| //===-- Metadata.cpp - Implement Metadata classes -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Metadata classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Metadata.h" |
| #include "LLVMContextImpl.h" |
| #include "SymbolTableListTraitsImpl.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Support/LeakDetector.h" |
| #include "llvm/Support/ValueHandle.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // MDString implementation. |
| // |
| |
| void MDString::anchor() { } |
| |
| MDString::MDString(LLVMContext &C) |
| : Value(Type::getMetadataTy(C), Value::MDStringVal) {} |
| |
| MDString *MDString::get(LLVMContext &Context, StringRef Str) { |
| LLVMContextImpl *pImpl = Context.pImpl; |
| StringMapEntry<Value*> &Entry = |
| pImpl->MDStringCache.GetOrCreateValue(Str); |
| Value *&S = Entry.getValue(); |
| if (!S) S = new MDString(Context); |
| S->setValueName(&Entry); |
| return cast<MDString>(S); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MDNodeOperand implementation. |
| // |
| |
| // Use CallbackVH to hold MDNode operands. |
| namespace llvm { |
| class MDNodeOperand : public CallbackVH { |
| MDNode *getParent() { |
| MDNodeOperand *Cur = this; |
| |
| while (Cur->getValPtrInt() != 1) |
| --Cur; |
| |
| assert(Cur->getValPtrInt() == 1 && |
| "Couldn't find the beginning of the operand list!"); |
| return reinterpret_cast<MDNode*>(Cur) - 1; |
| } |
| |
| public: |
| MDNodeOperand(Value *V) : CallbackVH(V) {} |
| ~MDNodeOperand() {} |
| |
| void set(Value *V) { |
| unsigned IsFirst = this->getValPtrInt(); |
| this->setValPtr(V); |
| this->setAsFirstOperand(IsFirst); |
| } |
| |
| /// setAsFirstOperand - Accessor method to mark the operand as the first in |
| /// the list. |
| void setAsFirstOperand(unsigned V) { this->setValPtrInt(V); } |
| |
| virtual void deleted(); |
| virtual void allUsesReplacedWith(Value *NV); |
| }; |
| } // end namespace llvm. |
| |
| |
| void MDNodeOperand::deleted() { |
| getParent()->replaceOperand(this, 0); |
| } |
| |
| void MDNodeOperand::allUsesReplacedWith(Value *NV) { |
| getParent()->replaceOperand(this, NV); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MDNode implementation. |
| // |
| |
| /// getOperandPtr - Helper function to get the MDNodeOperand's coallocated on |
| /// the end of the MDNode. |
| static MDNodeOperand *getOperandPtr(MDNode *N, unsigned Op) { |
| // Use <= instead of < to permit a one-past-the-end address. |
| assert(Op <= N->getNumOperands() && "Invalid operand number"); |
| return reinterpret_cast<MDNodeOperand*>(N + 1) + Op; |
| } |
| |
| void MDNode::replaceOperandWith(unsigned i, Value *Val) { |
| MDNodeOperand *Op = getOperandPtr(this, i); |
| replaceOperand(Op, Val); |
| } |
| |
| MDNode::MDNode(LLVMContext &C, ArrayRef<Value*> Vals, bool isFunctionLocal) |
| : Value(Type::getMetadataTy(C), Value::MDNodeVal) { |
| NumOperands = Vals.size(); |
| |
| if (isFunctionLocal) |
| setValueSubclassData(getSubclassDataFromValue() | FunctionLocalBit); |
| |
| // Initialize the operand list, which is co-allocated on the end of the node. |
| unsigned i = 0; |
| for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands; |
| Op != E; ++Op, ++i) { |
| new (Op) MDNodeOperand(Vals[i]); |
| |
| // Mark the first MDNodeOperand as being the first in the list of operands. |
| if (i == 0) |
| Op->setAsFirstOperand(1); |
| } |
| } |
| |
| /// ~MDNode - Destroy MDNode. |
