| //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements all of the non-inline methods for the LLVM instruction |
| // classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Instructions.h" |
| #include "LLVMContextImpl.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // CallSite Class |
| //===----------------------------------------------------------------------===// |
| |
| User::op_iterator CallSite::getCallee() const { |
| Instruction *II(getInstruction()); |
| return isCall() |
| ? cast<CallInst>(II)->op_end() - 1 // Skip Callee |
| : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TerminatorInst Class |
| //===----------------------------------------------------------------------===// |
| |
| // Out of line virtual method, so the vtable, etc has a home. |
| TerminatorInst::~TerminatorInst() { |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // UnaryInstruction Class |
| //===----------------------------------------------------------------------===// |
| |
| // Out of line virtual method, so the vtable, etc has a home. |
| UnaryInstruction::~UnaryInstruction() { |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectInst Class |
| //===----------------------------------------------------------------------===// |
| |
| /// areInvalidOperands - Return a string if the specified operands are invalid |
| /// for a select operation, otherwise return null. |
| const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { |
| if (Op1->getType() != Op2->getType()) |
| return "both values to select must have same type"; |
| |
| if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { |
| // Vector select. |
| if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) |
| return "vector select condition element type must be i1"; |
| VectorType *ET = dyn_cast<VectorType>(Op1->getType()); |
| if (ET == 0) |
| return "selected values for vector select must be vectors"; |
| if (ET->getNumElements() != VT->getNumElements()) |
| return "vector select requires selected vectors to have " |
| "the same vector length as select condition"; |
| } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { |
| return "select condition must be i1 or <n x i1>"; |
| } |
| return 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // PHINode Class |
| //===----------------------------------------------------------------------===// |
| |
| PHINode::PHINode(const PHINode &PN) |
| : Instruction(PN.getType(), Instruction::PHI, |
| allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()), |
| ReservedSpace(PN.getNumOperands()) { |
| std::copy(PN.op_begin(), PN.op_end(), op_begin()); |
| std::copy(PN.block_begin(), PN.block_end(), block_begin()); |
| SubclassOptionalData = PN.SubclassOptionalData; |
| } |
| |
| PHINode::~PHINode() { |
| dropHungoffUses(); |
| } |
| |
| Use *PHINode::allocHungoffUses(unsigned N) const { |
| // Allocate the array of Uses of the incoming values, followed by a pointer |
| // (with bottom bit set) to the User, followed by the array of pointers to |
| // the incoming basic blocks. |
| size_t size = N * sizeof(Use) + sizeof(Use::UserRef) |
| + N * sizeof(BasicBlock*); |
| Use *Begin = static_cast<Use*>(::operator new(size)); |
| Use *End = Begin + N; |
| (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1); |
| return Use::initTags(Begin, End); |
| } |
| |
| // removeIncomingValue - Remove an incoming value. This is useful if a |
| // predecessor basic block is deleted. |
| Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { |
| Value *Removed = getIncomingValue(Idx); |
| |
| // Move everything after this operand down. |
| // |
| // FIXME: we could just swap with the end of the list, then erase. However, |
| // clients might not expect this to happen. The code as it is thrashes the |
| // use/def lists, which is kinda lame. |
| std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); |
| std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); |
| |
| // Nuke the last value. |
| Op<-1>().set(0); |
| --NumOperands; |
| |
| // If the PHI node is dead, because it has zero entries, nuke it now. |
| if (getNumOperands() == 0 && DeletePHIIfEmpty) { |
| // If anyone is using this PHI, make them use a dummy value instead... |
| replaceAllUsesWith(UndefValue::get(getType())); |
| eraseFromParent(); |
| } |
| return Removed; |
| } |
| |
| /// growOperands - grow operands - This grows the operand list in response |
| /// to a push_back style of operation. This grows the number of ops by 1.5 |
| /// times. |
| /// |
| void PHINode::growOperands() { |
| unsigned e = getNumOperands(); |
| unsigned NumOps = e + e / 2; |
| if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. |
| |
| Use *OldOps = op_begin(); |
| BasicBlock **OldBlocks = block_begin(); |
| |
| ReservedSpace = NumOps; |
| OperandList = allocHungoffUses(ReservedSpace); |
| |
| std::copy(OldOps, OldOps + e, op_begin()); |
| std::copy(OldBlocks, OldBlocks + e, block_begin()); |
| |
| Use::zap(OldOps, OldOps + e, true); |
| } |
| |
| /// hasConstantValue - If the specified PHI node always merges together the same |
| /// value, return the value, otherwise return null. |
| Value *PHINode::hasConstantValue() const { |
| // Exploit the fact that phi nodes always have at least one entry. |
| Value *ConstantValue = getIncomingValue(0); |
| for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) |
| if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { |
| if (ConstantValue != this) |
| return 0; // Incoming values not all the same. |
| // The case where the first value is this PHI. |
| ConstantValue = getIncomingValue(i); |
| } |
| if (ConstantValue == this) |
| return UndefValue::get(getType()); |
| return ConstantValue; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LandingPadInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, |
| unsigned NumReservedValues, const Twine &NameStr, |
| Instruction *InsertBefore) |
| : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) { |
| init(PersonalityFn, 1 + NumReservedValues, NameStr); |
| } |
| |
| LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, |
| unsigned NumReservedValues, const Twine &NameStr, |
| BasicBlock *InsertAtEnd) |
| : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) { |
| init(PersonalityFn, 1 + NumReservedValues, NameStr); |
| } |
| |
| LandingPadInst::LandingPadInst(const LandingPadInst &LP) |
| : Instruction(LP.getType(), Instruction::LandingPad, |
| allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()), |
| ReservedSpace(LP.getNumOperands()) { |
| Use *OL = OperandList, *InOL = LP.OperandList; |
| for (unsigned I = 0, E = ReservedSpace; I != E; ++I) |
| OL[I] = InOL[I]; |
| |
| setCleanup(LP.isCleanup()); |
| } |
| |
| LandingPadInst::~LandingPadInst() { |
| dropHungoffUses(); |
| } |
| |
| LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, |
| unsigned NumReservedClauses, |
| const Twine &NameStr, |
| Instruction *InsertBefore) { |
| return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, |
| InsertBefore); |
| } |
| |
| LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, |
| unsigned NumReservedClauses, |
| const Twine &NameStr, |
| BasicBlock *InsertAtEnd) { |
| return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, |
| InsertAtEnd); |
| } |
| |
| void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues, |
| const Twine &NameStr) { |
| ReservedSpace = NumReservedValues; |
| NumOperands = 1; |
| OperandList = allocHungoffUses(ReservedSpace); |
| OperandList[0] = PersFn; |
| setName(NameStr); |
| setCleanup(false); |
| } |
| |
| /// growOperands - grow operands - This grows the operand list in response to a |
| /// push_back style of operation. This grows the number of ops by 2 times. |
| void LandingPadInst::growOperands(unsigned Size) { |
| unsigned e = getNumOperands(); |
| if (ReservedSpace >= e + Size) return; |
| ReservedSpace = (e + Size / 2) * 2; |
| |
| Use *NewOps = allocHungoffUses(ReservedSpace); |
| Use *OldOps = OperandList; |
| for (unsigned i = 0; i != e; ++i) |
| NewOps[i] = OldOps[i]; |
| |
| OperandList = NewOps; |
| Use::zap(OldOps, OldOps + e, true); |
| } |
| |
| void LandingPadInst::addClause(Value *Val) { |
| unsigned OpNo = getNumOperands(); |
| growOperands(1); |
| assert(OpNo < ReservedSpace && "Growing didn't work!"); |
| ++NumOperands; |
| OperandList[OpNo] = Val; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CallInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| CallInst::~CallInst() { |
| } |
| |
| void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) { |
| assert(NumOperands == Args.size() + 1 && "NumOperands not set up?"); |
| Op<-1>() = Func; |
| |
| #ifndef NDEBUG |
| FunctionType *FTy = |
| cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); |
| |
| assert((Args.size() == FTy->getNumParams() || |
| (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && |
| "Calling a function with bad signature!"); |
| |
| for (unsigned i = 0; i != Args.size(); ++i) |
| assert((i >= FTy->getNumParams() || |
| FTy->getParamType(i) == Args[i]->getType()) && |
| "Calling a function with a bad signature!"); |
| #endif |
| |
| std::copy(Args.begin(), Args.end(), op_begin()); |
| setName(NameStr); |
| } |
| |
| void CallInst::init(Value *Func, const Twine &NameStr) { |
| assert(NumOperands == 1 && "NumOperands not set up?"); |
| Op<-1>() = Func; |
| |
| #ifndef NDEBUG |
| FunctionType *FTy = |
| cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); |
| |
| assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); |
| #endif |
| |
| setName(NameStr); |
| } |
| |
| CallInst::CallInst(Value *Func, const Twine &Name, |
| Instruction *InsertBefore) |
| : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) |
| ->getElementType())->getReturnType(), |
| Instruction::Call, |
| OperandTraits<CallInst>::op_end(this) - 1, |
| 1, InsertBefore) { |
| init(Func, Name); |
| } |
| |
| CallInst::CallInst(Value *Func, const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) |
| ->getElementType())->getReturnType(), |
| Instruction::Call, |
| OperandTraits<CallInst>::op_end(this) - 1, |
| 1, InsertAtEnd) { |
| init(Func, Name); |
| } |
| |
| CallInst::CallInst(const CallInst &CI) |
| : Instruction(CI.getType(), Instruction::Call, |
| OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), |
| CI.getNumOperands()) { |
| setAttributes(CI.getAttributes()); |
| setTailCall(CI.isTailCall()); |
| setCallingConv(CI.getCallingConv()); |
| |
| std::copy(CI.op_begin(), CI.op_end(), op_begin()); |
| SubclassOptionalData = CI.SubclassOptionalData; |
| } |
| |
| void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addAttribute(getContext(), i, attr); |
| setAttributes(PAL); |
| } |
| |
| void CallInst::removeAttribute(unsigned i, Attribute attr) { |
| AttributeSet PAL = getAttributes(); |
| AttrBuilder B(attr); |
| LLVMContext &Context = getContext(); |
| PAL = PAL.removeAttributes(Context, i, |
| AttributeSet::get(Context, i, B)); |
| setAttributes(PAL); |
| } |
| |
| bool CallInst::hasFnAttr(Attribute::AttrKind A) const { |
| if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) |
| return true; |
| if (const Function *F = getCalledFunction()) |
| return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); |
| return false; |
| } |
| |
| bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { |
| if (AttributeList.hasAttribute(i, A)) |
| return true; |
| if (const Function *F = getCalledFunction()) |
| return F->getAttributes().hasAttribute(i, A); |
| return false; |
| } |
| |
| /// IsConstantOne - Return true only if val is constant int 1 |
| static bool IsConstantOne(Value *val) { |
| assert(val && "IsConstantOne does not work with NULL val"); |
| return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); |
| } |
| |
| static Instruction *createMalloc(Instruction *InsertBefore, |
| BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| Type *AllocTy, Value *AllocSize, |
| Value *ArraySize, Function *MallocF, |
| const Twine &Name) { |
| assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && |
| "createMalloc needs either InsertBefore or InsertAtEnd"); |
| |
| // malloc(type) becomes: |
| // bitcast (i8* malloc(typeSize)) to type* |
| // malloc(type, arraySize) becomes: |
| // bitcast (i8 *malloc(typeSize*arraySize)) to type* |
| if (!ArraySize) |
| ArraySize = ConstantInt::get(IntPtrTy, 1); |
| else if (ArraySize->getType() != IntPtrTy) { |
| if (InsertBefore) |
| ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, |
| "", InsertBefore); |
| else |
| ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, |
| "", InsertAtEnd); |
| } |
| |
| if (!IsConstantOne(ArraySize)) { |
| if (IsConstantOne(AllocSize)) { |
| AllocSize = ArraySize; // Operand * 1 = Operand |
| } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { |
| Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, |
| false /*ZExt*/); |
| // Malloc arg is constant product of type size and array size |
| AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); |
| } else { |
| // Multiply type size by the array size... |
| if (InsertBefore) |
| AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, |
| "mallocsize", InsertBefore); |
| else |
| AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, |
| "mallocsize", InsertAtEnd); |
| } |
| } |
| |
| assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); |
| // Create the call to Malloc. |
| BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; |
| Module* M = BB->getParent()->getParent(); |
| Type *BPTy = Type::getInt8PtrTy(BB->getContext()); |
