| //===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the JIT interfaces for the X86 target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "X86JITInfo.h" |
| #include "X86Relocations.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Valgrind.h" |
| #include <cstdlib> |
| #include <cstring> |
| using namespace llvm; |
| |
| // Determine the platform we're running on |
| #if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64) |
| # define X86_64_JIT |
| #elif defined(__i386__) || defined(i386) || defined(_M_IX86) |
| # define X86_32_JIT |
| #endif |
| |
| void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) { |
| unsigned char *OldByte = (unsigned char *)Old; |
| *OldByte++ = 0xE9; // Emit JMP opcode. |
| unsigned *OldWord = (unsigned *)OldByte; |
| unsigned NewAddr = (intptr_t)New; |
| unsigned OldAddr = (intptr_t)OldWord; |
| *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code. |
| |
| // X86 doesn't need to invalidate the processor cache, so just invalidate |
| // Valgrind's cache directly. |
| sys::ValgrindDiscardTranslations(Old, 5); |
| } |
| |
| |
| /// JITCompilerFunction - This contains the address of the JIT function used to |
| /// compile a function lazily. |
| static TargetJITInfo::JITCompilerFn JITCompilerFunction; |
| |
| // Get the ASMPREFIX for the current host. This is often '_'. |
| #ifndef __USER_LABEL_PREFIX__ |
| #define __USER_LABEL_PREFIX__ |
| #endif |
| #define GETASMPREFIX2(X) #X |
| #define GETASMPREFIX(X) GETASMPREFIX2(X) |
| #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__) |
| |
| // For ELF targets, use a .size and .type directive, to let tools |
| // know the extent of functions defined in assembler. |
| #if defined(__ELF__) |
| # define SIZE(sym) ".size " #sym ", . - " #sym "\n" |
| # define TYPE_FUNCTION(sym) ".type " #sym ", @function\n" |
| #else |
| # define SIZE(sym) |
| # define TYPE_FUNCTION(sym) |
| #endif |
| |
| // Provide a convenient way for disabling usage of CFI directives. |
| // This is needed for old/broken assemblers (for example, gas on |
| // Darwin is pretty old and doesn't support these directives) |
| #if defined(__APPLE__) |
| # define CFI(x) |
| #else |
| // FIXME: Disable this until we really want to use it. Also, we will |
| // need to add some workarounds for compilers, which support |
| // only subset of these directives. |
| # define CFI(x) |
| #endif |
| |
| // Provide a wrapper for LLVMX86CompilationCallback2 that saves non-traditional |
| // callee saved registers, for the fastcc calling convention. |
| extern "C" { |
| #if defined(X86_64_JIT) |
| # ifndef _MSC_VER |
| // No need to save EAX/EDX for X86-64. |
| void X86CompilationCallback(void); |
| asm( |
| ".text\n" |
| ".align 8\n" |
| ".globl " ASMPREFIX "X86CompilationCallback\n" |
| TYPE_FUNCTION(X86CompilationCallback) |
| ASMPREFIX "X86CompilationCallback:\n" |
| CFI(".cfi_startproc\n") |
| // Save RBP |
| "pushq %rbp\n" |
| CFI(".cfi_def_cfa_offset 16\n") |
| CFI(".cfi_offset %rbp, -16\n") |
| // Save RSP |
| "movq %rsp, %rbp\n" |
| CFI(".cfi_def_cfa_register %rbp\n") |
| // Save all int arg registers |
| "pushq %rdi\n" |
| CFI(".cfi_rel_offset %rdi, 0\n") |
| "pushq %rsi\n" |
