blob: ab9bba183690b1ddbf85ab3362c22950a82c30d4 [file] [log] [blame]
//===-- AArch64BaseInfo.cpp - AArch64 Base encoding information------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides basic encoding and assembly information for AArch64.
//
//===----------------------------------------------------------------------===//
#include "AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Regex.h"
using namespace llvm;
StringRef NamedImmMapper::toString(uint32_t Value, bool &Valid) const {
for (unsigned i = 0; i < NumPairs; ++i) {
if (Pairs[i].Value == Value) {
Valid = true;
return Pairs[i].Name;
}
}
Valid = false;
return StringRef();
}
uint32_t NamedImmMapper::fromString(StringRef Name, bool &Valid) const {
std::string LowerCaseName = Name.lower();
for (unsigned i = 0; i < NumPairs; ++i) {
if (Pairs[i].Name == LowerCaseName) {
Valid = true;
return Pairs[i].Value;
}
}
Valid = false;
return -1;
}
bool NamedImmMapper::validImm(uint32_t Value) const {
return Value < TooBigImm;
}
const NamedImmMapper::Mapping A64AT::ATMapper::ATPairs[] = {
{"s1e1r", S1E1R},
{"s1e2r", S1E2R},
{"s1e3r", S1E3R},
{"s1e1w", S1E1W},
{"s1e2w", S1E2W},
{"s1e3w", S1E3W},
{"s1e0r", S1E0R},
{"s1e0w", S1E0W},
{"s12e1r", S12E1R},
{"s12e1w", S12E1W},
{"s12e0r", S12E0R},
{"s12e0w", S12E0W},
};
A64AT::ATMapper::ATMapper()
: NamedImmMapper(ATPairs, 0) {}
const NamedImmMapper::Mapping A64DB::DBarrierMapper::DBarrierPairs[] = {
{"oshld", OSHLD},
{"oshst", OSHST},
{"osh", OSH},
{"nshld", NSHLD},
{"nshst", NSHST},
{"nsh", NSH},
{"ishld", ISHLD},
{"ishst", ISHST},
{"ish", ISH},
{"ld", LD},
{"st", ST},
{"sy", SY}
};
A64DB::DBarrierMapper::DBarrierMapper()
: NamedImmMapper(DBarrierPairs, 16u) {}
const NamedImmMapper::Mapping A64DC::DCMapper::DCPairs[] = {
{"zva", ZVA},
{"ivac", IVAC},
{"isw", ISW},
{"cvac", CVAC},
{"csw", CSW},
{"cvau", CVAU},
{"civac", CIVAC},
{"cisw", CISW}
};
A64DC::DCMapper::DCMapper()
: NamedImmMapper(DCPairs, 0) {}
const NamedImmMapper::Mapping A64IC::ICMapper::ICPairs[] = {
{"ialluis", IALLUIS},
{"iallu", IALLU},
{"ivau", IVAU}
};
A64IC::ICMapper::ICMapper()
: NamedImmMapper(ICPairs, 0) {}
const NamedImmMapper::Mapping A64ISB::ISBMapper::ISBPairs[] = {
{"sy", SY},
};
A64ISB::ISBMapper::ISBMapper()
: NamedImmMapper(ISBPairs, 16) {}
const NamedImmMapper::Mapping A64PRFM::PRFMMapper::PRFMPairs[] = {
{"pldl1keep", PLDL1KEEP},
{"pldl1strm", PLDL1STRM},
{"pldl2keep", PLDL2KEEP},
{"pldl2strm", PLDL2STRM},
{"pldl3keep", PLDL3KEEP},
{"pldl3strm", PLDL3STRM},
{"plil1keep", PLIL1KEEP},
{"plil1strm", PLIL1STRM},
{"plil2keep", PLIL2KEEP},
{"plil2strm", PLIL2STRM},
{"plil3keep", PLIL3KEEP},