| Value *MallocFunc = MallocF; |
| if (!MallocFunc) |
| // prototype malloc as "void *malloc(size_t)" |
| MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL); |
| PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); |
| CallInst *MCall = NULL; |
| Instruction *Result = NULL; |
| if (InsertBefore) { |
| MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); |
| Result = MCall; |
| if (Result->getType() != AllocPtrType) |
| // Create a cast instruction to convert to the right type... |
| Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); |
| } else { |
| MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); |
| Result = MCall; |
| if (Result->getType() != AllocPtrType) { |
| InsertAtEnd->getInstList().push_back(MCall); |
| // Create a cast instruction to convert to the right type... |
| Result = new BitCastInst(MCall, AllocPtrType, Name); |
| } |
| } |
| MCall->setTailCall(); |
| if (Function *F = dyn_cast<Function>(MallocFunc)) { |
| MCall->setCallingConv(F->getCallingConv()); |
| if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); |
| } |
| assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); |
| |
| return Result; |
| } |
| |
| /// CreateMalloc - Generate the IR for a call to malloc: |
| /// 1. Compute the malloc call's argument as the specified type's size, |
| /// possibly multiplied by the array size if the array size is not |
| /// constant 1. |
| /// 2. Call malloc with that argument. |
| /// 3. Bitcast the result of the malloc call to the specified type. |
| Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, |
| Type *IntPtrTy, Type *AllocTy, |
| Value *AllocSize, Value *ArraySize, |
| Function * MallocF, |
| const Twine &Name) { |
| return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize, |
| ArraySize, MallocF, Name); |
| } |
| |
| /// CreateMalloc - Generate the IR for a call to malloc: |
| /// 1. Compute the malloc call's argument as the specified type's size, |
| /// possibly multiplied by the array size if the array size is not |
| /// constant 1. |
| /// 2. Call malloc with that argument. |
| /// 3. Bitcast the result of the malloc call to the specified type. |
| /// Note: This function does not add the bitcast to the basic block, that is the |
| /// responsibility of the caller. |
| Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, |
| Type *IntPtrTy, Type *AllocTy, |
| Value *AllocSize, Value *ArraySize, |
| Function *MallocF, const Twine &Name) { |
| return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, |
| ArraySize, MallocF, Name); |
| } |
| |
| static Instruction* createFree(Value* Source, Instruction *InsertBefore, |
| BasicBlock *InsertAtEnd) { |
| assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && |
| "createFree needs either InsertBefore or InsertAtEnd"); |
| assert(Source->getType()->isPointerTy() && |
| "Can not free something of nonpointer type!"); |
| |
| BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; |
| Module* M = BB->getParent()->getParent(); |
| |
| Type *VoidTy = Type::getVoidTy(M->getContext()); |
| Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); |
| // prototype free as "void free(void*)" |
| Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL); |
| CallInst* Result = NULL; |
| Value *PtrCast = Source; |
| if (InsertBefore) { |
| if (Source->getType() != IntPtrTy) |
| PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); |
| Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); |
| } else { |
| if (Source->getType() != IntPtrTy) |
| PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); |
| Result = CallInst::Create(FreeFunc, PtrCast, ""); |
| } |
| Result->setTailCall(); |
| if (Function *F = dyn_cast<Function>(FreeFunc)) |
| Result->setCallingConv(F->getCallingConv()); |
| |
| return Result; |
| } |
| |
| /// CreateFree - Generate the IR for a call to the builtin free function. |
| Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { |
| return createFree(Source, InsertBefore, NULL); |
| } |
| |
| /// CreateFree - Generate the IR for a call to the builtin free function. |
| /// Note: This function does not add the call to the basic block, that is the |
| /// responsibility of the caller. |
| Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { |
| Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd); |
| assert(FreeCall && "CreateFree did not create a CallInst"); |
| return FreeCall; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // InvokeInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, |
| ArrayRef<Value *> Args, const Twine &NameStr) { |
| assert(NumOperands == 3 + Args.size() && "NumOperands not set up?"); |
| Op<-3>() = Fn; |
| Op<-2>() = IfNormal; |
| Op<-1>() = IfException; |
| |
| #ifndef NDEBUG |
| FunctionType *FTy = |
| cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()); |
| |
| assert(((Args.size() == FTy->getNumParams()) || |
| (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && |
| "Invoking a function with bad signature"); |
| |
| for (unsigned i = 0, e = Args.size(); i != e; i++) |
| assert((i >= FTy->getNumParams() || |
| FTy->getParamType(i) == Args[i]->getType()) && |
| "Invoking a function with a bad signature!"); |
| #endif |
| |
| std::copy(Args.begin(), Args.end(), op_begin()); |
| setName(NameStr); |
| } |
| |
| InvokeInst::InvokeInst(const InvokeInst &II) |
| : TerminatorInst(II.getType(), Instruction::Invoke, |
| OperandTraits<InvokeInst>::op_end(this) |
| - II.getNumOperands(), |
| II.getNumOperands()) { |
| setAttributes(II.getAttributes()); |
| setCallingConv(II.getCallingConv()); |
| std::copy(II.op_begin(), II.op_end(), op_begin()); |
| SubclassOptionalData = II.SubclassOptionalData; |
| } |
| |
| BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { |
| return getSuccessor(idx); |
| } |
| unsigned InvokeInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { |
| return setSuccessor(idx, B); |
| } |
| |
| bool InvokeInst::hasFnAttr(Attribute::AttrKind A) const { |
| if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) |
| return true; |
| if (const Function *F = getCalledFunction()) |
| return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); |
| return false; |
| } |
| |
| bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { |
| if (AttributeList.hasAttribute(i, A)) |
| return true; |
| if (const Function *F = getCalledFunction()) |
| return F->getAttributes().hasAttribute(i, A); |
| return false; |
| } |
| |
| void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addAttribute(getContext(), i, attr); |
| setAttributes(PAL); |
| } |
| |
| void InvokeInst::removeAttribute(unsigned i, Attribute attr) { |
| AttributeSet PAL = getAttributes(); |
| AttrBuilder B(attr); |
| PAL = PAL.removeAttributes(getContext(), i, |
| AttributeSet::get(getContext(), i, B)); |
| setAttributes(PAL); |
| } |
| |
| LandingPadInst *InvokeInst::getLandingPadInst() const { |
| return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReturnInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ReturnInst::ReturnInst(const ReturnInst &RI) |
| : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, |
| OperandTraits<ReturnInst>::op_end(this) - |
| RI.getNumOperands(), |
| RI.getNumOperands()) { |
| if (RI.getNumOperands()) |
| Op<0>() = RI.Op<0>(); |
| SubclassOptionalData = RI.SubclassOptionalData; |
| } |
| |
| ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, |
| OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, |
| InsertBefore) { |
| if (retVal) |
| Op<0>() = retVal; |
| } |
| ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, |
| OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, |
| InsertAtEnd) { |
| if (retVal) |
| Op<0>() = retVal; |
| } |
| ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, |
| OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { |
| } |
| |
| unsigned ReturnInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| |
| /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to |
| /// emit the vtable for the class in this translation unit. |
| void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { |
| llvm_unreachable("ReturnInst has no successors!"); |
| } |
| |
| BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { |
| llvm_unreachable("ReturnInst has no successors!"); |
| } |
| |
| ReturnInst::~ReturnInst() { |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ResumeInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ResumeInst::ResumeInst(const ResumeInst &RI) |
| : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, |
| OperandTraits<ResumeInst>::op_begin(this), 1) { |
| Op<0>() = RI.Op<0>(); |
| } |
| |
| ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, |
| OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { |
| Op<0>() = Exn; |
| } |
| |
| ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, |
| OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { |
| Op<0>() = Exn; |
| } |
| |
| unsigned ResumeInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| |
| void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { |
| llvm_unreachable("ResumeInst has no successors!"); |
| } |
| |
| BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { |
| llvm_unreachable("ResumeInst has no successors!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // UnreachableInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| UnreachableInst::UnreachableInst(LLVMContext &Context, |
| Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, |
| 0, 0, InsertBefore) { |
| } |
| UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, |
| 0, 0, InsertAtEnd) { |
| } |
| |
| unsigned UnreachableInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| |
| void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { |
| llvm_unreachable("UnreachableInst has no successors!"); |
| } |
| |
| BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { |
| llvm_unreachable("UnreachableInst has no successors!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BranchInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void BranchInst::AssertOK() { |
| if (isConditional()) |
| assert(getCondition()->getType()->isIntegerTy(1) && |
| "May only branch on boolean predicates!"); |
| } |
| |
| BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - 1, |
| 1, InsertBefore) { |
| assert(IfTrue != 0 && "Branch destination may not be null!"); |
| Op<-1>() = IfTrue; |
| } |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - 3, |
| 3, InsertBefore) { |
| Op<-1>() = IfTrue; |
| Op<-2>() = IfFalse; |
| Op<-3>() = Cond; |
| #ifndef NDEBUG |
| AssertOK(); |
| #endif |
| } |
| |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - 1, |
| 1, InsertAtEnd) { |
| assert(IfTrue != 0 && "Branch destination may not be null!"); |
| Op<-1>() = IfTrue; |
| } |
| |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - 3, |
| 3, InsertAtEnd) { |
| Op<-1>() = IfTrue; |
| Op<-2>() = IfFalse; |
| Op<-3>() = Cond; |
| #ifndef NDEBUG |
| AssertOK(); |
| #endif |
| } |
| |
| |
| BranchInst::BranchInst(const BranchInst &BI) : |
| TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), |
| BI.getNumOperands()) { |
| Op<-1>() = BI.Op<-1>(); |
| if (BI.getNumOperands() != 1) { |
| assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); |
| Op<-3>() = BI.Op<-3>(); |
| Op<-2>() = BI.Op<-2>(); |
| } |
| SubclassOptionalData = BI.SubclassOptionalData; |
| } |
| |
| void BranchInst::swapSuccessors() { |
| assert(isConditional() && |
| "Cannot swap successors of an unconditional branch"); |
| Op<-1>().swap(Op<-2>()); |
| |
| // Update profile metadata if present and it matches our structural |
| // expectations. |
| MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); |
| if (!ProfileData || ProfileData->getNumOperands() != 3) |
| return; |
| |
| // The first operand is the name. Fetch them backwards and build a new one. |
| Value *Ops[] = { |
| ProfileData->getOperand(0), |
| ProfileData->getOperand(2), |
| ProfileData->getOperand(1) |
| }; |
| setMetadata(LLVMContext::MD_prof, |
| MDNode::get(ProfileData->getContext(), Ops)); |
| } |
| |
| BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { |
| return getSuccessor(idx); |
| } |
| unsigned BranchInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { |
| setSuccessor(idx, B); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // AllocaInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static Value *getAISize(LLVMContext &Context, Value *Amt) { |
| if (!Amt) |
| Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); |
| else { |
| assert(!isa<BasicBlock>(Amt) && |
| "Passed basic block into allocation size parameter! Use other ctor"); |
| assert(Amt->getType()->isIntegerTy() && |
| "Allocation array size is not an integer!"); |
| } |
| return Amt; |
| } |
| |
| AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, |
| const Twine &Name, Instruction *InsertBefore) |
| : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, |
| getAISize(Ty->getContext(), ArraySize), InsertBefore) { |
| setAlignment(0); |
| assert(!Ty->isVoidTy() && "Cannot allocate void!"); |
| setName(Name); |
| } |
| |
| AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, |
| const Twine &Name, BasicBlock *InsertAtEnd) |
| : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, |
| getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { |
| setAlignment(0); |
| assert(!Ty->isVoidTy() && "Cannot allocate void!"); |
| setName(Name); |
| } |
| |
| AllocaInst::AllocaInst(Type *Ty, const Twine &Name, |
| Instruction *InsertBefore) |
| : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, |
| getAISize(Ty->getContext(), 0), InsertBefore) { |
| setAlignment(0); |
| assert(!Ty->isVoidTy() && "Cannot allocate void!"); |
| setName(Name); |
| } |
| |
| AllocaInst::AllocaInst(Type *Ty, const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, |
| getAISize(Ty->getContext(), 0), InsertAtEnd) { |
| setAlignment(0); |
| assert(!Ty->isVoidTy() && "Cannot allocate void!"); |
| setName(Name); |
| } |
| |
| AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, |
| const Twine &Name, Instruction *InsertBefore) |
| : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, |
| getAISize(Ty->getContext(), ArraySize), InsertBefore) { |
| setAlignment(Align); |
| assert(!Ty->isVoidTy() && "Cannot allocate void!"); |
| setName(Name); |
| } |
| |
| AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, |
| const Twine &Name, BasicBlock *InsertAtEnd) |
| : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, |
| getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { |
| setAlignment(Align); |
| assert(!Ty->isVoidTy() && "Cannot allocate void!"); |
| setName(Name); |
| } |
| |
| // Out of line virtual method, so the vtable, etc has a home. |
| AllocaInst::~AllocaInst() { |
| } |
| |
| void AllocaInst::setAlignment(unsigned Align) { |
| assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); |
| assert(Align <= MaximumAlignment && |
| "Alignment is greater than MaximumAlignment!"); |
| setInstructionSubclassData(Log2_32(Align) + 1); |
| assert(getAlignment() == Align && "Alignment representation error!"); |
| } |
| |
| bool AllocaInst::isArrayAllocation() const { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) |
| return !CI->isOne(); |
| return true; |
| } |
| |
| Type *AllocaInst::getAllocatedType() const { |
| return getType()->getElementType(); |
| } |
| |
| /// isStaticAlloca - Return true if this alloca is in the entry block of the |
| /// function and is a constant size. If so, the code generator will fold it |
| /// into the prolog/epilog code, so it is basically free. |
| bool AllocaInst::isStaticAlloca() const { |
| // Must be constant size. |
| if (!isa<ConstantInt>(getArraySize())) return false; |
| |
| // Must be in the entry block. |
| const BasicBlock *Parent = getParent(); |
| return Parent == &Parent->getParent()->front(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoadInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void LoadInst::AssertOK() { |
| assert(getOperand(0)->getType()->isPointerTy() && |
| "Ptr must have pointer type."); |
| assert(!(isAtomic() && getAlignment() == 0) && |
| "Alignment required for atomic load"); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertBef) { |
| setVolatile(false); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(false); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| Instruction *InsertBef) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertBef) { |
| setVolatile(isVolatile); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(isVolatile); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| unsigned Align, Instruction *InsertBef) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertBef) { |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| unsigned Align, BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| unsigned Align, AtomicOrdering Order, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBef) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertBef) { |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(Order, SynchScope); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| unsigned Align, AtomicOrdering Order, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(Order, SynchScope); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertBef) { |
| setVolatile(false); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| if (Name && Name[0]) setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(false); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| if (Name && Name[0]) setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, |
| Instruction *InsertBef) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertBef) { |
| setVolatile(isVolatile); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| if (Name && Name[0]) setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, |
| BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(isVolatile); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| if (Name && Name[0]) setName(Name); |
| } |
| |
| void LoadInst::setAlignment(unsigned Align) { |
| assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); |
| assert(Align <= MaximumAlignment && |
| "Alignment is greater than MaximumAlignment!"); |
| setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | |
| ((Log2_32(Align)+1)<<1)); |
| assert(getAlignment() == Align && "Alignment representation error!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // StoreInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void StoreInst::AssertOK() { |
| assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); |
| assert(getOperand(1)->getType()->isPointerTy() && |
| "Ptr must have pointer type!"); |
| assert(getOperand(0)->getType() == |
| cast<PointerType>(getOperand(1)->getType())->getElementType() |
| && "Ptr must be a pointer to Val type!"); |
| assert(!(isAtomic() && getAlignment() == 0) && |
| "Alignment required for atomic load"); |
| } |
| |
| |
| StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertBefore) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(false); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertAtEnd) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(false); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| Instruction *InsertBefore) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertBefore) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(isVolatile); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| unsigned Align, Instruction *InsertBefore) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertBefore) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| unsigned Align, AtomicOrdering Order, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBefore) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertBefore) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(Order, SynchScope); |
| AssertOK(); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertAtEnd) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(isVolatile); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| unsigned Align, BasicBlock *InsertAtEnd) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertAtEnd) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| unsigned Align, AtomicOrdering Order, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertAtEnd) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(Order, SynchScope); |
| AssertOK(); |
| } |
| |
| void StoreInst::setAlignment(unsigned Align) { |
| assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); |
| assert(Align <= MaximumAlignment && |
| "Alignment is greater than MaximumAlignment!"); |
| setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | |
| ((Log2_32(Align)+1) << 1)); |
| assert(getAlignment() == Align && "Alignment representation error!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AtomicCmpXchgInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| Op<0>() = Ptr; |
| Op<1>() = Cmp; |
| Op<2>() = NewVal; |
| setOrdering(Ordering); |
| setSynchScope(SynchScope); |
| |
| assert(getOperand(0) && getOperand(1) && getOperand(2) && |
| "All operands must be non-null!"); |
| assert(getOperand(0)->getType()->isPointerTy() && |
| "Ptr must have pointer type!"); |
| assert(getOperand(1)->getType() == |
| cast<PointerType>(getOperand(0)->getType())->getElementType() |
| && "Ptr must be a pointer to Cmp type!"); |
| assert(getOperand(2)->getType() == |
| cast<PointerType>(getOperand(0)->getType())->getElementType() |
| && "Ptr must be a pointer to NewVal type!"); |
| assert(Ordering != NotAtomic && |
| "AtomicCmpXchg instructions must be atomic!"); |
| } |
| |
| AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBefore) |
| : Instruction(Cmp->getType(), AtomicCmpXchg, |
| OperandTraits<AtomicCmpXchgInst>::op_begin(this), |
| OperandTraits<AtomicCmpXchgInst>::operands(this), |
| InsertBefore) { |
| Init(Ptr, Cmp, NewVal, Ordering, SynchScope); |
| } |
| |
| AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Cmp->getType(), AtomicCmpXchg, |
| OperandTraits<AtomicCmpXchgInst>::op_begin(this), |
| OperandTraits<AtomicCmpXchgInst>::operands(this), |
| InsertAtEnd) { |
| Init(Ptr, Cmp, NewVal, Ordering, SynchScope); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AtomicRMWInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| Op<0>() = Ptr; |
| Op<1>() = Val; |
| setOperation(Operation); |
| setOrdering(Ordering); |
| setSynchScope(SynchScope); |
| |
| assert(getOperand(0) && getOperand(1) && |
| "All operands must be non-null!"); |
| assert(getOperand(0)->getType()->isPointerTy() && |
| "Ptr must have pointer type!"); |
| assert(getOperand(1)->getType() == |
| cast<PointerType>(getOperand(0)->getType())->getElementType() |
| && "Ptr must be a pointer to Val type!"); |
| assert(Ordering != NotAtomic && |
| "AtomicRMW instructions must be atomic!"); |
| } |
| |
| AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBefore) |
| : Instruction(Val->getType(), AtomicRMW, |
| OperandTraits<AtomicRMWInst>::op_begin(this), |
| OperandTraits<AtomicRMWInst>::operands(this), |
| InsertBefore) { |
| Init(Operation, Ptr, Val, Ordering, SynchScope); |
| } |
| |
| AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Val->getType(), AtomicRMW, |
| OperandTraits<AtomicRMWInst>::op_begin(this), |
| OperandTraits<AtomicRMWInst>::operands(this), |
| InsertAtEnd) { |
| Init(Operation, Ptr, Val, Ordering, SynchScope); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FenceInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBefore) |
| : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) { |
| setOrdering(Ordering); |
| setSynchScope(SynchScope); |
| } |
| |
| FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) { |
| setOrdering(Ordering); |
| setSynchScope(SynchScope); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GetElementPtrInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, |
| const Twine &Name) { |
| assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?"); |
| OperandList[0] = Ptr; |
| std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); |
| setName(Name); |
| } |
| |
| GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) |
| : Instruction(GEPI.getType(), GetElementPtr, |
| OperandTraits<GetElementPtrInst>::op_end(this) |
| - GEPI.getNumOperands(), |
| GEPI.getNumOperands()) { |
| std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); |
| SubclassOptionalData = GEPI.SubclassOptionalData; |
| } |
| |
| /// getIndexedType - Returns the type of the element that would be accessed with |
| /// a gep instruction with the specified parameters. |
| /// |
| /// The Idxs pointer should point to a continuous piece of memory containing the |
| /// indices, either as Value* or uint64_t. |
| /// |
| /// A null type is returned if the indices are invalid for the specified |
| /// pointer type. |
| /// |
| template <typename IndexTy> |
| static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) { |
| PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType()); |
| if (!PTy) return 0; // Type isn't a pointer type! |
| Type *Agg = PTy->getElementType(); |
| |
| // Handle the special case of the empty set index set, which is always valid. |
| if (IdxList.empty()) |
| return Agg; |
| |
| // If there is at least one index, the top level type must be sized, otherwise |
| // it cannot be 'stepped over'. |
| if (!Agg->isSized()) |
| return 0; |
| |
| unsigned CurIdx = 1; |
| for (; CurIdx != IdxList.size(); ++CurIdx) { |
| CompositeType *CT = dyn_cast<CompositeType>(Agg); |
| if (!CT || CT->isPointerTy()) return 0; |
| IndexTy Index = IdxList[CurIdx]; |
| if (!CT->indexValid(Index)) return 0; |
| Agg = CT->getTypeAtIndex(Index); |
| } |
| return CurIdx == IdxList.size() ? Agg : 0; |
| } |
| |
| Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) { |
| return getIndexedTypeInternal(Ptr, IdxList); |
| } |
| |
| Type *GetElementPtrInst::getIndexedType(Type *Ptr, |
| ArrayRef<Constant *> IdxList) { |
| return getIndexedTypeInternal(Ptr, IdxList); |
| } |
| |
| Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) { |
| return getIndexedTypeInternal(Ptr, IdxList); |
| } |
| |
| /// hasAllZeroIndices - Return true if all of the indices of this GEP are |
| /// zeros. If so, the result pointer and the first operand have the same |
| /// value, just potentially different types. |
| bool GetElementPtrInst::hasAllZeroIndices() const { |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { |
| if (!CI->isZero()) return false; |
| } else { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// hasAllConstantIndices - Return true if all of the indices of this GEP are |
| /// constant integers. If so, the result pointer and the first operand have |
| /// a constant offset between them. |
| bool GetElementPtrInst::hasAllConstantIndices() const { |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| if (!isa<ConstantInt>(getOperand(i))) |
| return false; |
| } |
| return true; |
| } |
| |
| void GetElementPtrInst::setIsInBounds(bool B) { |
| cast<GEPOperator>(this)->setIsInBounds(B); |
