| //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the PPCISelLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCISelLowering.h" |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCPerfectShuffle.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| |
| static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", |
| cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); |
| |
| static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", |
| cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); |
| |
| static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", |
| cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); |
| |
| static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { |
| if (TM.getSubtargetImpl()->isDarwin()) |
| return new TargetLoweringObjectFileMachO(); |
| |
| return new TargetLoweringObjectFileELF(); |
| } |
| |
| PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) |
| : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { |
| const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); |
| |
| setPow2DivIsCheap(); |
| |
| // Use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(true); |
| |
| // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all |
| // arguments are at least 4/8 bytes aligned. |
| bool isPPC64 = Subtarget->isPPC64(); |
| setMinStackArgumentAlignment(isPPC64 ? 8:4); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, &PPC::GPRCRegClass); |
| addRegisterClass(MVT::f32, &PPC::F4RCRegClass); |
| addRegisterClass(MVT::f64, &PPC::F8RCRegClass); |
| |
| // PowerPC has an i16 but no i8 (or i1) SEXTLOAD |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // PowerPC has pre-inc load and store's. |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); |
| |
| // This is used in the ppcf128->int sequence. Note it has different semantics |
| // from FP_ROUND: that rounds to nearest, this rounds to zero. |
| setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); |
| |
| // We do not currently implement these libm ops for PowerPC. |
| setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); |
| |
| // PowerPC has no SREM/UREM instructions |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| |
| // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i64, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i64, Expand); |
| |
| // We don't support sin/cos/sqrt/fmod/pow |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FPOW , MVT::f64, Expand); |
| setOperationAction(ISD::FMA , MVT::f64, Legal); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| setOperationAction(ISD::FPOW , MVT::f32, Expand); |
| setOperationAction(ISD::FMA , MVT::f32, Legal); |
| |
| setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); |
| |
| // If we're enabling GP optimizations, use hardware square root |
| if (!Subtarget->hasFSQRT()) { |
| setOperationAction(ISD::FSQRT, MVT::f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f32, Expand); |
| } |
| |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| // PowerPC does not have BSWAP, CTPOP or CTTZ |
| setOperationAction(ISD::BSWAP, MVT::i32 , Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); |
| setOperationAction(ISD::BSWAP, MVT::i64 , Expand); |
| setOperationAction(ISD::CTPOP, MVT::i64 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i64 , Expand); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); |
| |
| // PowerPC does not have ROTR |
| setOperationAction(ISD::ROTR, MVT::i32 , Expand); |
| setOperationAction(ISD::ROTR, MVT::i64 , Expand); |
| |
| // PowerPC does not have Select |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::i64, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Expand); |
| |
| // PowerPC wants to turn select_cc of FP into fsel when possible. |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| // PowerPC wants to optimize integer setcc a bit |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| |
| // PowerPC does not have BRCOND which requires SetCC |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| |
| // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| |
| // PowerPC does not have [U|S]INT_TO_FP |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| |
| setOperationAction(ISD::BITCAST, MVT::f32, Expand); |
| setOperationAction(ISD::BITCAST, MVT::i32, Expand); |
| setOperationAction(ISD::BITCAST, MVT::i64, Expand); |
| setOperationAction(ISD::BITCAST, MVT::f64, Expand); |
| |
| // We cannot sextinreg(i1). Expand to shifts. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| |
| |
| // We want to legalize GlobalAddress and ConstantPool nodes into the |
| // appropriate instructions to materialize the address. |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i64, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i64, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i64, Custom); |
| |
| // TRAP is legal. |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // TRAMPOLINE is custom lowered. |
| setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); |
| setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| |
| if (Subtarget->isSVR4ABI()) { |
| if (isPPC64) { |
| // VAARG always uses double-word chunks, so promote anything smaller. |
| setOperationAction(ISD::VAARG, MVT::i1, Promote); |
| AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); |
| setOperationAction(ISD::VAARG, MVT::i8, Promote); |
| AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); |
| setOperationAction(ISD::VAARG, MVT::i16, Promote); |
| AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); |
| setOperationAction(ISD::VAARG, MVT::i32, Promote); |
| AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| } else { |
| // VAARG is custom lowered with the 32-bit SVR4 ABI. |
| setOperationAction(ISD::VAARG, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::i64, Custom); |
| } |
| } else |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| // Comparisons that require checking two conditions. |
| setCondCodeAction(ISD::SETULT, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETULT, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETONE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETONE, MVT::f64, Expand); |
| |
| if (Subtarget->has64BitSupport()) { |
| // They also have instructions for converting between i64 and fp. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); |
| // This is just the low 32 bits of a (signed) fp->i64 conversion. |
| // We cannot do this with Promote because i64 is not a legal type. |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| |
| // FIXME: disable this lowered code. This generates 64-bit register values, |
| // and we don't model the fact that the top part is clobbered by calls. We |
| // need to flag these together so that the value isn't live across a call. |
| //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| } else { |
| // PowerPC does not have FP_TO_UINT on 32-bit implementations. |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| } |
| |
| if (Subtarget->use64BitRegs()) { |
| // 64-bit PowerPC implementations can support i64 types directly |
| addRegisterClass(MVT::i64, &PPC::G8RCRegClass); |
| // BUILD_PAIR can't be handled natively, and should be expanded to shl/or |
| setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); |
| // 64-bit PowerPC wants to expand i128 shifts itself. |
| setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); |
| } else { |
| // 32-bit PowerPC wants to expand i64 shifts itself. |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| } |
| |
| if (Subtarget->hasAltivec()) { |
| // First set operation action for all vector types to expand. Then we |
| // will selectively turn on ones that can be effectively codegen'd. |
| for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { |
| MVT::SimpleValueType VT = (MVT::SimpleValueType)i; |
| |
| // add/sub are legal for all supported vector VT's. |
| setOperationAction(ISD::ADD , VT, Legal); |
| setOperationAction(ISD::SUB , VT, Legal); |
| |
| // We promote all shuffles to v16i8. |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); |
| AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); |
| |
| // We promote all non-typed operations to v4i32. |
| setOperationAction(ISD::AND , VT, Promote); |
| AddPromotedToType (ISD::AND , VT, MVT::v4i32); |
| setOperationAction(ISD::OR , VT, Promote); |
| AddPromotedToType (ISD::OR , VT, MVT::v4i32); |
| setOperationAction(ISD::XOR , VT, Promote); |
| AddPromotedToType (ISD::XOR , VT, MVT::v4i32); |
| setOperationAction(ISD::LOAD , VT, Promote); |
| AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); |
| setOperationAction(ISD::SELECT, VT, Promote); |
| AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); |
| setOperationAction(ISD::STORE, VT, Promote); |
| AddPromotedToType (ISD::STORE, VT, MVT::v4i32); |
| |
| // No other operations are legal. |
| setOperationAction(ISD::MUL , VT, Expand); |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::FDIV, VT, Expand); |
| setOperationAction(ISD::FNEG, VT, Expand); |
| setOperationAction(ISD::FSQRT, VT, Expand); |
| setOperationAction(ISD::FLOG, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FEXP, VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| setOperationAction(ISD::FSIN, VT, Expand); |
| setOperationAction(ISD::FCOS, VT, Expand); |
| setOperationAction(ISD::FABS, VT, Expand); |
| setOperationAction(ISD::FPOWI, VT, Expand); |
| setOperationAction(ISD::FFLOOR, VT, Expand); |
| setOperationAction(ISD::FCEIL, VT, Expand); |
| setOperationAction(ISD::FTRUNC, VT, Expand); |
| setOperationAction(ISD::FRINT, VT, Expand); |
| setOperationAction(ISD::FNEARBYINT, VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); |
| setOperationAction(ISD::BUILD_VECTOR, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UDIVREM, VT, Expand); |
| setOperationAction(ISD::SDIVREM, VT, Expand); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); |
| setOperationAction(ISD::FPOW, VT, Expand); |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| |
| for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) { |
| MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j; |
| setTruncStoreAction(VT, InnerVT, Expand); |
| } |
| setLoadExtAction(ISD::SEXTLOAD, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, Expand); |
| } |
| |
| // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle |
| // with merges, splats, etc. |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); |
| |
| setOperationAction(ISD::AND , MVT::v4i32, Legal); |
| setOperationAction(ISD::OR , MVT::v4i32, Legal); |
| setOperationAction(ISD::XOR , MVT::v4i32, Legal); |
| setOperationAction(ISD::LOAD , MVT::v4i32, Legal); |
| setOperationAction(ISD::SELECT, MVT::v4i32, Expand); |
| setOperationAction(ISD::STORE , MVT::v4i32, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); |
| |
| addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); |
| addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); |
| addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); |
| addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); |
| |
| setOperationAction(ISD::MUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMA, MVT::v4f32, Legal); |
| setOperationAction(ISD::MUL, MVT::v4i32, Custom); |
| setOperationAction(ISD::MUL, MVT::v8i16, Custom); |
| setOperationAction(ISD::MUL, MVT::v16i8, Custom); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| |
| // Altivec does not contain unordered floating-point compare instructions |
| setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); |
| setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand); |
| setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand); |
| setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand); |
| setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand); |
| } |
| |
| if (Subtarget->has64BitSupport()) { |
| setOperationAction(ISD::PREFETCH, MVT::Other, Legal); |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); |
| } |
| |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? |
| |
| if (isPPC64) { |
| setStackPointerRegisterToSaveRestore(PPC::X1); |
| setExceptionPointerRegister(PPC::X3); |
| setExceptionSelectorRegister(PPC::X4); |
| } else { |
| setStackPointerRegisterToSaveRestore(PPC::R1); |
| setExceptionPointerRegister(PPC::R3); |
| setExceptionSelectorRegister(PPC::R4); |
| } |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine(ISD::SINT_TO_FP); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::BR_CC); |
| setTargetDAGCombine(ISD::BSWAP); |
| |
| // Darwin long double math library functions have $LDBL128 appended. |
| if (Subtarget->isDarwin()) { |
| setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); |
| setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); |
| setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); |
| setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); |
| setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); |
| setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); |
| setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); |
| setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); |
| setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); |
| setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); |
| } |
| |
| setMinFunctionAlignment(2); |
| if (PPCSubTarget.isDarwin()) |
| setPrefFunctionAlignment(4); |
| |
| if (isPPC64 && Subtarget->isJITCodeModel()) |
| // Temporary workaround for the inability of PPC64 JIT to handle jump |
| // tables. |
| setSupportJumpTables(false); |
| |
| setInsertFencesForAtomic(true); |
| |
| setSchedulingPreference(Sched::Hybrid); |
| |
| computeRegisterProperties(); |
| |
| // The Freescale cores does better with aggressive inlining of memcpy and |
| // friends. Gcc uses same threshold of 128 bytes (= 32 word stores). |
| if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc || |
| Subtarget->getDarwinDirective() == PPC::DIR_E5500) { |
| MaxStoresPerMemset = 32; |
| MaxStoresPerMemsetOptSize = 16; |
| MaxStoresPerMemcpy = 32; |
| MaxStoresPerMemcpyOptSize = 8; |
| MaxStoresPerMemmove = 32; |
| MaxStoresPerMemmoveOptSize = 8; |
| |
| setPrefFunctionAlignment(4); |
| BenefitFromCodePlacementOpt = true; |
| } |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. |
| unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { |
| const TargetMachine &TM = getTargetMachine(); |
| // Darwin passes everything on 4 byte boundary. |
| if (TM.getSubtarget<PPCSubtarget>().isDarwin()) |
| return 4; |
| |
| // 16byte and wider vectors are passed on 16byte boundary. |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) |
| if (VTy->getBitWidth() >= 128) |
| return 16; |
| |
| // The rest is 8 on PPC64 and 4 on PPC32 boundary. |
| if (PPCSubTarget.isPPC64()) |
| return 8; |
| |
| return 4; |
| } |
| |
| const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return 0; |
| case PPCISD::FSEL: return "PPCISD::FSEL"; |
| case PPCISD::FCFID: return "PPCISD::FCFID"; |
| case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; |
| case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; |
| case PPCISD::STFIWX: return "PPCISD::STFIWX"; |
| case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; |
| case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; |
| case PPCISD::VPERM: return "PPCISD::VPERM"; |
| case PPCISD::Hi: return "PPCISD::Hi"; |
| case PPCISD::Lo: return "PPCISD::Lo"; |
| case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; |
| case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; |
| case PPCISD::LOAD: return "PPCISD::LOAD"; |
| case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; |
| case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; |
| case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; |
| case PPCISD::SRL: return "PPCISD::SRL"; |
| case PPCISD::SRA: return "PPCISD::SRA"; |
| case PPCISD::SHL: return "PPCISD::SHL"; |
| case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; |
| case PPCISD::STD_32: return "PPCISD::STD_32"; |
| case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; |
| case PPCISD::CALL_NOP_SVR4: return "PPCISD::CALL_NOP_SVR4"; |
| case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; |
| case PPCISD::NOP: return "PPCISD::NOP"; |
| case PPCISD::MTCTR: return "PPCISD::MTCTR"; |
| case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; |
| case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; |
| case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; |
| case PPCISD::MFCR: return "PPCISD::MFCR"; |
| case PPCISD::VCMP: return "PPCISD::VCMP"; |
| case PPCISD::VCMPo: return "PPCISD::VCMPo"; |
| case PPCISD::LBRX: return "PPCISD::LBRX"; |
| case PPCISD::STBRX: return "PPCISD::STBRX"; |
| case PPCISD::LARX: return "PPCISD::LARX"; |
| case PPCISD::STCX: return "PPCISD::STCX"; |
| case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; |
| case PPCISD::MFFS: return "PPCISD::MFFS"; |
| case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; |
| case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; |
| case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; |
| case PPCISD::MTFSF: return "PPCISD::MTFSF"; |
| case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; |
| case PPCISD::CR6SET: return "PPCISD::CR6SET"; |
| case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; |
| case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA"; |
| case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L"; |
| case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L"; |
| case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; |
| case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; |
| case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; |
| case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; |
| case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; |
| case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; |
| case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; |
| case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; |
| case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; |
| case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; |
| case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; |
| case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; |
| } |
| } |
| |
| EVT PPCTargetLowering::getSetCCResultType(EVT VT) const { |
| if (!VT.isVector()) |
| return MVT::i32; |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Node matching predicates, for use by the tblgen matching code. |
| //===----------------------------------------------------------------------===// |
| |
| /// isFloatingPointZero - Return true if this is 0.0 or -0.0. |
| static bool isFloatingPointZero(SDValue Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->getValueAPF().isZero(); |
| else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { |
| // Maybe this has already been legalized into the constant pool? |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) |
| return CFP->getValueAPF().isZero(); |
| } |
| return false; |
| } |
| |
| /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if it matches the specified value. |
| static bool isConstantOrUndef(int Op, int Val) { |
| return Op < 0 || Op == Val; |
| } |
| |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUHUM instruction. |
| bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { |
| if (!isUnary) { |
| for (unsigned i = 0; i != 16; ++i) |
| if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) |
| return false; |
| } else { |
| for (unsigned i = 0; i != 8; ++i) |
| if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || |
| !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUWUM instruction. |
| bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { |
| if (!isUnary) { |
| for (unsigned i = 0; i != 16; i += 2) |
| if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || |
| !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) |
| return false; |
| } else { |
| for (unsigned i = 0; i != 8; i += 2) |
| if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || |
| !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || |
| !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || |
| !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVMerge - Common function, used to match vmrg* shuffles. |
| /// |
| static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, |
| unsigned LHSStart, unsigned RHSStart) { |
| assert(N->getValueType(0) == MVT::v16i8 && |
| "PPC only supports shuffles by bytes!"); |
| assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && |
| "Unsupported merge size!"); |
| |
| for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units |
| for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit |
| if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), |
| LHSStart+j+i*UnitSize) || |
| !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), |
| RHSStart+j+i*UnitSize)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). |
| bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| bool isUnary) { |
| if (!isUnary) |
| return isVMerge(N, UnitSize, 8, 24); |
| return isVMerge(N, UnitSize, 8, 8); |
| } |
| |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). |
| bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| bool isUnary) { |
| if (!isUnary) |
| return isVMerge(N, UnitSize, 0, 16); |
| return isVMerge(N, UnitSize, 0, 0); |
| } |
| |
| |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift |
| /// amount, otherwise return -1. |
| int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { |
| assert(N->getValueType(0) == MVT::v16i8 && |
| "PPC only supports shuffles by bytes!"); |
| |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| |
| // Find the first non-undef value in the shuffle mask. |
| unsigned i; |
| for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) |
| /*search*/; |
| |
| if (i == 16) return -1; // all undef. |
| |
| // Otherwise, check to see if the rest of the elements are consecutively |
| // numbered from this value. |
| unsigned ShiftAmt = SVOp->getMaskElt(i); |
| if (ShiftAmt < i) return -1; |
| ShiftAmt -= i; |
| |
| if (!isUnary) { |
| // Check the rest of the elements to see if they are consecutive. |
| for (++i; i != 16; ++i) |
| if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) |
| return -1; |
| } else { |
| // Check the rest of the elements to see if they are consecutive. |
| for (++i; i != 16; ++i) |
| if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) |
| return -1; |
| } |
| return ShiftAmt; |
| } |
| |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of a single element that is suitable for input to |
| /// VSPLTB/VSPLTH/VSPLTW. |
| bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { |
| assert(N->getValueType(0) == MVT::v16i8 && |
| (EltSize == 1 || EltSize == 2 || EltSize == 4)); |
| |
| // This is a splat operation if each element of the permute is the same, and |
| // if the value doesn't reference the second vector. |
| unsigned ElementBase = N->getMaskElt(0); |
| |
| // FIXME: Handle UNDEF elements too! |
| if (ElementBase >= 16) |
| return false; |
| |
| // Check that the indices are consecutive, in the case of a multi-byte element |
| // splatted with a v16i8 mask. |
| for (unsigned i = 1; i != EltSize; ++i) |
| if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) |
| return false; |
| |
| for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { |
| if (N->getMaskElt(i) < 0) continue; |
| for (unsigned j = 0; j != EltSize; ++j) |
| if (N->getMaskElt(i+j) != N->getMaskElt(j)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isAllNegativeZeroVector - Returns true if all elements of build_vector |
| /// are -0.0. |
| bool PPC::isAllNegativeZeroVector(SDNode *N) { |
| BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); |
| |
| APInt APVal, APUndef; |
| unsigned BitSize; |
| bool HasAnyUndefs; |
| |
| if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) |
| return CFP->getValueAPF().isNegZero(); |
| |
| return false; |
| } |
| |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. |
| unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| assert(isSplatShuffleMask(SVOp, EltSize)); |