{"plil3strm", PLIL3STRM},
{"pstl1keep", PSTL1KEEP},
{"pstl1strm", PSTL1STRM},
{"pstl2keep", PSTL2KEEP},
{"pstl2strm", PSTL2STRM},
{"pstl3keep", PSTL3KEEP},
{"pstl3strm", PSTL3STRM}
};
A64PRFM::PRFMMapper::PRFMMapper()
: NamedImmMapper(PRFMPairs, 32) {}
const NamedImmMapper::Mapping A64PState::PStateMapper::PStatePairs[] = {
{"spsel", SPSel},
{"daifset", DAIFSet},
{"daifclr", DAIFClr}
};
A64PState::PStateMapper::PStateMapper()
: NamedImmMapper(PStatePairs, 0) {}
const NamedImmMapper::Mapping A64SysReg::MRSMapper::MRSPairs[] = {
{"mdccsr_el0", MDCCSR_EL0},
{"dbgdtrrx_el0", DBGDTRRX_EL0},
{"mdrar_el1", MDRAR_EL1},
{"oslsr_el1", OSLSR_EL1},
{"dbgauthstatus_el1", DBGAUTHSTATUS_EL1},
{"pmceid0_el0", PMCEID0_EL0},
{"pmceid1_el0", PMCEID1_EL0},
{"midr_el1", MIDR_EL1},
{"ccsidr_el1", CCSIDR_EL1},
{"clidr_el1", CLIDR_EL1},
{"ctr_el0", CTR_EL0},
{"mpidr_el1", MPIDR_EL1},
{"revidr_el1", REVIDR_EL1},
{"aidr_el1", AIDR_EL1},
{"dczid_el0", DCZID_EL0},
{"id_pfr0_el1", ID_PFR0_EL1},
{"id_pfr1_el1", ID_PFR1_EL1},
{"id_dfr0_el1", ID_DFR0_EL1},
{"id_afr0_el1", ID_AFR0_EL1},
{"id_mmfr0_el1", ID_MMFR0_EL1},
{"id_mmfr1_el1", ID_MMFR1_EL1},
{"id_mmfr2_el1", ID_MMFR2_EL1},
{"id_mmfr3_el1", ID_MMFR3_EL1},
{"id_isar0_el1", ID_ISAR0_EL1},
{"id_isar1_el1", ID_ISAR1_EL1},
{"id_isar2_el1", ID_ISAR2_EL1},
{"id_isar3_el1", ID_ISAR3_EL1},
{"id_isar4_el1", ID_ISAR4_EL1},
{"id_isar5_el1", ID_ISAR5_EL1},
{"id_aa64pfr0_el1", ID_AA64PFR0_EL1},
{"id_aa64pfr1_el1", ID_AA64PFR1_EL1},
{"id_aa64dfr0_el1", ID_AA64DFR0_EL1},
{"id_aa64dfr1_el1", ID_AA64DFR1_EL1},
{"id_aa64afr0_el1", ID_AA64AFR0_EL1},
{"id_aa64afr1_el1", ID_AA64AFR1_EL1},
{"id_aa64isar0_el1", ID_AA64ISAR0_EL1},
{"id_aa64isar1_el1", ID_AA64ISAR1_EL1},
{"id_aa64mmfr0_el1", ID_AA64MMFR0_EL1},
{"id_aa64mmfr1_el1", ID_AA64MMFR1_EL1},
{"mvfr0_el1", MVFR0_EL1},
{"mvfr1_el1", MVFR1_EL1},
{"mvfr2_el1", MVFR2_EL1},
{"rvbar_el1", RVBAR_EL1},
{"rvbar_el2", RVBAR_EL2},
{"rvbar_el3", RVBAR_EL3},
{"isr_el1", ISR_EL1},
{"cntpct_el0", CNTPCT_EL0},
{"cntvct_el0", CNTVCT_EL0}
};
A64SysReg::MRSMapper::MRSMapper() {
InstPairs = &MRSPairs[0];
NumInstPairs = llvm::array_lengthof(MRSPairs);
}
const NamedImmMapper::Mapping A64SysReg::MSRMapper::MSRPairs[] = {
{"dbgdtrtx_el0", DBGDTRTX_EL0},
{"oslar_el1", OSLAR_EL1},
{"pmswinc_el0", PMSWINC_EL0}
};
A64SysReg::MSRMapper::MSRMapper() {
InstPairs = &MSRPairs[0];
NumInstPairs = llvm::array_lengthof(MSRPairs);
}
const NamedImmMapper::Mapping A64SysReg::SysRegMapper::SysRegPairs[] = {
{"osdtrrx_el1", OSDTRRX_EL1},
{"osdtrtx_el1", OSDTRTX_EL1},
{"teecr32_el1", TEECR32_EL1},
{"mdccint_el1", MDCCINT_EL1},
{"mdscr_el1", MDSCR_EL1},