| } |
| |
| bool GetElementPtrInst::isInBounds() const { |
| return cast<GEPOperator>(this)->isInBounds(); |
| } |
| |
| bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, |
| APInt &Offset) const { |
| // Delegate to the generic GEPOperator implementation. |
| return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExtractElementInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, |
| const Twine &Name, |
| Instruction *InsertBef) |
| : Instruction(cast<VectorType>(Val->getType())->getElementType(), |
| ExtractElement, |
| OperandTraits<ExtractElementInst>::op_begin(this), |
| 2, InsertBef) { |
| assert(isValidOperands(Val, Index) && |
| "Invalid extractelement instruction operands!"); |
| Op<0>() = Val; |
| Op<1>() = Index; |
| setName(Name); |
| } |
| |
| ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, |
| const Twine &Name, |
| BasicBlock *InsertAE) |
| : Instruction(cast<VectorType>(Val->getType())->getElementType(), |
| ExtractElement, |
| OperandTraits<ExtractElementInst>::op_begin(this), |
| 2, InsertAE) { |
| assert(isValidOperands(Val, Index) && |
| "Invalid extractelement instruction operands!"); |
| |
| Op<0>() = Val; |
| Op<1>() = Index; |
| setName(Name); |
| } |
| |
| |
| bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { |
| if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32)) |
| return false; |
| return true; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // InsertElementInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, |
| const Twine &Name, |
| Instruction *InsertBef) |
| : Instruction(Vec->getType(), InsertElement, |
| OperandTraits<InsertElementInst>::op_begin(this), |
| 3, InsertBef) { |
| assert(isValidOperands(Vec, Elt, Index) && |
| "Invalid insertelement instruction operands!"); |
| Op<0>() = Vec; |
| Op<1>() = Elt; |
| Op<2>() = Index; |
| setName(Name); |
| } |
| |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, |
| const Twine &Name, |
| BasicBlock *InsertAE) |
| : Instruction(Vec->getType(), InsertElement, |
| OperandTraits<InsertElementInst>::op_begin(this), |
| 3, InsertAE) { |
| assert(isValidOperands(Vec, Elt, Index) && |
| "Invalid insertelement instruction operands!"); |
| |
| Op<0>() = Vec; |
| Op<1>() = Elt; |
| Op<2>() = Index; |
| setName(Name); |
| } |
| |
| bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, |
| const Value *Index) { |
| if (!Vec->getType()->isVectorTy()) |
| return false; // First operand of insertelement must be vector type. |
| |
| if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) |
| return false;// Second operand of insertelement must be vector element type. |
| |
| if (!Index->getType()->isIntegerTy(32)) |
| return false; // Third operand of insertelement must be i32. |
| return true; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ShuffleVectorInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| const Twine &Name, |
| Instruction *InsertBefore) |
| : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), |
| cast<VectorType>(Mask->getType())->getNumElements()), |
| ShuffleVector, |
| OperandTraits<ShuffleVectorInst>::op_begin(this), |
| OperandTraits<ShuffleVectorInst>::operands(this), |
| InsertBefore) { |
| assert(isValidOperands(V1, V2, Mask) && |
| "Invalid shuffle vector instruction operands!"); |
| Op<0>() = V1; |
| Op<1>() = V2; |
| Op<2>() = Mask; |
| setName(Name); |
| } |
| |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), |
| cast<VectorType>(Mask->getType())->getNumElements()), |
| ShuffleVector, |
| OperandTraits<ShuffleVectorInst>::op_begin(this), |
| OperandTraits<ShuffleVectorInst>::operands(this), |
| InsertAtEnd) { |
| assert(isValidOperands(V1, V2, Mask) && |
| "Invalid shuffle vector instruction operands!"); |
| |
| Op<0>() = V1; |
| Op<1>() = V2; |
| Op<2>() = Mask; |
| setName(Name); |
| } |
| |
| bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, |
| const Value *Mask) { |
| // V1 and V2 must be vectors of the same type. |
| if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) |
| return false; |
| |
| // Mask must be vector of i32. |
| VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); |
| if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32)) |
| return false; |
| |
| // Check to see if Mask is valid. |
| if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) |
| return true; |
| |
| if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { |
| unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); |
| for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { |
| if (CI->uge(V1Size*2)) |
| return false; |
| } else if (!isa<UndefValue>(MV->getOperand(i))) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| if (const ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(Mask)) { |
| unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); |
| for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) |
| if (CDS->getElementAsInteger(i) >= V1Size*2) |
| return false; |
| return true; |
| } |
| |
| // The bitcode reader can create a place holder for a forward reference |
| // used as the shuffle mask. When this occurs, the shuffle mask will |
| // fall into this case and fail. To avoid this error, do this bit of |
| // ugliness to allow such a mask pass. |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) |
| if (CE->getOpcode() == Instruction::UserOp1) |
| return true; |
| |
| return false; |
| } |
| |
| /// getMaskValue - Return the index from the shuffle mask for the specified |
| /// output result. This is either -1 if the element is undef or a number less |
| /// than 2*numelements. |
| int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { |
| assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); |
| if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) |
| return CDS->getElementAsInteger(i); |
| Constant *C = Mask->getAggregateElement(i); |
| if (isa<UndefValue>(C)) |
| return -1; |
| return cast<ConstantInt>(C)->getZExtValue(); |
| } |
| |
| /// getShuffleMask - Return the full mask for this instruction, where each |
| /// element is the element number and undef's are returned as -1. |
| void ShuffleVectorInst::getShuffleMask(Constant *Mask, |
| SmallVectorImpl<int> &Result) { |
| unsigned NumElts = Mask->getType()->getVectorNumElements(); |
| |
| if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { |
| for (unsigned i = 0; i != NumElts; ++i) |
| Result.push_back(CDS->getElementAsInteger(i)); |
| return; |
| } |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *C = Mask->getAggregateElement(i); |
| Result.push_back(isa<UndefValue>(C) ? -1 : |
| cast<ConstantInt>(C)->getZExtValue()); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // InsertValueInst Class |
| //===----------------------------------------------------------------------===// |
| |
| void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| const Twine &Name) { |
| assert(NumOperands == 2 && "NumOperands not initialized?"); |
| |
| // There's no fundamental reason why we require at least one index |
| // (other than weirdness with &*IdxBegin being invalid; see |
| // getelementptr's init routine for example). But there's no |
| // present need to support it. |
| assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); |
| |
| assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == |
| Val->getType() && "Inserted value must match indexed type!"); |
| Op<0>() = Agg; |
| Op<1>() = Val; |
| |
| Indices.append(Idxs.begin(), Idxs.end()); |
| setName(Name); |
| } |
| |
| InsertValueInst::InsertValueInst(const InsertValueInst &IVI) |
| : Instruction(IVI.getType(), InsertValue, |
| OperandTraits<InsertValueInst>::op_begin(this), 2), |
| Indices(IVI.Indices) { |
| Op<0>() = IVI.getOperand(0); |
| Op<1>() = IVI.getOperand(1); |
| SubclassOptionalData = IVI.SubclassOptionalData; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExtractValueInst Class |
| //===----------------------------------------------------------------------===// |
| |
| void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { |
| assert(NumOperands == 1 && "NumOperands not initialized?"); |
| |
| // There's no fundamental reason why we require at least one index. |
| // But there's no present need to support it. |
| assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); |
| |
| Indices.append(Idxs.begin(), Idxs.end()); |
| setName(Name); |
| } |
| |
| ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) |
| : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), |
| Indices(EVI.Indices) { |
| SubclassOptionalData = EVI.SubclassOptionalData; |
| } |
| |
| // getIndexedType - Returns the type of the element that would be extracted |
| // with an extractvalue instruction with the specified parameters. |
| // |
| // A null type is returned if the indices are invalid for the specified |
| // pointer type. |
| // |
| Type *ExtractValueInst::getIndexedType(Type *Agg, |
| ArrayRef<unsigned> Idxs) { |
| for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) { |
| unsigned Index = Idxs[CurIdx]; |
| // We can't use CompositeType::indexValid(Index) here. |
| // indexValid() always returns true for arrays because getelementptr allows |
| // out-of-bounds indices. Since we don't allow those for extractvalue and |
| // insertvalue we need to check array indexing manually. |
| // Since the only other types we can index into are struct types it's just |
| // as easy to check those manually as well. |
| if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { |
| if (Index >= AT->getNumElements()) |
| return 0; |
| } else if (StructType *ST = dyn_cast<StructType>(Agg)) { |
| if (Index >= ST->getNumElements()) |
| return 0; |
| } else { |
| // Not a valid type to index into. |
| return 0; |
| } |
| |
| Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); |
| } |
| return const_cast<Type*>(Agg); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BinaryOperator Class |
| //===----------------------------------------------------------------------===// |
| |
| BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, |
| Type *Ty, const Twine &Name, |
| Instruction *InsertBefore) |
| : Instruction(Ty, iType, |
| OperandTraits<BinaryOperator>::op_begin(this), |
| OperandTraits<BinaryOperator>::operands(this), |
| InsertBefore) { |
| Op<0>() = S1; |
| Op<1>() = S2; |
| init(iType); |
| setName(Name); |
| } |
| |
| BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, |
| Type *Ty, const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Ty, iType, |
| OperandTraits<BinaryOperator>::op_begin(this), |
| OperandTraits<BinaryOperator>::operands(this), |
| InsertAtEnd) { |
| Op<0>() = S1; |
| Op<1>() = S2; |
| init(iType); |
| setName(Name); |
| } |
| |
| |
| void BinaryOperator::init(BinaryOps iType) { |
| Value *LHS = getOperand(0), *RHS = getOperand(1); |
| (void)LHS; (void)RHS; // Silence warnings. |
| assert(LHS->getType() == RHS->getType() && |
| "Binary operator operand types must match!"); |
| #ifndef NDEBUG |
| switch (iType) { |
| case Add: case Sub: |
| case Mul: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert(getType()->isIntOrIntVectorTy() && |
| "Tried to create an integer operation on a non-integer type!"); |
| break; |
| case FAdd: case FSub: |
| case FMul: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert(getType()->isFPOrFPVectorTy() && |
| "Tried to create a floating-point operation on a " |
| "non-floating-point type!"); |
| break; |
| case UDiv: |
| case SDiv: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert((getType()->isIntegerTy() || (getType()->isVectorTy() && |
| cast<VectorType>(getType())->getElementType()->isIntegerTy())) && |
| "Incorrect operand type (not integer) for S/UDIV"); |
| break; |
| case FDiv: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert(getType()->isFPOrFPVectorTy() && |
| "Incorrect operand type (not floating point) for FDIV"); |
| break; |
| case URem: |
| case SRem: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert((getType()->isIntegerTy() || (getType()->isVectorTy() && |
| cast<VectorType>(getType())->getElementType()->isIntegerTy())) && |
| "Incorrect operand type (not integer) for S/UREM"); |
| break; |
| case FRem: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert(getType()->isFPOrFPVectorTy() && |
| "Incorrect operand type (not floating point) for FREM"); |
| break; |
| case Shl: |
| case LShr: |
| case AShr: |
| assert(getType() == LHS->getType() && |
| "Shift operation should return same type as operands!"); |
| assert((getType()->isIntegerTy() || |
| (getType()->isVectorTy() && |
| cast<VectorType>(getType())->getElementType()->isIntegerTy())) && |
| "Tried to create a shift operation on a non-integral type!"); |
| break; |
| case And: case Or: |
| case Xor: |
| assert(getType() == LHS->getType() && |
| "Logical operation should return same type as operands!"); |
| assert((getType()->isIntegerTy() || |
| (getType()->isVectorTy() && |
| cast<VectorType>(getType())->getElementType()->isIntegerTy())) && |
| "Tried to create a logical operation on a non-integral type!"); |
| break; |
| default: |
| break; |
| } |
| #endif |
| } |
| |
| BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, |
| const Twine &Name, |
| Instruction *InsertBefore) { |
| assert(S1->getType() == S2->getType() && |
| "Cannot create binary operator with two operands of differing type!"); |
| return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| BinaryOperator *Res = Create(Op, S1, S2, Name); |
| InsertAtEnd->getInstList().push_back(Res); |