| MDNode::~MDNode() { |
| assert((getSubclassDataFromValue() & DestroyFlag) != 0 && |
| "Not being destroyed through destroy()?"); |
| LLVMContextImpl *pImpl = getType()->getContext().pImpl; |
| if (isNotUniqued()) { |
| pImpl->NonUniquedMDNodes.erase(this); |
| } else { |
| pImpl->MDNodeSet.RemoveNode(this); |
| } |
| |
| // Destroy the operands. |
| for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands; |
| Op != E; ++Op) |
| Op->~MDNodeOperand(); |
| } |
| |
| static const Function *getFunctionForValue(Value *V) { |
| if (!V) return NULL; |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| BasicBlock *BB = I->getParent(); |
| return BB ? BB->getParent() : 0; |
| } |
| if (Argument *A = dyn_cast<Argument>(V)) |
| return A->getParent(); |
| if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| return BB->getParent(); |
| if (MDNode *MD = dyn_cast<MDNode>(V)) |
| return MD->getFunction(); |
| return NULL; |
| } |
| |
| #ifndef NDEBUG |
| static const Function *assertLocalFunction(const MDNode *N) { |
| if (!N->isFunctionLocal()) return 0; |
| |
| // FIXME: This does not handle cyclic function local metadata. |
| const Function *F = 0, *NewF = 0; |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (Value *V = N->getOperand(i)) { |
| if (MDNode *MD = dyn_cast<MDNode>(V)) |
| NewF = assertLocalFunction(MD); |
| else |
| NewF = getFunctionForValue(V); |
| } |
| if (F == 0) |
| F = NewF; |
| else |
| assert((NewF == 0 || F == NewF) &&"inconsistent function-local metadata"); |
| } |
| return F; |
| } |
| #endif |
| |
| // getFunction - If this metadata is function-local and recursively has a |
| // function-local operand, return the first such operand's parent function. |
| // Otherwise, return null. getFunction() should not be used for performance- |
| // critical code because it recursively visits all the MDNode's operands. |
| const Function *MDNode::getFunction() const { |
| #ifndef NDEBUG |
| return assertLocalFunction(this); |
| #else |
| if (!isFunctionLocal()) return NULL; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (const Function *F = getFunctionForValue(getOperand(i))) |
| return F; |
| return NULL; |
| #endif |
| } |
| |
| // destroy - Delete this node. Only when there are no uses. |
| void MDNode::destroy() { |
| setValueSubclassData(getSubclassDataFromValue() | DestroyFlag); |
| // Placement delete, then free the memory. |
| this->~MDNode(); |
| free(this); |
| } |
| |
| /// isFunctionLocalValue - Return true if this is a value that would require a |
| /// function-local MDNode. |
| static bool isFunctionLocalValue(Value *V) { |
| return isa<Instruction>(V) || isa<Argument>(V) || isa<BasicBlock>(V) || |
| (isa<MDNode>(V) && cast<MDNode>(V)->isFunctionLocal()); |
| } |
| |
| MDNode *MDNode::getMDNode(LLVMContext &Context, ArrayRef<Value*> Vals, |
| FunctionLocalness FL, bool Insert) { |
| LLVMContextImpl *pImpl = Context.pImpl; |
| |
| // Add all the operand pointers. Note that we don't have to add the |
| // isFunctionLocal bit because that's implied by the operands. |
| // Note that if the operands are later nulled out, the node will be |
| // removed from the uniquing map. |
| FoldingSetNodeID ID; |
| for (unsigned i = 0; i != Vals.size(); ++i) |
| ID.AddPointer(Vals[i]); |
| |
| void *InsertPoint; |
| MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint); |
| |
| if (N || !Insert) |