{"dbgdtr_el0", DBGDTR_EL0},
{"oseccr_el1", OSECCR_EL1},
{"dbgvcr32_el2", DBGVCR32_EL2},
{"dbgbvr0_el1", DBGBVR0_EL1},
{"dbgbvr1_el1", DBGBVR1_EL1},
{"dbgbvr2_el1", DBGBVR2_EL1},
{"dbgbvr3_el1", DBGBVR3_EL1},
{"dbgbvr4_el1", DBGBVR4_EL1},
{"dbgbvr5_el1", DBGBVR5_EL1},
{"dbgbvr6_el1", DBGBVR6_EL1},
{"dbgbvr7_el1", DBGBVR7_EL1},
{"dbgbvr8_el1", DBGBVR8_EL1},
{"dbgbvr9_el1", DBGBVR9_EL1},
{"dbgbvr10_el1", DBGBVR10_EL1},
{"dbgbvr11_el1", DBGBVR11_EL1},
{"dbgbvr12_el1", DBGBVR12_EL1},
{"dbgbvr13_el1", DBGBVR13_EL1},
{"dbgbvr14_el1", DBGBVR14_EL1},
{"dbgbvr15_el1", DBGBVR15_EL1},
{"dbgbcr0_el1", DBGBCR0_EL1},
{"dbgbcr1_el1", DBGBCR1_EL1},
{"dbgbcr2_el1", DBGBCR2_EL1},
{"dbgbcr3_el1", DBGBCR3_EL1},
{"dbgbcr4_el1", DBGBCR4_EL1},
{"dbgbcr5_el1", DBGBCR5_EL1},
{"dbgbcr6_el1", DBGBCR6_EL1},
{"dbgbcr7_el1", DBGBCR7_EL1},
{"dbgbcr8_el1", DBGBCR8_EL1},
{"dbgbcr9_el1", DBGBCR9_EL1},
{"dbgbcr10_el1", DBGBCR10_EL1},
{"dbgbcr11_el1", DBGBCR11_EL1},
{"dbgbcr12_el1", DBGBCR12_EL1},
{"dbgbcr13_el1", DBGBCR13_EL1},
{"dbgbcr14_el1", DBGBCR14_EL1},
{"dbgbcr15_el1", DBGBCR15_EL1},
{"dbgwvr0_el1", DBGWVR0_EL1},
{"dbgwvr1_el1", DBGWVR1_EL1},
{"dbgwvr2_el1", DBGWVR2_EL1},
{"dbgwvr3_el1", DBGWVR3_EL1},
{"dbgwvr4_el1", DBGWVR4_EL1},
{"dbgwvr5_el1", DBGWVR5_EL1},
{"dbgwvr6_el1", DBGWVR6_EL1},
{"dbgwvr7_el1", DBGWVR7_EL1},
{"dbgwvr8_el1", DBGWVR8_EL1},
{"dbgwvr9_el1", DBGWVR9_EL1},
{"dbgwvr10_el1", DBGWVR10_EL1},
{"dbgwvr11_el1", DBGWVR11_EL1},
{"dbgwvr12_el1", DBGWVR12_EL1},
{"dbgwvr13_el1", DBGWVR13_EL1},
{"dbgwvr14_el1", DBGWVR14_EL1},
{"dbgwvr15_el1", DBGWVR15_EL1},
{"dbgwcr0_el1", DBGWCR0_EL1},
{"dbgwcr1_el1", DBGWCR1_EL1},
{"dbgwcr2_el1", DBGWCR2_EL1},
{"dbgwcr3_el1", DBGWCR3_EL1},
{"dbgwcr4_el1", DBGWCR4_EL1},
{"dbgwcr5_el1", DBGWCR5_EL1},
{"dbgwcr6_el1", DBGWCR6_EL1},
{"dbgwcr7_el1", DBGWCR7_EL1},
{"dbgwcr8_el1", DBGWCR8_EL1},
{"dbgwcr9_el1", DBGWCR9_EL1},
{"dbgwcr10_el1", DBGWCR10_EL1},
{"dbgwcr11_el1", DBGWCR11_EL1},
{"dbgwcr12_el1", DBGWCR12_EL1},
{"dbgwcr13_el1", DBGWCR13_EL1},
{"dbgwcr14_el1", DBGWCR14_EL1},
{"dbgwcr15_el1", DBGWCR15_EL1},
{"teehbr32_el1", TEEHBR32_EL1},
{"osdlr_el1", OSDLR_EL1},
{"dbgprcr_el1", DBGPRCR_EL1},
{"dbgclaimset_el1", DBGCLAIMSET_EL1},
{"dbgclaimclr_el1", DBGCLAIMCLR_EL1},
{"csselr_el1", CSSELR_EL1},
{"vpidr_el2", VPIDR_EL2},
{"vmpidr_el2", VMPIDR_EL2},
{"sctlr_el1", SCTLR_EL1},
{"sctlr_el2", SCTLR_EL2},
{"sctlr_el3", SCTLR_EL3},
{"actlr_el1", ACTLR_EL1},
{"actlr_el2", ACTLR_EL2},
{"actlr_el3", ACTLR_EL3},
{"cpacr_el1", CPACR_EL1},
{"hcr_el2", HCR_EL2},
{"scr_el3", SCR_EL3},
{"mdcr_el2", MDCR_EL2},
{"sder32_el3", SDER32_EL3},
{"cptr_el2", CPTR_EL2},
{"cptr_el3", CPTR_EL3},