| return Res; |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return new BinaryOperator(Instruction::Sub, |
| zero, Op, |
| Op->getType(), Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return new BinaryOperator(Instruction::Sub, |
| zero, Op, |
| Op->getType(), Name, InsertAtEnd); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return new BinaryOperator(Instruction::FSub, zero, Op, |
| Op->getType(), Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return new BinaryOperator(Instruction::FSub, zero, Op, |
| Op->getType(), Name, InsertAtEnd); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Constant *C = Constant::getAllOnesValue(Op->getType()); |
| return new BinaryOperator(Instruction::Xor, Op, C, |
| Op->getType(), Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); |
| return new BinaryOperator(Instruction::Xor, Op, AllOnes, |
| Op->getType(), Name, InsertAtEnd); |
| } |
| |
| |
| // isConstantAllOnes - Helper function for several functions below |
| static inline bool isConstantAllOnes(const Value *V) { |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| return C->isAllOnesValue(); |
| return false; |
| } |
| |
| bool BinaryOperator::isNeg(const Value *V) { |
| if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) |
| if (Bop->getOpcode() == Instruction::Sub) |
| if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) |
| return C->isNegativeZeroValue(); |
| return false; |
| } |
| |
| bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { |
| if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) |
| if (Bop->getOpcode() == Instruction::FSub) |
| if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) { |
| if (!IgnoreZeroSign) |
| IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); |
| return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); |
| } |
| return false; |
| } |
| |
| bool BinaryOperator::isNot(const Value *V) { |
| if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) |
| return (Bop->getOpcode() == Instruction::Xor && |
| (isConstantAllOnes(Bop->getOperand(1)) || |
| isConstantAllOnes(Bop->getOperand(0)))); |
| return false; |
| } |
| |
| Value *BinaryOperator::getNegArgument(Value *BinOp) { |
| return cast<BinaryOperator>(BinOp)->getOperand(1); |
| } |
| |
| const Value *BinaryOperator::getNegArgument(const Value *BinOp) { |
| return getNegArgument(const_cast<Value*>(BinOp)); |
| } |
| |
| Value *BinaryOperator::getFNegArgument(Value *BinOp) { |
| return cast<BinaryOperator>(BinOp)->getOperand(1); |
| } |
| |
| const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { |
| return getFNegArgument(const_cast<Value*>(BinOp)); |
| } |
| |
| Value *BinaryOperator::getNotArgument(Value *BinOp) { |
| assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); |
| BinaryOperator *BO = cast<BinaryOperator>(BinOp); |
| Value *Op0 = BO->getOperand(0); |
| Value *Op1 = BO->getOperand(1); |
| if (isConstantAllOnes(Op0)) return Op1; |
| |
| assert(isConstantAllOnes(Op1)); |
| return Op0; |
| } |
| |
| const Value *BinaryOperator::getNotArgument(const Value *BinOp) { |
| return getNotArgument(const_cast<Value*>(BinOp)); |
| } |
| |
| |
| // swapOperands - Exchange the two operands to this instruction. This |
| // instruction is safe to use on any binary instruction and does not |
| // modify the semantics of the instruction. If the instruction is |
| // order dependent (SetLT f.e.) the opcode is changed. |
| // |
| bool BinaryOperator::swapOperands() { |
| if (!isCommutative()) |
| return true; // Can't commute operands |
| Op<0>().swap(Op<1>()); |
| return false; |
| } |
| |
| void BinaryOperator::setHasNoUnsignedWrap(bool b) { |
| cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); |
| } |
| |
| void BinaryOperator::setHasNoSignedWrap(bool b) { |
| cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); |
| } |
| |
| void BinaryOperator::setIsExact(bool b) { |
| cast<PossiblyExactOperator>(this)->setIsExact(b); |
| } |
| |
| bool BinaryOperator::hasNoUnsignedWrap() const { |
| return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); |
| } |
| |
| bool BinaryOperator::hasNoSignedWrap() const { |
| return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); |
| } |
| |
| bool BinaryOperator::isExact() const { |
| return cast<PossiblyExactOperator>(this)->isExact(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FPMathOperator Class |
| //===----------------------------------------------------------------------===// |
| |
| /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. |
| /// An accuracy of 0.0 means that the operation should be performed with the |
| /// default precision. |
| float FPMathOperator::getFPAccuracy() const { |
| const MDNode *MD = |
| cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); |
| if (!MD) |
| return 0.0; |
| ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0)); |
| return Accuracy->getValueAPF().convertToFloat(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // CastInst Class |
| //===----------------------------------------------------------------------===// |
| |
| void CastInst::anchor() {} |
| |
| // Just determine if this cast only deals with integral->integral conversion. |
| bool CastInst::isIntegerCast() const { |
| switch (getOpcode()) { |
| default: return false; |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::Trunc: |
| return true; |
| case Instruction::BitCast: |
| return getOperand(0)->getType()->isIntegerTy() && |
| getType()->isIntegerTy(); |
| } |
| } |
| |
| bool CastInst::isLosslessCast() const { |
| // Only BitCast can be lossless, exit fast if we're not BitCast |
| if (getOpcode() != Instruction::BitCast) |
| return false; |
| |
| // Identity cast is always lossless |
| Type* SrcTy = getOperand(0)->getType(); |
| Type* DstTy = getType(); |
| if (SrcTy == DstTy) |
| return true; |
| |
| // Pointer to pointer is always lossless. |
| if (SrcTy->isPointerTy()) |
| return DstTy->isPointerTy(); |
| return false; // Other types have no identity values |
| } |
| |
| /// This function determines if the CastInst does not require any bits to be |
| /// changed in order to effect the cast. Essentially, it identifies cases where |
| /// no code gen is necessary for the cast, hence the name no-op cast. For |
| /// example, the following are all no-op casts: |
| /// # bitcast i32* %x to i8* |
| /// # bitcast <2 x i32> %x to <4 x i16> |
| /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only |
| /// @brief Determine if the described cast is a no-op. |
| bool CastInst::isNoopCast(Instruction::CastOps Opcode, |
| Type *SrcTy, |
| Type *DestTy, |
| Type *IntPtrTy) { |
| switch (Opcode) { |
| default: llvm_unreachable("Invalid CastOp"); |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| return false; // These always modify bits |
| case Instruction::BitCast: |
| return true; // BitCast never modifies bits. |
| case Instruction::PtrToInt: |
| return IntPtrTy->getScalarSizeInBits() == |
| DestTy->getScalarSizeInBits(); |
| case Instruction::IntToPtr: |
| return IntPtrTy->getScalarSizeInBits() == |
| SrcTy->getScalarSizeInBits(); |
| } |
| } |
| |
| /// @brief Determine if a cast is a no-op. |
| bool CastInst::isNoopCast(Type *IntPtrTy) const { |
| return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); |
| } |
| |
| /// This function determines if a pair of casts can be eliminated and what |
| /// opcode should be used in the elimination. This assumes that there are two |
| /// instructions like this: |
| /// * %F = firstOpcode SrcTy %x to MidTy |
| /// * %S = secondOpcode MidTy %F to DstTy |
| /// The function returns a resultOpcode so these two casts can be replaced with: |
| /// * %Replacement = resultOpcode %SrcTy %x to DstTy |
| /// If no such cast is permited, the function returns 0. |
| unsigned CastInst::isEliminableCastPair( |
| Instruction::CastOps firstOp, Instruction::CastOps secondOp, |
| Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, |
| Type *DstIntPtrTy) { |
| // Define the 144 possibilities for these two cast instructions. The values |
| // in this matrix determine what to do in a given situation and select the |
| // case in the switch below. The rows correspond to firstOp, the columns |
| // correspond to secondOp. In looking at the table below, keep in mind |
| // the following cast properties: |
| // |
| // Size Compare Source Destination |
| // Operator Src ? Size Type Sign Type Sign |
| // -------- ------------ ------------------- --------------------- |
| // TRUNC > Integer Any Integral Any |
| // ZEXT < Integral Unsigned Integer Any |
| // SEXT < Integral Signed Integer Any |
| // FPTOUI n/a FloatPt n/a Integral Unsigned |
| // FPTOSI n/a FloatPt n/a Integral Signed |
| // UITOFP n/a Integral Unsigned FloatPt n/a |
| // SITOFP n/a Integral Signed FloatPt n/a |
| // FPTRUNC > FloatPt n/a FloatPt n/a |
| // FPEXT < FloatPt n/a FloatPt n/a |
| // PTRTOINT n/a Pointer n/a Integral Unsigned |
| // INTTOPTR n/a Integral Unsigned Pointer n/a |
| // BITCAST = FirstClass n/a FirstClass n/a |
| // |
| // NOTE: some transforms are safe, but we consider them to be non-profitable. |
| // For example, we could merge "fptoui double to i32" + "zext i32 to i64", |
| // into "fptoui double to i64", but this loses information about the range |
| // of the produced value (we no longer know the top-part is all zeros). |
| // Further this conversion is often much more expensive for typical hardware, |
| // and causes issues when building libgcc. We disallow fptosi+sext for the |
| // same reason. |
| const unsigned numCastOps = |
| Instruction::CastOpsEnd - Instruction::CastOpsBegin; |
| static const uint8_t CastResults[numCastOps][numCastOps] = { |
| // T F F U S F F P I B -+ |
| // R Z S P P I I T P 2 N T | |
| // U E E 2 2 2 2 R E I T C +- secondOp |
| // N X X U S F F N X N 2 V | |
| // C T T I I P P C T T P T -+ |
| { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+ |
| { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt | |
| { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt | |
| { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI | |
| { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI | |
| { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp |
| { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP | |
| { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc | |
| { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt | |
| { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt | |
| { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr | |
| { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+ |
| }; |
| |
| // If either of the casts are a bitcast from scalar to vector, disallow the |
| // merging. However, bitcast of A->B->A are allowed. |
| bool isFirstBitcast = (firstOp == Instruction::BitCast); |
| bool isSecondBitcast = (secondOp == Instruction::BitCast); |
| bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast); |
| |
| // Check if any of the bitcasts convert scalars<->vectors. |
| if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || |
| (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) |
| // Unless we are bitcasing to the original type, disallow optimizations. |
| if (!chainedBitcast) return 0; |
| |
| int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] |
| [secondOp-Instruction::CastOpsBegin]; |
| switch (ElimCase) { |
| case 0: |
| // categorically disallowed |
| return 0; |
| case 1: |
| // allowed, use first cast's opcode |
| return firstOp; |
| case 2: |
| // allowed, use second cast's opcode |
| return secondOp; |
| case 3: |
| // no-op cast in second op implies firstOp as long as the DestTy |
| // is integer and we are not converting between a vector and a |
| // non vector type. |
| if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) |
| return firstOp; |
| return 0; |
| case 4: |
| // no-op cast in second op implies firstOp as long as the DestTy |
| // is floating point. |
| if (DstTy->isFloatingPointTy()) |
| return firstOp; |
| return 0; |
| case 5: |
| // no-op cast in first op implies secondOp as long as the SrcTy |
| // is an integer. |
| if (SrcTy->isIntegerTy()) |
| return secondOp; |
| return 0; |
| case 6: |
| // no-op cast in first op implies secondOp as long as the SrcTy |
| // is a floating point. |
| if (SrcTy->isFloatingPointTy()) |
| return secondOp; |
| return 0; |
| case 7: { |
| // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size |
| if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) |
| return 0; |
| unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); |
| unsigned MidSize = MidTy->getScalarSizeInBits(); |
| if (MidSize >= PtrSize) |
| return Instruction::BitCast; |
| return 0; |
| } |
| case 8: { |
| // ext, trunc -> bitcast, if the SrcTy and DstTy are same size |
| // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) |
| // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) |
| unsigned SrcSize = SrcTy->getScalarSizeInBits(); |
| unsigned DstSize = DstTy->getScalarSizeInBits(); |
| if (SrcSize == DstSize) |
| return Instruction::BitCast; |
| else if (SrcSize < DstSize) |
| return firstOp; |
| return secondOp; |
| } |
| case 9: // zext, sext -> zext, because sext can't sign extend after zext |
| return Instruction::ZExt; |
| case 10: |
| // fpext followed by ftrunc is allowed if the bit size returned to is |
| // the same as the original, in which case its just a bitcast |
| if (SrcTy == DstTy) |
| return Instruction::BitCast; |
| return 0; // If the types are not the same we can't eliminate it. |
| case 11: |