| return N; |
| |
| bool isFunctionLocal = false; |
| switch (FL) { |
| case FL_Unknown: |
| for (unsigned i = 0; i != Vals.size(); ++i) { |
| Value *V = Vals[i]; |
| if (!V) continue; |
| if (isFunctionLocalValue(V)) { |
| isFunctionLocal = true; |
| break; |
| } |
| } |
| break; |
| case FL_No: |
| isFunctionLocal = false; |
| break; |
| case FL_Yes: |
| isFunctionLocal = true; |
| break; |
| } |
| |
| // Coallocate space for the node and Operands together, then placement new. |
| void *Ptr = malloc(sizeof(MDNode) + Vals.size() * sizeof(MDNodeOperand)); |
| N = new (Ptr) MDNode(Context, Vals, isFunctionLocal); |
| |
| // Cache the operand hash. |
| N->Hash = ID.ComputeHash(); |
| |
| // InsertPoint will have been set by the FindNodeOrInsertPos call. |
| pImpl->MDNodeSet.InsertNode(N, InsertPoint); |
| |
| return N; |
| } |
| |
| MDNode *MDNode::get(LLVMContext &Context, ArrayRef<Value*> Vals) { |
| return getMDNode(Context, Vals, FL_Unknown); |
| } |
| |
| MDNode *MDNode::getWhenValsUnresolved(LLVMContext &Context, |
| ArrayRef<Value*> Vals, |
| bool isFunctionLocal) { |
| return getMDNode(Context, Vals, isFunctionLocal ? FL_Yes : FL_No); |
| } |
| |
| MDNode *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Value*> Vals) { |
| return getMDNode(Context, Vals, FL_Unknown, false); |
| } |
| |
| MDNode *MDNode::getTemporary(LLVMContext &Context, ArrayRef<Value*> Vals) { |
| MDNode *N = |
| (MDNode *)malloc(sizeof(MDNode) + Vals.size() * sizeof(MDNodeOperand)); |
| N = new (N) MDNode(Context, Vals, FL_No); |
| N->setValueSubclassData(N->getSubclassDataFromValue() | |
| NotUniquedBit); |
| LeakDetector::addGarbageObject(N); |
| return N; |
| } |
| |
| void MDNode::deleteTemporary(MDNode *N) { |
| assert(N->use_empty() && "Temporary MDNode has uses!"); |
| assert(!N->getContext().pImpl->MDNodeSet.RemoveNode(N) && |
| "Deleting a non-temporary uniqued node!"); |
| assert(!N->getContext().pImpl->NonUniquedMDNodes.erase(N) && |
| "Deleting a non-temporary non-uniqued node!"); |
| assert((N->getSubclassDataFromValue() & NotUniquedBit) && |
| "Temporary MDNode does not have NotUniquedBit set!"); |
| assert((N->getSubclassDataFromValue() & DestroyFlag) == 0 && |
| "Temporary MDNode has DestroyFlag set!"); |
| LeakDetector::removeGarbageObject(N); |
| N->destroy(); |
| } |
| |
| /// getOperand - Return specified operand. |
| Value *MDNode::getOperand(unsigned i) const { |
| assert(i < getNumOperands() && "Invalid operand number"); |
| return *getOperandPtr(const_cast<MDNode*>(this), i); |
| } |
| |
| void MDNode::Profile(FoldingSetNodeID &ID) const { |
| // Add all the operand pointers. Note that we don't have to add the |
| // isFunctionLocal bit because that's implied by the operands. |
| // Note that if the operands are later nulled out, the node will be |
| // removed from the uniquing map. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| ID.AddPointer(getOperand(i)); |
| } |
| |
| void MDNode::setIsNotUniqued() { |
| setValueSubclassData(getSubclassDataFromValue() | NotUniquedBit); |
| LLVMContextImpl *pImpl = getType()->getContext().pImpl; |
| pImpl->NonUniquedMDNodes.insert(this); |
| } |
| |
| // Replace value from this node's operand list. |
| void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) { |
| Value *From = *Op; |
| |
| // If is possible that someone did GV->RAUW(inst), replacing a global variable |