{"hstr_el2", HSTR_EL2},
{"hacr_el2", HACR_EL2},
{"mdcr_el3", MDCR_EL3},
{"ttbr0_el1", TTBR0_EL1},
{"ttbr0_el2", TTBR0_EL2},
{"ttbr0_el3", TTBR0_EL3},
{"ttbr1_el1", TTBR1_EL1},
{"tcr_el1", TCR_EL1},
{"tcr_el2", TCR_EL2},
{"tcr_el3", TCR_EL3},
{"vttbr_el2", VTTBR_EL2},
{"vtcr_el2", VTCR_EL2},
{"dacr32_el2", DACR32_EL2},
{"spsr_el1", SPSR_EL1},
{"spsr_el2", SPSR_EL2},
{"spsr_el3", SPSR_EL3},
{"elr_el1", ELR_EL1},
{"elr_el2", ELR_EL2},
{"elr_el3", ELR_EL3},
{"sp_el0", SP_EL0},
{"sp_el1", SP_EL1},
{"sp_el2", SP_EL2},
{"spsel", SPSel},
{"nzcv", NZCV},
{"daif", DAIF},
{"currentel", CurrentEL},
{"spsr_irq", SPSR_irq},
{"spsr_abt", SPSR_abt},
{"spsr_und", SPSR_und},
{"spsr_fiq", SPSR_fiq},
{"fpcr", FPCR},
{"fpsr", FPSR},
{"dspsr_el0", DSPSR_EL0},
{"dlr_el0", DLR_EL0},
{"ifsr32_el2", IFSR32_EL2},
{"afsr0_el1", AFSR0_EL1},
{"afsr0_el2", AFSR0_EL2},
{"afsr0_el3", AFSR0_EL3},
{"afsr1_el1", AFSR1_EL1},
{"afsr1_el2", AFSR1_EL2},
{"afsr1_el3", AFSR1_EL3},
{"esr_el1", ESR_EL1},
{"esr_el2", ESR_EL2},
{"esr_el3", ESR_EL3},
{"fpexc32_el2", FPEXC32_EL2},
{"far_el1", FAR_EL1},
{"far_el2", FAR_EL2},
{"far_el3", FAR_EL3},
{"hpfar_el2", HPFAR_EL2},
{"par_el1", PAR_EL1},
{"pmcr_el0", PMCR_EL0},
{"pmcntenset_el0", PMCNTENSET_EL0},
{"pmcntenclr_el0", PMCNTENCLR_EL0},
{"pmovsclr_el0", PMOVSCLR_EL0},
{"pmselr_el0", PMSELR_EL0},
{"pmccntr_el0", PMCCNTR_EL0},
{"pmxevtyper_el0", PMXEVTYPER_EL0},
{"pmxevcntr_el0", PMXEVCNTR_EL0},
{"pmuserenr_el0", PMUSERENR_EL0},
{"pmintenset_el1", PMINTENSET_EL1},
{"pmintenclr_el1", PMINTENCLR_EL1},
{"pmovsset_el0", PMOVSSET_EL0},
{"mair_el1", MAIR_EL1},
{"mair_el2", MAIR_EL2},
{"mair_el3", MAIR_EL3},
{"amair_el1", AMAIR_EL1},
{"amair_el2", AMAIR_EL2},
{"amair_el3", AMAIR_EL3},
{"vbar_el1", VBAR_EL1},
{"vbar_el2", VBAR_EL2},
{"vbar_el3", VBAR_EL3},
{"rmr_el1", RMR_EL1},
{"rmr_el2", RMR_EL2},
{"rmr_el3", RMR_EL3},
{"contextidr_el1", CONTEXTIDR_EL1},
{"tpidr_el0", TPIDR_EL0},
{"tpidr_el2", TPIDR_EL2},
{"tpidr_el3", TPIDR_EL3},
{"tpidrro_el0", TPIDRRO_EL0},
{"tpidr_el1", TPIDR_EL1},
{"cntfrq_el0", CNTFRQ_EL0},
{"cntvoff_el2", CNTVOFF_EL2},
{"cntkctl_el1", CNTKCTL_EL1},
{"cnthctl_el2", CNTHCTL_EL2},
{"cntp_tval_el0", CNTP_TVAL_EL0},
{"cnthp_tval_el2", CNTHP_TVAL_EL2},
{"cntps_tval_el1", CNTPS_TVAL_EL1},
{"cntp_ctl_el0", CNTP_CTL_EL0},
{"cnthp_ctl_el2", CNTHP_CTL_EL2},
{"cntps_ctl_el1", CNTPS_CTL_EL1},
{"cntp_cval_el0", CNTP_CVAL_EL0},
{"cnthp_cval_el2", CNTHP_CVAL_EL2},
{"cntps_cval_el1", CNTPS_CVAL_EL1},
{"cntv_tval_el0", CNTV_TVAL_EL0},
{"cntv_ctl_el0", CNTV_CTL_EL0},
{"cntv_cval_el0", CNTV_CVAL_EL0},
{"pmevcntr0_el0", PMEVCNTR0_EL0},
{"pmevcntr1_el0", PMEVCNTR1_EL0},