| // bitcast followed by ptrtoint is allowed as long as the bitcast |
| // is a pointer to pointer cast. |
| if (SrcTy->isPointerTy() && MidTy->isPointerTy()) |
| return secondOp; |
| return 0; |
| case 12: |
| // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast |
| if (MidTy->isPointerTy() && DstTy->isPointerTy()) |
| return firstOp; |
| return 0; |
| case 13: { |
| // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize |
| if (!MidIntPtrTy) |
| return 0; |
| unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); |
| unsigned SrcSize = SrcTy->getScalarSizeInBits(); |
| unsigned DstSize = DstTy->getScalarSizeInBits(); |
| if (SrcSize <= PtrSize && SrcSize == DstSize) |
| return Instruction::BitCast; |
| return 0; |
| } |
| case 99: |
| // cast combination can't happen (error in input). This is for all cases |
| // where the MidTy is not the same for the two cast instructions. |
| llvm_unreachable("Invalid Cast Combination"); |
| default: |
| llvm_unreachable("Error in CastResults table!!!"); |
| } |
| } |
| |
| CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, |
| const Twine &Name, Instruction *InsertBefore) { |
| assert(castIsValid(op, S, Ty) && "Invalid cast!"); |
| // Construct and return the appropriate CastInst subclass |
| switch (op) { |
| case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); |
| case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); |
| case SExt: return new SExtInst (S, Ty, Name, InsertBefore); |
| case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); |
| case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); |
| case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); |
| case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); |
| case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); |
| case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); |
| case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); |
| case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); |
| case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); |
| default: llvm_unreachable("Invalid opcode provided"); |
| } |
| } |
| |
| CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, |
| const Twine &Name, BasicBlock *InsertAtEnd) { |
| assert(castIsValid(op, S, Ty) && "Invalid cast!"); |
| // Construct and return the appropriate CastInst subclass |
| switch (op) { |
| case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); |
| case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); |
| case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); |
| case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); |
| case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); |
| case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); |
| case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); |
| case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); |
| case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); |
| case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); |
| case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); |
| case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); |
| default: llvm_unreachable("Invalid opcode provided"); |
| } |
| } |
| |
| CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, |
| const Twine &Name, |
| Instruction *InsertBefore) { |
| if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); |
| return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); |
| } |
| |
| CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); |
| return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); |
| } |
| |
| CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, |
| const Twine &Name, |
| Instruction *InsertBefore) { |
| if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); |
| return Create(Instruction::SExt, S, Ty, Name, InsertBefore); |
| } |
| |
| CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); |
| return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); |
| } |
| |
| CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, |
| const Twine &Name, |
| Instruction *InsertBefore) { |
| if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); |
| return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); |
| } |
| |
| CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); |
| return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); |
| } |
| |
| CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| assert(S->getType()->isPointerTy() && "Invalid cast"); |
| assert((Ty->isIntegerTy() || Ty->isPointerTy()) && |
| "Invalid cast"); |
| |
| if (Ty->isIntegerTy()) |
| return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); |
| return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); |
| } |
| |
| /// @brief Create a BitCast or a PtrToInt cast instruction |
| CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, |
| const Twine &Name, |
| Instruction *InsertBefore) { |
| assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); |
| assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && |
| "Invalid cast"); |
| |
| if (Ty->isIntOrIntVectorTy()) |
| return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); |
| return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); |
| } |
| |
| CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, |
| bool isSigned, const Twine &Name, |
| Instruction *InsertBefore) { |
| assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && |
| "Invalid integer cast"); |
| unsigned SrcBits = C->getType()->getScalarSizeInBits(); |
| unsigned DstBits = Ty->getScalarSizeInBits(); |
| Instruction::CastOps opcode = |
| (SrcBits == DstBits ? Instruction::BitCast : |
| (SrcBits > DstBits ? Instruction::Trunc : |
| (isSigned ? Instruction::SExt : Instruction::ZExt))); |
| return Create(opcode, C, Ty, Name, InsertBefore); |
| } |
| |
| CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, |
| bool isSigned, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && |
| "Invalid cast"); |
| unsigned SrcBits = C->getType()->getScalarSizeInBits(); |
| unsigned DstBits = Ty->getScalarSizeInBits(); |
| Instruction::CastOps opcode = |
| (SrcBits == DstBits ? Instruction::BitCast : |
| (SrcBits > DstBits ? Instruction::Trunc : |
| (isSigned ? Instruction::SExt : Instruction::ZExt))); |
| return Create(opcode, C, Ty, Name, InsertAtEnd); |
| } |
| |
| CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, |
| const Twine &Name, |
| Instruction *InsertBefore) { |
| assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && |
| "Invalid cast"); |
| unsigned SrcBits = C->getType()->getScalarSizeInBits(); |
| unsigned DstBits = Ty->getScalarSizeInBits(); |
| Instruction::CastOps opcode = |
| (SrcBits == DstBits ? Instruction::BitCast : |
| (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); |
| return Create(opcode, C, Ty, Name, InsertBefore); |
| } |
| |
| CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && |
| "Invalid cast"); |
| unsigned SrcBits = C->getType()->getScalarSizeInBits(); |
| unsigned DstBits = Ty->getScalarSizeInBits(); |
| Instruction::CastOps opcode = |
| (SrcBits == DstBits ? Instruction::BitCast : |
| (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); |
| return Create(opcode, C, Ty, Name, InsertAtEnd); |
| } |
| |
| // Check whether it is valid to call getCastOpcode for these types. |
| // This routine must be kept in sync with getCastOpcode. |
| bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { |
| if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) |
| return false; |
| |
| if (SrcTy == DestTy) |
| return true; |
| |
| if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) |
| if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) |
| if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { |
| // An element by element cast. Valid if casting the elements is valid. |
| SrcTy = SrcVecTy->getElementType(); |
| DestTy = DestVecTy->getElementType(); |
| } |
| |
| // Get the bit sizes, we'll need these |
| unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr |
| unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr |
| |
| // Run through the possibilities ... |
| if (DestTy->isIntegerTy()) { // Casting to integral |
| if (SrcTy->isIntegerTy()) { // Casting from integral |
| return true; |
| } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt |
| return true; |
| } else if (SrcTy->isVectorTy()) { // Casting from vector |
| return DestBits == SrcBits; |
| } else { // Casting from something else |
| return SrcTy->isPointerTy(); |
| } |
| } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt |
| if (SrcTy->isIntegerTy()) { // Casting from integral |
| return true; |
| } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt |
| return true; |
| } else if (SrcTy->isVectorTy()) { // Casting from vector |
| return DestBits == SrcBits; |
| } else { // Casting from something else |
| return false; |
| } |
| } else if (DestTy->isVectorTy()) { // Casting to vector |
| return DestBits == SrcBits; |
| } else if (DestTy->isPointerTy()) { // Casting to pointer |
| if (SrcTy->isPointerTy()) { // Casting from pointer |
| return true; |
| } else if (SrcTy->isIntegerTy()) { // Casting from integral |
| return true; |
| } else { // Casting from something else |
| return false; |
| } |
| } else if (DestTy->isX86_MMXTy()) { |
| if (SrcTy->isVectorTy()) { |
| return DestBits == SrcBits; // 64-bit vector to MMX |
| } else { |
| return false; |
| } |
| } else { // Casting to something else |
| return false; |
| } |
| } |
| |
| // Provide a way to get a "cast" where the cast opcode is inferred from the |
| // types and size of the operand. This, basically, is a parallel of the |
| // logic in the castIsValid function below. This axiom should hold: |
| // castIsValid( getCastOpcode(Val, Ty), Val, Ty) |
| // should not assert in castIsValid. In other words, this produces a "correct" |
| // casting opcode for the arguments passed to it. |
| // This routine must be kept in sync with isCastable. |
| Instruction::CastOps |
| CastInst::getCastOpcode( |
| const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { |
| Type *SrcTy = Src->getType(); |
| |
| assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && |
| "Only first class types are castable!"); |
| |
| if (SrcTy == DestTy) |
| return BitCast; |
| |
| if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) |
| if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) |
| if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { |
| // An element by element cast. Find the appropriate opcode based on the |
| // element types. |
| SrcTy = SrcVecTy->getElementType(); |
| DestTy = DestVecTy->getElementType(); |
| } |
| |
| // Get the bit sizes, we'll need these |
| unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr |
| unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr |
| |
| // Run through the possibilities ... |
| if (DestTy->isIntegerTy()) { // Casting to integral |
| if (SrcTy->isIntegerTy()) { // Casting from integral |
| if (DestBits < SrcBits) |
| return Trunc; // int -> smaller int |
| else if (DestBits > SrcBits) { // its an extension |
| if (SrcIsSigned) |
| return SExt; // signed -> SEXT |
| else |
| return ZExt; // unsigned -> ZEXT |
| } else { |
| return BitCast; // Same size, No-op cast |
| } |
| } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt |
| if (DestIsSigned) |
| return FPToSI; // FP -> sint |
| else |
| return FPToUI; // FP -> uint |
| } else if (SrcTy->isVectorTy()) { |
| assert(DestBits == SrcBits && |
| "Casting vector to integer of different width"); |
| return BitCast; // Same size, no-op cast |
| } else { |
| assert(SrcTy->isPointerTy() && |
| "Casting from a value that is not first-class type"); |
| return PtrToInt; // ptr -> int |
| } |
| } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt |
| if (SrcTy->isIntegerTy()) { // Casting from integral |
| if (SrcIsSigned) |
| return SIToFP; // sint -> FP |
| else |
| return UIToFP; // uint -> FP |
| } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt |
| if (DestBits < SrcBits) { |
| return FPTrunc; // FP -> smaller FP |
| } else if (DestBits > SrcBits) { |
| return FPExt; // FP -> larger FP |
| } else { |
| return BitCast; // same size, no-op cast |
| } |
| } else if (SrcTy->isVectorTy()) { |
| assert(DestBits == SrcBits && |
| "Casting vector to floating point of different width"); |
| return BitCast; // same size, no-op cast |
| } |
| llvm_unreachable("Casting pointer or non-first class to float"); |
| } else if (DestTy->isVectorTy()) { |
| assert(DestBits == SrcBits && |
| "Illegal cast to vector (wrong type or size)"); |
| return BitCast; |
| } else if (DestTy->isPointerTy()) { |
| if (SrcTy->isPointerTy()) { |
| return BitCast; // ptr -> ptr |
| } else if (SrcTy->isIntegerTy()) { |
| return IntToPtr; // int -> ptr |
| } |
| llvm_unreachable("Casting pointer to other than pointer or int"); |
| } else if (DestTy->isX86_MMXTy()) { |
| if (SrcTy->isVectorTy()) { |
| assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); |
| return BitCast; // 64-bit vector to MMX |
| } |
| llvm_unreachable("Illegal cast to X86_MMX"); |
| } |
| llvm_unreachable("Casting to type that is not first-class"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CastInst SubClass Constructors |
| //===----------------------------------------------------------------------===// |
| |
| /// Check that the construction parameters for a CastInst are correct. This |
| /// could be broken out into the separate constructors but it is useful to have |