| // with an instruction or some other function-local object. If this is a |
| // non-function-local MDNode, it can't point to a function-local object. |
| // Handle this case by implicitly dropping the MDNode reference to null. |
| // Likewise if the MDNode is function-local but for a different function. |
| if (To && isFunctionLocalValue(To)) { |
| if (!isFunctionLocal()) |
| To = 0; |
| else { |
| const Function *F = getFunction(); |
| const Function *FV = getFunctionForValue(To); |
| // Metadata can be function-local without having an associated function. |
| // So only consider functions to have changed if non-null. |
| if (F && FV && F != FV) |
| To = 0; |
| } |
| } |
| |
| if (From == To) |
| return; |
| |
| // Update the operand. |
| Op->set(To); |
| |
| // If this node is already not being uniqued (because one of the operands |
| // already went to null), then there is nothing else to do here. |
| if (isNotUniqued()) return; |
| |
| LLVMContextImpl *pImpl = getType()->getContext().pImpl; |
| |
| // Remove "this" from the context map. FoldingSet doesn't have to reprofile |
| // this node to remove it, so we don't care what state the operands are in. |
| pImpl->MDNodeSet.RemoveNode(this); |
| |
| // If we are dropping an argument to null, we choose to not unique the MDNode |
| // anymore. This commonly occurs during destruction, and uniquing these |
| // brings little reuse. Also, this means we don't need to include |
| // isFunctionLocal bits in FoldingSetNodeIDs for MDNodes. |
| if (To == 0) { |
| setIsNotUniqued(); |
| return; |
| } |
| |
| // Now that the node is out of the folding set, get ready to reinsert it. |
| // First, check to see if another node with the same operands already exists |
| // in the set. If so, then this node is redundant. |
| FoldingSetNodeID ID; |
| Profile(ID); |
| void *InsertPoint; |
| if (MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint)) { |
| replaceAllUsesWith(N); |
| destroy(); |
| return; |
| } |
| |
| // Cache the operand hash. |
| Hash = ID.ComputeHash(); |
| // InsertPoint will have been set by the FindNodeOrInsertPos call. |
| pImpl->MDNodeSet.InsertNode(this, InsertPoint); |
| |
| // If this MDValue was previously function-local but no longer is, clear |
| // its function-local flag. |
| if (isFunctionLocal() && !isFunctionLocalValue(To)) { |
| bool isStillFunctionLocal = false; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| Value *V = getOperand(i); |
| if (!V) continue; |
| if (isFunctionLocalValue(V)) { |
| isStillFunctionLocal = true; |
| break; |
| } |
| } |
| if (!isStillFunctionLocal) |
| setValueSubclassData(getSubclassDataFromValue() & ~FunctionLocalBit); |
| } |
| } |
| |
| MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) { |
| if (!A || !B) |
| return NULL; |
| |
| if (A == B) |
| return A; |
| |
| SmallVector<MDNode *, 4> PathA; |
| MDNode *T = A; |
| while (T) { |
| PathA.push_back(T); |
| T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0; |
| } |
| |
| SmallVector<MDNode *, 4> PathB; |
| T = B; |
| while (T) { |
| PathB.push_back(T); |
| T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0; |
| } |
| |
| int IA = PathA.size() - 1; |
| int IB = PathB.size() - 1; |
| |
| MDNode *Ret = 0; |
| while (IA >= 0 && IB >=0) { |
| if (PathA[IA] == PathB[IB]) |
| Ret = PathA[IA]; |
| else |
| break; |
| --IA; |
| --IB; |
| } |
| return Ret; |
| } |
| |
| MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { |
| if (!A || !B) |
| return NULL; |
| |
| APFloat AVal = cast<ConstantFP>(A->getOperand(0))->getValueAPF(); |
| APFloat BVal = cast<ConstantFP>(B->getOperand(0))->getValueAPF(); |
| if (AVal.compare(BVal) == APFloat::cmpLessThan) |
| return A; |
| return B; |
| } |
| |
| static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { |
| return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); |
| } |
| |
| static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { |
| return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); |
| } |
| |
| static bool tryMergeRange(SmallVector<Value*, 4> &EndPoints, ConstantInt *Low, |
| ConstantInt *High) { |
| ConstantRange NewRange(Low->getValue(), High->getValue()); |
| unsigned Size = EndPoints.size(); |
| APInt LB = cast<ConstantInt>(EndPoints[Size - 2])->getValue(); |
| APInt LE = cast<ConstantInt>(EndPoints[Size - 1])->getValue(); |
| ConstantRange LastRange(LB, LE); |
| if (canBeMerged(NewRange, LastRange)) { |
| ConstantRange Union = LastRange.unionWith(NewRange); |
| Type *Ty = High->getType(); |
| EndPoints[Size - 2] = ConstantInt::get(Ty, Union.getLower()); |
| EndPoints[Size - 1] = ConstantInt::get(Ty, Union.getUpper()); |
| return true; |
| } |
| return false; |
| } |
| |
| static void addRange(SmallVector<Value*, 4> &EndPoints, ConstantInt *Low, |
| ConstantInt *High) { |
| if (!EndPoints.empty()) |
| if (tryMergeRange(EndPoints, Low, High)) |
| return; |
| |
| EndPoints.push_back(Low); |
| EndPoints.push_back(High); |
| } |
| |
| MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { |
| // Given two ranges, we want to compute the union of the ranges. This |
| // is slightly complitade by having to combine the intervals and merge |
| // the ones that overlap. |
| |
| if (!A || !B) |
| return NULL; |
| |
| if (A == B) |
| return A; |
| |
| // First, walk both lists in older of the lower boundary of each interval. |
| // At each step, try to merge the new interval to the last one we adedd. |
| SmallVector<Value*, 4> EndPoints; |
| int AI = 0; |
| int BI = 0; |
| int AN = A->getNumOperands() / 2; |
| int BN = B->getNumOperands() / 2; |
| while (AI < AN && BI < BN) { |
| ConstantInt *ALow = cast<ConstantInt>(A->getOperand(2 * AI)); |
| ConstantInt *BLow = cast<ConstantInt>(B->getOperand(2 * BI)); |
| |
| if (ALow->getValue().slt(BLow->getValue())) { |
| addRange(EndPoints, ALow, cast<ConstantInt>(A->getOperand(2 * AI + 1))); |
| ++AI; |
| } else { |
| addRange(EndPoints, BLow, cast<ConstantInt>(B->getOperand(2 * BI + 1))); |
| ++BI; |
| } |
| } |
| while (AI < AN) { |
| addRange(EndPoints, cast<ConstantInt>(A->getOperand(2 * AI)), |
| cast<ConstantInt>(A->getOperand(2 * AI + 1))); |
| ++AI; |
| } |
| while (BI < BN) { |
| addRange(EndPoints, cast<ConstantInt>(B->getOperand(2 * BI)), |
| cast<ConstantInt>(B->getOperand(2 * BI + 1))); |
| ++BI; |
| } |
| |
| // If we have more than 2 ranges (4 endpoints) we have to try to merge |
| // the last and first ones. |
| unsigned Size = EndPoints.size(); |
| if (Size > 4) { |
| ConstantInt *FB = cast<ConstantInt>(EndPoints[0]); |
| ConstantInt *FE = cast<ConstantInt>(EndPoints[1]); |
| if (tryMergeRange(EndPoints, FB, FE)) { |
| for (unsigned i = 0; i < Size - 2; ++i) { |
| EndPoints[i] = EndPoints[i + 2]; |
| } |
| EndPoints.resize(Size - 2); |
| } |
| } |
| |