| return SVOp->getMaskElt(0) / EltSize; |
| } |
| |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed |
| /// by using a vspltis[bhw] instruction of the specified element size, return |
| /// the constant being splatted. The ByteSize field indicates the number of |
| /// bytes of each element [124] -> [bhw]. |
| SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { |
| SDValue OpVal(0, 0); |
| |
| // If ByteSize of the splat is bigger than the element size of the |
| // build_vector, then we have a case where we are checking for a splat where |
| // multiple elements of the buildvector are folded together into a single |
| // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). |
| unsigned EltSize = 16/N->getNumOperands(); |
| if (EltSize < ByteSize) { |
| unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. |
| SDValue UniquedVals[4]; |
| assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); |
| |
| // See if all of the elements in the buildvector agree across. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| // If the element isn't a constant, bail fully out. |
| if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); |
| |
| |
| if (UniquedVals[i&(Multiple-1)].getNode() == 0) |
| UniquedVals[i&(Multiple-1)] = N->getOperand(i); |
| else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) |
| return SDValue(); // no match. |
| } |
| |
| // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains |
| // either constant or undef values that are identical for each chunk. See |
| // if these chunks can form into a larger vspltis*. |
| |
| // Check to see if all of the leading entries are either 0 or -1. If |
| // neither, then this won't fit into the immediate field. |
| bool LeadingZero = true; |
| bool LeadingOnes = true; |
| for (unsigned i = 0; i != Multiple-1; ++i) { |
| if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. |
| |
| LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); |
| LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); |
| } |
| // Finally, check the least significant entry. |
| if (LeadingZero) { |
| if (UniquedVals[Multiple-1].getNode() == 0) |
| return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef |
| int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); |
| if (Val < 16) |
| return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) |
| } |
| if (LeadingOnes) { |
| if (UniquedVals[Multiple-1].getNode() == 0) |
| return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef |
| int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); |
| if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) |
| return DAG.getTargetConstant(Val, MVT::i32); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Check to see if this buildvec has a single non-undef value in its elements. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; |
| if (OpVal.getNode() == 0) |
| OpVal = N->getOperand(i); |
| else if (OpVal != N->getOperand(i)) |
| return SDValue(); |
| } |
| |
| if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. |
| |
| unsigned ValSizeInBytes = EltSize; |
| uint64_t Value = 0; |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { |
| Value = CN->getZExtValue(); |
| } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { |
| assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); |
| Value = FloatToBits(CN->getValueAPF().convertToFloat()); |
| } |
| |
| // If the splat value is larger than the element value, then we can never do |
| // this splat. The only case that we could fit the replicated bits into our |
| // immediate field for would be zero, and we prefer to use vxor for it. |
| if (ValSizeInBytes < ByteSize) return SDValue(); |
| |
| // If the element value is larger than the splat value, cut it in half and |
| // check to see if the two halves are equal. Continue doing this until we |
| // get to ByteSize. This allows us to handle 0x01010101 as 0x01. |
| while (ValSizeInBytes > ByteSize) { |
| ValSizeInBytes >>= 1; |
| |
| // If the top half equals the bottom half, we're still ok. |
| if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != |
| (Value & ((1 << (8*ValSizeInBytes))-1))) |
| return SDValue(); |
| } |
| |
| // Properly sign extend the value. |
| int MaskVal = SignExtend32(Value, ByteSize * 8); |
| |
| // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. |
| if (MaskVal == 0) return SDValue(); |
| |
| // Finally, if this value fits in a 5 bit sext field, return it |
| if (SignExtend32<5>(MaskVal) == MaskVal) |
| return DAG.getTargetConstant(MaskVal, MVT::i32); |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Addressing Mode Selection |
| //===----------------------------------------------------------------------===// |
| |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit |
| /// or 64-bit immediate, and if the value can be accurately represented as a |
| /// sign extension from a 16-bit value. If so, this returns true and the |
| /// immediate. |
| static bool isIntS16Immediate(SDNode *N, short &Imm) { |
| if (N->getOpcode() != ISD::Constant) |
| return false; |
| |
| Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); |
| if (N->getValueType(0) == MVT::i32) |
| return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); |
| else |
| return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); |
| } |
| static bool isIntS16Immediate(SDValue Op, short &Imm) { |
| return isIntS16Immediate(Op.getNode(), Imm); |
| } |
| |
| |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it |
| /// can be represented as an indexed [r+r] operation. Returns false if it |
| /// can be more efficiently represented with [r+imm]. |
| bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, |
| SDValue &Index, |
| SelectionDAG &DAG) const { |
| short imm = 0; |
| if (N.getOpcode() == ISD::ADD) { |
| if (isIntS16Immediate(N.getOperand(1), imm)) |
| return false; // r+i |
| if (N.getOperand(1).getOpcode() == PPCISD::Lo) |
| return false; // r+i |
| |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } else if (N.getOpcode() == ISD::OR) { |
| if (isIntS16Immediate(N.getOperand(1), imm)) |
| return false; // r+i can fold it if we can. |
| |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are provably |
| // disjoint. |
| APInt LHSKnownZero, LHSKnownOne; |
| APInt RHSKnownZero, RHSKnownOne; |
| DAG.ComputeMaskedBits(N.getOperand(0), |
| LHSKnownZero, LHSKnownOne); |
| |
| if (LHSKnownZero.getBoolValue()) { |
| DAG.ComputeMaskedBits(N.getOperand(1), |
| RHSKnownZero, RHSKnownOne); |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| if (~(LHSKnownZero | RHSKnownZero) == 0) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Returns true if the address N can be represented by a base register plus |
| /// a signed 16-bit displacement [r+imm], and if it is not better |
| /// represented as reg+reg. |
| bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, |
| SDValue &Base, |
| SelectionDAG &DAG) const { |
| // FIXME dl should come from parent load or store, not from address |
| DebugLoc dl = N.getDebugLoc(); |
| // If this can be more profitably realized as r+r, fail. |
| if (SelectAddressRegReg(N, Disp, Base, DAG)) |
| return false; |
| |
| if (N.getOpcode() == ISD::ADD) { |
| short imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm)) { |
| Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| } else { |
| Base = N.getOperand(0); |
| } |
| return true; // [r+i] |
| } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { |
| // Match LOAD (ADD (X, Lo(G))). |
| assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() |
| && "Cannot handle constant offsets yet!"); |
| Disp = N.getOperand(1).getOperand(0); // The global address. |
| assert(Disp.getOpcode() == ISD::TargetGlobalAddress || |
| Disp.getOpcode() == ISD::TargetGlobalTLSAddress || |
| Disp.getOpcode() == ISD::TargetConstantPool || |
| Disp.getOpcode() == ISD::TargetJumpTable); |
| Base = N.getOperand(0); |
| return true; // [&g+r] |
| } |
| } else if (N.getOpcode() == ISD::OR) { |
| short imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm)) { |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are |
| // provably disjoint. |
| APInt LHSKnownZero, LHSKnownOne; |
| DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); |
| |
| if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| Base = N.getOperand(0); |
| Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); |
| return true; |
| } |
| } |
| } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| // Loading from a constant address. |
| |
| // If this address fits entirely in a 16-bit sext immediate field, codegen |
| // this as "d, 0" |
| short Imm; |
| if (isIntS16Immediate(CN, Imm)) { |
| Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); |
| Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, |
| CN->getValueType(0)); |
| return true; |
| } |
| |
| // Handle 32-bit sext immediates with LIS + addr mode. |
| if (CN->getValueType(0) == MVT::i32 || |
| (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { |
| int Addr = (int)CN->getZExtValue(); |
| |
| // Otherwise, break this down into an LIS + disp. |
| Disp = DAG.getTargetConstant((short)Addr, MVT::i32); |
| |
| Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); |
| unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; |
| Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); |
| return true; |
| } |
| } |
| |
| Disp = DAG.getTargetConstant(0, getPointerTy()); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| else |
| Base = N; |
| return true; // [r+0] |
| } |
| |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, |
| SDValue &Index, |
| SelectionDAG &DAG) const { |
| // Check to see if we can easily represent this as an [r+r] address. This |
| // will fail if it thinks that the address is more profitably represented as |
| // reg+imm, e.g. where imm = 0. |
| if (SelectAddressRegReg(N, Base, Index, DAG)) |
| return true; |
| |
| // If the operand is an addition, always emit this as [r+r], since this is |
| // better (for code size, and execution, as the memop does the add for free) |
| // than emitting an explicit add. |
| if (N.getOpcode() == ISD::ADD) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| |
| // Otherwise, do it the hard way, using R0 as the base register. |
| Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, |
| N.getValueType()); |
| Index = N; |
| return true; |
| } |
| |
| /// SelectAddressRegImmShift - Returns true if the address N can be |
| /// represented by a base register plus a signed 14-bit displacement |
| /// [r+imm*4]. Suitable for use by STD and friends. |
| bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, |
| SDValue &Base, |
| SelectionDAG &DAG) const { |
| // FIXME dl should come from the parent load or store, not the address |
| DebugLoc dl = N.getDebugLoc(); |
| // If this can be more profitably realized as r+r, fail. |
| if (SelectAddressRegReg(N, Disp, Base, DAG)) |
| return false; |
| |
| if (N.getOpcode() == ISD::ADD) { |
| short imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { |
| Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| } else { |
| Base = N.getOperand(0); |
| } |
| return true; // [r+i] |
| } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { |
| // Match LOAD (ADD (X, Lo(G))). |
| assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() |
| && "Cannot handle constant offsets yet!"); |
| Disp = N.getOperand(1).getOperand(0); // The global address. |
| assert(Disp.getOpcode() == ISD::TargetGlobalAddress || |
| Disp.getOpcode() == ISD::TargetConstantPool || |
| Disp.getOpcode() == ISD::TargetJumpTable); |
| Base = N.getOperand(0); |
| return true; // [&g+r] |
| } |
| } else if (N.getOpcode() == ISD::OR) { |
| short imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are |
| // provably disjoint. |
| APInt LHSKnownZero, LHSKnownOne; |
| DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); |
| if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| Base = N.getOperand(0); |
| Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); |
| return true; |
| } |
| } |
| } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| // Loading from a constant address. Verify low two bits are clear. |
| if ((CN->getZExtValue() & 3) == 0) { |
| // If this address fits entirely in a 14-bit sext immediate field, codegen |
| // this as "d, 0" |
| short Imm; |
| if (isIntS16Immediate(CN, Imm)) { |
| Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); |
| Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, |
| CN->getValueType(0)); |
| return true; |
| } |
| |
| // Fold the low-part of 32-bit absolute addresses into addr mode. |
| if (CN->getValueType(0) == MVT::i32 || |
| (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { |
| int Addr = (int)CN->getZExtValue(); |
| |
| // Otherwise, break this down into an LIS + disp. |
| Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); |
| Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); |
| unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; |
| Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); |
| return true; |
| } |
| } |
| } |
| |
| Disp = DAG.getTargetConstant(0, getPointerTy()); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| else |
| Base = N; |
| return true; // [r+0] |
| } |
| |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (DisablePPCPreinc) return false; |
| |
| SDValue Ptr; |
| EVT VT; |
| unsigned Alignment; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| VT = LD->getMemoryVT(); |
| Alignment = LD->getAlignment(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| Ptr = ST->getBasePtr(); |
| VT = ST->getMemoryVT(); |
| Alignment = ST->getAlignment(); |
| } else |
| return false; |
| |
| // PowerPC doesn't have preinc load/store instructions for vectors. |
| if (VT.isVector()) |
| return false; |
| |
| if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) { |
| AM = ISD::PRE_INC; |
| return true; |
| } |
| |
| // LDU/STU use reg+imm*4, others use reg+imm. |
| if (VT != MVT::i64) { |
| // reg + imm |
| if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) |
| return false; |
| } else { |
| // LDU/STU need an address with at least 4-byte alignment. |
| if (Alignment < 4) |
| return false; |
| |
| // reg + imm * 4. |
| if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) |
| return false; |
| } |
| |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of |
| // sext i32 to i64 when addr mode is r+i. |
| if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && |
| LD->getExtensionType() == ISD::SEXTLOAD && |
| isa<ConstantSDNode>(Offset)) |
| return false; |
| } |
| |
| AM = ISD::PRE_INC; |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LowerOperation implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// GetLabelAccessInfo - Return true if we should reference labels using a |
| /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. |
| static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, |
| unsigned &LoOpFlags, const GlobalValue *GV = 0) { |
| HiOpFlags = PPCII::MO_HA16; |
| LoOpFlags = PPCII::MO_LO16; |
| |
| // Don't use the pic base if not in PIC relocation model. Or if we are on a |
| // non-darwin platform. We don't support PIC on other platforms yet. |
| bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && |
| TM.getSubtarget<PPCSubtarget>().isDarwin(); |
| if (isPIC) { |
| HiOpFlags |= PPCII::MO_PIC_FLAG; |
| LoOpFlags |= PPCII::MO_PIC_FLAG; |
| } |
| |
| // If this is a reference to a global value that requires a non-lazy-ptr, make |
| // sure that instruction lowering adds it. |
| if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { |
| HiOpFlags |= PPCII::MO_NLP_FLAG; |
| LoOpFlags |= PPCII::MO_NLP_FLAG; |
| |
| if (GV->hasHiddenVisibility()) { |
| HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; |
| LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; |
| } |
| } |
| |
| return isPIC; |
| } |
| |
| static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, |
| SelectionDAG &DAG) { |
| EVT PtrVT = HiPart.getValueType(); |
| SDValue Zero = DAG.getConstant(0, PtrVT); |
| DebugLoc DL = HiPart.getDebugLoc(); |
| |
| SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); |
| SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); |
| |
| // With PIC, the first instruction is actually "GR+hi(&G)". |
| if (isPIC) |
| Hi = DAG.getNode(ISD::ADD, DL, PtrVT, |
| DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); |
| |
| // Generate non-pic code that has direct accesses to the constant pool. |
| // The address of the global is just (hi(&g)+lo(&g)). |
| return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); |
| } |
| |
| SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| const Constant *C = CP->getConstVal(); |
| |
| // 64-bit SVR4 ABI code is always position-independent. |
| // The actual address of the GlobalValue is stored in the TOC. |
| if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { |
| SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); |
| return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA, |
| DAG.getRegister(PPC::X2, MVT::i64)); |
| } |
| |
| unsigned MOHiFlag, MOLoFlag; |
| bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); |
| SDValue CPIHi = |
| DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); |
| SDValue CPILo = |
| DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); |
| return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); |
| } |
| |
| SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| |
| // 64-bit SVR4 ABI code is always position-independent. |
| // The actual address of the GlobalValue is stored in the TOC. |
| if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { |
| SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); |
| return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA, |
| DAG.getRegister(PPC::X2, MVT::i64)); |
| } |
| |
| unsigned MOHiFlag, MOLoFlag; |
| bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); |
| SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); |
| SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); |
| return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); |
| } |
| |
| SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| |
| unsigned MOHiFlag, MOLoFlag; |
| bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); |
| SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); |
| SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); |
| return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); |
| } |
| |
| SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| DebugLoc dl = GA->getDebugLoc(); |
| const GlobalValue *GV = GA->getGlobal(); |
| EVT PtrVT = getPointerTy(); |
| bool is64bit = PPCSubTarget.isPPC64(); |
| |
| TLSModel::Model Model = getTargetMachine().getTLSModel(GV); |
| |
| if (Model == TLSModel::LocalExec) { |
| SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| PPCII::MO_TPREL16_HA); |
| SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| PPCII::MO_TPREL16_LO); |
| SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, |
| is64bit ? MVT::i64 : MVT::i32); |
| SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); |
| return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); |
| } |
| |
| if (!is64bit) |
| llvm_unreachable("only local-exec is currently supported for ppc32"); |
| |
| if (Model == TLSModel::InitialExec) { |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); |
| SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); |
| SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, |
| PtrVT, GOTReg, TGA); |
| SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, |
| PtrVT, TGA, TPOffsetHi); |
| return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA); |
| } |
| |
| if (Model == TLSModel::GeneralDynamic) { |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); |
| SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); |
| SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, |
| GOTReg, TGA); |
| SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT, |
| GOTEntryHi, TGA); |
| |
| // We need a chain node, and don't have one handy. The underlying |
| // call has no side effects, so using the function entry node |
| // suffices. |
| SDValue Chain = DAG.getEntryNode(); |
| Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry); |
| SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64); |
| SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl, |
| PtrVT, ParmReg, TGA); |
| // The return value from GET_TLS_ADDR really is in X3 already, but |
| // some hacks are needed here to tie everything together. The extra |
| // copies dissolve during subsequent transforms. |
| Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr); |
| return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT); |
| } |
| |
| if (Model == TLSModel::LocalDynamic) { |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); |
| SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); |
| SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, |
| GOTReg, TGA); |
| SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT, |
| GOTEntryHi, TGA); |
| |
| // We need a chain node, and don't have one handy. The underlying |
| // call has no side effects, so using the function entry node |
| // suffices. |
| SDValue Chain = DAG.getEntryNode(); |
| Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry); |
| SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64); |
| SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl, |
| PtrVT, ParmReg, TGA); |
| // The return value from GET_TLSLD_ADDR really is in X3 already, but |
| // some hacks are needed here to tie everything together. The extra |
| // copies dissolve during subsequent transforms. |
| Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr); |
| SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT, |
| Chain, ParmReg, TGA); |
| return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); |
| } |
| |
| llvm_unreachable("Unknown TLS model!"); |
| } |
| |
| SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); |
| DebugLoc DL = GSDN->getDebugLoc(); |
| const GlobalValue *GV = GSDN->getGlobal(); |
| |
| // 64-bit SVR4 ABI code is always position-independent. |
| // The actual address of the GlobalValue is stored in the TOC. |
| if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); |
| return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, |
| DAG.getRegister(PPC::X2, MVT::i64)); |
| } |
| |
| unsigned MOHiFlag, MOLoFlag; |
| bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); |
| |
| SDValue GAHi = |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); |
| SDValue GALo = |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); |
| |
| SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); |
| |
| // If the global reference is actually to a non-lazy-pointer, we have to do an |
| // extra load to get the address of the global. |
| if (MOHiFlag & PPCII::MO_NLP_FLAG) |
| Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), |
| false, false, false, 0); |
| return Ptr; |
| } |
| |
| SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // If we're comparing for equality to zero, expose the fact that this is |
| // implented as a ctlz/srl pair on ppc, so that the dag combiner can |
| // fold the new nodes. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| if (C->isNullValue() && CC == ISD::SETEQ) { |
| EVT VT = Op.getOperand(0).getValueType(); |
| SDValue Zext = Op.getOperand(0); |
| if (VT.bitsLT(MVT::i32)) { |
| VT = MVT::i32; |
| Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); |
| } |
| unsigned Log2b = Log2_32(VT.getSizeInBits()); |
| SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); |
| SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, |
| DAG.getConstant(Log2b, MVT::i32)); |
| return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); |
| } |
| // Leave comparisons against 0 and -1 alone for now, since they're usually |
| // optimized. FIXME: revisit this when we can custom lower all setcc |
| // optimizations. |
| if (C->isAllOnesValue() || C->isNullValue()) |
| return SDValue(); |
| } |
| |
| // If we have an integer seteq/setne, turn it into a compare against zero |
| // by xor'ing the rhs with the lhs, which is faster than setting a |