| /// it in one place and to eliminate the redundant code for getting the sizes |
| /// of the types involved. |
| bool |
| CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { |
| |
| // Check for type sanity on the arguments |
| Type *SrcTy = S->getType(); |
| |
| // If this is a cast to the same type then it's trivially true. |
| if (SrcTy == DstTy) |
| return true; |
| |
| if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || |
| SrcTy->isAggregateType() || DstTy->isAggregateType()) |
| return false; |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DstBitSize = DstTy->getScalarSizeInBits(); |
| |
| // If these are vector types, get the lengths of the vectors (using zero for |
| // scalar types means that checking that vector lengths match also checks that |
| // scalars are not being converted to vectors or vectors to scalars). |
| unsigned SrcLength = SrcTy->isVectorTy() ? |
| cast<VectorType>(SrcTy)->getNumElements() : 0; |
| unsigned DstLength = DstTy->isVectorTy() ? |
| cast<VectorType>(DstTy)->getNumElements() : 0; |
| |
| // Switch on the opcode provided |
| switch (op) { |
| default: return false; // This is an input error |
| case Instruction::Trunc: |
| return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && |
| SrcLength == DstLength && SrcBitSize > DstBitSize; |
| case Instruction::ZExt: |
| return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && |
| SrcLength == DstLength && SrcBitSize < DstBitSize; |
| case Instruction::SExt: |
| return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && |
| SrcLength == DstLength && SrcBitSize < DstBitSize; |
| case Instruction::FPTrunc: |
| return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && |
| SrcLength == DstLength && SrcBitSize > DstBitSize; |
| case Instruction::FPExt: |
| return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && |
| SrcLength == DstLength && SrcBitSize < DstBitSize; |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && |
| SrcLength == DstLength; |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && |
| SrcLength == DstLength; |
| case Instruction::PtrToInt: |
| if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) |
| return false; |
| if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) |
| if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) |
| return false; |
| return SrcTy->getScalarType()->isPointerTy() && |
| DstTy->getScalarType()->isIntegerTy(); |
| case Instruction::IntToPtr: |
| if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) |
| return false; |
| if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) |
| if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) |
| return false; |
| return SrcTy->getScalarType()->isIntegerTy() && |
| DstTy->getScalarType()->isPointerTy(); |
| case Instruction::BitCast: |
| // BitCast implies a no-op cast of type only. No bits change. |
| // However, you can't cast pointers to anything but pointers. |
| if (SrcTy->isPointerTy() != DstTy->isPointerTy()) |
| return false; |
| |
| // Now we know we're not dealing with a pointer/non-pointer mismatch. In all |
| // these cases, the cast is okay if the source and destination bit widths |
| // are identical. |
| return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); |
| } |
| } |
| |
| TruncInst::TruncInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); |
| } |
| |
| TruncInst::TruncInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); |
| } |
| |
| ZExtInst::ZExtInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); |
| } |
| |
| ZExtInst::ZExtInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); |
| } |
| SExtInst::SExtInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, SExt, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); |
| } |
| |
| SExtInst::SExtInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); |
| } |
| |
| FPTruncInst::FPTruncInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); |
| } |
| |
| FPTruncInst::FPTruncInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); |
| } |
| |
| FPExtInst::FPExtInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); |
| } |
| |
| FPExtInst::FPExtInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); |
| } |
| |
| UIToFPInst::UIToFPInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); |
| } |
| |
| UIToFPInst::UIToFPInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); |
| } |
| |
| SIToFPInst::SIToFPInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); |
| } |
| |
| SIToFPInst::SIToFPInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); |
| } |
| |
| FPToUIInst::FPToUIInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); |
| } |
| |
| FPToUIInst::FPToUIInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); |
| } |
| |
| FPToSIInst::FPToSIInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); |
| } |
| |
| FPToSIInst::FPToSIInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); |
| } |
| |
| PtrToIntInst::PtrToIntInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); |
| } |
| |
| PtrToIntInst::PtrToIntInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); |
| } |
| |
| IntToPtrInst::IntToPtrInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); |
| } |
| |
| IntToPtrInst::IntToPtrInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); |
| } |
| |
| BitCastInst::BitCastInst( |
| Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore |
| ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); |
| } |
| |
| BitCastInst::BitCastInst( |
| Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd |
| ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { |
| assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CmpInst Classes |
| //===----------------------------------------------------------------------===// |
| |
| void CmpInst::anchor() {} |
| |
| CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, |
| Value *LHS, Value *RHS, const Twine &Name, |
| Instruction *InsertBefore) |
| : Instruction(ty, op, |
| OperandTraits<CmpInst>::op_begin(this), |
| OperandTraits<CmpInst>::operands(this), |
| InsertBefore) { |
| Op<0>() = LHS; |
| Op<1>() = RHS; |
| setPredicate((Predicate)predicate); |
| setName(Name); |
| } |
| |
| CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, |
| Value *LHS, Value *RHS, const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : Instruction(ty, op, |
| OperandTraits<CmpInst>::op_begin(this), |
| OperandTraits<CmpInst>::operands(this), |
| InsertAtEnd) { |
| Op<0>() = LHS; |
| Op<1>() = RHS; |
| setPredicate((Predicate)predicate); |
| setName(Name); |
| } |
| |
| CmpInst * |
| CmpInst::Create(OtherOps Op, unsigned short predicate, |
| Value *S1, Value *S2, |
| const Twine &Name, Instruction *InsertBefore) { |
| if (Op == Instruction::ICmp) { |
| if (InsertBefore) |
| return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), |
| S1, S2, Name); |
| else |
| return new ICmpInst(CmpInst::Predicate(predicate), |
| S1, S2, Name); |
| } |
| |
| if (InsertBefore) |
| return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), |
| S1, S2, Name); |
| else |
| return new FCmpInst(CmpInst::Predicate(predicate), |
| S1, S2, Name); |
| } |
| |
| CmpInst * |
| CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, |
| const Twine &Name, BasicBlock *InsertAtEnd) { |
| if (Op == Instruction::ICmp) { |
| return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), |
| S1, S2, Name); |
| } |
| return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), |
| S1, S2, Name); |
| } |
| |
| void CmpInst::swapOperands() { |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) |
| IC->swapOperands(); |
| else |
| cast<FCmpInst>(this)->swapOperands(); |
| } |
| |
| bool CmpInst::isCommutative() const { |
| if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) |
| return IC->isCommutative(); |
| return cast<FCmpInst>(this)->isCommutative(); |
| } |
| |
| bool CmpInst::isEquality() const { |
| if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) |
| return IC->isEquality(); |
| return cast<FCmpInst>(this)->isEquality(); |
| } |
| |
| |
| CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { |
| switch (pred) { |
| default: llvm_unreachable("Unknown cmp predicate!"); |
| case ICMP_EQ: return ICMP_NE; |
| case ICMP_NE: return ICMP_EQ; |
| case ICMP_UGT: return ICMP_ULE; |
| case ICMP_ULT: return ICMP_UGE; |
| case ICMP_UGE: return ICMP_ULT; |
| case ICMP_ULE: return ICMP_UGT; |
| case ICMP_SGT: return ICMP_SLE; |
| case ICMP_SLT: return ICMP_SGE; |
| case ICMP_SGE: return ICMP_SLT; |
| case ICMP_SLE: return ICMP_SGT; |
| |
| case FCMP_OEQ: return FCMP_UNE; |
| case FCMP_ONE: return FCMP_UEQ; |
| case FCMP_OGT: return FCMP_ULE; |
| case FCMP_OLT: return FCMP_UGE; |
| case FCMP_OGE: return FCMP_ULT; |
| case FCMP_OLE: return FCMP_UGT; |
| case FCMP_UEQ: return FCMP_ONE; |
| case FCMP_UNE: return FCMP_OEQ; |
| case FCMP_UGT: return FCMP_OLE; |
| case FCMP_ULT: return FCMP_OGE; |
| case FCMP_UGE: return FCMP_OLT; |
| case FCMP_ULE: return FCMP_OGT; |
| case FCMP_ORD: return FCMP_UNO; |
| case FCMP_UNO: return FCMP_ORD; |
| case FCMP_TRUE: return FCMP_FALSE; |
| case FCMP_FALSE: return FCMP_TRUE; |
| } |
| } |
| |
| ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { |
| switch (pred) { |
| default: llvm_unreachable("Unknown icmp predicate!"); |
| case ICMP_EQ: case ICMP_NE: |
| case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: |
| return pred; |
| case ICMP_UGT: return ICMP_SGT; |
| case ICMP_ULT: return ICMP_SLT; |
| case ICMP_UGE: return ICMP_SGE; |
| case ICMP_ULE: return ICMP_SLE; |
| } |
| } |
| |
| ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { |
| switch (pred) { |
| default: llvm_unreachable("Unknown icmp predicate!"); |
| case ICMP_EQ: case ICMP_NE: |
| case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: |
| return pred; |
| case ICMP_SGT: return ICMP_UGT; |
| case ICMP_SLT: return ICMP_ULT; |
| case ICMP_SGE: return ICMP_UGE; |
| case ICMP_SLE: return ICMP_ULE; |
| } |
| } |
| |
| /// Initialize a set of values that all satisfy the condition with C. |
| /// |
| ConstantRange |
| ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { |
| APInt Lower(C); |
| APInt Upper(C); |
| uint32_t BitWidth = C.getBitWidth(); |
| switch (pred) { |
| default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); |
| case ICmpInst::ICMP_EQ: Upper++; break; |
| case ICmpInst::ICMP_NE: Lower++; break; |
| case ICmpInst::ICMP_ULT: |
| Lower = APInt::getMinValue(BitWidth); |
| // Check for an empty-set condition. |
| if (Lower == Upper) |
| return ConstantRange(BitWidth, /*isFullSet=*/false); |
| break; |
| case ICmpInst::ICMP_SLT: |
| Lower = APInt::getSignedMinValue(BitWidth); |
| // Check for an empty-set condition. |
| if (Lower == Upper) |
| return ConstantRange(BitWidth, /*isFullSet=*/false); |
| break; |
| case ICmpInst::ICMP_UGT: |
| Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) |
| // Check for an empty-set condition. |
| if (Lower == Upper) |
| return ConstantRange(BitWidth, /*isFullSet=*/false); |
| break; |
| case ICmpInst::ICMP_SGT: |
| Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) |
| // Check for an empty-set condition. |
| if (Lower == Upper) |
| return ConstantRange(BitWidth, /*isFullSet=*/false); |
| break; |
| case ICmpInst::ICMP_ULE: |
| Lower = APInt::getMinValue(BitWidth); Upper++; |
| // Check for a full-set condition. |
| if (Lower == Upper) |
| return ConstantRange(BitWidth, /*isFullSet=*/true); |
| break; |
| case ICmpInst::ICMP_SLE: |
| Lower = APInt::getSignedMinValue(BitWidth); Upper++; |
| // Check for a full-set condition. |
| if (Lower == Upper) |
| return ConstantRange(BitWidth, /*isFullSet=*/true); |
| break; |
| case ICmpInst::ICMP_UGE: |
| Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) |
| // Check for a full-set condition. |
| if (Lower == Upper) |
| return ConstantRange(BitWidth, /*isFullSet=*/true); |
| break; |
| case ICmpInst::ICMP_SGE: |
| Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) |
| // Check for a full-set condition. |
| if (Lower == Upper) |
| return ConstantRange(BitWidth, /*isFullSet=*/true); |
| break; |
| } |
| return ConstantRange(Lower, Upper); |
| } |
| |
| CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { |
| switch (pred) { |
| default: llvm_unreachable("Unknown cmp predicate!"); |
| case ICMP_EQ: case ICMP_NE: |
| return pred; |
| case ICMP_SGT: return ICMP_SLT; |
| case ICMP_SLT: return ICMP_SGT; |
| case ICMP_SGE: return ICMP_SLE; |
| case ICMP_SLE: return ICMP_SGE; |
| case ICMP_UGT: return ICMP_ULT; |
| case ICMP_ULT: return ICMP_UGT; |
| case ICMP_UGE: return ICMP_ULE; |
| case ICMP_ULE: return ICMP_UGE; |
| |
| case FCMP_FALSE: case FCMP_TRUE: |
| case FCMP_OEQ: case FCMP_ONE: |
| case FCMP_UEQ: case FCMP_UNE: |
| case FCMP_ORD: case FCMP_UNO: |
| return pred; |
| case FCMP_OGT: return FCMP_OLT; |
| case FCMP_OLT: return FCMP_OGT; |
| case FCMP_OGE: return FCMP_OLE; |
| case FCMP_OLE: return FCMP_OGE; |
| case FCMP_UGT: return FCMP_ULT; |
| case FCMP_ULT: return FCMP_UGT; |
| case FCMP_UGE: return FCMP_ULE; |
| case FCMP_ULE: return FCMP_UGE; |
| } |
| } |
| |
| bool CmpInst::isUnsigned(unsigned short predicate) { |
| switch (predicate) { |
| default: return false; |
| case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: return true; |
| } |
| } |
| |
| bool CmpInst::isSigned(unsigned short predicate) { |
| switch (predicate) { |
| default: return false; |
| case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: return true; |
| } |
| } |
| |