| CFI(".cfi_rel_offset %rsi, 8\n") |
| "pushq %rdx\n" |
| CFI(".cfi_rel_offset %rdx, 16\n") |
| "pushq %rcx\n" |
| CFI(".cfi_rel_offset %rcx, 24\n") |
| "pushq %r8\n" |
| CFI(".cfi_rel_offset %r8, 32\n") |
| "pushq %r9\n" |
| CFI(".cfi_rel_offset %r9, 40\n") |
| // Align stack on 16-byte boundary. ESP might not be properly aligned |
| // (8 byte) if this is called from an indirect stub. |
| "andq $-16, %rsp\n" |
| // Save all XMM arg registers |
| "subq $128, %rsp\n" |
| "movaps %xmm0, (%rsp)\n" |
| "movaps %xmm1, 16(%rsp)\n" |
| "movaps %xmm2, 32(%rsp)\n" |
| "movaps %xmm3, 48(%rsp)\n" |
| "movaps %xmm4, 64(%rsp)\n" |
| "movaps %xmm5, 80(%rsp)\n" |
| "movaps %xmm6, 96(%rsp)\n" |
| "movaps %xmm7, 112(%rsp)\n" |
| // JIT callee |
| #ifdef _WIN64 |
| "subq $32, %rsp\n" |
| "movq %rbp, %rcx\n" // Pass prev frame and return address |
| "movq 8(%rbp), %rdx\n" |
| "call " ASMPREFIX "LLVMX86CompilationCallback2\n" |
| "addq $32, %rsp\n" |
| #else |
| "movq %rbp, %rdi\n" // Pass prev frame and return address |
| "movq 8(%rbp), %rsi\n" |
| "call " ASMPREFIX "LLVMX86CompilationCallback2\n" |
| #endif |
| // Restore all XMM arg registers |
| "movaps 112(%rsp), %xmm7\n" |
| "movaps 96(%rsp), %xmm6\n" |
| "movaps 80(%rsp), %xmm5\n" |
| "movaps 64(%rsp), %xmm4\n" |
| "movaps 48(%rsp), %xmm3\n" |
| "movaps 32(%rsp), %xmm2\n" |
| "movaps 16(%rsp), %xmm1\n" |
| "movaps (%rsp), %xmm0\n" |
| // Restore RSP |
| "movq %rbp, %rsp\n" |
| CFI(".cfi_def_cfa_register %rsp\n") |
| // Restore all int arg registers |
| "subq $48, %rsp\n" |
| CFI(".cfi_adjust_cfa_offset 48\n") |
| "popq %r9\n" |
| CFI(".cfi_adjust_cfa_offset -8\n") |
| CFI(".cfi_restore %r9\n") |
| "popq %r8\n" |
| CFI(".cfi_adjust_cfa_offset -8\n") |
| CFI(".cfi_restore %r8\n") |
| "popq %rcx\n" |
| CFI(".cfi_adjust_cfa_offset -8\n") |
| CFI(".cfi_restore %rcx\n") |
| "popq %rdx\n" |
| CFI(".cfi_adjust_cfa_offset -8\n") |
| CFI(".cfi_restore %rdx\n") |
| "popq %rsi\n" |
| CFI(".cfi_adjust_cfa_offset -8\n") |
| CFI(".cfi_restore %rsi\n") |
| "popq %rdi\n" |
| CFI(".cfi_adjust_cfa_offset -8\n") |
| CFI(".cfi_restore %rdi\n") |
| // Restore RBP |
| "popq %rbp\n" |
| CFI(".cfi_adjust_cfa_offset -8\n") |
| CFI(".cfi_restore %rbp\n") |
| "ret\n" |
| CFI(".cfi_endproc\n") |
| SIZE(X86CompilationCallback) |
| ); |
| # else |
| // No inline assembler support on this platform. The routine is in external |
| // file. |
| void X86CompilationCallback(); |
| |
| # endif |
| #elif defined (X86_32_JIT) |
| # ifndef _MSC_VER |
| void X86CompilationCallback(void); |
| asm( |
| ".text\n" |
| ".align 8\n" |
| ".globl " ASMPREFIX "X86CompilationCallback\n" |
| TYPE_FUNCTION(X86CompilationCallback) |
| ASMPREFIX "X86CompilationCallback:\n" |
| CFI(".cfi_startproc\n") |
| "pushl %ebp\n" |
| CFI(".cfi_def_cfa_offset 8\n") |
| CFI(".cfi_offset %ebp, -8\n") |
| "movl %esp, %ebp\n" // Standard prologue |
| CFI(".cfi_def_cfa_register %ebp\n") |
| "pushl %eax\n" |
| CFI(".cfi_rel_offset %eax, 0\n") |
| "pushl %edx\n" // Save EAX/EDX/ECX |
| CFI(".cfi_rel_offset %edx, 4\n") |
| "pushl %ecx\n" |
| CFI(".cfi_rel_offset %ecx, 8\n") |
| # if defined(__APPLE__) |
| "andl $-16, %esp\n" // Align ESP on 16-byte boundary |