| // condition register, reading it back out, and masking the correct bit. The |
| // normal approach here uses sub to do this instead of xor. Using xor exposes |
| // the result to other bit-twiddling opportunities. |
| EVT LHSVT = Op.getOperand(0).getValueType(); |
| if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| EVT VT = Op.getValueType(); |
| SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), |
| Op.getOperand(1)); |
| return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); |
| } |
| return SDValue(); |
| } |
| |
| SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) const { |
| SDNode *Node = Op.getNode(); |
| EVT VT = Node->getValueType(0); |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDValue InChain = Node->getOperand(0); |
| SDValue VAListPtr = Node->getOperand(1); |
| const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| DebugLoc dl = Node->getDebugLoc(); |
| |
| assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); |
| |
| // gpr_index |
| SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, |
| VAListPtr, MachinePointerInfo(SV), MVT::i8, |
| false, false, 0); |
| InChain = GprIndex.getValue(1); |
| |
| if (VT == MVT::i64) { |
| // Check if GprIndex is even |
| SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, |
| DAG.getConstant(1, MVT::i32)); |
| SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, |
| DAG.getConstant(0, MVT::i32), ISD::SETNE); |
| SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, |
| DAG.getConstant(1, MVT::i32)); |
| // Align GprIndex to be even if it isn't |
| GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, |
| GprIndex); |
| } |
| |
| // fpr index is 1 byte after gpr |
| SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, |
| DAG.getConstant(1, MVT::i32)); |
| |
| // fpr |
| SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, |
| FprPtr, MachinePointerInfo(SV), MVT::i8, |
| false, false, 0); |
| InChain = FprIndex.getValue(1); |
| |
| SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, |
| DAG.getConstant(8, MVT::i32)); |
| |
| SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, |
| DAG.getConstant(4, MVT::i32)); |
| |
| // areas |
| SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, |
| MachinePointerInfo(), false, false, |
| false, 0); |
| InChain = OverflowArea.getValue(1); |
| |
| SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, |
| MachinePointerInfo(), false, false, |
| false, 0); |
| InChain = RegSaveArea.getValue(1); |
| |
| // select overflow_area if index > 8 |
| SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, |
| DAG.getConstant(8, MVT::i32), ISD::SETLT); |
| |
| // adjustment constant gpr_index * 4/8 |
| SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, |
| VT.isInteger() ? GprIndex : FprIndex, |
| DAG.getConstant(VT.isInteger() ? 4 : 8, |
| MVT::i32)); |
| |
| // OurReg = RegSaveArea + RegConstant |
| SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, |
| RegConstant); |
| |
| // Floating types are 32 bytes into RegSaveArea |
| if (VT.isFloatingPoint()) |
| OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, |
| DAG.getConstant(32, MVT::i32)); |
| |
| // increase {f,g}pr_index by 1 (or 2 if VT is i64) |
| SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, |
| VT.isInteger() ? GprIndex : FprIndex, |
| DAG.getConstant(VT == MVT::i64 ? 2 : 1, |
| MVT::i32)); |
| |
| InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, |
| VT.isInteger() ? VAListPtr : FprPtr, |
| MachinePointerInfo(SV), |
| MVT::i8, false, false, 0); |
| |
| // determine if we should load from reg_save_area or overflow_area |
| SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); |
| |
| // increase overflow_area by 4/8 if gpr/fpr > 8 |
| SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, |
| DAG.getConstant(VT.isInteger() ? 4 : 8, |
| MVT::i32)); |
| |
| OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, |
| OverflowAreaPlusN); |
| |
| InChain = DAG.getTruncStore(InChain, dl, OverflowArea, |
| OverflowAreaPtr, |
| MachinePointerInfo(), |
| MVT::i32, false, false, 0); |
| |
| return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), |
| false, false, false, 0); |
| } |
| |
| SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, |
| SelectionDAG &DAG) const { |
| return Op.getOperand(0); |
| } |
| |
| SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Trmp = Op.getOperand(1); // trampoline |
| SDValue FPtr = Op.getOperand(2); // nested function |
| SDValue Nest = Op.getOperand(3); // 'nest' parameter value |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = (PtrVT == MVT::i64); |
| Type *IntPtrTy = |
| DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType( |
| *DAG.getContext()); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| |
| Entry.Ty = IntPtrTy; |
| Entry.Node = Trmp; Args.push_back(Entry); |
| |
| // TrampSize == (isPPC64 ? 48 : 40); |
| Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| Args.push_back(Entry); |
| |
| Entry.Node = FPtr; Args.push_back(Entry); |
| Entry.Node = Nest; Args.push_back(Entry); |
| |
| // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) |
| TargetLowering::CallLoweringInfo CLI(Chain, |
| Type::getVoidTy(*DAG.getContext()), |
| false, false, false, false, 0, |
| CallingConv::C, |
| /*isTailCall=*/false, |
| /*doesNotRet=*/false, |
| /*isReturnValueUsed=*/true, |
| DAG.getExternalSymbol("__trampoline_setup", PtrVT), |
| Args, DAG, dl); |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| |
| return CallResult.second; |
| } |
| |
| SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), |
| MachinePointerInfo(SV), |
| false, false, 0); |
| } |
| |
| // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. |
| // We suppose the given va_list is already allocated. |
| // |
| // typedef struct { |
| // char gpr; /* index into the array of 8 GPRs |
| // * stored in the register save area |
| // * gpr=0 corresponds to r3, |
| // * gpr=1 to r4, etc. |
| // */ |
| // char fpr; /* index into the array of 8 FPRs |
| // * stored in the register save area |
| // * fpr=0 corresponds to f1, |
| // * fpr=1 to f2, etc. |
| // */ |
| // char *overflow_arg_area; |
| // /* location on stack that holds |
| // * the next overflow argument |
| // */ |
| // char *reg_save_area; |
| // /* where r3:r10 and f1:f8 (if saved) |
| // * are stored |
| // */ |
| // } va_list[1]; |
| |
| |
| SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); |
| SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); |
| |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| |
| SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), |
| PtrVT); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| PtrVT); |
| |
| uint64_t FrameOffset = PtrVT.getSizeInBits()/8; |
| SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); |
| |
| uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; |
| SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); |
| |
| uint64_t FPROffset = 1; |
| SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); |
| |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| |
| // Store first byte : number of int regs |
| SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, |
| Op.getOperand(1), |
| MachinePointerInfo(SV), |
| MVT::i8, false, false, 0); |
| uint64_t nextOffset = FPROffset; |
| SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), |
| ConstFPROffset); |
| |
| // Store second byte : number of float regs |
| SDValue secondStore = |
| DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, |
| MachinePointerInfo(SV, nextOffset), MVT::i8, |
| false, false, 0); |
| nextOffset += StackOffset; |
| nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); |
| |
| // Store second word : arguments given on stack |
| SDValue thirdStore = |
| DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, |
| MachinePointerInfo(SV, nextOffset), |
| false, false, 0); |
| nextOffset += FrameOffset; |
| nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); |
| |
| // Store third word : arguments given in registers |
| return DAG.getStore(thirdStore, dl, FR, nextPtr, |
| MachinePointerInfo(SV, nextOffset), |
| false, false, 0); |
| |
| } |
| |
| #include "PPCGenCallingConv.inc" |
| |
| static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| return true; |
| } |
| |
| static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| static const uint16_t ArgRegs[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| const unsigned NumArgRegs = array_lengthof(ArgRegs); |
| |
| unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); |
| |
| // Skip one register if the first unallocated register has an even register |
| // number and there are still argument registers available which have not been |
| // allocated yet. RegNum is actually an index into ArgRegs, which means we |
| // need to skip a register if RegNum is odd. |
| if (RegNum != NumArgRegs && RegNum % 2 == 1) { |
| State.AllocateReg(ArgRegs[RegNum]); |
| } |
| |
| // Always return false here, as this function only makes sure that the first |
| // unallocated register has an odd register number and does not actually |
| // allocate a register for the current argument. |
| return false; |
| } |
| |
| static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| static const uint16_t ArgRegs[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8 |
| }; |
| |
| const unsigned NumArgRegs = array_lengthof(ArgRegs); |
| |
| unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); |
| |
| // If there is only one Floating-point register left we need to put both f64 |
| // values of a split ppc_fp128 value on the stack. |
| if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { |
| State.AllocateReg(ArgRegs[RegNum]); |
| } |
| |
| // Always return false here, as this function only makes sure that the two f64 |
| // values a ppc_fp128 value is split into are both passed in registers or both |
| // passed on the stack and does not actually allocate a register for the |
| // current argument. |
| return false; |
| } |
| |
| /// GetFPR - Get the set of FP registers that should be allocated for arguments, |
| /// on Darwin. |
| static const uint16_t *GetFPR() { |
| static const uint16_t FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| |
| return FPR; |
| } |
| |
| /// CalculateStackSlotSize - Calculates the size reserved for this argument on |
| /// the stack. |
| static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, |
| unsigned PtrByteSize) { |
| unsigned ArgSize = ArgVT.getSizeInBits()/8; |
| if (Flags.isByVal()) |
| ArgSize = Flags.getByValSize(); |
| ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| |
| return ArgSize; |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> |
| &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) |
| const { |
| if (PPCSubTarget.isSVR4ABI()) { |
| if (PPCSubTarget.isPPC64()) |
| return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, |
| dl, DAG, InVals); |
| else |
| return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, |
| dl, DAG, InVals); |
| } else { |
| return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, |
| dl, DAG, InVals); |
| } |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerFormalArguments_32SVR4( |
| SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> |
| &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| // 32-bit SVR4 ABI Stack Frame Layout: |
| // +-----------------------------------+ |
| // +--> | Back chain | |
| // | +-----------------------------------+ |
| // | | Floating-point register save area | |
| // | +-----------------------------------+ |
| // | | General register save area | |
| // | +-----------------------------------+ |
| // | | CR save word | |
| // | +-----------------------------------+ |
| // | | VRSAVE save word | |
| // | +-----------------------------------+ |
| // | | Alignment padding | |
| // | +-----------------------------------+ |
| // | | Vector register save area | |
| // | +-----------------------------------+ |
| // | | Local variable space | |
| // | +-----------------------------------+ |
| // | | Parameter list area | |
| // | +-----------------------------------+ |
| // | | LR save word | |
| // | +-----------------------------------+ |
| // SP--> +--- | Back chain | |
| // +-----------------------------------+ |
| // |
| // Specifications: |
| // System V Application Binary Interface PowerPC Processor Supplement |
| // AltiVec Technology Programming Interface Manual |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| // Potential tail calls could cause overwriting of argument stack slots. |
| bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && |
| (CallConv == CallingConv::Fast)); |
| unsigned PtrByteSize = 4; |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| // Reserve space for the linkage area on the stack. |
| CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); |
| |
| CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| |
| // Arguments stored in registers. |
| if (VA.isRegLoc()) { |
| const TargetRegisterClass *RC; |
| EVT ValVT = VA.getValVT(); |
| |
| switch (ValVT.getSimpleVT().SimpleTy) { |
| default: |
| llvm_unreachable("ValVT not supported by formal arguments Lowering"); |
| case MVT::i32: |
| RC = &PPC::GPRCRegClass; |
| break; |
| case MVT::f32: |
| RC = &PPC::F4RCRegClass; |
| break; |
| case MVT::f64: |
| RC = &PPC::F8RCRegClass; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v4f32: |
| RC = &PPC::VRRCRegClass; |
| break; |
| } |
| |
| // Transform the arguments stored in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); |
| |
| InVals.push_back(ArgValue); |
| } else { |
| // Argument stored in memory. |
| assert(VA.isMemLoc()); |
| |
| unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; |
| int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), |
| isImmutable); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, |
| MachinePointerInfo(), |
| false, false, false, 0)); |
| } |
| } |
| |
| // Assign locations to all of the incoming aggregate by value arguments. |
| // Aggregates passed by value are stored in the local variable space of the |
| // caller's stack frame, right above the parameter list area. |
| SmallVector<CCValAssign, 16> ByValArgLocs; |
| CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ByValArgLocs, *DAG.getContext()); |
| |
| // Reserve stack space for the allocations in CCInfo. |
| CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); |
| |
| CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); |
| |
| // Area that is at least reserved in the caller of this function. |
| unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); |
| |
| // Set the size that is at least reserved in caller of this function. Tail |
| // call optimized function's reserved stack space needs to be aligned so that |
| // taking the difference between two stack areas will result in an aligned |
| // stack. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| |
| MinReservedArea = |
| std::max(MinReservedArea, |
| PPCFrameLowering::getMinCallFrameSize(false, false)); |
| |
| unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> |
| getStackAlignment(); |
| unsigned AlignMask = TargetAlign-1; |
| MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; |
| |
| FI->setMinReservedArea(MinReservedArea); |
| |
| SmallVector<SDValue, 8> MemOps; |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| static const uint16_t GPArgRegs[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); |
| |
| static const uint16_t FPArgRegs[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8 |
| }; |
| const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); |
| |
| FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, |
| NumGPArgRegs)); |
| FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, |
| NumFPArgRegs)); |
| |
| // Make room for NumGPArgRegs and NumFPArgRegs. |
| int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + |
| NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; |
| |
| FuncInfo->setVarArgsStackOffset( |
| MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, |
| CCInfo.getNextStackOffset(), true)); |
| |
| FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); |
| SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| |
| // The fixed integer arguments of a variadic function are stored to the |
| // VarArgsFrameIndex on the stack so that they may be loaded by deferencing |
| // the result of va_next. |
| for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { |
| // Get an existing live-in vreg, or add a new one. |
| unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); |
| if (!VReg) |
| VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(), false, false, 0); |
| MemOps.push_back(Store); |
| // Increment the address by four for the next argument to store |
| SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| |
| // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 |
| // is set. |
| // The double arguments are stored to the VarArgsFrameIndex |
| // on the stack. |
| for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { |
| // Get an existing live-in vreg, or add a new one. |
| unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); |
| if (!VReg) |
| VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); |
| SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(), false, false, 0); |
| MemOps.push_back(Store); |
| // Increment the address by eight for the next argument to store |
| SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, |
| PtrVT); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, |
| MVT::Other, &MemOps[0], MemOps.size()); |
| |
| return Chain; |
| } |
| |
| // PPC64 passes i8, i16, and i32 values in i64 registers. Promote |
| // value to MVT::i64 and then truncate to the correct register size. |
| SDValue |
| PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, |
| SelectionDAG &DAG, SDValue ArgVal, |
| DebugLoc dl) const { |
| if (Flags.isSExt()) |
| ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, |
| DAG.getValueType(ObjectVT)); |
| else if (Flags.isZExt()) |
| ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, |
| DAG.getValueType(ObjectVT)); |
| |
| return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); |
| } |
| |
| // Set the size that is at least reserved in caller of this function. Tail |
| // call optimized functions' reserved stack space needs to be aligned so that |
| // taking the difference between two stack areas will result in an aligned |
| // stack. |
| void |
| PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG, |
| unsigned nAltivecParamsAtEnd, |
| unsigned MinReservedArea, |
| bool isPPC64) const { |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| // Add the Altivec parameters at the end, if needed. |
| if (nAltivecParamsAtEnd) { |
| MinReservedArea = ((MinReservedArea+15)/16)*16; |
| MinReservedArea += 16*nAltivecParamsAtEnd; |
| } |
| MinReservedArea = |
| std::max(MinReservedArea, |
| PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); |
| unsigned TargetAlign |
| = DAG.getMachineFunction().getTarget().getFrameLowering()-> |
| getStackAlignment(); |
| unsigned AlignMask = TargetAlign-1; |
| MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; |
| FI->setMinReservedArea(MinReservedArea); |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerFormalArguments_64SVR4( |
| SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> |
| &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| // TODO: add description of PPC stack frame format, or at least some docs. |
| // |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| // Potential tail calls could cause overwriting of argument stack slots. |
| bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && |
| (CallConv == CallingConv::Fast)); |
| unsigned PtrByteSize = 8; |
| |
| unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true); |
| // Area that is at least reserved in caller of this function. |
| unsigned MinReservedArea = ArgOffset; |
| |
| static const uint16_t GPR[] = { |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| |
| static const uint16_t *FPR = GetFPR(); |
| |
| static const uint16_t VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| |
| const unsigned Num_GPR_Regs = array_lengthof(GPR); |
| const unsigned Num_FPR_Regs = 13; |
| const unsigned Num_VR_Regs = array_lengthof(VR); |
| |
| unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; |
| |
| // Add DAG nodes to load the arguments or copy them out of registers. On |
| // entry to a function on PPC, the arguments start after the linkage area, |
| // although the first ones are often in registers. |
| |
| SmallVector<SDValue, 8> MemOps; |
| unsigned nAltivecParamsAtEnd = 0; |
| Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); |
| unsigned CurArgIdx = 0; |
| for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { |
| SDValue ArgVal; |
| bool needsLoad = false; |
| EVT ObjectVT = Ins[ArgNo].VT; |
| unsigned ObjSize = ObjectVT.getSizeInBits()/8; |
| unsigned ArgSize = ObjSize; |
| ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; |
| std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx); |
| CurArgIdx = Ins[ArgNo].OrigArgIndex; |
| |
| unsigned CurArgOffset = ArgOffset; |
| |
| // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. |
| if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || |
| ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { |
| if (isVarArg) { |
| MinReservedArea = ((MinReservedArea+15)/16)*16; |
| MinReservedArea += CalculateStackSlotSize(ObjectVT, |
| Flags, |
| PtrByteSize); |
| } else |
| nAltivecParamsAtEnd++; |
| } else |
| // Calculate min reserved area. |
| MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, |
| Flags, |
| PtrByteSize); |
| |
| // FIXME the codegen can be much improved in some cases. |
| // We do not have to keep everything in memory. |
| if (Flags.isByVal()) { |
| // ObjSize is the true size, ArgSize rounded up to multiple of registers. |
| ObjSize = Flags.getByValSize(); |
| ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| // Empty aggregate parameters do not take up registers. Examples: |
| // struct { } a; |
| // union { } b; |
| // int c[0]; |
| // etc. However, we have to provide a place-holder in InVals, so |
| // pretend we have an 8-byte item at the current address for that |
| // purpose. |
| if (!ObjSize) { |
| int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back(FIN); |
| continue; |
| } |
| // All aggregates smaller than 8 bytes must be passed right-justified. |
| if (ObjSize < PtrByteSize) |
| CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize); |
| // The value of the object is its address. |
| int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back(FIN); |
| |
| if (ObjSize < 8) { |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store; |
| |
| if (ObjSize==1 || ObjSize==2 || ObjSize==4) { |
| EVT ObjType = (ObjSize == 1 ? MVT::i8 : |
| (ObjSize == 2 ? MVT::i16 : MVT::i32)); |
| Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(FuncArg, CurArgOffset), |
| ObjType, false, false, 0); |
| } else { |
| // For sizes that don't fit a truncating store (3, 5, 6, 7), |
| // store the whole register as-is to the parameter save area |
| // slot. The address of the parameter was already calculated |
| // above (InVals.push_back(FIN)) to be the right-justified |
| // offset within the slot. For this store, we need a new |
| // frame index that points at the beginning of the slot. |
| int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(FuncArg, ArgOffset), |
| false, false, 0); |
| } |
| |
| MemOps.push_back(Store); |
| ++GPR_idx; |
| } |
| // Whether we copied from a register or not, advance the offset |
| // into the parameter save area by a full doubleword. |
| ArgOffset += PtrByteSize; |
| continue; |
| } |
| |
| for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { |
| // Store whatever pieces of the object are in registers |
| // to memory. ArgOffset will be the address of the beginning |
| // of the object. |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg; |
| VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(FuncArg, ArgOffset), |
| false, false, 0); |