{"pmevcntr2_el0", PMEVCNTR2_EL0},
{"pmevcntr3_el0", PMEVCNTR3_EL0},
{"pmevcntr4_el0", PMEVCNTR4_EL0},
{"pmevcntr5_el0", PMEVCNTR5_EL0},
{"pmevcntr6_el0", PMEVCNTR6_EL0},
{"pmevcntr7_el0", PMEVCNTR7_EL0},
{"pmevcntr8_el0", PMEVCNTR8_EL0},
{"pmevcntr9_el0", PMEVCNTR9_EL0},
{"pmevcntr10_el0", PMEVCNTR10_EL0},
{"pmevcntr11_el0", PMEVCNTR11_EL0},
{"pmevcntr12_el0", PMEVCNTR12_EL0},
{"pmevcntr13_el0", PMEVCNTR13_EL0},
{"pmevcntr14_el0", PMEVCNTR14_EL0},
{"pmevcntr15_el0", PMEVCNTR15_EL0},
{"pmevcntr16_el0", PMEVCNTR16_EL0},
{"pmevcntr17_el0", PMEVCNTR17_EL0},
{"pmevcntr18_el0", PMEVCNTR18_EL0},
{"pmevcntr19_el0", PMEVCNTR19_EL0},
{"pmevcntr20_el0", PMEVCNTR20_EL0},
{"pmevcntr21_el0", PMEVCNTR21_EL0},
{"pmevcntr22_el0", PMEVCNTR22_EL0},
{"pmevcntr23_el0", PMEVCNTR23_EL0},
{"pmevcntr24_el0", PMEVCNTR24_EL0},
{"pmevcntr25_el0", PMEVCNTR25_EL0},
{"pmevcntr26_el0", PMEVCNTR26_EL0},
{"pmevcntr27_el0", PMEVCNTR27_EL0},
{"pmevcntr28_el0", PMEVCNTR28_EL0},
{"pmevcntr29_el0", PMEVCNTR29_EL0},
{"pmevcntr30_el0", PMEVCNTR30_EL0},
{"pmccfiltr_el0", PMCCFILTR_EL0},
{"pmevtyper0_el0", PMEVTYPER0_EL0},
{"pmevtyper1_el0", PMEVTYPER1_EL0},
{"pmevtyper2_el0", PMEVTYPER2_EL0},
{"pmevtyper3_el0", PMEVTYPER3_EL0},
{"pmevtyper4_el0", PMEVTYPER4_EL0},
{"pmevtyper5_el0", PMEVTYPER5_EL0},
{"pmevtyper6_el0", PMEVTYPER6_EL0},
{"pmevtyper7_el0", PMEVTYPER7_EL0},
{"pmevtyper8_el0", PMEVTYPER8_EL0},
{"pmevtyper9_el0", PMEVTYPER9_EL0},
{"pmevtyper10_el0", PMEVTYPER10_EL0},
{"pmevtyper11_el0", PMEVTYPER11_EL0},
{"pmevtyper12_el0", PMEVTYPER12_EL0},
{"pmevtyper13_el0", PMEVTYPER13_EL0},
{"pmevtyper14_el0", PMEVTYPER14_EL0},
{"pmevtyper15_el0", PMEVTYPER15_EL0},
{"pmevtyper16_el0", PMEVTYPER16_EL0},
{"pmevtyper17_el0", PMEVTYPER17_EL0},
{"pmevtyper18_el0", PMEVTYPER18_EL0},
{"pmevtyper19_el0", PMEVTYPER19_EL0},
{"pmevtyper20_el0", PMEVTYPER20_EL0},
{"pmevtyper21_el0", PMEVTYPER21_EL0},
{"pmevtyper22_el0", PMEVTYPER22_EL0},
{"pmevtyper23_el0", PMEVTYPER23_EL0},
{"pmevtyper24_el0", PMEVTYPER24_EL0},
{"pmevtyper25_el0", PMEVTYPER25_EL0},
{"pmevtyper26_el0", PMEVTYPER26_EL0},
{"pmevtyper27_el0", PMEVTYPER27_EL0},
{"pmevtyper28_el0", PMEVTYPER28_EL0},
{"pmevtyper29_el0", PMEVTYPER29_EL0},
{"pmevtyper30_el0", PMEVTYPER30_EL0},
};
uint32_t
A64SysReg::SysRegMapper::fromString(StringRef Name, bool &Valid) const {
// First search the registers shared by all
std::string NameLower = Name.lower();
for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
if (SysRegPairs[i].Name == NameLower) {
Valid = true;
return SysRegPairs[i].Value;
}
}
// Now try the instruction-specific registers (either read-only or
// write-only).