| # endif |
| "subl $16, %esp\n" |
| "movl 4(%ebp), %eax\n" // Pass prev frame and return address |
| "movl %eax, 4(%esp)\n" |
| "movl %ebp, (%esp)\n" |
| "call " ASMPREFIX "LLVMX86CompilationCallback2\n" |
| "movl %ebp, %esp\n" // Restore ESP |
| CFI(".cfi_def_cfa_register %esp\n") |
| "subl $12, %esp\n" |
| CFI(".cfi_adjust_cfa_offset 12\n") |
| "popl %ecx\n" |
| CFI(".cfi_adjust_cfa_offset -4\n") |
| CFI(".cfi_restore %ecx\n") |
| "popl %edx\n" |
| CFI(".cfi_adjust_cfa_offset -4\n") |
| CFI(".cfi_restore %edx\n") |
| "popl %eax\n" |
| CFI(".cfi_adjust_cfa_offset -4\n") |
| CFI(".cfi_restore %eax\n") |
| "popl %ebp\n" |
| CFI(".cfi_adjust_cfa_offset -4\n") |
| CFI(".cfi_restore %ebp\n") |
| "ret\n" |
| CFI(".cfi_endproc\n") |
| SIZE(X86CompilationCallback) |
| ); |
| |
| // Same as X86CompilationCallback but also saves XMM argument registers. |
| void X86CompilationCallback_SSE(void); |
| asm( |
| ".text\n" |
| ".align 8\n" |
| ".globl " ASMPREFIX "X86CompilationCallback_SSE\n" |
| TYPE_FUNCTION(X86CompilationCallback_SSE) |
| ASMPREFIX "X86CompilationCallback_SSE:\n" |
| CFI(".cfi_startproc\n") |
| "pushl %ebp\n" |
| CFI(".cfi_def_cfa_offset 8\n") |
| CFI(".cfi_offset %ebp, -8\n") |
| "movl %esp, %ebp\n" // Standard prologue |
| CFI(".cfi_def_cfa_register %ebp\n") |
| "pushl %eax\n" |
| CFI(".cfi_rel_offset %eax, 0\n") |
| "pushl %edx\n" // Save EAX/EDX/ECX |
| CFI(".cfi_rel_offset %edx, 4\n") |
| "pushl %ecx\n" |
| CFI(".cfi_rel_offset %ecx, 8\n") |
| "andl $-16, %esp\n" // Align ESP on 16-byte boundary |
| // Save all XMM arg registers |
| "subl $64, %esp\n" |
| // FIXME: provide frame move information for xmm registers. |
| // This can be tricky, because CFA register is ebp (unaligned) |
| // and we need to produce offsets relative to it. |
| "movaps %xmm0, (%esp)\n" |
| "movaps %xmm1, 16(%esp)\n" |
| "movaps %xmm2, 32(%esp)\n" |
| "movaps %xmm3, 48(%esp)\n" |
| "subl $16, %esp\n" |
| "movl 4(%ebp), %eax\n" // Pass prev frame and return address |
| "movl %eax, 4(%esp)\n" |
| "movl %ebp, (%esp)\n" |
| "call " ASMPREFIX "LLVMX86CompilationCallback2\n" |
| "addl $16, %esp\n" |
| "movaps 48(%esp), %xmm3\n" |
| CFI(".cfi_restore %xmm3\n") |
| "movaps 32(%esp), %xmm2\n" |
| CFI(".cfi_restore %xmm2\n") |
| "movaps 16(%esp), %xmm1\n" |
| CFI(".cfi_restore %xmm1\n") |
| "movaps (%esp), %xmm0\n" |
| CFI(".cfi_restore %xmm0\n") |
| "movl %ebp, %esp\n" // Restore ESP |
| CFI(".cfi_def_cfa_register esp\n") |
| "subl $12, %esp\n" |
| CFI(".cfi_adjust_cfa_offset 12\n") |
| "popl %ecx\n" |
| CFI(".cfi_adjust_cfa_offset -4\n") |
| CFI(".cfi_restore %ecx\n") |
| "popl %edx\n" |
| CFI(".cfi_adjust_cfa_offset -4\n") |
| CFI(".cfi_restore %edx\n") |
| "popl %eax\n" |
| CFI(".cfi_adjust_cfa_offset -4\n") |
| CFI(".cfi_restore %eax\n") |
| "popl %ebp\n" |
| CFI(".cfi_adjust_cfa_offset -4\n") |
| CFI(".cfi_restore %ebp\n") |
| "ret\n" |
| CFI(".cfi_endproc\n") |
| SIZE(X86CompilationCallback_SSE) |
| ); |
| # else |
| void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr); |
| |
| _declspec(naked) void X86CompilationCallback(void) { |
| __asm { |
| push ebp |
| mov ebp, esp |
| push eax |
| push edx |
| push ecx |
| and esp, -16 |
| sub esp, 16 |