| MemOps.push_back(Store); |
| ++GPR_idx; |
| ArgOffset += PtrByteSize; |
| } else { |
| ArgOffset += ArgSize - j; |
| break; |
| } |
| } |
| continue; |
| } |
| |
| switch (ObjectVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unhandled argument type!"); |
| case MVT::i32: |
| case MVT::i64: |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); |
| |
| if (ObjectVT == MVT::i32) |
| // PPC64 passes i8, i16, and i32 values in i64 registers. Promote |
| // value to MVT::i64 and then truncate to the correct register size. |
| ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); |
| |
| ++GPR_idx; |
| } else { |
| needsLoad = true; |
| ArgSize = PtrByteSize; |
| } |
| ArgOffset += 8; |
| break; |
| |
| case MVT::f32: |
| case MVT::f64: |
| // Every 8 bytes of argument space consumes one of the GPRs available for |
| // argument passing. |
| if (GPR_idx != Num_GPR_Regs) { |
| ++GPR_idx; |
| } |
| if (FPR_idx != Num_FPR_Regs) { |
| unsigned VReg; |
| |
| if (ObjectVT == MVT::f32) |
| VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); |
| else |
| VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); |
| |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); |
| ++FPR_idx; |
| } else { |
| needsLoad = true; |
| ArgSize = PtrByteSize; |
| } |
| |
| ArgOffset += 8; |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| // Note that vector arguments in registers don't reserve stack space, |
| // except in varargs functions. |
| if (VR_idx != Num_VR_Regs) { |
| unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); |
| if (isVarArg) { |
| while ((ArgOffset % 16) != 0) { |
| ArgOffset += PtrByteSize; |
| if (GPR_idx != Num_GPR_Regs) |
| GPR_idx++; |
| } |
| ArgOffset += 16; |
| GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? |
| } |
| ++VR_idx; |
| } else { |
| // Vectors are aligned. |
| ArgOffset = ((ArgOffset+15)/16)*16; |
| CurArgOffset = ArgOffset; |
| ArgOffset += 16; |
| needsLoad = true; |
| } |
| break; |
| } |
| |
| // We need to load the argument to a virtual register if we determined |
| // above that we ran out of physical registers of the appropriate type. |
| if (needsLoad) { |
| int FI = MFI->CreateFixedObject(ObjSize, |
| CurArgOffset + (ArgSize - ObjSize), |
| isImmutable); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), |
| false, false, false, 0); |
| } |
| |
| InVals.push_back(ArgVal); |
| } |
| |
| // Set the size that is at least reserved in caller of this function. Tail |
| // call optimized functions' reserved stack space needs to be aligned so that |
| // taking the difference between two stack areas will result in an aligned |
| // stack. |
| setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| int Depth = ArgOffset; |
| |
| FuncInfo->setVarArgsFrameIndex( |
| MFI->CreateFixedObject(PtrByteSize, Depth, true)); |
| SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing the |
| // result of va_next. |
| for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { |
| unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(), false, false, 0); |
| MemOps.push_back(Store); |
| // Increment the address by four for the next argument to store |
| SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, |
| MVT::Other, &MemOps[0], MemOps.size()); |
| |
| return Chain; |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerFormalArguments_Darwin( |
| SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> |
| &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| // TODO: add description of PPC stack frame format, or at least some docs. |
| // |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = PtrVT == MVT::i64; |
| // Potential tail calls could cause overwriting of argument stack slots. |
| bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && |
| (CallConv == CallingConv::Fast)); |
| unsigned PtrByteSize = isPPC64 ? 8 : 4; |
| |
| unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); |
| // Area that is at least reserved in caller of this function. |
| unsigned MinReservedArea = ArgOffset; |
| |
| static const uint16_t GPR_32[] = { // 32-bit registers. |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const uint16_t GPR_64[] = { // 64-bit registers. |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| |
| static const uint16_t *FPR = GetFPR(); |
| |
| static const uint16_t VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| |
| const unsigned Num_GPR_Regs = array_lengthof(GPR_32); |
| const unsigned Num_FPR_Regs = 13; |
| const unsigned Num_VR_Regs = array_lengthof( VR); |
| |
| unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; |
| |
| const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; |
| |
| // In 32-bit non-varargs functions, the stack space for vectors is after the |
| // stack space for non-vectors. We do not use this space unless we have |
| // too many vectors to fit in registers, something that only occurs in |
| // constructed examples:), but we have to walk the arglist to figure |
| // that out...for the pathological case, compute VecArgOffset as the |
| // start of the vector parameter area. Computing VecArgOffset is the |
| // entire point of the following loop. |
| unsigned VecArgOffset = ArgOffset; |
| if (!isVarArg && !isPPC64) { |
| for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; |
| ++ArgNo) { |
| EVT ObjectVT = Ins[ArgNo].VT; |
| ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; |
| |
| if (Flags.isByVal()) { |
| // ObjSize is the true size, ArgSize rounded up to multiple of regs. |
| unsigned ObjSize = Flags.getByValSize(); |
| unsigned ArgSize = |
| ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| VecArgOffset += ArgSize; |
| continue; |
| } |
| |
| switch(ObjectVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unhandled argument type!"); |
| case MVT::i32: |
| case MVT::f32: |
| VecArgOffset += 4; |
| break; |
| case MVT::i64: // PPC64 |
| case MVT::f64: |
| // FIXME: We are guaranteed to be !isPPC64 at this point. |
| // Does MVT::i64 apply? |
| VecArgOffset += 8; |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| // Nothing to do, we're only looking at Nonvector args here. |
| break; |
| } |
| } |
| } |
| // We've found where the vector parameter area in memory is. Skip the |
| // first 12 parameters; these don't use that memory. |
| VecArgOffset = ((VecArgOffset+15)/16)*16; |
| VecArgOffset += 12*16; |
| |
| // Add DAG nodes to load the arguments or copy them out of registers. On |
| // entry to a function on PPC, the arguments start after the linkage area, |
| // although the first ones are often in registers. |
| |
| SmallVector<SDValue, 8> MemOps; |
| unsigned nAltivecParamsAtEnd = 0; |
| // FIXME: FuncArg and Ins[ArgNo] must reference the same argument. |
| // When passing anonymous aggregates, this is currently not true. |
| // See LowerFormalArguments_64SVR4 for a fix. |
| Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); |
| for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) { |
| SDValue ArgVal; |
| bool needsLoad = false; |
| EVT ObjectVT = Ins[ArgNo].VT; |
| unsigned ObjSize = ObjectVT.getSizeInBits()/8; |
| unsigned ArgSize = ObjSize; |
| ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; |
| |
| unsigned CurArgOffset = ArgOffset; |
| |
| // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. |
| if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || |
| ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { |
| if (isVarArg || isPPC64) { |
| MinReservedArea = ((MinReservedArea+15)/16)*16; |
| MinReservedArea += CalculateStackSlotSize(ObjectVT, |
| Flags, |
| PtrByteSize); |
| } else nAltivecParamsAtEnd++; |
| } else |
| // Calculate min reserved area. |
| MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, |
| Flags, |
| PtrByteSize); |
| |
| // FIXME the codegen can be much improved in some cases. |
| // We do not have to keep everything in memory. |
| if (Flags.isByVal()) { |
| // ObjSize is the true size, ArgSize rounded up to multiple of registers. |
| ObjSize = Flags.getByValSize(); |
| ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| // Objects of size 1 and 2 are right justified, everything else is |
| // left justified. This means the memory address is adjusted forwards. |
| if (ObjSize==1 || ObjSize==2) { |
| CurArgOffset = CurArgOffset + (4 - ObjSize); |
| } |
| // The value of the object is its address. |
| int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back(FIN); |
| if (ObjSize==1 || ObjSize==2) { |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg; |
| if (isPPC64) |
| VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| else |
| VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; |
| SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(FuncArg, |
| CurArgOffset), |
| ObjType, false, false, 0); |
| MemOps.push_back(Store); |
| ++GPR_idx; |
| } |
| |
| ArgOffset += PtrByteSize; |
| |
| continue; |
| } |
| for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { |
| // Store whatever pieces of the object are in registers |
| // to memory. ArgOffset will be the address of the beginning |
| // of the object. |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg; |
| if (isPPC64) |
| VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| else |
| VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); |
| int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(FuncArg, ArgOffset), |
| false, false, 0); |
| MemOps.push_back(Store); |
| ++GPR_idx; |
| ArgOffset += PtrByteSize; |
| } else { |
| ArgOffset += ArgSize - (ArgOffset-CurArgOffset); |
| break; |
| } |
| } |
| continue; |
| } |
| |
| switch (ObjectVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unhandled argument type!"); |
| case MVT::i32: |
| if (!isPPC64) { |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); |
| ++GPR_idx; |
| } else { |
| needsLoad = true; |
| ArgSize = PtrByteSize; |
| } |
| // All int arguments reserve stack space in the Darwin ABI. |
| ArgOffset += PtrByteSize; |
| break; |
| } |
| // FALLTHROUGH |
| case MVT::i64: // PPC64 |
| if (GPR_idx != Num_GPR_Regs) { |
| unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); |
| |
| if (ObjectVT == MVT::i32) |
| // PPC64 passes i8, i16, and i32 values in i64 registers. Promote |
| // value to MVT::i64 and then truncate to the correct register size. |
| ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); |
| |
| ++GPR_idx; |
| } else { |
| needsLoad = true; |
| ArgSize = PtrByteSize; |
| } |
| // All int arguments reserve stack space in the Darwin ABI. |
| ArgOffset += 8; |
| break; |
| |
| case MVT::f32: |
| case MVT::f64: |
| // Every 4 bytes of argument space consumes one of the GPRs available for |
| // argument passing. |
| if (GPR_idx != Num_GPR_Regs) { |
| ++GPR_idx; |
| if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) |
| ++GPR_idx; |
| } |
| if (FPR_idx != Num_FPR_Regs) { |
| unsigned VReg; |
| |
| if (ObjectVT == MVT::f32) |
| VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); |
| else |
| VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); |
| |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); |
| ++FPR_idx; |
| } else { |
| needsLoad = true; |
| } |
| |
| // All FP arguments reserve stack space in the Darwin ABI. |
| ArgOffset += isPPC64 ? 8 : ObjSize; |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| // Note that vector arguments in registers don't reserve stack space, |
| // except in varargs functions. |
| if (VR_idx != Num_VR_Regs) { |
| unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); |
| if (isVarArg) { |
| while ((ArgOffset % 16) != 0) { |
| ArgOffset += PtrByteSize; |
| if (GPR_idx != Num_GPR_Regs) |
| GPR_idx++; |
| } |
| ArgOffset += 16; |
| GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? |
| } |
| ++VR_idx; |
| } else { |
| if (!isVarArg && !isPPC64) { |
| // Vectors go after all the nonvectors. |
| CurArgOffset = VecArgOffset; |
| VecArgOffset += 16; |
| } else { |
| // Vectors are aligned. |
| ArgOffset = ((ArgOffset+15)/16)*16; |
| CurArgOffset = ArgOffset; |
| ArgOffset += 16; |
| } |
| needsLoad = true; |
| } |
| break; |
| } |
| |
| // We need to load the argument to a virtual register if we determined above |
| // that we ran out of physical registers of the appropriate type. |
| if (needsLoad) { |
| int FI = MFI->CreateFixedObject(ObjSize, |
| CurArgOffset + (ArgSize - ObjSize), |
| isImmutable); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), |
| false, false, false, 0); |
| } |
| |
| InVals.push_back(ArgVal); |
| } |
| |
| // Set the size that is at least reserved in caller of this function. Tail |
| // call optimized functions' reserved stack space needs to be aligned so that |
| // taking the difference between two stack areas will result in an aligned |
| // stack. |
| setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| int Depth = ArgOffset; |
| |
| FuncInfo->setVarArgsFrameIndex( |
| MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, |
| Depth, true)); |
| SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing the |
| // result of va_next. |
| for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { |
| unsigned VReg; |
| |
| if (isPPC64) |
| VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| else |
| VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| MachinePointerInfo(), false, false, 0); |
| MemOps.push_back(Store); |
| // Increment the address by four for the next argument to store |
| SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, |
| MVT::Other, &MemOps[0], MemOps.size()); |
| |
| return Chain; |
| } |
| |
| /// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus |
| /// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI. |
| static unsigned |
| CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, |
| bool isPPC64, |
| bool isVarArg, |
| unsigned CC, |
| const SmallVectorImpl<ISD::OutputArg> |
| &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| unsigned &nAltivecParamsAtEnd) { |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. We start with 24/48 bytes, which is |
| // prereserved space for [SP][CR][LR][3 x unused]. |
| unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); |
| unsigned NumOps = Outs.size(); |
| unsigned PtrByteSize = isPPC64 ? 8 : 4; |
| |
| // Add up all the space actually used. |
| // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually |
| // they all go in registers, but we must reserve stack space for them for |
| // possible use by the caller. In varargs or 64-bit calls, parameters are |
| // assigned stack space in order, with padding so Altivec parameters are |
| // 16-byte aligned. |
| nAltivecParamsAtEnd = 0; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| EVT ArgVT = Outs[i].VT; |
| // Varargs Altivec parameters are padded to a 16 byte boundary. |
| if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || |
| ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { |
| if (!isVarArg && !isPPC64) { |
| // Non-varargs Altivec parameters go after all the non-Altivec |
| // parameters; handle those later so we know how much padding we need. |
| nAltivecParamsAtEnd++; |
| continue; |
| } |
| // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. |
| NumBytes = ((NumBytes+15)/16)*16; |
| } |
| NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); |
| } |
| |
| // Allow for Altivec parameters at the end, if needed. |
| if (nAltivecParamsAtEnd) { |
| NumBytes = ((NumBytes+15)/16)*16; |
| NumBytes += 16*nAltivecParamsAtEnd; |
| } |
| |
| // The prolog code of the callee may store up to 8 GPR argument registers to |
| // the stack, allowing va_start to index over them in memory if its varargs. |
| // Because we cannot tell if this is needed on the caller side, we have to |
| // conservatively assume that it is needed. As such, make sure we have at |
| // least enough stack space for the caller to store the 8 GPRs. |
| NumBytes = std::max(NumBytes, |
| PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); |
| |
| // Tail call needs the stack to be aligned. |
| if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){ |
| unsigned TargetAlign = DAG.getMachineFunction().getTarget(). |
| getFrameLowering()->getStackAlignment(); |
| unsigned AlignMask = TargetAlign-1; |
| NumBytes = (NumBytes + AlignMask) & ~AlignMask; |
| } |
| |
| return NumBytes; |
| } |
| |
| /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be |
| /// adjusted to accommodate the arguments for the tailcall. |
| static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, |
| unsigned ParamSize) { |
| |
| if (!isTailCall) return 0; |
| |
| PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); |
| unsigned CallerMinReservedArea = FI->getMinReservedArea(); |
| int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; |
| // Remember only if the new adjustement is bigger. |
| if (SPDiff < FI->getTailCallSPDelta()) |
| FI->setTailCallSPDelta(SPDiff); |
| |
| return SPDiff; |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool |
| PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| if (!getTargetMachine().Options.GuaranteedTailCallOpt) |
| return false; |
| |
| // Variable argument functions are not supported. |
| if (isVarArg) |
| return false; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); |
| if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { |
| // Functions containing by val parameters are not supported. |
| for (unsigned i = 0; i != Ins.size(); i++) { |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| if (Flags.isByVal()) return false; |
| } |
| |
| // Non PIC/GOT tail calls are supported. |
| if (getTargetMachine().getRelocationModel() != Reloc::PIC_) |
| return true; |
| |
| // At the moment we can only do local tail calls (in same module, hidden |
| // or protected) if we are generating PIC. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| return G->getGlobal()->hasHiddenVisibility() |
| || G->getGlobal()->hasProtectedVisibility(); |
| } |
| |
| return false; |
| } |
| |
| /// isCallCompatibleAddress - Return the immediate to use if the specified |
| /// 32-bit value is representable in the immediate field of a BxA instruction. |
| static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) return 0; |
| |
| int Addr = C->getZExtValue(); |
| if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. |
| SignExtend32<26>(Addr) != Addr) |
| return 0; // Top 6 bits have to be sext of immediate. |
| |
| return DAG.getConstant((int)C->getZExtValue() >> 2, |
| DAG.getTargetLoweringInfo().getPointerTy()).getNode(); |
| } |
| |
| namespace { |
| |
| struct TailCallArgumentInfo { |
| SDValue Arg; |
| SDValue FrameIdxOp; |
| int FrameIdx; |
| |
| TailCallArgumentInfo() : FrameIdx(0) {} |
| }; |
| |
| } |
| |
| /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. |
| static void |
| StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, |
| SDValue Chain, |
| const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, |
| SmallVector<SDValue, 8> &MemOpChains, |
| DebugLoc dl) { |
| for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { |
| SDValue Arg = TailCallArgs[i].Arg; |
| SDValue FIN = TailCallArgs[i].FrameIdxOp; |
| int FI = TailCallArgs[i].FrameIdx; |
| // Store relative to framepointer. |
| MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, |
| MachinePointerInfo::getFixedStack(FI), |
| false, false, 0)); |
| } |
| } |
| |
| /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to |
| /// the appropriate stack slot for the tail call optimized function call. |
| static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, |
| MachineFunction &MF, |
| SDValue Chain, |
| SDValue OldRetAddr, |
| SDValue OldFP, |
| int SPDiff, |
| bool isPPC64, |
| bool isDarwinABI, |
| DebugLoc dl) { |
| if (SPDiff) { |
| // Calculate the new stack slot for the return address. |
| int SlotSize = isPPC64 ? 8 : 4; |
| int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, |
| isDarwinABI); |
| int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, |
| NewRetAddrLoc, true); |
| EVT VT = isPPC64 ? MVT::i64 : MVT::i32; |
| SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); |
| Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, |
| MachinePointerInfo::getFixedStack(NewRetAddr), |
| false, false, 0); |
| |
| // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack |
| // slot as the FP is never overwritten. |
| if (isDarwinABI) { |
| int NewFPLoc = |
| SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); |
| int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, |
| true); |
| SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); |
| Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, |
| MachinePointerInfo::getFixedStack(NewFPIdx), |
| false, false, 0); |
| } |
| } |
| return Chain; |
| } |
| |
| /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate |
| /// the position of the argument. |
| static void |
| CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, |
| SDValue Arg, int SPDiff, unsigned ArgOffset, |
| SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { |
| int Offset = ArgOffset + SPDiff; |
| uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; |
| int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); |
| EVT VT = isPPC64 ? MVT::i64 : MVT::i32; |
| SDValue FIN = DAG.getFrameIndex(FI, VT); |
| TailCallArgumentInfo Info; |
| Info.Arg = Arg; |
| Info.FrameIdxOp = FIN; |
| Info.FrameIdx = FI; |
| TailCallArguments.push_back(Info); |
| } |
| |
| /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address |
| /// stack slot. Returns the chain as result and the loaded frame pointers in |
| /// LROpOut/FPOpout. Used when tail calling. |
| SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, |
| int SPDiff, |
| SDValue Chain, |
| SDValue &LROpOut, |
| SDValue &FPOpOut, |
| bool isDarwinABI, |
| DebugLoc dl) const { |
| if (SPDiff) { |
| // Load the LR and FP stack slot for later adjusting. |
| EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; |
| LROpOut = getReturnAddrFrameIndex(DAG); |
| LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), |
| false, false, false, 0); |
| Chain = SDValue(LROpOut.getNode(), 1); |
| |
| // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack |
| // slot as the FP is never overwritten. |
| if (isDarwinABI) { |
| FPOpOut = getFramePointerFrameIndex(DAG); |
| FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), |
| false, false, false, 0); |
| Chain = SDValue(FPOpOut.getNode(), 1); |
| } |
| } |
| return Chain; |
| } |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" of size "Size". Alignment information is |
| /// specified by the specific parameter attribute. The copy will be passed as |
| /// a byval function parameter. |
| /// Sometimes what we are copying is the end of a larger object, the part that |
| /// does not fit in registers. |
| static SDValue |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| DebugLoc dl) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), |
| false, false, MachinePointerInfo(0), |
| MachinePointerInfo(0)); |
| } |
| |
| /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of |
| /// tail calls. |
| static void |
| LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, |
| SDValue Arg, SDValue PtrOff, int SPDiff, |
| unsigned ArgOffset, bool isPPC64, bool isTailCall, |
| bool isVector, SmallVector<SDValue, 8> &MemOpChains, |
| SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, |
| DebugLoc dl) { |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| if (!isTailCall) { |
| if (isVector) { |
| SDValue StackPtr; |
| if (isPPC64) |
| StackPtr = DAG.getRegister(PPC::X1, MVT::i64); |
| else |
| StackPtr = DAG.getRegister(PPC::R1, MVT::i32); |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, |
| DAG.getConstant(ArgOffset, PtrVT)); |
| } |
| MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo(), false, false, 0)); |
| // Calculate and remember argument location. |
| } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, |
| TailCallArguments); |
| } |
| |
| static |
| void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, |
| DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, |
| SDValue LROp, SDValue FPOp, bool isDarwinABI, |
| SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Emit a sequence of copyto/copyfrom virtual registers for arguments that |