for (unsigned i = 0; i < NumInstPairs; ++i) {
if (InstPairs[i].Name == NameLower) {
Valid = true;
return InstPairs[i].Value;
}
}
// Try to parse an S<op0>_<op1>_<Cn>_<Cm>_<op2> register name, where the bits
// are: 11 xxx 1x11 xxxx xxx
Regex GenericRegPattern("^s3_([0-7])_c(1[15])_c([0-9]|1[0-5])_([0-7])$");
SmallVector<StringRef, 4> Ops;
if (!GenericRegPattern.match(NameLower, &Ops)) {
Valid = false;
return -1;
}
uint32_t Op0 = 3, Op1 = 0, CRn = 0, CRm = 0, Op2 = 0;
uint32_t Bits;
Ops[1].getAsInteger(10, Op1);
Ops[2].getAsInteger(10, CRn);
Ops[3].getAsInteger(10, CRm);
Ops[4].getAsInteger(10, Op2);
Bits = (Op0 << 14) | (Op1 << 11) | (CRn << 7) | (CRm << 3) | Op2;
Valid = true;
return Bits;
}
std::string
A64SysReg::SysRegMapper::toString(uint32_t Bits, bool &Valid) const {
for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
if (SysRegPairs[i].Value == Bits) {
Valid = true;
return SysRegPairs[i].Name;
}
}
for (unsigned i = 0; i < NumInstPairs; ++i) {
if (InstPairs[i].Value == Bits) {
Valid = true;
return InstPairs[i].Name;
}
}
uint32_t Op0 = (Bits >> 14) & 0x3;
uint32_t Op1 = (Bits >> 11) & 0x7;
uint32_t CRn = (Bits >> 7) & 0xf;
uint32_t CRm = (Bits >> 3) & 0xf;
uint32_t Op2 = Bits & 0x7;
// Only combinations matching: 11 xxx 1x11 xxxx xxx are valid for a generic
// name.
if (Op0 != 3 || (CRn != 11 && CRn != 15)) {
Valid = false;
return "";
}
assert(Op0 == 3 && (CRn == 11 || CRn == 15) && "Invalid generic sysreg");
Valid = true;
return "s3_" + utostr(Op1) + "_c" + utostr(CRn)
+ "_c" + utostr(CRm) + "_" + utostr(Op2);
}
const NamedImmMapper::Mapping A64TLBI::TLBIMapper::TLBIPairs[] = {
{"ipas2e1is", IPAS2E1IS},
{"ipas2le1is", IPAS2LE1IS},
{"vmalle1is", VMALLE1IS},
{"alle2is", ALLE2IS},
{"alle3is", ALLE3IS},
{"vae1is", VAE1IS},
{"vae2is", VAE2IS},
{"vae3is", VAE3IS},
{"aside1is", ASIDE1IS},
{"vaae1is", VAAE1IS},
{"alle1is", ALLE1IS},
{"vale1is", VALE1IS},
{"vale2is", VALE2IS},
{"vale3is", VALE3IS},
{"vmalls12e1is", VMALLS12E1IS},
{"vaale1is", VAALE1IS},
{"ipas2e1", IPAS2E1},
{"ipas2le1", IPAS2LE1},
{"vmalle1", VMALLE1},
{"alle2", ALLE2},
{"alle3", ALLE3},
{"vae1", VAE1},
{"vae2", VAE2},
{"vae3", VAE3},
{"aside1", ASIDE1},
{"vaae1", VAAE1},
{"alle1", ALLE1},
{"vale1", VALE1},
{"vale2", VALE2},
{"vale3", VALE3},
{"vmalls12e1", VMALLS12E1},
{"vaale1", VAALE1}
};
A64TLBI::TLBIMapper::TLBIMapper()
: NamedImmMapper(TLBIPairs, 0) {}
bool A64Imms::isFPImm(const APFloat &Val, uint32_t &Imm8Bits) {
const fltSemantics &Sem = Val.getSemantics();
unsigned FracBits = APFloat::semanticsPrecision(Sem) - 1;
uint32_t ExpMask;
switch (FracBits) {
case 10: // IEEE half-precision
ExpMask = 0x1f;
break;
case 23: // IEEE single-precision
ExpMask = 0xff;
break;
case 52: // IEEE double-precision
ExpMask = 0x7ff;
break;
case 112: // IEEE quad-precision
// No immediates are valid for double precision.