| mov eax, dword ptr [ebp+4] |
| mov dword ptr [esp+4], eax |
| mov dword ptr [esp], ebp |
| call LLVMX86CompilationCallback2 |
| mov esp, ebp |
| sub esp, 12 |
| pop ecx |
| pop edx |
| pop eax |
| pop ebp |
| ret |
| } |
| } |
| |
| # endif // _MSC_VER |
| |
| #else // Not an i386 host |
| void X86CompilationCallback() { |
| llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!"); |
| } |
| #endif |
| } |
| |
| /// This is the target-specific function invoked by the |
| /// function stub when we did not know the real target of a call. This function |
| /// must locate the start of the stub or call site and pass it into the JIT |
| /// compiler function. |
| extern "C" { |
| LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr, |
| intptr_t RetAddr) { |
| intptr_t *RetAddrLoc = &StackPtr[1]; |
| // We are reading raw stack data here. Tell MemorySanitizer that it is |
| // sufficiently initialized. |
| __msan_unpoison(RetAddrLoc, sizeof(*RetAddrLoc)); |
| assert(*RetAddrLoc == RetAddr && |
| "Could not find return address on the stack!"); |
| |
| // It's a stub if there is an interrupt marker after the call. |
| bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE; |
| |
| // The call instruction should have pushed the return value onto the stack... |
| #if defined (X86_64_JIT) |
| RetAddr--; // Backtrack to the reference itself... |
| #else |
| RetAddr -= 4; // Backtrack to the reference itself... |
| #endif |
| |
| #if 0 |
| DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr |
| << " ESP=" << (void*)StackPtr |
| << ": Resolving call to function: " |
| << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"); |
| #endif |
| |
| // Sanity check to make sure this really is a call instruction. |
| #if defined (X86_64_JIT) |
| assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!"); |
| assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!"); |
| #else |
| assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!"); |
| #endif |
| |
| intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr); |
| |
| // Rewrite the call target... so that we don't end up here every time we |
| // execute the call. |
| #if defined (X86_64_JIT) |
| assert(isStub && |
| "X86-64 doesn't support rewriting non-stub lazy compilation calls:" |
| " the call instruction varies too much."); |
| #else |
| *(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4); |
| #endif |
| |
| if (isStub) { |
| // If this is a stub, rewrite the call into an unconditional branch |
| // instruction so that two return addresses are not pushed onto the stack |
| // when the requested function finally gets called. This also makes the |
| // 0xCE byte (interrupt) dead, so the marker doesn't effect anything. |
| #if defined (X86_64_JIT) |
| // If the target address is within 32-bit range of the stub, use a |
| // PC-relative branch instead of loading the actual address. (This is |
| // considerably shorter than the 64-bit immediate load already there.) |
| // We assume here intptr_t is 64 bits. |
| intptr_t diff = NewVal-RetAddr+7; |
| if (diff >= -2147483648LL && diff <= 2147483647LL) { |
| *(unsigned char*)(RetAddr-0xc) = 0xE9; |