| // If in the end we have a single range, it is possible that it is now the |
| // full range. Just drop the metadata in that case. |
| if (EndPoints.size() == 2) { |
| ConstantRange Range(cast<ConstantInt>(EndPoints[0])->getValue(), |
| cast<ConstantInt>(EndPoints[1])->getValue()); |
| if (Range.isFullSet()) |
| return NULL; |
| } |
| |
| return MDNode::get(A->getContext(), EndPoints); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NamedMDNode implementation. |
| // |
| |
| static SmallVector<TrackingVH<MDNode>, 4> &getNMDOps(void *Operands) { |
| return *(SmallVector<TrackingVH<MDNode>, 4>*)Operands; |
| } |
| |
| NamedMDNode::NamedMDNode(const Twine &N) |
| : Name(N.str()), Parent(0), |
| Operands(new SmallVector<TrackingVH<MDNode>, 4>()) { |
| } |
| |
| NamedMDNode::~NamedMDNode() { |
| dropAllReferences(); |
| delete &getNMDOps(Operands); |
| } |
| |
| /// getNumOperands - Return number of NamedMDNode operands. |
| unsigned NamedMDNode::getNumOperands() const { |
| return (unsigned)getNMDOps(Operands).size(); |
| } |
| |
| /// getOperand - Return specified operand. |
| MDNode *NamedMDNode::getOperand(unsigned i) const { |
| assert(i < getNumOperands() && "Invalid Operand number!"); |
| return dyn_cast<MDNode>(&*getNMDOps(Operands)[i]); |
| } |
| |
| /// addOperand - Add metadata Operand. |
| void NamedMDNode::addOperand(MDNode *M) { |
| assert(!M->isFunctionLocal() && |
| "NamedMDNode operands must not be function-local!"); |
| getNMDOps(Operands).push_back(TrackingVH<MDNode>(M)); |
| } |
| |
| /// eraseFromParent - Drop all references and remove the node from parent |
| /// module. |
| void NamedMDNode::eraseFromParent() { |
| getParent()->eraseNamedMetadata(this); |
| } |
| |
| /// dropAllReferences - Remove all uses and clear node vector. |
| void NamedMDNode::dropAllReferences() { |
| getNMDOps(Operands).clear(); |
| } |
| |
| /// getName - Return a constant reference to this named metadata's name. |
| StringRef NamedMDNode::getName() const { |
| return StringRef(Name); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Metadata method implementations. |
| // |
| |
| void Instruction::setMetadata(StringRef Kind, MDNode *Node) { |
| if (Node == 0 && !hasMetadata()) return; |
| setMetadata(getContext().getMDKindID(Kind), Node); |
| } |
| |
| MDNode *Instruction::getMetadataImpl(StringRef Kind) const { |
| return getMetadataImpl(getContext().getMDKindID(Kind)); |
| } |
| |
| /// setMetadata - Set the metadata of of the specified kind to the specified |
| /// node. This updates/replaces metadata if already present, or removes it if |
| /// Node is null. |
| void Instruction::setMetadata(unsigned KindID, MDNode *Node) { |
| if (Node == 0 && !hasMetadata()) return; |
| |
| // Handle 'dbg' as a special case since it is not stored in the hash table. |
| if (KindID == LLVMContext::MD_dbg) { |
| DbgLoc = DebugLoc::getFromDILocation(Node); |
| return; |
| } |
| |
| // Handle the case when we're adding/updating metadata on an instruction. |
| if (Node) { |
| LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; |
| assert(!Info.empty() == hasMetadataHashEntry() && |
| "HasMetadata bit is wonked"); |
| if (Info.empty()) { |
| setHasMetadataHashEntry(true); |
| } else { |
| // Handle replacement of an existing value. |
| for (unsigned i = 0, e = Info.size(); i != e; ++i) |
| if (Info[i].first == KindID) { |
| Info[i].second = Node; |
| return; |
| } |
| } |