return false;
default:
llvm_unreachable("Only half, single and double precision supported");
}
uint32_t ExpStart = FracBits;
uint64_t FracMask = (1ULL << FracBits) - 1;
uint32_t Sign = Val.isNegative();
uint64_t Bits= Val.bitcastToAPInt().getLimitedValue();
uint64_t Fraction = Bits & FracMask;
int32_t Exponent = ((Bits >> ExpStart) & ExpMask);
Exponent -= ExpMask >> 1;
// S[d] = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 5):imm8<5:0>:Zeros(19)
// D[d] = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 8):imm8<5:0>:Zeros(48)
// This translates to: only 4 bits of fraction; -3 <= exp <= 4.
uint64_t A64FracStart = FracBits - 4;
uint64_t A64FracMask = 0xf;
// Are there too many fraction bits?
if (Fraction & ~(A64FracMask << A64FracStart))
return false;
if (Exponent < -3 || Exponent > 4)
return false;
uint32_t PackedFraction = (Fraction >> A64FracStart) & A64FracMask;
uint32_t PackedExp = (Exponent + 7) & 0x7;
Imm8Bits = (Sign << 7) | (PackedExp << 4) | PackedFraction;
return true;
}
// Encoding of the immediate for logical (immediate) instructions:
//
// | N | imms | immr | size | R | S |
// |---+--------+--------+------+--------------+--------------|
// | 1 | ssssss | rrrrrr | 64 | UInt(rrrrrr) | UInt(ssssss) |
// | 0 | 0sssss | xrrrrr | 32 | UInt(rrrrr) | UInt(sssss) |
// | 0 | 10ssss | xxrrrr | 16 | UInt(rrrr) | UInt(ssss) |
// | 0 | 110sss | xxxrrr | 8 | UInt(rrr) | UInt(sss) |
// | 0 | 1110ss | xxxxrr | 4 | UInt(rr) | UInt(ss) |
// | 0 | 11110s | xxxxxr | 2 | UInt(r) | UInt(s) |
// | 0 | 11111x | - | | UNALLOCATED | |
//
// Columns 'R', 'S' and 'size' specify a "bitmask immediate" of size bits in
// which the lower S+1 bits are ones and the remaining bits are zero, then
// rotated right by R bits, which is then replicated across the datapath.
//
// + Values of 'N', 'imms' and 'immr' which do not match the above table are
// RESERVED.
// + If all 's' bits in the imms field are set then the instruction is
// RESERVED.
// + The 'x' bits in the 'immr' field are IGNORED.
bool A64Imms::isLogicalImm(unsigned RegWidth, uint64_t Imm, uint32_t &Bits) {
int RepeatWidth;
int Rotation = 0;
int Num1s = 0;
// Because there are S+1 ones in the replicated mask, an immediate of all
// zeros is not allowed. Filtering it here is probably more efficient.
if (Imm == 0) return false;
for (RepeatWidth = RegWidth; RepeatWidth > 1; RepeatWidth /= 2) {
uint64_t RepeatMask = RepeatWidth == 64 ? -1 : (1ULL << RepeatWidth) - 1;
uint64_t ReplicatedMask = Imm & RepeatMask;
if (ReplicatedMask == 0) continue;
// First we have to make sure the mask is actually repeated in each slot for
// this width-specifier.
bool IsReplicatedMask = true;
for (unsigned i = RepeatWidth; i < RegWidth; i += RepeatWidth) {
if (((Imm >> i) & RepeatMask) != ReplicatedMask) {
IsReplicatedMask = false;
break;
}
}
if (!IsReplicatedMask) continue;
// Now we have to work out the amount of rotation needed. The first part of
// this calculation is actually independent of RepeatWidth, but the complex
// case will depend on it.