| bool CmpInst::isOrdered(unsigned short predicate) { |
| switch (predicate) { |
| default: return false; |
| case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: |
| case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: |
| case FCmpInst::FCMP_ORD: return true; |
| } |
| } |
| |
| bool CmpInst::isUnordered(unsigned short predicate) { |
| switch (predicate) { |
| default: return false; |
| case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: |
| case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: |
| case FCmpInst::FCMP_UNO: return true; |
| } |
| } |
| |
| bool CmpInst::isTrueWhenEqual(unsigned short predicate) { |
| switch(predicate) { |
| default: return false; |
| case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: |
| case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; |
| } |
| } |
| |
| bool CmpInst::isFalseWhenEqual(unsigned short predicate) { |
| switch(predicate) { |
| case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: |
| case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; |
| default: return false; |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SwitchInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { |
| assert(Value && Default && NumReserved); |
| ReservedSpace = NumReserved; |
| NumOperands = 2; |
| OperandList = allocHungoffUses(ReservedSpace); |
| |
| OperandList[0] = Value; |
| OperandList[1] = Default; |
| } |
| |
| /// SwitchInst ctor - Create a new switch instruction, specifying a value to |
| /// switch on and a default destination. The number of additional cases can |
| /// be specified here to make memory allocation more efficient. This |
| /// constructor can also autoinsert before another instruction. |
| SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, |
| 0, 0, InsertBefore) { |
| init(Value, Default, 2+NumCases*2); |
| } |
| |
| /// SwitchInst ctor - Create a new switch instruction, specifying a value to |
| /// switch on and a default destination. The number of additional cases can |
| /// be specified here to make memory allocation more efficient. This |
| /// constructor also autoinserts at the end of the specified BasicBlock. |
| SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, |
| 0, 0, InsertAtEnd) { |
| init(Value, Default, 2+NumCases*2); |
| } |
| |
| SwitchInst::SwitchInst(const SwitchInst &SI) |
| : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) { |
| init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); |
| NumOperands = SI.getNumOperands(); |
| Use *OL = OperandList, *InOL = SI.OperandList; |
| for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { |
| OL[i] = InOL[i]; |
| OL[i+1] = InOL[i+1]; |
| } |
| TheSubsets = SI.TheSubsets; |
| SubclassOptionalData = SI.SubclassOptionalData; |
| } |
| |
| SwitchInst::~SwitchInst() { |
| dropHungoffUses(); |
| } |
| |
| |
| /// addCase - Add an entry to the switch instruction... |
| /// |
| void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { |
| IntegersSubsetToBB Mapping; |
| |
| // FIXME: Currently we work with ConstantInt based cases. |
| // So inititalize IntItem container directly from ConstantInt. |
| Mapping.add(IntItem::fromConstantInt(OnVal)); |
| IntegersSubset CaseRanges = Mapping.getCase(); |
| addCase(CaseRanges, Dest); |
| } |
| |
| void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) { |
| unsigned NewCaseIdx = getNumCases(); |
| unsigned OpNo = NumOperands; |
| if (OpNo+2 > ReservedSpace) |
| growOperands(); // Get more space! |
| // Initialize some new operands. |
| assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); |
| NumOperands = OpNo+2; |
| |
| SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal); |
| |
| CaseIt Case(this, NewCaseIdx, TheSubsetsIt); |
| Case.updateCaseValueOperand(OnVal); |
| Case.setSuccessor(Dest); |
| } |
| |
| /// removeCase - This method removes the specified case and its successor |
| /// from the switch instruction. |
| void SwitchInst::removeCase(CaseIt& i) { |
| unsigned idx = i.getCaseIndex(); |
| |
| assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); |
| |
| unsigned NumOps = getNumOperands(); |
| Use *OL = OperandList; |
| |
| // Overwrite this case with the end of the list. |
| if (2 + (idx + 1) * 2 != NumOps) { |
| OL[2 + idx * 2] = OL[NumOps - 2]; |
| OL[2 + idx * 2 + 1] = OL[NumOps - 1]; |
| } |
| |
| // Nuke the last value. |
| OL[NumOps-2].set(0); |
| OL[NumOps-2+1].set(0); |
| |
| // Do the same with TheCases collection: |
| if (i.SubsetIt != --TheSubsets.end()) { |
| *i.SubsetIt = TheSubsets.back(); |
| TheSubsets.pop_back(); |
| } else { |
| TheSubsets.pop_back(); |
| i.SubsetIt = TheSubsets.end(); |
| } |
| |
| NumOperands = NumOps-2; |
| } |
| |
| /// growOperands - grow operands - This grows the operand list in response |
| /// to a push_back style of operation. This grows the number of ops by 3 times. |
| /// |
| void SwitchInst::growOperands() { |
| unsigned e = getNumOperands(); |
| unsigned NumOps = e*3; |
| |
| ReservedSpace = NumOps; |
| Use *NewOps = allocHungoffUses(NumOps); |
| Use *OldOps = OperandList; |
| for (unsigned i = 0; i != e; ++i) { |
| NewOps[i] = OldOps[i]; |
| } |
| OperandList = NewOps; |
| Use::zap(OldOps, OldOps + e, true); |
| } |
| |
| |
| BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { |
| return getSuccessor(idx); |
| } |
| unsigned SwitchInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { |
| setSuccessor(idx, B); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IndirectBrInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void IndirectBrInst::init(Value *Address, unsigned NumDests) { |
| assert(Address && Address->getType()->isPointerTy() && |
| "Address of indirectbr must be a pointer"); |
| ReservedSpace = 1+NumDests; |
| NumOperands = 1; |
| OperandList = allocHungoffUses(ReservedSpace); |
| |
| OperandList[0] = Address; |
| } |
| |
| |
| /// growOperands - grow operands - This grows the operand list in response |
| /// to a push_back style of operation. This grows the number of ops by 2 times. |
| /// |
| void IndirectBrInst::growOperands() { |
| unsigned e = getNumOperands(); |
| unsigned NumOps = e*2; |
| |
| ReservedSpace = NumOps; |
| Use *NewOps = allocHungoffUses(NumOps); |
| Use *OldOps = OperandList; |
| for (unsigned i = 0; i != e; ++i) |
| NewOps[i] = OldOps[i]; |
| OperandList = NewOps; |
| Use::zap(OldOps, OldOps + e, true); |
| } |
| |
| IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, |
| Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, |
| 0, 0, InsertBefore) { |
| init(Address, NumCases); |
| } |
| |
| IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, |
| BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, |
| 0, 0, InsertAtEnd) { |
| init(Address, NumCases); |
| } |
| |
| IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) |
| : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, |
| allocHungoffUses(IBI.getNumOperands()), |
| IBI.getNumOperands()) { |
| Use *OL = OperandList, *InOL = IBI.OperandList; |
| for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) |
| OL[i] = InOL[i]; |
| SubclassOptionalData = IBI.SubclassOptionalData; |
| } |
| |
| IndirectBrInst::~IndirectBrInst() { |
| dropHungoffUses(); |
| } |
| |
| /// addDestination - Add a destination. |
| /// |
| void IndirectBrInst::addDestination(BasicBlock *DestBB) { |
| unsigned OpNo = NumOperands; |
| if (OpNo+1 > ReservedSpace) |
| growOperands(); // Get more space! |
| // Initialize some new operands. |
| assert(OpNo < ReservedSpace && "Growing didn't work!"); |
| NumOperands = OpNo+1; |
| OperandList[OpNo] = DestBB; |
| } |
| |
| /// removeDestination - This method removes the specified successor from the |
| /// indirectbr instruction. |
| void IndirectBrInst::removeDestination(unsigned idx) { |
| assert(idx < getNumOperands()-1 && "Successor index out of range!"); |
| |
| unsigned NumOps = getNumOperands(); |
| Use *OL = OperandList; |
| |
| // Replace this value with the last one. |
| OL[idx+1] = OL[NumOps-1]; |
| |
| // Nuke the last value. |
| OL[NumOps-1].set(0); |
| NumOperands = NumOps-1; |
| } |
| |
| BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { |
| return getSuccessor(idx); |
| } |
| unsigned IndirectBrInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { |
| setSuccessor(idx, B); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // clone_impl() implementations |
| //===----------------------------------------------------------------------===// |
| |
| // Define these methods here so vtables don't get emitted into every translation |
| // unit that uses these classes. |
| |
| GetElementPtrInst *GetElementPtrInst::clone_impl() const { |
| return new (getNumOperands()) GetElementPtrInst(*this); |
| } |
| |
| BinaryOperator *BinaryOperator::clone_impl() const { |
| return Create(getOpcode(), Op<0>(), Op<1>()); |
| } |
| |
| FCmpInst* FCmpInst::clone_impl() const { |
| return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); |
| } |
| |
| ICmpInst* ICmpInst::clone_impl() const { |
| return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); |
| } |
| |
| ExtractValueInst *ExtractValueInst::clone_impl() const { |
| return new ExtractValueInst(*this); |
| } |
| |
| InsertValueInst *InsertValueInst::clone_impl() const { |
| return new InsertValueInst(*this); |
| } |
| |
| AllocaInst *AllocaInst::clone_impl() const { |
| return new AllocaInst(getAllocatedType(), |
| (Value*)getOperand(0), |
| getAlignment()); |
| } |
| |
| LoadInst *LoadInst::clone_impl() const { |
| return new LoadInst(getOperand(0), Twine(), isVolatile(), |
| getAlignment(), getOrdering(), getSynchScope()); |
| } |
| |
| StoreInst *StoreInst::clone_impl() const { |
| return new StoreInst(getOperand(0), getOperand(1), isVolatile(), |
| getAlignment(), getOrdering(), getSynchScope()); |
| |
| } |
| |
| AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const { |
| AtomicCmpXchgInst *Result = |
| new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), |
| getOrdering(), getSynchScope()); |
| Result->setVolatile(isVolatile()); |
| return Result; |
| } |
| |
| AtomicRMWInst *AtomicRMWInst::clone_impl() const { |
| AtomicRMWInst *Result = |
| new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), |
| getOrdering(), getSynchScope()); |
| Result->setVolatile(isVolatile()); |
| return Result; |
| } |
| |
| FenceInst *FenceInst::clone_impl() const { |
| return new FenceInst(getContext(), getOrdering(), getSynchScope()); |
| } |
| |
| TruncInst *TruncInst::clone_impl() const { |
| return new TruncInst(getOperand(0), getType()); |
| } |
| |
| ZExtInst *ZExtInst::clone_impl() const { |
| return new ZExtInst(getOperand(0), getType()); |
| } |
| |
| SExtInst *SExtInst::clone_impl() const { |
| return new SExtInst(getOperand(0), getType()); |
| } |
| |
| FPTruncInst *FPTruncInst::clone_impl() const { |
| return new FPTruncInst(getOperand(0), getType()); |
| } |
| |
| FPExtInst *FPExtInst::clone_impl() const { |
| return new FPExtInst(getOperand(0), getType()); |
| } |
| |
| UIToFPInst *UIToFPInst::clone_impl() const { |
| return new UIToFPInst(getOperand(0), getType()); |
| } |
| |
| SIToFPInst *SIToFPInst::clone_impl() const { |
| return new SIToFPInst(getOperand(0), getType()); |
| } |
| |
| FPToUIInst *FPToUIInst::clone_impl() const { |
| return new FPToUIInst(getOperand(0), getType()); |
| } |
| |
| FPToSIInst *FPToSIInst::clone_impl() const { |
| return new FPToSIInst(getOperand(0), getType()); |
| } |
| |
| PtrToIntInst *PtrToIntInst::clone_impl() const { |
| return new PtrToIntInst(getOperand(0), getType()); |
| } |
| |
| IntToPtrInst *IntToPtrInst::clone_impl() const { |
| return new IntToPtrInst(getOperand(0), getType()); |
| } |
| |
| BitCastInst *BitCastInst::clone_impl() const { |
| return new BitCastInst(getOperand(0), getType()); |
| } |
| |
| CallInst *CallInst::clone_impl() const { |
| return new(getNumOperands()) CallInst(*this); |
| } |
| |
| SelectInst *SelectInst::clone_impl() const { |
| return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); |
| } |
| |
| VAArgInst *VAArgInst::clone_impl() const { |
| return new VAArgInst(getOperand(0), getType()); |
| } |
| |
| ExtractElementInst *ExtractElementInst::clone_impl() const { |
| return ExtractElementInst::Create(getOperand(0), getOperand(1)); |
| } |
| |
| InsertElementInst *InsertElementInst::clone_impl() const { |
| return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); |
| } |
| |
| ShuffleVectorInst *ShuffleVectorInst::clone_impl() const { |
| return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); |
| } |
| |
| PHINode *PHINode::clone_impl() const { |
| return new PHINode(*this); |
| } |
| |
| LandingPadInst *LandingPadInst::clone_impl() const { |
| return new LandingPadInst(*this); |
| } |
| |
| ReturnInst *ReturnInst::clone_impl() const { |
| return new(getNumOperands()) ReturnInst(*this); |
| } |
| |
| BranchInst *BranchInst::clone_impl() const { |
| return new(getNumOperands()) BranchInst(*this); |
| } |
| |
| SwitchInst *SwitchInst::clone_impl() const { |
| return new SwitchInst(*this); |
| } |
| |
| IndirectBrInst *IndirectBrInst::clone_impl() const { |
| return new IndirectBrInst(*this); |
| } |
| |
| |
| InvokeInst *InvokeInst::clone_impl() const { |
| return new(getNumOperands()) InvokeInst(*this); |
| } |
| |
| ResumeInst *ResumeInst::clone_impl() const { |
| return new(1) ResumeInst(*this); |
| } |
| |
| UnreachableInst *UnreachableInst::clone_impl() const { |
| LLVMContext &Context = getContext(); |
| return new UnreachableInst(Context); |
| } |