| |
| // No replacement, just add it to the list. |
| Info.push_back(std::make_pair(KindID, Node)); |
| return; |
| } |
| |
| // Otherwise, we're removing metadata from an instruction. |
| assert((hasMetadataHashEntry() == |
| getContext().pImpl->MetadataStore.count(this)) && |
| "HasMetadata bit out of date!"); |
| if (!hasMetadataHashEntry()) |
| return; // Nothing to remove! |
| LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; |
| |
| // Common case is removing the only entry. |
| if (Info.size() == 1 && Info[0].first == KindID) { |
| getContext().pImpl->MetadataStore.erase(this); |
| setHasMetadataHashEntry(false); |
| return; |
| } |
| |
| // Handle removal of an existing value. |
| for (unsigned i = 0, e = Info.size(); i != e; ++i) |
| if (Info[i].first == KindID) { |
| Info[i] = Info.back(); |
| Info.pop_back(); |
| assert(!Info.empty() && "Removing last entry should be handled above"); |
| return; |
| } |
| // Otherwise, removing an entry that doesn't exist on the instruction. |
| } |
| |
| MDNode *Instruction::getMetadataImpl(unsigned KindID) const { |
| // Handle 'dbg' as a special case since it is not stored in the hash table. |
| if (KindID == LLVMContext::MD_dbg) |
| return DbgLoc.getAsMDNode(getContext()); |
| |
| if (!hasMetadataHashEntry()) return 0; |
| |
| LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; |
| assert(!Info.empty() && "bit out of sync with hash table"); |
| |
| for (LLVMContextImpl::MDMapTy::iterator I = Info.begin(), E = Info.end(); |
| I != E; ++I) |
| if (I->first == KindID) |
| return I->second; |
| return 0; |
| } |
| |
| void Instruction::getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, |
| MDNode*> > &Result) const { |
| Result.clear(); |
| |
| // Handle 'dbg' as a special case since it is not stored in the hash table. |
| if (!DbgLoc.isUnknown()) { |
| Result.push_back(std::make_pair((unsigned)LLVMContext::MD_dbg, |
| DbgLoc.getAsMDNode(getContext()))); |
| if (!hasMetadataHashEntry()) return; |
| } |
| |
| assert(hasMetadataHashEntry() && |
| getContext().pImpl->MetadataStore.count(this) && |
| "Shouldn't have called this"); |
| const LLVMContextImpl::MDMapTy &Info = |
| getContext().pImpl->MetadataStore.find(this)->second; |
| assert(!Info.empty() && "Shouldn't have called this"); |
| |
| Result.append(Info.begin(), Info.end()); |
| |
| // Sort the resulting array so it is stable. |
| if (Result.size() > 1) |
| array_pod_sort(Result.begin(), Result.end()); |
| } |
| |
| void Instruction:: |
| getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned, |
| MDNode*> > &Result) const { |
| Result.clear(); |
| assert(hasMetadataHashEntry() && |
| getContext().pImpl->MetadataStore.count(this) && |
| "Shouldn't have called this"); |
| const LLVMContextImpl::MDMapTy &Info = |
| getContext().pImpl->MetadataStore.find(this)->second; |
| assert(!Info.empty() && "Shouldn't have called this"); |
| Result.append(Info.begin(), Info.end()); |
| |
| // Sort the resulting array so it is stable. |
| if (Result.size() > 1) |
| array_pod_sort(Result.begin(), Result.end()); |
| } |
| |
| /// clearMetadataHashEntries - Clear all hashtable-based metadata from |
| /// this instruction. |
| void Instruction::clearMetadataHashEntries() { |
| assert(hasMetadataHashEntry() && "Caller should check"); |
| getContext().pImpl->MetadataStore.erase(this); |
| setHasMetadataHashEntry(false); |
| } |
| |