| // might overwrite each other in case of tail call optimization. |
| SmallVector<SDValue, 8> MemOpChains2; |
| // Do not flag preceding copytoreg stuff together with the following stuff. |
| InFlag = SDValue(); |
| StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, |
| MemOpChains2, dl); |
| if (!MemOpChains2.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains2[0], MemOpChains2.size()); |
| |
| // Store the return address to the appropriate stack slot. |
| Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, |
| isPPC64, isDarwinABI, dl); |
| |
| // Emit callseq_end just before tailcall node. |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| static |
| unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, |
| SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, |
| SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, |
| SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, |
| const PPCSubtarget &PPCSubTarget) { |
| |
| bool isPPC64 = PPCSubTarget.isPPC64(); |
| bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. |
| |
| unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; |
| |
| bool needIndirectCall = true; |
| if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { |
| // If this is an absolute destination address, use the munged value. |
| Callee = SDValue(Dest, 0); |
| needIndirectCall = false; |
| } |
| |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 |
| // Use indirect calls for ALL functions calls in JIT mode, since the |
| // far-call stubs may be outside relocation limits for a BL instruction. |
| if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { |
| unsigned OpFlags = 0; |
| if (DAG.getTarget().getRelocationModel() != Reloc::Static && |
| (PPCSubTarget.getTargetTriple().isMacOSX() && |
| PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && |
| (G->getGlobal()->isDeclaration() || |
| G->getGlobal()->isWeakForLinker())) { |
| // PC-relative references to external symbols should go through $stub, |
| // unless we're building with the leopard linker or later, which |
| // automatically synthesizes these stubs. |
| OpFlags = PPCII::MO_DARWIN_STUB; |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, |
| // every direct call is) turn it into a TargetGlobalAddress / |
| // TargetExternalSymbol node so that legalize doesn't hack it. |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, |
| Callee.getValueType(), |
| 0, OpFlags); |
| needIndirectCall = false; |
| } |
| } |
| |
| if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| unsigned char OpFlags = 0; |
| |
| if (DAG.getTarget().getRelocationModel() != Reloc::Static && |
| (PPCSubTarget.getTargetTriple().isMacOSX() && |
| PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { |
| // PC-relative references to external symbols should go through $stub, |
| // unless we're building with the leopard linker or later, which |
| // automatically synthesizes these stubs. |
| OpFlags = PPCII::MO_DARWIN_STUB; |
| } |
| |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), |
| OpFlags); |
| needIndirectCall = false; |
| } |
| |
| if (needIndirectCall) { |
| // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair |
| // to do the call, we can't use PPCISD::CALL. |
| SDValue MTCTROps[] = {Chain, Callee, InFlag}; |
| |
| if (isSVR4ABI && isPPC64) { |
| // Function pointers in the 64-bit SVR4 ABI do not point to the function |
| // entry point, but to the function descriptor (the function entry point |
| // address is part of the function descriptor though). |
| // The function descriptor is a three doubleword structure with the |
| // following fields: function entry point, TOC base address and |
| // environment pointer. |
| // Thus for a call through a function pointer, the following actions need |
| // to be performed: |
| // 1. Save the TOC of the caller in the TOC save area of its stack |
| // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). |
| // 2. Load the address of the function entry point from the function |
| // descriptor. |
| // 3. Load the TOC of the callee from the function descriptor into r2. |
| // 4. Load the environment pointer from the function descriptor into |
| // r11. |
| // 5. Branch to the function entry point address. |
| // 6. On return of the callee, the TOC of the caller needs to be |
| // restored (this is done in FinishCall()). |
| // |
| // All those operations are flagged together to ensure that no other |
| // operations can be scheduled in between. E.g. without flagging the |
| // operations together, a TOC access in the caller could be scheduled |
| // between the load of the callee TOC and the branch to the callee, which |
| // results in the TOC access going through the TOC of the callee instead |
| // of going through the TOC of the caller, which leads to incorrect code. |
| |
| // Load the address of the function entry point from the function |
| // descriptor. |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); |
| SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, |
| InFlag.getNode() ? 3 : 2); |
| Chain = LoadFuncPtr.getValue(1); |
| InFlag = LoadFuncPtr.getValue(2); |
| |
| // Load environment pointer into r11. |
| // Offset of the environment pointer within the function descriptor. |
| SDValue PtrOff = DAG.getIntPtrConstant(16); |
| |
| SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); |
| SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, |
| InFlag); |
| Chain = LoadEnvPtr.getValue(1); |
| InFlag = LoadEnvPtr.getValue(2); |
| |
| SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, |
| InFlag); |
| Chain = EnvVal.getValue(0); |
| InFlag = EnvVal.getValue(1); |
| |
| // Load TOC of the callee into r2. We are using a target-specific load |
| // with r2 hard coded, because the result of a target-independent load |
| // would never go directly into r2, since r2 is a reserved register (which |
| // prevents the register allocator from allocating it), resulting in an |
| // additional register being allocated and an unnecessary move instruction |
| // being generated. |
| VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, |
| Callee, InFlag); |
| Chain = LoadTOCPtr.getValue(0); |
| InFlag = LoadTOCPtr.getValue(1); |
| |
| MTCTROps[0] = Chain; |
| MTCTROps[1] = LoadFuncPtr; |
| MTCTROps[2] = InFlag; |
| } |
| |
| Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, |
| 2 + (InFlag.getNode() != 0)); |
| InFlag = Chain.getValue(1); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); |
| NodeTys.push_back(MVT::Glue); |
| Ops.push_back(Chain); |
| CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; |
| Callee.setNode(0); |
| // Add CTR register as callee so a bctr can be emitted later. |
| if (isTailCall) |
| Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); |
| } |
| |
| // If this is a direct call, pass the chain and the callee. |
| if (Callee.getNode()) { |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| } |
| // If this is a tail call add stack pointer delta. |
| if (isTailCall) |
| Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| return CallOpc; |
| } |
| |
| static |
| bool isLocalCall(const SDValue &Callee) |
| { |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| return !G->getGlobal()->isDeclaration() && |
| !G->getGlobal()->isWeakForLinker(); |
| return false; |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, |
| VA.getLocReg(), VA.getLocVT(), InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::AExt: |
| Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| break; |
| case CCValAssign::ZExt: |
| Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| break; |
| case CCValAssign::SExt: |
| Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| break; |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| SDValue |
| PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, |
| bool isTailCall, bool isVarArg, |
| SelectionDAG &DAG, |
| SmallVector<std::pair<unsigned, SDValue>, 8> |
| &RegsToPass, |
| SDValue InFlag, SDValue Chain, |
| SDValue &Callee, |
| int SPDiff, unsigned NumBytes, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SmallVectorImpl<SDValue> &InVals) const { |
| std::vector<EVT> NodeTys; |
| SmallVector<SDValue, 8> Ops; |
| unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, |
| isTailCall, RegsToPass, Ops, NodeTys, |
| PPCSubTarget); |
| |
| // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls |
| if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) |
| Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); |
| |
| // When performing tail call optimization the callee pops its arguments off |
| // the stack. Account for this here so these bytes can be pushed back on in |
| // PPCFrameLowering::eliminateCallFramePseudoInstr. |
| int BytesCalleePops = |
| (CallConv == CallingConv::Fast && |
| getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| // Emit tail call. |
| if (isTailCall) { |
| assert(((Callee.getOpcode() == ISD::Register && |
| cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || |
| Callee.getOpcode() == ISD::TargetExternalSymbol || |
| Callee.getOpcode() == ISD::TargetGlobalAddress || |
| isa<ConstantSDNode>(Callee)) && |
| "Expecting an global address, external symbol, absolute value or register"); |
| |
| return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); |
| } |
| |
| // Add a NOP immediately after the branch instruction when using the 64-bit |
| // SVR4 ABI. At link time, if caller and callee are in a different module and |
| // thus have a different TOC, the call will be replaced with a call to a stub |
| // function which saves the current TOC, loads the TOC of the callee and |
| // branches to the callee. The NOP will be replaced with a load instruction |
| // which restores the TOC of the caller from the TOC save slot of the current |
| // stack frame. If caller and callee belong to the same module (and have the |
| // same TOC), the NOP will remain unchanged. |
| |
| bool needsTOCRestore = false; |
| if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { |
| if (CallOpc == PPCISD::BCTRL_SVR4) { |
| // This is a call through a function pointer. |
| // Restore the caller TOC from the save area into R2. |
| // See PrepareCall() for more information about calls through function |
| // pointers in the 64-bit SVR4 ABI. |
| // We are using a target-specific load with r2 hard coded, because the |
| // result of a target-independent load would never go directly into r2, |
| // since r2 is a reserved register (which prevents the register allocator |
| // from allocating it), resulting in an additional register being |
| // allocated and an unnecessary move instruction being generated. |
| needsTOCRestore = true; |
| } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) { |
| // Otherwise insert NOP for non-local calls. |
| CallOpc = PPCISD::CALL_NOP_SVR4; |
| } |
| } |
| |
| Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| if (needsTOCRestore) { |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(BytesCalleePops, true), |
| InFlag); |
| if (!Ins.empty()) |
| InFlag = Chain.getValue(1); |
| |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, |
| Ins, dl, DAG, InVals); |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| DebugLoc &dl = CLI.DL; |
| SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool isVarArg = CLI.IsVarArg; |
| |
| if (isTailCall) |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, |
| Ins, DAG); |
| |
| if (PPCSubTarget.isSVR4ABI()) { |
| if (PPCSubTarget.isPPC64()) |
| return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, |
| isTailCall, Outs, OutVals, Ins, |
| dl, DAG, InVals); |
| else |
| return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, |
| isTailCall, Outs, OutVals, Ins, |
| dl, DAG, InVals); |
| } |
| |
| return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, |
| isTailCall, Outs, OutVals, Ins, |
| dl, DAG, InVals); |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description |
| // of the 32-bit SVR4 ABI stack frame layout. |
| |
| assert((CallConv == CallingConv::C || |
| CallConv == CallingConv::Fast) && "Unknown calling convention!"); |
| |
| unsigned PtrByteSize = 4; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Mark this function as potentially containing a function that contains a |
| // tail call. As a consequence the frame pointer will be used for dynamicalloc |
| // and restoring the callers stack pointer in this functions epilog. This is |
| // done because by tail calling the called function might overwrite the value |
| // in this function's (MF) stack pointer stack slot 0(SP). |
| if (getTargetMachine().Options.GuaranteedTailCallOpt && |
| CallConv == CallingConv::Fast) |
| MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, parameter list area and the part of the local variable space which |
| // contains copies of aggregates which are passed by value. |
| |
| // Assign locations to all of the outgoing arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| // Reserve space for the linkage area on the stack. |
| CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); |
| |
| if (isVarArg) { |
| // Handle fixed and variable vector arguments differently. |
| // Fixed vector arguments go into registers as long as registers are |
| // available. Variable vector arguments always go into memory. |
| unsigned NumArgs = Outs.size(); |
| |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT ArgVT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| bool Result; |
| |
| if (Outs[i].IsFixed) { |
| Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, |
| CCInfo); |
| } else { |
| Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, |
| ArgFlags, CCInfo); |
| } |
| |
| if (Result) { |
| #ifndef NDEBUG |
| errs() << "Call operand #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << "\n"; |
| #endif |
| llvm_unreachable(0); |
| } |
| } |
| } else { |
| // All arguments are treated the same. |
| CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); |
| } |
| |
| // Assign locations to all of the outgoing aggregate by value arguments. |
| SmallVector<CCValAssign, 16> ByValArgLocs; |
| CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ByValArgLocs, *DAG.getContext()); |
| |
| // Reserve stack space for the allocations in CCInfo. |
| CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); |
| |
| CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); |
| |
| // Size of the linkage area, parameter list area and the part of the local |
| // space variable where copies of aggregates which are passed by value are |
| // stored. |
| unsigned NumBytes = CCByValInfo.getNextStackOffset(); |
| |
| // Calculate by how many bytes the stack has to be adjusted in case of tail |
| // call optimization. |
| int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| SDValue CallSeqStart = Chain; |
| |
| // Load the return address and frame pointer so it can be moved somewhere else |
| // later. |
| SDValue LROp, FPOp; |
| Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, |
| dl); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<TailCallArgumentInfo, 8> TailCallArguments; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| bool seenFloatArg = false; |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, j = 0, e = ArgLocs.size(); |
| i != e; |
| ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| |
| if (Flags.isByVal()) { |
| // Argument is an aggregate which is passed by value, thus we need to |
| // create a copy of it in the local variable space of the current stack |
| // frame (which is the stack frame of the caller) and pass the address of |
| // this copy to the callee. |
| assert((j < ByValArgLocs.size()) && "Index out of bounds!"); |
| CCValAssign &ByValVA = ByValArgLocs[j++]; |
| assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); |
| |
| // Memory reserved in the local variable space of the callers stack frame. |
| unsigned LocMemOffset = ByValVA.getLocMemOffset(); |
| |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| |
| // Create a copy of the argument in the local area of the current |
| // stack frame. |
| SDValue MemcpyCall = |
| CreateCopyOfByValArgument(Arg, PtrOff, |
| CallSeqStart.getNode()->getOperand(0), |
| Flags, DAG, dl); |
| |
| // This must go outside the CALLSEQ_START..END. |
| SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, |
| CallSeqStart.getNode()->getOperand(1)); |
| DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), |
| NewCallSeqStart.getNode()); |
| Chain = CallSeqStart = NewCallSeqStart; |
| |
| // Pass the address of the aggregate copy on the stack either in a |
| // physical register or in the parameter list area of the current stack |
| // frame to the callee. |
| Arg = PtrOff; |
| } |
| |
| if (VA.isRegLoc()) { |
| seenFloatArg |= VA.getLocVT().isFloatingPoint(); |
| // Put argument in a physical register. |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else { |
| // Put argument in the parameter list area of the current stack frame. |
| assert(VA.isMemLoc()); |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| |
| if (!isTailCall) { |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| |
| MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo(), |
| false, false, 0)); |
| } else { |
| // Calculate and remember argument location. |
| CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, |
| TailCallArguments); |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Set CR bit 6 to true if this is a vararg call with floating args passed in |
| // registers. |
| if (isVarArg) { |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, InFlag }; |
| |
| Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, |
| dl, VTs, Ops, InFlag.getNode() ? 2 : 1); |
| |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (isTailCall) |
| PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, |
| false, TailCallArguments); |
| |
| return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, |
| RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, |
| Ins, InVals); |
| } |
| |
| // Copy an argument into memory, being careful to do this outside the |
| // call sequence for the call to which the argument belongs. |
| SDValue |
| PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, |
| SDValue CallSeqStart, |
| ISD::ArgFlagsTy Flags, |
| SelectionDAG &DAG, |
| DebugLoc dl) const { |
| SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, |
| CallSeqStart.getNode()->getOperand(0), |
| Flags, DAG, dl); |
| // The MEMCPY must go outside the CALLSEQ_START..END. |
| SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, |
| CallSeqStart.getNode()->getOperand(1)); |
| DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), |
| NewCallSeqStart.getNode()); |
| return NewCallSeqStart; |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| unsigned NumOps = Outs.size(); |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| unsigned PtrByteSize = 8; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Mark this function as potentially containing a function that contains a |
| // tail call. As a consequence the frame pointer will be used for dynamicalloc |
| // and restoring the callers stack pointer in this functions epilog. This is |
| // done because by tail calling the called function might overwrite the value |
| // in this function's (MF) stack pointer stack slot 0(SP). |
| if (getTargetMachine().Options.GuaranteedTailCallOpt && |
| CallConv == CallingConv::Fast) |
| MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); |
| |
| unsigned nAltivecParamsAtEnd = 0; |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. We start with at least 48 bytes, which |
| // is reserved space for [SP][CR][LR][3 x unused]. |
| // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result |
| // of this call. |
| unsigned NumBytes = |
| CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv, |
| Outs, OutVals, nAltivecParamsAtEnd); |
| |
| // Calculate by how many bytes the stack has to be adjusted in case of tail |
| // call optimization. |
| int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); |
| |
| // To protect arguments on the stack from being clobbered in a tail call, |
| // force all the loads to happen before doing any other lowering. |
| if (isTailCall) |
| Chain = DAG.getStackArgumentTokenFactor(Chain); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| SDValue CallSeqStart = Chain; |
| |
| // Load the return address and frame pointer so it can be move somewhere else |
| // later. |
| SDValue LROp, FPOp; |
| Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, |
| dl); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); |
| |
| // Figure out which arguments are going to go in registers, and which in |
| // memory. Also, if this is a vararg function, floating point operations |
| // must be stored to our stack, and loaded into integer regs as well, if |
| // any integer regs are available for argument passing. |
| unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true); |
| unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; |
| |
| static const uint16_t GPR[] = { |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| static const uint16_t *FPR = GetFPR(); |
| |
| static const uint16_t VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| const unsigned NumGPRs = array_lengthof(GPR); |
| const unsigned NumFPRs = 13; |
| const unsigned NumVRs = array_lengthof(VR); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<TailCallArgumentInfo, 8> TailCallArguments; |
| |
| SmallVector<SDValue, 8> MemOpChains; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| |
| // PtrOff will be used to store the current argument to the stack if a |
| // register cannot be found for it. |
| SDValue PtrOff; |
| |
| PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); |
| |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); |
| |
| // Promote integers to 64-bit values. |
| if (Arg.getValueType() == MVT::i32) { |
| // FIXME: Should this use ANY_EXTEND if neither sext nor zext? |
| unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); |
| } |
| |
| // FIXME memcpy is used way more than necessary. Correctness first. |
| // Note: "by value" is code for passing a structure by value, not |
| // basic types. |
| if (Flags.isByVal()) { |
| // Note: Size includes alignment padding, so |
| // struct x { short a; char b; } |
| // will have Size = 4. With #pragma pack(1), it will have Size = 3. |
| // These are the proper values we need for right-justifying the |
| // aggregate in a parameter register. |
| unsigned Size = Flags.getByValSize(); |
| |
| // An empty aggregate parameter takes up no storage and no |
| // registers. |
| if (Size == 0) |
| continue; |
| |
| // All aggregates smaller than 8 bytes must be passed right-justified. |
| if (Size==1 || Size==2 || Size==4) { |
| EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); |
| if (GPR_idx != NumGPRs) { |
| SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, |
| MachinePointerInfo(), VT, |
| false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| |
| ArgOffset += PtrByteSize; |
| continue; |
| } |
| } |
| |
| if (GPR_idx == NumGPRs && Size < 8) { |
| SDValue Const = DAG.getConstant(PtrByteSize - Size, |
| PtrOff.getValueType()); |
| SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, |
| CallSeqStart, |
| Flags, DAG, dl); |
| ArgOffset += PtrByteSize; |
| continue; |
| } |
| // Copy entire object into memory. There are cases where gcc-generated |
| // code assumes it is there, even if it could be put entirely into |
| // registers. (This is not what the doc says.) |
| |
| // FIXME: The above statement is likely due to a misunderstanding of the |
| // documents. All arguments must be copied into the parameter area BY |
| // THE CALLEE in the event that the callee takes the address of any |
| // formal argument. That has not yet been implemented. However, it is |
| // reasonable to use the stack area as a staging area for the register |
| // load. |
| |
| // Skip this for small aggregates, as we will use the same slot for a |
| // right-justified copy, below. |
| if (Size >= 8) |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, |
| CallSeqStart, |