| *(intptr_t *)(RetAddr-0xb) = diff & 0xffffffff; |
| } else { |
| *(intptr_t *)(RetAddr - 0xa) = NewVal; |
| ((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6)); |
| } |
| sys::ValgrindDiscardTranslations((void*)(RetAddr-0xc), 0xd); |
| #else |
| ((unsigned char*)RetAddr)[-1] = 0xE9; |
| sys::ValgrindDiscardTranslations((void*)(RetAddr-1), 5); |
| #endif |
| } |
| |
| // Change the return address to reexecute the call instruction... |
| #if defined (X86_64_JIT) |
| *RetAddrLoc -= 0xd; |
| #else |
| *RetAddrLoc -= 5; |
| #endif |
| } |
| } |
| |
| TargetJITInfo::LazyResolverFn |
| X86JITInfo::getLazyResolverFunction(JITCompilerFn F) { |
| TsanIgnoreWritesBegin(); |
| JITCompilerFunction = F; |
| TsanIgnoreWritesEnd(); |
| |
| #if defined (X86_32_JIT) && !defined (_MSC_VER) |
| if (Subtarget->hasSSE1()) |
| return X86CompilationCallback_SSE; |
| #endif |
| |
| return X86CompilationCallback; |
| } |
| |
| X86JITInfo::X86JITInfo(X86TargetMachine &tm) : TM(tm) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| useGOT = 0; |
| TLSOffset = 0; |
| } |
| |
| void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr, |
| JITCodeEmitter &JCE) { |
| #if defined (X86_64_JIT) |
| const unsigned Alignment = 8; |
| uint8_t Buffer[8]; |
| uint8_t *Cur = Buffer; |
| MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(intptr_t)ptr); |
| MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(((intptr_t)ptr) >> 32)); |
| #else |
| const unsigned Alignment = 4; |
| uint8_t Buffer[4]; |
| uint8_t *Cur = Buffer; |
| MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)ptr); |
| #endif |
| return JCE.allocIndirectGV(GV, Buffer, sizeof(Buffer), Alignment); |
| } |
| |
| TargetJITInfo::StubLayout X86JITInfo::getStubLayout() { |
| // The 64-bit stub contains: |
| // movabs r10 <- 8-byte-target-address # 10 bytes |
| // call|jmp *r10 # 3 bytes |
| // The 32-bit stub contains a 5-byte call|jmp. |
| // If the stub is a call to the compilation callback, an extra byte is added |
| // to mark it as a stub. |
| StubLayout Result = {14, 4}; |
| return Result; |
| } |
| |
| void *X86JITInfo::emitFunctionStub(const Function* F, void *Target, |
| JITCodeEmitter &JCE) { |
| // Note, we cast to intptr_t here to silence a -pedantic warning that |
| // complains about casting a function pointer to a normal pointer. |
| #if defined (X86_32_JIT) && !defined (_MSC_VER) |
| bool NotCC = (Target != (void*)(intptr_t)X86CompilationCallback && |
| Target != (void*)(intptr_t)X86CompilationCallback_SSE); |
| #else |
| bool NotCC = Target != (void*)(intptr_t)X86CompilationCallback; |
| #endif |
| JCE.emitAlignment(4); |
| void *Result = (void*)JCE.getCurrentPCValue(); |
| if (NotCC) { |
| #if defined (X86_64_JIT) |
| JCE.emitByte(0x49); // REX prefix |
| JCE.emitByte(0xB8+2); // movabsq r10 |
| JCE.emitWordLE((unsigned)(intptr_t)Target); |
| JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32)); |
| JCE.emitByte(0x41); // REX prefix |
| JCE.emitByte(0xFF); // jmpq *r10 |
| JCE.emitByte(2 | (4 << 3) | (3 << 6)); |
| #else |
| JCE.emitByte(0xE9); |
| JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4); |
| #endif |
| return Result; |
| } |
| |
| #if defined (X86_64_JIT) |