Rotation = CountTrailingZeros_64(Imm);
if (Rotation == 0) {
// There were no leading zeros, which means it's either in place or there
// are 1s at each end (e.g. 0x8003 needs rotating).
Rotation = RegWidth == 64 ? CountLeadingOnes_64(Imm)
: CountLeadingOnes_32(Imm);
Rotation = RepeatWidth - Rotation;
}
uint64_t ReplicatedOnes = (ReplicatedMask >> Rotation)
| ((ReplicatedMask << (RepeatWidth - Rotation)) & RepeatMask);
// Of course, they may not actually be ones, so we have to check that:
if (!isMask_64(ReplicatedOnes))
continue;
Num1s = CountTrailingOnes_64(ReplicatedOnes);
// We know we've got an almost valid encoding (certainly, if this is invalid
// no other parameters would work).
break;
}
// The encodings which would produce all 1s are RESERVED.
if (RepeatWidth == 1 || Num1s == RepeatWidth) return false;
uint32_t N = RepeatWidth == 64;
uint32_t ImmR = RepeatWidth - Rotation;
uint32_t ImmS = Num1s - 1;
switch (RepeatWidth) {
default: break; // No action required for other valid rotations.
case 16: ImmS |= 0x20; break; // 10ssss
case 8: ImmS |= 0x30; break; // 110sss
case 4: ImmS |= 0x38; break; // 1110ss
case 2: ImmS |= 0x3c; break; // 11110s
}
Bits = ImmS | (ImmR << 6) | (N << 12);
return true;
}
bool A64Imms::isLogicalImmBits(unsigned RegWidth, uint32_t Bits,
uint64_t &Imm) {
uint32_t N = Bits >> 12;
uint32_t ImmR = (Bits >> 6) & 0x3f;
uint32_t ImmS = Bits & 0x3f;
// N=1 encodes a 64-bit replication and is invalid for the 32-bit
// instructions.
if (RegWidth == 32 && N != 0) return false;
int Width = 0;
if (N == 1)
Width = 64;
else if ((ImmS & 0x20) == 0)
Width = 32;
else if ((ImmS & 0x10) == 0)
Width = 16;
else if ((ImmS & 0x08) == 0)
Width = 8;
else if ((ImmS & 0x04) == 0)
Width = 4;
else if ((ImmS & 0x02) == 0)
Width = 2;
else {
// ImmS is 0b11111x: UNALLOCATED
return false;
}
int Num1s = (ImmS & (Width - 1)) + 1;
// All encodings which would map to -1 (signed) are RESERVED.
if (Num1s == Width) return false;
int Rotation = (ImmR & (Width - 1));
uint64_t Mask = (1ULL << Num1s) - 1;
uint64_t WidthMask = Width == 64 ? -1 : (1ULL << Width) - 1;
Mask = (Mask >> Rotation)
| ((Mask << (Width - Rotation)) & WidthMask);
Imm = 0;
for (unsigned i = 0; i < RegWidth / Width; ++i) {
Imm |= Mask;
Mask <<= Width;
}
return true;
}
bool A64Imms::isMOVZImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift) {
// If high bits are set then a 32-bit MOVZ can't possibly work.
if (RegWidth == 32 && (Value & ~0xffffffffULL))
return false;
for (int i = 0; i < RegWidth; i += 16) {
// If the value is 0 when we mask out all the bits that could be set with
// the current LSL value then it's representable.
if ((Value & ~(0xffffULL << i)) == 0) {
Shift = i / 16;
UImm16 = (Value >> i) & 0xffff;
return true;
}
}
return false;
}
bool A64Imms::isMOVNImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift) {
// MOVN is defined to set its register to NOT(LSL(imm16, shift)).
// We have to be a little careful about a 32-bit register: 0xffff_1234 *is*
// representable, but ~0xffff_1234 == 0xffff_ffff_0000_edcb which is not
// a valid input for isMOVZImm.
if (RegWidth == 32 && (Value & ~0xffffffffULL))
return false;
uint64_t MOVZEquivalent = RegWidth == 32 ? ~Value & 0xffffffff : ~Value;
return isMOVZImm(RegWidth, MOVZEquivalent, UImm16, Shift);
}
bool A64Imms::isOnlyMOVNImm(int RegWidth, uint64_t Value,
int &UImm16, int &Shift) {
if (isMOVZImm(RegWidth, Value, UImm16, Shift))
return false;
return isMOVNImm(RegWidth, Value, UImm16, Shift);
}