| Flags, DAG, dl); |
| |
| // When a register is available, pass a small aggregate right-justified. |
| if (Size < 8 && GPR_idx != NumGPRs) { |
| // The easiest way to get this right-justified in a register |
| // is to copy the structure into the rightmost portion of a |
| // local variable slot, then load the whole slot into the |
| // register. |
| // FIXME: The memcpy seems to produce pretty awful code for |
| // small aggregates, particularly for packed ones. |
| // FIXME: It would be preferable to use the slot in the |
| // parameter save area instead of a new local variable. |
| SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType()); |
| SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, |
| CallSeqStart, |
| Flags, DAG, dl); |
| |
| // Load the slot into the register. |
| SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| |
| // Done with this argument. |
| ArgOffset += PtrByteSize; |
| continue; |
| } |
| |
| // For aggregates larger than PtrByteSize, copy the pieces of the |
| // object that fit into registers from the parameter save area. |
| for (unsigned j=0; j<Size; j+=PtrByteSize) { |
| SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); |
| SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); |
| if (GPR_idx != NumGPRs) { |
| SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| ArgOffset += PtrByteSize; |
| } else { |
| ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; |
| break; |
| } |
| } |
| continue; |
| } |
| |
| switch (Arg.getValueType().getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unexpected ValueType for argument!"); |
| case MVT::i32: |
| case MVT::i64: |
| if (GPR_idx != NumGPRs) { |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); |
| } else { |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| true, isTailCall, false, MemOpChains, |
| TailCallArguments, dl); |
| } |
| ArgOffset += PtrByteSize; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (FPR_idx != NumFPRs) { |
| RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); |
| |
| if (isVarArg) { |
| // A single float or an aggregate containing only a single float |
| // must be passed right-justified in the stack doubleword, and |
| // in the GPR, if one is available. |
| SDValue StoreOff; |
| if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) { |
| SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); |
| StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); |
| } else |
| StoreOff = PtrOff; |
| |
| SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff, |
| MachinePointerInfo(), false, false, 0); |
| MemOpChains.push_back(Store); |
| |
| // Float varargs are always shadowed in available integer registers |
| if (GPR_idx != NumGPRs) { |
| SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, |
| MachinePointerInfo(), false, false, |
| false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| } |
| } else if (GPR_idx != NumGPRs) |
| // If we have any FPRs remaining, we may also have GPRs remaining. |
| ++GPR_idx; |
| } else { |
| // Single-precision floating-point values are mapped to the |
| // second (rightmost) word of the stack doubleword. |
| if (Arg.getValueType() == MVT::f32) { |
| SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); |
| } |
| |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| true, isTailCall, false, MemOpChains, |
| TailCallArguments, dl); |
| } |
| ArgOffset += 8; |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| if (isVarArg) { |
| // These go aligned on the stack, or in the corresponding R registers |
| // when within range. The Darwin PPC ABI doc claims they also go in |
| // V registers; in fact gcc does this only for arguments that are |
| // prototyped, not for those that match the ... We do it for all |
| // arguments, seems to work. |
| while (ArgOffset % 16 !=0) { |
| ArgOffset += PtrByteSize; |
| if (GPR_idx != NumGPRs) |
| GPR_idx++; |
| } |
| // We could elide this store in the case where the object fits |
| // entirely in R registers. Maybe later. |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, |
| DAG.getConstant(ArgOffset, PtrVT)); |
| SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo(), false, false, 0); |
| MemOpChains.push_back(Store); |
| if (VR_idx != NumVRs) { |
| SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); |
| } |
| ArgOffset += 16; |
| for (unsigned i=0; i<16; i+=PtrByteSize) { |
| if (GPR_idx == NumGPRs) |
| break; |
| SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, |
| DAG.getConstant(i, PtrVT)); |
| SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| } |
| break; |
| } |
| |
| // Non-varargs Altivec params generally go in registers, but have |
| // stack space allocated at the end. |
| if (VR_idx != NumVRs) { |
| // Doesn't have GPR space allocated. |
| RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); |
| } else { |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| true, isTailCall, true, MemOpChains, |
| TailCallArguments, dl); |
| ArgOffset += 16; |
| } |
| break; |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Check if this is an indirect call (MTCTR/BCTRL). |
| // See PrepareCall() for more information about calls through function |
| // pointers in the 64-bit SVR4 ABI. |
| if (!isTailCall && |
| !dyn_cast<GlobalAddressSDNode>(Callee) && |
| !dyn_cast<ExternalSymbolSDNode>(Callee) && |
| !isBLACompatibleAddress(Callee, DAG)) { |
| // Load r2 into a virtual register and store it to the TOC save area. |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); |
| // TOC save area offset. |
| SDValue PtrOff = DAG.getIntPtrConstant(40); |
| SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); |
| Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), |
| false, false, 0); |
| // R12 must contain the address of an indirect callee. This does not |
| // mean the MTCTR instruction must use R12; it's easier to model this |
| // as an extra parameter, so do that. |
| RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (isTailCall) |
| PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, |
| FPOp, true, TailCallArguments); |
| |
| return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, |
| RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, |
| Ins, InVals); |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| unsigned NumOps = Outs.size(); |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = PtrVT == MVT::i64; |
| unsigned PtrByteSize = isPPC64 ? 8 : 4; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Mark this function as potentially containing a function that contains a |
| // tail call. As a consequence the frame pointer will be used for dynamicalloc |
| // and restoring the callers stack pointer in this functions epilog. This is |
| // done because by tail calling the called function might overwrite the value |
| // in this function's (MF) stack pointer stack slot 0(SP). |
| if (getTargetMachine().Options.GuaranteedTailCallOpt && |
| CallConv == CallingConv::Fast) |
| MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); |
| |
| unsigned nAltivecParamsAtEnd = 0; |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. We start with 24/48 bytes, which is |
| // prereserved space for [SP][CR][LR][3 x unused]. |
| unsigned NumBytes = |
| CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, |
| Outs, OutVals, |
| nAltivecParamsAtEnd); |
| |
| // Calculate by how many bytes the stack has to be adjusted in case of tail |
| // call optimization. |
| int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); |
| |
| // To protect arguments on the stack from being clobbered in a tail call, |
| // force all the loads to happen before doing any other lowering. |
| if (isTailCall) |
| Chain = DAG.getStackArgumentTokenFactor(Chain); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| SDValue CallSeqStart = Chain; |
| |
| // Load the return address and frame pointer so it can be move somewhere else |
| // later. |
| SDValue LROp, FPOp; |
| Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, |
| dl); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDValue StackPtr; |
| if (isPPC64) |
| StackPtr = DAG.getRegister(PPC::X1, MVT::i64); |
| else |
| StackPtr = DAG.getRegister(PPC::R1, MVT::i32); |
| |
| // Figure out which arguments are going to go in registers, and which in |
| // memory. Also, if this is a vararg function, floating point operations |
| // must be stored to our stack, and loaded into integer regs as well, if |
| // any integer regs are available for argument passing. |
| unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); |
| unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; |
| |
| static const uint16_t GPR_32[] = { // 32-bit registers. |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const uint16_t GPR_64[] = { // 64-bit registers. |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| static const uint16_t *FPR = GetFPR(); |
| |
| static const uint16_t VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| const unsigned NumGPRs = array_lengthof(GPR_32); |
| const unsigned NumFPRs = 13; |
| const unsigned NumVRs = array_lengthof(VR); |
| |
| const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32; |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<TailCallArgumentInfo, 8> TailCallArguments; |
| |
| SmallVector<SDValue, 8> MemOpChains; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| |
| // PtrOff will be used to store the current argument to the stack if a |
| // register cannot be found for it. |
| SDValue PtrOff; |
| |
| PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); |
| |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); |
| |
| // On PPC64, promote integers to 64-bit values. |
| if (isPPC64 && Arg.getValueType() == MVT::i32) { |
| // FIXME: Should this use ANY_EXTEND if neither sext nor zext? |
| unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); |
| } |
| |
| // FIXME memcpy is used way more than necessary. Correctness first. |
| // Note: "by value" is code for passing a structure by value, not |
| // basic types. |
| if (Flags.isByVal()) { |
| unsigned Size = Flags.getByValSize(); |
| // Very small objects are passed right-justified. Everything else is |
| // passed left-justified. |
| if (Size==1 || Size==2) { |
| EVT VT = (Size==1) ? MVT::i8 : MVT::i16; |
| if (GPR_idx != NumGPRs) { |
| SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, |
| MachinePointerInfo(), VT, |
| false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| |
| ArgOffset += PtrByteSize; |
| } else { |
| SDValue Const = DAG.getConstant(PtrByteSize - Size, |
| PtrOff.getValueType()); |
| SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, |
| CallSeqStart, |
| Flags, DAG, dl); |
| ArgOffset += PtrByteSize; |
| } |
| continue; |
| } |
| // Copy entire object into memory. There are cases where gcc-generated |
| // code assumes it is there, even if it could be put entirely into |
| // registers. (This is not what the doc says.) |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, |
| CallSeqStart, |
| Flags, DAG, dl); |
| |
| // For small aggregates (Darwin only) and aggregates >= PtrByteSize, |
| // copy the pieces of the object that fit into registers from the |
| // parameter save area. |
| for (unsigned j=0; j<Size; j+=PtrByteSize) { |
| SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); |
| SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); |
| if (GPR_idx != NumGPRs) { |
| SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| ArgOffset += PtrByteSize; |
| } else { |
| ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; |
| break; |
| } |
| } |
| continue; |
| } |
| |
| switch (Arg.getValueType().getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unexpected ValueType for argument!"); |
| case MVT::i32: |
| case MVT::i64: |
| if (GPR_idx != NumGPRs) { |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); |
| } else { |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| isPPC64, isTailCall, false, MemOpChains, |
| TailCallArguments, dl); |
| } |
| ArgOffset += PtrByteSize; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (FPR_idx != NumFPRs) { |
| RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); |
| |
| if (isVarArg) { |
| SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo(), false, false, 0); |
| MemOpChains.push_back(Store); |
| |
| // Float varargs are always shadowed in available integer registers |
| if (GPR_idx != NumGPRs) { |
| SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, |
| MachinePointerInfo(), false, false, |
| false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| } |
| if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ |
| SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); |
| SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| } |
| } else { |
| // If we have any FPRs remaining, we may also have GPRs remaining. |
| // Args passed in FPRs consume either 1 (f32) or 2 (f64) available |
| // GPRs. |
| if (GPR_idx != NumGPRs) |
| ++GPR_idx; |
| if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && |
| !isPPC64) // PPC64 has 64-bit GPR's obviously :) |
| ++GPR_idx; |
| } |
| } else |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| isPPC64, isTailCall, false, MemOpChains, |
| TailCallArguments, dl); |
| if (isPPC64) |
| ArgOffset += 8; |
| else |
| ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| if (isVarArg) { |
| // These go aligned on the stack, or in the corresponding R registers |
| // when within range. The Darwin PPC ABI doc claims they also go in |
| // V registers; in fact gcc does this only for arguments that are |
| // prototyped, not for those that match the ... We do it for all |
| // arguments, seems to work. |
| while (ArgOffset % 16 !=0) { |
| ArgOffset += PtrByteSize; |
| if (GPR_idx != NumGPRs) |
| GPR_idx++; |
| } |
| // We could elide this store in the case where the object fits |
| // entirely in R registers. Maybe later. |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, |
| DAG.getConstant(ArgOffset, PtrVT)); |
| SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo(), false, false, 0); |
| MemOpChains.push_back(Store); |
| if (VR_idx != NumVRs) { |
| SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); |
| } |
| ArgOffset += 16; |
| for (unsigned i=0; i<16; i+=PtrByteSize) { |
| if (GPR_idx == NumGPRs) |
| break; |
| SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, |
| DAG.getConstant(i, PtrVT)); |
| SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), |
| false, false, false, 0); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| } |
| break; |
| } |
| |
| // Non-varargs Altivec params generally go in registers, but have |
| // stack space allocated at the end. |
| if (VR_idx != NumVRs) { |
| // Doesn't have GPR space allocated. |
| RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); |
| } else if (nAltivecParamsAtEnd==0) { |
| // We are emitting Altivec params in order. |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| isPPC64, isTailCall, true, MemOpChains, |
| TailCallArguments, dl); |
| ArgOffset += 16; |
| } |
| break; |
| } |
| } |
| // If all Altivec parameters fit in registers, as they usually do, |
| // they get stack space following the non-Altivec parameters. We |
| // don't track this here because nobody below needs it. |
| // If there are more Altivec parameters than fit in registers emit |
| // the stores here. |
| if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { |
| unsigned j = 0; |
| // Offset is aligned; skip 1st 12 params which go in V registers. |
| ArgOffset = ((ArgOffset+15)/16)*16; |
| ArgOffset += 12*16; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDValue Arg = OutVals[i]; |
| EVT ArgType = Outs[i].VT; |
| if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || |
| ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { |
| if (++j > NumVRs) { |
| SDValue PtrOff; |
| // We are emitting Altivec params in order. |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| isPPC64, isTailCall, true, MemOpChains, |
| TailCallArguments, dl); |
| ArgOffset += 16; |
| } |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // On Darwin, R12 must contain the address of an indirect callee. This does |
| // not mean the MTCTR instruction must use R12; it's easier to model this as |
| // an extra parameter, so do that. |
| if (!isTailCall && |
| !dyn_cast<GlobalAddressSDNode>(Callee) && |
| !dyn_cast<ExternalSymbolSDNode>(Callee) && |
| !isBLACompatibleAddress(Callee, DAG)) |
| RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : |
| PPC::R12), Callee)); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (isTailCall) |
| PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, |
| FPOp, true, TailCallArguments); |
| |
| return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, |
| RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, |
| Ins, InVals); |
| } |
| |
| bool |
| PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, |
| MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), |
| RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, RetCC_PPC); |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| DebugLoc dl, SelectionDAG &DAG) const { |
| |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeReturn(Outs, RetCC_PPC); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Arg = OutVals[i]; |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, |
| &RetOps[0], RetOps.size()); |
| } |
| |
| SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) const { |
| // When we pop the dynamic allocation we need to restore the SP link. |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Get the corect type for pointers. |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| |
| // Construct the stack pointer operand. |
| bool isPPC64 = Subtarget.isPPC64(); |
| unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; |
| SDValue StackPtr = DAG.getRegister(SP, PtrVT); |
| |
| // Get the operands for the STACKRESTORE. |
| SDValue Chain = Op.getOperand(0); |
| SDValue SaveSP = Op.getOperand(1); |
| |
| // Load the old link SP. |
| SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| |
| // Restore the stack pointer. |
| Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); |
| |
| // Store the old link SP. |
| return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), |
| false, false, 0); |
| } |
| |
| |
| |
| SDValue |
| PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool isPPC64 = PPCSubTarget.isPPC64(); |
| bool isDarwinABI = PPCSubTarget.isDarwinABI(); |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| |
| // Get current frame pointer save index. The users of this index will be |
| // primarily DYNALLOC instructions. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| int RASI = FI->getReturnAddrSaveIndex(); |
| |
| // If the frame pointer save index hasn't been defined yet. |
| if (!RASI) { |
| // Find out what the fix offset of the frame pointer save area. |
| int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); |
| // Allocate the frame index for frame pointer save area. |
| RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); |
| // Save the result. |
| FI->setReturnAddrSaveIndex(RASI); |
| } |
| return DAG.getFrameIndex(RASI, PtrVT); |
| } |
| |
| SDValue |
| PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool isPPC64 = PPCSubTarget.isPPC64(); |
| bool isDarwinABI = PPCSubTarget.isDarwinABI(); |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| |
| // Get current frame pointer save index. The users of this index will be |
| // primarily DYNALLOC instructions. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| int FPSI = FI->getFramePointerSaveIndex(); |
| |
| // If the frame pointer save index hasn't been defined yet. |
| if (!FPSI) { |
| // Find out what the fix offset of the frame pointer save area. |
| int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, |
| isDarwinABI); |
| |
| // Allocate the frame index for frame pointer save area. |
| FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); |
| // Save the result. |
| FI->setFramePointerSaveIndex(FPSI); |
| } |
| return DAG.getFrameIndex(FPSI, PtrVT); |
| } |
| |
| SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) const { |
| // Get the inputs. |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Get the corect type for pointers. |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| // Negate the size. |
| SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, |
| DAG.getConstant(0, PtrVT), Size); |
| // Construct a node for the frame pointer save index. |
| SDValue FPSIdx = getFramePointerFrameIndex(DAG); |
| // Build a DYNALLOC node. |
| SDValue Ops[3] = { Chain, NegSize, FPSIdx }; |
| SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); |
| return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); |
| } |
| |
| /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when |
| /// possible. |
| SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| // Not FP? Not a fsel. |
| if (!Op.getOperand(0).getValueType().isFloatingPoint() || |
| !Op.getOperand(2).getValueType().isFloatingPoint()) |
| return Op; |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| |
| // Cannot handle SETEQ/SETNE. |
| if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; |
| |
| EVT ResVT = Op.getValueType(); |
| EVT CmpVT = Op.getOperand(0).getValueType(); |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // If the RHS of the comparison is a 0.0, we don't need to do the |
| // subtraction at all. |
| if (isFloatingPointZero(RHS)) |
| switch (CC) { |
| default: break; // SETUO etc aren't handled by fsel. |
| case ISD::SETULT: |
| case ISD::SETLT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| case ISD::SETOGE: |
| case ISD::SETGE: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| case ISD::SETOLE: |
| case ISD::SETLE: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, |
| DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); |
| } |
| |
| SDValue Cmp; |
| switch (CC) { |
| default: break; // SETUO etc aren't handled by fsel. |
| case ISD::SETULT: |
| case ISD::SETLT: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); |
| case ISD::SETOGE: |
| case ISD::SETGE: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); |
| case ISD::SETOLE: |
| case ISD::SETLE: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); |
| } |
| return Op; |
| } |
| |
| // FIXME: Split this code up when LegalizeDAGTypes lands. |
| SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, |
| DebugLoc dl) const { |
| assert(Op.getOperand(0).getValueType().isFloatingPoint()); |
| SDValue Src = Op.getOperand(0); |
| if (Src.getValueType() == MVT::f32) |
| Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); |
| |
| SDValue Tmp; |
| switch (Op.getValueType().getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); |
| case MVT::i32: |
| Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : |
| PPCISD::FCTIDZ, |
| dl, MVT::f64, Src); |
| break; |
| case MVT::i64: |
| Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); |
| break; |
| } |
| |
| // Convert the FP value to an int value through memory. |
| SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); |
| |
| // Emit a store to the stack slot. |
| SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, |
| MachinePointerInfo(), false, false, 0); |
| |
| // Result is a load from the stack slot. If loading 4 bytes, make sure to |
| // add in a bias. |
| if (Op.getValueType() == MVT::i32) |
| FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, |
| DAG.getConstant(4, FIPtr.getValueType())); |
| return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), |
| false, false, false, 0); |
| } |
| |
| SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| // Don't handle ppc_fp128 here; let it be lowered to a libcall. |
| if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) |
| return SDValue(); |
| |
| if (Op.getOperand(0).getValueType() == MVT::i64) { |
| SDValue SINT = Op.getOperand(0); |
| // When converting to single-precision, we actually need to convert |
| // to double-precision first and then round to single-precision. |
| // To avoid double-rounding effects during that operation, we have |