| JCE.emitByte(0x49); // REX prefix |
| JCE.emitByte(0xB8+2); // movabsq r10 |
| JCE.emitWordLE((unsigned)(intptr_t)Target); |
| JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32)); |
| JCE.emitByte(0x41); // REX prefix |
| JCE.emitByte(0xFF); // callq *r10 |
| JCE.emitByte(2 | (2 << 3) | (3 << 6)); |
| #else |
| JCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... |
| |
| JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4); |
| #endif |
| |
| // This used to use 0xCD, but that value is used by JITMemoryManager to |
| // initialize the buffer with garbage, which means it may follow a |
| // noreturn function call, confusing LLVMX86CompilationCallback2. PR 4929. |
| JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub! |
| return Result; |
| } |
| |
| /// getPICJumpTableEntry - Returns the value of the jumptable entry for the |
| /// specific basic block. |
| uintptr_t X86JITInfo::getPICJumpTableEntry(uintptr_t BB, uintptr_t Entry) { |
| #if defined(X86_64_JIT) |
| return BB - Entry; |
| #else |
| return BB - PICBase; |
| #endif |
| } |
| |
| template<typename T> static void addUnaligned(void *Pos, T Delta) { |
| T Value; |
| std::memcpy(reinterpret_cast<char*>(&Value), reinterpret_cast<char*>(Pos), |
| sizeof(T)); |
| Value += Delta; |
| std::memcpy(reinterpret_cast<char*>(Pos), reinterpret_cast<char*>(&Value), |
| sizeof(T)); |
| } |
| |
| /// relocate - Before the JIT can run a block of code that has been emitted, |
| /// it must rewrite the code to contain the actual addresses of any |
| /// referenced global symbols. |
| void X86JITInfo::relocate(void *Function, MachineRelocation *MR, |
| unsigned NumRelocs, unsigned char* GOTBase) { |
| for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { |
| void *RelocPos = (char*)Function + MR->getMachineCodeOffset(); |
| intptr_t ResultPtr = (intptr_t)MR->getResultPointer(); |
| switch ((X86::RelocationType)MR->getRelocationType()) { |
| case X86::reloc_pcrel_word: { |
| // PC relative relocation, add the relocated value to the value already in |
| // memory, after we adjust it for where the PC is. |
| ResultPtr = ResultPtr -(intptr_t)RelocPos - 4 - MR->getConstantVal(); |
| addUnaligned<unsigned>(RelocPos, ResultPtr); |
| break; |
| } |
| case X86::reloc_picrel_word: { |
| // PIC base relative relocation, add the relocated value to the value |
| // already in memory, after we adjust it for where the PIC base is. |
| ResultPtr = ResultPtr - ((intptr_t)Function + MR->getConstantVal()); |
| addUnaligned<unsigned>(RelocPos, ResultPtr); |
| break; |
| } |
| case X86::reloc_absolute_word: |
| case X86::reloc_absolute_word_sext: |
| // Absolute relocation, just add the relocated value to the value already |
| // in memory. |
| addUnaligned<unsigned>(RelocPos, ResultPtr); |
| break; |
| case X86::reloc_absolute_dword: |
| addUnaligned<intptr_t>(RelocPos, ResultPtr); |
| break; |
| } |
| } |
| } |
| |
| char* X86JITInfo::allocateThreadLocalMemory(size_t size) { |
| #if defined(X86_32_JIT) && !defined(__APPLE__) && !defined(_MSC_VER) |
| TLSOffset -= size; |
| return TLSOffset; |
| #else |
| llvm_unreachable("Cannot allocate thread local storage on this arch!"); |
| #endif |
| } |