------------===// |
| |
| // This is the root argument convention for the X86-32 backend. |
| def CC_X86_32 : CallingConv<[ |
| CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>, |
| CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, |
| CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, |
| CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, |
| CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>, |
| |
| // Otherwise, drop to normal X86-32 CC |
| CCDelegateTo<CC_X86_32_C> |
| ]>; |
| |
| // This is the root argument convention for the X86-64 backend. |
| def CC_X86_64 : CallingConv<[ |
| CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, |
| CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>, |
| |
| // Mingw64 and native Win64 use Win64 CC |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, |
| |
| // Otherwise, drop to normal X86-64 CC |
| CCDelegateTo<CC_X86_64_C> |
| ]>; |
| |
| // This is the argument convention used for the entire X86 backend. |
| def CC_X86 : CallingConv<[ |
| CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>, |
| CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>, |
| CCDelegateTo<CC_X86_32> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Callee-saved Registers. |
| //===----------------------------------------------------------------------===// |
| |
| def CSR_NoRegs : CalleeSavedRegs<(add)>; |
| |
| def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>; |
| def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>; |
| |
| def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>; |
| def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; |
| |
| def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15, |
| (sequence "XMM%u", 6, 15))>; |
| |
| def CSR_MostRegs_64 : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, |
| R11, R12, R13, R14, R15, RBP, |
| (sequence "XMM%u", 0, 15))>; |
| |
| // Standard C + YMM6-15 |
| def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, |
| R13, R14, R15, |
| (sequence "YMM%u", 6, 15))>; |
| |
| //Standard C + XMM 8-15 |
| def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64, |
| (sequence "XMM%u", 8, 15))>; |
| |
| //Standard C + YMM 8-15 |
| def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64, |
| (sequence "YMM%u", 8, 15))>; |