| // to prepare the input operand. Bits that might be truncated when |
| // converting to double-precision are replaced by a bit that won't |
| // be lost at this stage, but is below the single-precision rounding |
| // position. |
| // |
| // However, if -enable-unsafe-fp-math is in effect, accept double |
| // rounding to avoid the extra overhead. |
| if (Op.getValueType() == MVT::f32 && |
| !DAG.getTarget().Options.UnsafeFPMath) { |
| |
| // Twiddle input to make sure the low 11 bits are zero. (If this |
| // is the case, we are guaranteed the value will fit into the 53 bit |
| // mantissa of an IEEE double-precision value without rounding.) |
| // If any of those low 11 bits were not zero originally, make sure |
| // bit 12 (value 2048) is set instead, so that the final rounding |
| // to single-precision gets the correct result. |
| SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, |
| SINT, DAG.getConstant(2047, MVT::i64)); |
| Round = DAG.getNode(ISD::ADD, dl, MVT::i64, |
| Round, DAG.getConstant(2047, MVT::i64)); |
| Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); |
| Round = DAG.getNode(ISD::AND, dl, MVT::i64, |
| Round, DAG.getConstant(-2048, MVT::i64)); |
| |
| // However, we cannot use that value unconditionally: if the magnitude |
| // of the input value is small, the bit-twiddling we did above might |
| // end up visibly changing the output. Fortunately, in that case, we |
| // don't need to twiddle bits since the original input will convert |
| // exactly to double-precision floating-point already. Therefore, |
| // construct a conditional to use the original value if the top 11 |
| // bits are all sign-bit copies, and use the rounded value computed |
| // above otherwise. |
| SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, |
| SINT, DAG.getConstant(53, MVT::i32)); |
| Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, |
| Cond, DAG.getConstant(1, MVT::i64)); |
| Cond = DAG.getSetCC(dl, MVT::i32, |
| Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT); |
| |
| SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); |
| } |
| SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); |
| SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); |
| if (Op.getValueType() == MVT::f32) |
| FP = DAG.getNode(ISD::FP_ROUND, dl, |
| MVT::f32, FP, DAG.getIntPtrConstant(0)); |
| return FP; |
| } |
| |
| assert(Op.getOperand(0).getValueType() == MVT::i32 && |
| "Unhandled SINT_TO_FP type in custom expander!"); |
| // Since we only generate this in 64-bit mode, we can take advantage of |
| // 64-bit registers. In particular, sign extend the input value into the |
| // 64-bit register with extsw, store the WHOLE 64-bit value into the stack |
| // then lfd it and fcfid it. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *FrameInfo = MF.getFrameInfo(); |
| int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); |
| |
| SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, |
| Op.getOperand(0)); |
| |
| // STD the extended value into the stack slot. |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), |
| MachineMemOperand::MOStore, 8, 8); |
| SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; |
| SDValue Store = |
| DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), |
| Ops, 4, MVT::i64, MMO); |
| // Load the value as a double. |
| SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), |
| false, false, false, 0); |
| |
| // FCFID it and return it. |
| SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); |
| if (Op.getValueType() == MVT::f32) |
| FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); |
| return FP; |
| } |
| |
| SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| /* |
| The rounding mode is in bits 30:31 of FPSR, and has the following |
| settings: |
| 00 Round to nearest |
| 01 Round to 0 |
| 10 Round to +inf |
| 11 Round to -inf |
| |
| FLT_ROUNDS, on the other hand, expects the following: |
| -1 Undefined |
| 0 Round to 0 |
| 1 Round to nearest |
| 2 Round to +inf |
| 3 Round to -inf |
| |
| To perform the conversion, we do: |
| ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) |
| */ |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| EVT VT = Op.getValueType(); |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDValue MFFSreg, InFlag; |
| |
| // Save FP Control Word to register |
| EVT NodeTys[] = { |
| MVT::f64, // return register |
| MVT::Glue // unused in this context |
| }; |
| SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); |
| |
| // Save FP register to stack slot |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); |
| SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, |
| StackSlot, MachinePointerInfo(), false, false,0); |
| |
| // Load FP Control Word from low 32 bits of stack slot. |
| SDValue Four = DAG.getConstant(4, PtrVT); |
| SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); |
| SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), |
| false, false, false, 0); |
| |
| // Transform as necessary |
| SDValue CWD1 = |
| DAG.getNode(ISD::AND, dl, MVT::i32, |
| CWD, DAG.getConstant(3, MVT::i32)); |
| SDValue CWD2 = |
| DAG.getNode(ISD::SRL, dl, MVT::i32, |
| DAG.getNode(ISD::AND, dl, MVT::i32, |
| DAG.getNode(ISD::XOR, dl, MVT::i32, |
| CWD, DAG.getConstant(3, MVT::i32)), |
| DAG.getConstant(3, MVT::i32)), |
| DAG.getConstant(1, MVT::i32)); |
| |
| SDValue RetVal = |
| DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); |
| |
| return DAG.getNode((VT.getSizeInBits() < 16 ? |
| ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); |
| } |
| |
| SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| unsigned BitWidth = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| assert(Op.getNumOperands() == 3 && |
| VT == Op.getOperand(1).getValueType() && |
| "Unexpected SHL!"); |
| |
| // Expand into a bunch of logical ops. Note that these ops |
| // depend on the PPC behavior for oversized shift amounts. |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Amt = Op.getOperand(2); |
| EVT AmtVT = Amt.getValueType(); |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, |
| DAG.getConstant(BitWidth, AmtVT), Amt); |
| SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); |
| SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); |
| SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); |
| SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, |
| DAG.getConstant(-BitWidth, AmtVT)); |
| SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); |
| SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); |
| SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); |
| SDValue OutOps[] = { OutLo, OutHi }; |
| return DAG.getMergeValues(OutOps, 2, dl); |
| } |
| |
| SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned BitWidth = VT.getSizeInBits(); |
| assert(Op.getNumOperands() == 3 && |
| VT == Op.getOperand(1).getValueType() && |
| "Unexpected SRL!"); |
| |
| // Expand into a bunch of logical ops. Note that these ops |
| // depend on the PPC behavior for oversized shift amounts. |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Amt = Op.getOperand(2); |
| EVT AmtVT = Amt.getValueType(); |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, |
| DAG.getConstant(BitWidth, AmtVT), Amt); |
| SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); |
| SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); |
| SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); |
| SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, |
| DAG.getConstant(-BitWidth, AmtVT)); |
| SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); |
| SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); |
| SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); |
| SDValue OutOps[] = { OutLo, OutHi }; |
| return DAG.getMergeValues(OutOps, 2, dl); |
| } |
| |
| SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| unsigned BitWidth = VT.getSizeInBits(); |
| assert(Op.getNumOperands() == 3 && |
| VT == Op.getOperand(1).getValueType() && |
| "Unexpected SRA!"); |
| |
| // Expand into a bunch of logical ops, followed by a select_cc. |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Amt = Op.getOperand(2); |
| EVT AmtVT = Amt.getValueType(); |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, |
| DAG.getConstant(BitWidth, AmtVT), Amt); |
| SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); |
| SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); |
| SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); |
| SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, |
| DAG.getConstant(-BitWidth, AmtVT)); |
| SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); |
| SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); |
| SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), |
| Tmp4, Tmp6, ISD::SETLE); |
| SDValue OutOps[] = { OutLo, OutHi }; |
| return DAG.getMergeValues(OutOps, 2, dl); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Vector related lowering. |
| // |
| |
| /// BuildSplatI - Build a canonical splati of Val with an element size of |
| /// SplatSize. Cast the result to VT. |
| static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, |
| SelectionDAG &DAG, DebugLoc dl) { |
| assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); |
| |
| static const EVT VTys[] = { // canonical VT to use for each size. |
| MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 |
| }; |
| |
| EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; |
| |
| // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. |
| if (Val == -1) |
| SplatSize = 1; |
| |
| EVT CanonicalVT = VTys[SplatSize-1]; |
| |
| // Build a canonical splat for this value. |
| SDValue Elt = DAG.getConstant(Val, MVT::i32); |
| SmallVector<SDValue, 8> Ops; |
| Ops.assign(CanonicalVT.getVectorNumElements(), Elt); |
| SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, |
| &Ops[0], Ops.size()); |
| return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); |
| } |
| |
| /// BuildIntrinsicOp - Return a binary operator intrinsic node with the |
| /// specified intrinsic ID. |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, |
| SelectionDAG &DAG, DebugLoc dl, |
| EVT DestVT = MVT::Other) { |
| if (DestVT == MVT::Other) DestVT = LHS.getValueType(); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, |
| DAG.getConstant(IID, MVT::i32), LHS, RHS); |
| } |
| |
| /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the |
| /// specified intrinsic ID. |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, |
| SDValue Op2, SelectionDAG &DAG, |
| DebugLoc dl, EVT DestVT = MVT::Other) { |
| if (DestVT == MVT::Other) DestVT = Op0.getValueType(); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, |
| DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); |
| } |
| |
| |
| /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified |
| /// amount. The result has the specified value type. |
| static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, |
| EVT VT, SelectionDAG &DAG, DebugLoc dl) { |
| // Force LHS/RHS to be the right type. |
| LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); |
| RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); |
| |
| int Ops[16]; |
| for (unsigned i = 0; i != 16; ++i) |
| Ops[i] = i + Amt; |
| SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); |
| return DAG.getNode(ISD::BITCAST, dl, VT, T); |
| } |
| |
| // If this is a case we can't handle, return null and let the default |
| // expansion code take care of it. If we CAN select this case, and if it |
| // selects to a single instruction, return Op. Otherwise, if we can codegen |
| // this case more efficiently than a constant pool load, lower it to the |
| // sequence of ops that should be used. |
| SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); |
| assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); |
| |
| // Check if this is a splat of a constant value. |
| APInt APSplatBits, APSplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, |
| HasAnyUndefs, 0, true) || SplatBitSize > 32) |
| return SDValue(); |
| |
| unsigned SplatBits = APSplatBits.getZExtValue(); |
| unsigned SplatUndef = APSplatUndef.getZExtValue(); |
| unsigned SplatSize = SplatBitSize / 8; |
| |
| // First, handle single instruction cases. |
| |
| // All zeros? |
| if (SplatBits == 0) { |
| // Canonicalize all zero vectors to be v4i32. |
| if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { |
| SDValue Z = DAG.getConstant(0, MVT::i32); |
| Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); |
| Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); |
| } |
| return Op; |
| } |
| |
| // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. |
| int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> |
| (32-SplatBitSize)); |
| if (SextVal >= -16 && SextVal <= 15) |
| return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); |
| |
| |
| // Two instruction sequences. |
| |
| // If this value is in the range [-32,30] and is even, use: |
| // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) |
| // If this value is in the range [17,31] and is odd, use: |
| // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) |
| // If this value is in the range [-31,-17] and is odd, use: |
| // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) |
| // Note the last two are three-instruction sequences. |
| if (SextVal >= -32 && SextVal <= 31) { |
| // To avoid having these optimizations undone by constant folding, |
| // we convert to a pseudo that will be expanded later into one of |
| // the above forms. |
| SDValue Elt = DAG.getConstant(SextVal, MVT::i32); |
| EVT VT = Op.getValueType(); |
| int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4); |
| SDValue EltSize = DAG.getConstant(Size, MVT::i32); |
| return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); |
| } |
| |
| // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is |
| // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important |
| // for fneg/fabs. |
| if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { |
| // Make -1 and vspltisw -1: |
| SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); |
| |
| // Make the VSLW intrinsic, computing 0x8000_0000. |
| SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, |
| OnesV, DAG, dl); |
| |
| // xor by OnesV to invert it. |
| Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // Check to see if this is a wide variety of vsplti*, binop self cases. |
| static const signed char SplatCsts[] = { |
| -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, |
| -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 |
| }; |
| |
| for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { |
| // Indirect through the SplatCsts array so that we favor 'vsplti -1' for |
| // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' |
| int i = SplatCsts[idx]; |
| |
| // Figure out what shift amount will be used by altivec if shifted by i in |
| // this splat size. |
| unsigned TypeShiftAmt = i & (SplatBitSize-1); |
| |
| // vsplti + shl self. |
| if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { |
| SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, |
| Intrinsic::ppc_altivec_vslw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // vsplti + srl self. |
| if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { |
| SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, |
| Intrinsic::ppc_altivec_vsrw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // vsplti + sra self. |
| if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { |
| SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, |
| Intrinsic::ppc_altivec_vsraw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // vsplti + rol self. |
| if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | |
| ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { |
| SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, |
| Intrinsic::ppc_altivec_vrlw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // t = vsplti c, result = vsldoi t, t, 1 |
| if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { |
| SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); |
| return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); |
| } |
| // t = vsplti c, result = vsldoi t, t, 2 |
| if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { |
| SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); |
| return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); |
| } |
| // t = vsplti c, result = vsldoi t, t, 3 |
| if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { |
| SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); |
| return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit |
| /// the specified operations to build the shuffle. |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, |
| SDValue RHS, SelectionDAG &DAG, |
| DebugLoc dl) { |
| unsigned OpNum = (PFEntry >> 26) & 0x0F; |
| unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); |
| unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); |
| |
| enum { |
| OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| OP_VMRGHW, |
| OP_VMRGLW, |
| OP_VSPLTISW0, |
| OP_VSPLTISW1, |
| OP_VSPLTISW2, |
| OP_VSPLTISW3, |
| OP_VSLDOI4, |
| OP_VSLDOI8, |
| OP_VSLDOI12 |
| }; |
| |
| if (OpNum == OP_COPY) { |
| if (LHSID == (1*9+2)*9+3) return LHS; |
| assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); |
| return RHS; |
| } |
| |
| SDValue OpLHS, OpRHS; |
| OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); |
| OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); |
| |
| int ShufIdxs[16]; |
| switch (OpNum) { |
| default: llvm_unreachable("Unknown i32 permute!"); |
| case OP_VMRGHW: |
| ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; |
| ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; |
| ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; |
| ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; |
| break; |
| case OP_VMRGLW: |
| ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; |
| ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; |
| ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; |
| ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; |
| break; |
| case OP_VSPLTISW0: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+0; |
| break; |
| case OP_VSPLTISW1: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+4; |
| break; |
| case OP_VSPLTISW2: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+8; |
| break; |
| case OP_VSPLTISW3: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+12; |
| break; |
| case OP_VSLDOI4: |
| return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); |
| case OP_VSLDOI8: |
| return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); |
| case OP_VSLDOI12: |
| return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); |
| } |
| EVT VT = OpLHS.getValueType(); |
| OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); |
| OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); |
| SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); |
| return DAG.getNode(ISD::BITCAST, dl, VT, T); |
| } |
| |
| /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this |
| /// is a shuffle we can handle in a single instruction, return it. Otherwise, |
| /// return the code it can be lowered into. Worst case, it can always be |
| /// lowered into a vperm. |
| SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| EVT VT = Op.getValueType(); |
| |
| // Cases that are handled by instructions that take permute immediates |
| // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be |
| // selected by the instruction selector. |
| if (V2.getOpcode() == ISD::UNDEF) { |
| if (PPC::isSplatShuffleMask(SVOp, 1) || |
| PPC::isSplatShuffleMask(SVOp, 2) || |
| PPC::isSplatShuffleMask(SVOp, 4) || |
| PPC::isVPKUWUMShuffleMask(SVOp, true) || |
| PPC::isVPKUHUMShuffleMask(SVOp, true) || |
| PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || |
| PPC::isVMRGLShuffleMask(SVOp, 1, true) || |
| PPC::isVMRGLShuffleMask(SVOp, 2, true) || |
| PPC::isVMRGLShuffleMask(SVOp, 4, true) || |
| PPC::isVMRGHShuffleMask(SVOp, 1, true) || |
| PPC::isVMRGHShuffleMask(SVOp, 2, true) || |
| PPC::isVMRGHShuffleMask(SVOp, 4, true)) { |
| return Op; |
| } |
| } |
| |
| // Altivec has a variety of "shuffle immediates" that take two vector inputs |
| // and produce a fixed permutation. If any of these match, do not lower to |
| // VPERM. |
| if (PPC::isVPKUWUMShuffleMask(SVOp, false) || |
| PPC::isVPKUHUMShuffleMask(SVOp, false) || |
| PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || |
| PPC::isVMRGLShuffleMask(SVOp, 1, false) || |
| PPC::isVMRGLShuffleMask(SVOp, 2, false) || |
| PPC::isVMRGLShuffleMask(SVOp, 4, false) || |
| PPC::isVMRGHShuffleMask(SVOp, 1, false) || |
| PPC::isVMRGHShuffleMask(SVOp, 2, false) || |
| PPC::isVMRGHShuffleMask(SVOp, 4, false)) |
| return Op; |
| |
| // Check to see if this is a shuffle of 4-byte values. If so, we can use our |
| // perfect shuffle table to emit an optimal matching sequence. |
| ArrayRef<int> PermMask = SVOp->getMask(); |
| |
| unsigned PFIndexes[4]; |
| bool isFourElementShuffle = true; |
| for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number |
| unsigned EltNo = 8; // Start out undef. |
| for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. |
| if (PermMask[i*4+j] < 0) |
| continue; // Undef, ignore it. |
| |
| unsigned ByteSource = PermMask[i*4+j]; |
| if ((ByteSource & 3) != j) { |
| isFourElementShuffle = false; |
| break; |
| } |
| |
| if (EltNo == 8) { |
| EltNo = ByteSource/4; |
| } else if (EltNo != ByteSource/4) { |
| isFourElementShuffle = false; |
| break; |
| } |
| } |
| PFIndexes[i] = EltNo; |
| } |
| |
| // If this shuffle can be expressed as a shuffle of 4-byte elements, use the |
| // perfect shuffle vector to determine if it is cost effective to do this as |
| // discrete instructions, or whether we should use a vperm. |
| if (isFourElementShuffle) { |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = |
| PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; |
| |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| // Determining when to avoid vperm is tricky. Many things affect the cost |
| // of vperm, particularly how many times the perm mask needs to be computed. |
| // For example, if the perm mask can be hoisted out of a loop or is already |
| // used (perhaps because there are multiple permutes with the same shuffle |
| // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of |
| // the loop requires an extra register. |
| // |
| // As a compromise, we only emit discrete instructions if the shuffle can be |
| // generated in 3 or fewer operations. When we have loop information |
| // available, if this block is within a loop, we should avoid using vperm |
| // for 3-operation perms and use a constant pool load instead. |
| if (Cost < 3) |
| return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); |
| } |
| |
| // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant |
| // vector that will get spilled to the constant pool. |
| if (V2.getOpcode() == ISD::UNDEF) V2 = V1; |
| |
| // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except |
| // that it is in input element units, not in bytes. Convert now. |
| EVT EltVT = V1.getValueType().getVectorElementType(); |
| unsigned BytesPerElement = EltVT.getSizeInBits()/8; |
| |
| SmallVector<SDValue, 16> ResultMask; |
| for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { |
| unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; |
| |
| for (unsigned j = 0; j != BytesPerElement; ++j) |
| ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, |
| MVT::i32)); |
| } |
| |
| SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, |
| &ResultMask[0], ResultMask.size()); |
| return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); |
| } |
| |
| /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an |
| /// altivec comparison. If it is, return true and fill in Opc/isDot with |
| /// information about the intrinsic. |
| static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, |
| bool &isDot) { |
| unsigned IntrinsicID = |
| cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); |
| CompareOpc = -1; |
| isDot = false; |
| switch (IntrinsicID) { |
| default: return false; |
| // Comparison predicates. |
| case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; |
| case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; |
| |
| // Normal Comparisons. |
| case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; |
| case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; |
| } |
| return true; |
| } |
| |
| /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom |
| /// lower, do it, otherwise return null. |
| SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| // If this is a lowered altivec predicate compare, CompareOpc is set to the |
| // opcode number of the comparison. |
| DebugLoc dl = Op.getDebugLoc(); |
| int CompareOpc; |
| bool isDot; |
| if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) |
| return SDValue(); // Don't custom lower most intrinsics. |
| |
| // If this is a non-dot comparison, make the VCMP node and we are done. |
| if (!isDot) { |
| SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), |
| Op.getOperand(1), Op.getOperand(2), |
| DAG.getConstant(CompareOpc, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); |
| } |
| |
| // Create the PPCISD altivec 'dot' comparison node. |
| SDValue Ops[] = { |
| Op.getOperand(2), // LHS |
| Op.getOperand(3), // RHS |
| DAG.getConstant(CompareOpc, MVT::i32) |
| }; |
| EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; |
| SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); |
| |
| // Now that we have the comparison, emit a copy from the CR to a GPR. |
| // This is flagged to the above dot comparison. |
| SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, |
| DAG.getRegister(PPC::CR6, MVT::i32), |
| CompNode.getValue(1)); |
| |
| // Unpack the result based on how the target uses it. |
| unsigned BitNo; // Bit # of CR6. |
| bool InvertBit; // Invert result? |
| switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { |
| default: // Can't happen, don't crash on invalid number though. |
| case 0: // Return the value of the EQ bit of CR6. |
| BitNo = 0; InvertBit = false; |
| break; |
| case 1: // Return the inverted value of the EQ bit of CR6. |
| BitNo = 0; InvertBit = true; |
| break; |
| case 2: // Return the value of the LT bit of CR6. |
| BitNo = 2; InvertBit = false; |
| break; |
| case 3: // Return the inverted value of the LT bit of CR6. |
| BitNo = 2; InvertBit = true; |
| break; |
| } |
| |
| // Shift the bit into the low position. |
| Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, |
| DAG.getConstant(8-(3-BitNo), MVT::i32)); |
| // Isolate the bit. |
| Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, |
| DAG.getConstant(1, MVT::i32)); |
| |
| // If we are supposed to, toggle the bit. |
| if (InvertBit) |
| Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, |
| DAG.getConstant(1, MVT::i32)); |
| return Flags; |
| } |
| |
| SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| // Create a stack slot that is 16-byte aligned. |
| MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); |
| int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); |
| EVT PtrVT = getPointerTy(); |
| SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); |
| |
| // Store the input value into Value#0 of the stack slot. |
| SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, |
| Op.getOperand(0), FIdx, MachinePointerInfo(), |
| false, false, 0); |
| // Load it out. |
| return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), |
| false, false, false, 0); |
| } |
| |
| SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| if (Op.getValueType() == MVT::v4i32) { |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| |
| SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); |
| SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. |
| |
| SDValue RHSSwap = // = vrlw RHS, 16 |
| BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); |
| |
| // Shrinkify inputs to v8i16. |
| LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); |
| RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); |
| RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); |
| |
| // Low parts multiplied together, generating 32-bit results (we ignore the |
| // top parts). |
| SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, |
| LHS, RHS, DAG, dl, MVT::v4i32); |
| |
| SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, |
| LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); |
| // Shift the high parts up 16 bits. |
| HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, |
| Neg16, DAG, dl); |
| return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); |
| } else if (Op.getValueType() == MVT::v8i16) { |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| |
| SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); |
| |
| return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, |
| LHS, RHS, Zero, DAG, dl); |
| } else if (Op.getValueType() == MVT::v16i8) { |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| |
| // Multiply the even 8-bit parts, producing 16-bit sums. |
| SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, |
| LHS, RHS, DAG, dl, MVT::v8i16); |
| EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); |
| |
| // Multiply the odd 8-bit parts, producing 16-bit sums. |
| SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, |
| LHS, RHS, DAG, dl, MVT::v8i16); |
| OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); |
| |
| // Merge the results together. |
| int Ops[16]; |
| for (unsigned i = 0; i != 8; ++i) { |
| Ops[i*2 ] = 2*i+1; |
| Ops[i*2+1] = 2*i+1+16; |
| } |
| return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); |
| } else { |
| llvm_unreachable("Unknown mul to lower!"); |
| } |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Wasn't expecting to be able to lower this!"); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); |
| case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); |
| case ISD::VASTART: |
| return LowerVASTART(Op, DAG, PPCSubTarget); |
| |
| case ISD::VAARG: |
| return LowerVAARG(Op, DAG, PPCSubTarget); |
| |
| case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); |
| case ISD::DYNAMIC_STACKALLOC: |
| return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); |
| |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::FP_TO_UINT: |
| case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, |
| Op.getDebugLoc()); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); |
| |
| // Lower 64-bit shifts. |
| case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); |
| case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); |
| case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); |
| |
| // Vector-related lowering. |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::MUL: return LowerMUL(Op, DAG); |
| |
| // Frame & Return address. |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| } |
| } |
| |
| void PPCTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const { |
| const TargetMachine &TM = getTargetMachine(); |
| DebugLoc dl = N->getDebugLoc(); |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Do not know how to custom type legalize this operation!"); |
| case ISD::VAARG: { |
| if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() |
| || TM.getSubtarget<PPCSubtarget>().isPPC64()) |
| return; |
| |
| EVT VT = N->getValueType(0); |
| |
| if (VT == MVT::i64) { |
| SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); |
| |
| Results.push_back(NewNode); |
| Results.push_back(NewNode.getValue(1)); |
| } |
| return; |
| } |
| case ISD::FP_ROUND_INREG: { |
| assert(N->getValueType(0) == MVT::ppcf128); |
| assert(N->getOperand(0).getValueType() == MVT::ppcf128); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, |
| MVT::f64, N->getOperand(0), |
| DAG.getIntPtrConstant(0)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, |
| MVT::f64, N->getOperand(0), |
| DAG.getIntPtrConstant(1)); |
| |
| // This sequence changes FPSCR to do round-to-zero, adds the two halves |
| // of the long double, and puts FPSCR back the way it was. We do not |
| // actually model FPSCR. |
| std::vector<EVT> NodeTys; |
| SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; |
| |
| NodeTys.push_back(MVT::f64); // Return register |
| NodeTys.push_back(MVT::Glue); // Returns a flag for later insns |
| Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); |
| MFFSreg = Result.getValue(0); |
| InFlag = Result.getValue(1); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Glue); // Returns a flag |
| Ops[0] = DAG.getConstant(31, MVT::i32); |
| Ops[1] = InFlag; |
| Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); |
| InFlag = Result.getValue(0); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Glue); // Returns a flag |
| Ops[0] = DAG.getConstant(30, MVT::i32); |
| Ops[1] = InFlag; |
| Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); |
| InFlag = Result.getValue(0); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::f64); // result of add |
| NodeTys.push_back(MVT::Glue); // Returns a flag |
| Ops[0] = Lo; |
| Ops[1] = Hi; |
| Ops[2] = InFlag; |
| Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); |
| FPreg = Result.getValue(0); |
| InFlag = Result.getValue(1); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::f64); |
| Ops[0] = DAG.getConstant(1, MVT::i32); |
| Ops[1] = MFFSreg; |
| Ops[2] = FPreg; |
| Ops[3] = InFlag; |
| Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); |
| FPreg = Result.getValue(0); |
| |
| // We know the low half is about to be thrown away, so just use something |
| // convenient. |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, |
| FPreg, FPreg)); |
| return; |
| } |
| case ISD::FP_TO_SINT: |
| Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); |
| return; |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Other Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock * |
| PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, |
| bool is64bit, unsigned BinOpcode) const { |
| // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *F = BB->getParent(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptrA = MI->getOperand(1).getReg(); |
| unsigned ptrB = MI->getOperand(2).getReg(); |
| unsigned incr = MI->getOperand(3).getReg(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, loopMBB); |
| F->insert(It, exitMBB); |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| unsigned TmpReg = (!BinOpcode) ? incr : |
| RegInfo.createVirtualRegister( |
| is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : |
| (const TargetRegisterClass *) &PPC::GPRCRegClass); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // loopMBB: |
| // l[wd]arx dest, ptr |
| // add r0, dest, incr |
| // st[wd]cx. r0, ptr |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| BB = loopMBB; |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) |
| .addReg(ptrA).addReg(ptrB); |
| if (BinOpcode) |
| BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) |
| .addReg(TmpReg).addReg(ptrA).addReg(ptrB); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| bool is8bit, // operation |
| unsigned BinOpcode) const { |
| // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| // In 64 bit mode we have to use 64 bits for addresses, even though the |
| // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address |
| // registers without caring whether they're 32 or 64, but here we're |
| // doing actual arithmetic on the addresses. |
| bool is64bit = PPCSubTarget.isPPC64(); |
| unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *F = BB->getParent(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptrA = MI->getOperand(1).getReg(); |
| unsigned ptrB = MI->getOperand(2).getReg(); |
| unsigned incr = MI->getOperand(3).getReg(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, loopMBB); |
| F->insert(It, exitMBB); |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| const TargetRegisterClass *RC = |
| is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : |
| (const TargetRegisterClass *) &PPC::GPRCRegClass; |
| unsigned PtrReg = RegInfo.createVirtualRegister(RC); |
| unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); |
| unsigned ShiftReg = RegInfo.createVirtualRegister(RC); |
| unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); |
| unsigned MaskReg = RegInfo.createVirtualRegister(RC); |
| unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); |
| unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); |
| unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); |
| unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); |
| unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); |
| unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); |
| unsigned Ptr1Reg; |
| unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // The 4-byte load must be aligned, while a char or short may be |
| // anywhere in the word. Hence all this nasty bookkeeping code. |
| // add ptr1, ptrA, ptrB [copy if ptrA==0] |
| // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] |
| // xori shift, shift1, 24 [16] |
| // rlwinm ptr, ptr1, 0, 0, 29 |
| // slw incr2, incr, shift |
| // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] |
| // slw mask, mask2, shift |
| // loopMBB: |
| // lwarx tmpDest, ptr |
| // add tmp, tmpDest, incr2 |
| // andc tmp2, tmpDest, mask |
| // and tmp3, tmp, mask |
| // or tmp4, tmp3, tmp2 |
| // stwcx. tmp4, ptr |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| // srw dest, tmpDest, shift |
| if (ptrA != ZeroReg) { |
| Ptr1Reg = RegInfo.createVirtualRegister(RC); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) |
| .addReg(ptrA).addReg(ptrB); |
| } else { |
| Ptr1Reg = ptrB; |
| } |
| BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) |
| .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) |
| .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); |
| if (is64bit) |
| BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) |
| .addReg(Ptr1Reg).addImm(0).addImm(61); |
| else |
| BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) |
| .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); |
| BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) |
| .addReg(incr).addReg(ShiftReg); |
| if (is8bit) |
| BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); |
| else { |
| BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); |
| BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); |
| } |
| BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) |
| .addReg(Mask2Reg).addReg(ShiftReg); |
| |
| BB = loopMBB; |
| BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) |
| .addReg(ZeroReg).addReg(PtrReg); |
| if (BinOpcode) |
| BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) |
| .addReg(Incr2Reg).addReg(TmpDestReg); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) |
| .addReg(TmpDestReg).addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) |
| .addReg(TmpReg).addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) |
| .addReg(Tmp3Reg).addReg(Tmp2Reg); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) |
| .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) |
| .addReg(ShiftReg); |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| // To "insert" these instructions we actually have to insert their |
| // control-flow patterns. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| MachineFunction *F = BB->getParent(); |
| |
| if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || |
| MI->getOpcode() == PPC::SELECT_CC_I8)) { |
| unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ? |
| PPC::ISEL8 : PPC::ISEL; |
| unsigned SelectPred = MI->getOperand(4).getImm(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| // The SelectPred is ((BI << 5) | BO) for a BCC |
| unsigned BO = SelectPred & 0xF; |
| assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel"); |
| |
| unsigned TrueOpNo, FalseOpNo; |
| if (BO == 12) { |
| TrueOpNo = 2; |
| FalseOpNo = 3; |
| } else { |
| TrueOpNo = 3; |
| FalseOpNo = 2; |
| SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred); |
| } |
| |
| BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(TrueOpNo).getReg()) |
| .addReg(MI->getOperand(FalseOpNo).getReg()) |
| .addImm(SelectPred).addReg(MI->getOperand(1).getReg()); |
| } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || |
| MI->getOpcode() == PPC::SELECT_CC_I8 || |
| MI->getOpcode() == PPC::SELECT_CC_F4 || |
| MI->getOpcode() == PPC::SELECT_CC_F8 || |
| MI->getOpcode() == PPC::SELECT_CC_VRRC) { |
| |
| |
| // The incoming instruction knows the destination vreg to set, the |
| // condition code register to branch on, the true/false values to |
| // select between, and a branch opcode to use. |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| unsigned SelectPred = MI->getOperand(4).getImm(); |
| DebugLoc dl = MI->getDebugLoc(); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Next, add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(*BB, BB->begin(), dl, |
| TII->get(PPC::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| } |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) |
| BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) |
| BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); |
| |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) |
| BB = EmitAtomicBinary(MI, BB, false, PPC::AND); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) |
| BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); |
| |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) |
| BB = EmitAtomicBinary(MI, BB, false, PPC::OR); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) |
| BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); |
| |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) |
| BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) |
| BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); |
| |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) |
| BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) |
| BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); |
| |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) |
| BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); |
| else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) |
| BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); |
| |
| else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, 0); |
| else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, 0); |
| else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) |
| BB = EmitAtomicBinary(MI, BB, false, 0); |
| else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) |
| BB = EmitAtomicBinary(MI, BB, true, 0); |
| |
| else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || |
| MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { |
| bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptrA = MI->getOperand(1).getReg(); |
| unsigned ptrB = MI->getOperand(2).getReg(); |
| unsigned oldval = MI->getOperand(3).getReg(); |
| unsigned newval = MI->getOperand(4).getReg(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, loop1MBB); |
| F->insert(It, loop2MBB); |
| F->insert(It, midMBB); |
| F->insert(It, exitMBB); |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loop1MBB); |
| |
| // loop1MBB: |
| // l[wd]arx dest, ptr |
| // cmp[wd] dest, oldval |
| // bne- midMBB |
| // loop2MBB: |
| // st[wd]cx. newval, ptr |
| // bne- loopMBB |
| // b exitBB |
| // midMBB: |
| // st[wd]cx. dest, ptr |
| // exitBB: |
| BB = loop1MBB; |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) |
| .addReg(ptrA).addReg(ptrB); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) |
| .addReg(oldval).addReg(dest); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(midMBB); |
| |
| BB = loop2MBB; |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) |
| .addReg(newval).addReg(ptrA).addReg(ptrB); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); |
| BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); |
| BB->addSuccessor(loop1MBB); |
| BB->addSuccessor(exitMBB); |
| |
| BB = midMBB; |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) |
| .addReg(dest).addReg(ptrA).addReg(ptrB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || |
| MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { |
| // We must use 64-bit registers for addresses when targeting 64-bit, |
| // since we're actually doing arithmetic on them. Other registers |
| // can be 32-bit. |
| bool is64bit = PPCSubTarget.isPPC64(); |
| bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptrA = MI->getOperand(1).getReg(); |
| unsigned ptrB = MI->getOperand(2).getReg(); |
| unsigned oldval = MI->getOperand(3).getReg(); |
| unsigned newval = MI->getOperand(4).getReg(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, loop1MBB); |
| F->insert(It, loop2MBB); |
| F->insert(It, midMBB); |
| F->insert(It, exitMBB); |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| const TargetRegisterClass *RC = |
| is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : |
| (const TargetRegisterClass *) &PPC::GPRCRegClass; |
| unsigned PtrReg = RegInfo.createVirtualRegister(RC); |
| unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); |
| unsigned ShiftReg = RegInfo.createVirtualRegister(RC); |
| unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); |
| unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); |
| unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); |
| unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); |
| unsigned MaskReg = RegInfo.createVirtualRegister(RC); |
| unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); |
| unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); |
| unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); |
| unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); |
| unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); |
| unsigned Ptr1Reg; |
| unsigned TmpReg = RegInfo.createVirtualRegister(RC); |
| unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loop1MBB); |
| |
| // The 4-byte load must be aligned, while a char or short may be |
| // anywhere in the word. Hence all this nasty bookkeeping code. |
| // add ptr1, ptrA, ptrB [copy if ptrA==0] |
| // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] |
| // xori shift, shift1, 24 [16] |
| // rlwinm ptr, ptr1, 0, 0, 29 |
| // slw newval2, newval, shift |
| // slw oldval2, oldval,shift |
| // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] |
| // slw mask, mask2, shift |
| // and newval3, newval2, mask |
| // and oldval3, oldval2, mask |
| // loop1MBB: |
| // lwarx tmpDest, ptr |
| // and tmp, tmpDest, mask |
| // cmpw tmp, oldval3 |
| // bne- midMBB |
| // loop2MBB: |
| // andc tmp2, tmpDest, mask |
| // or tmp4, tmp2, newval3 |
| // stwcx. tmp4, ptr |
| // bne- loop1MBB |
| // b exitBB |
| // midMBB: |
| // stwcx. tmpDest, ptr |
| // exitBB: |
| // srw dest, tmpDest, shift |
| if (ptrA != ZeroReg) { |
| Ptr1Reg = RegInfo.createVirtualRegister(RC); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) |
| .addReg(ptrA).addReg(ptrB); |
| } else { |
| Ptr1Reg = ptrB; |
| } |
| BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) |
| .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) |
| .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); |
| if (is64bit) |
| BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) |
| .addReg(Ptr1Reg).addImm(0).addImm(61); |
| else |
| BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) |
| .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); |
| BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) |
| .addReg(newval).addReg(ShiftReg); |
| BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) |
| .addReg(oldval).addReg(ShiftReg); |
| if (is8bit) |
| BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); |
| else { |
| BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); |
| BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) |
| .addReg(Mask3Reg).addImm(65535); |
| } |
| BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) |
| .addReg(Mask2Reg).addReg(ShiftReg); |
| BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) |
| .addReg(NewVal2Reg).addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) |
| .addReg(OldVal2Reg).addReg(MaskReg); |
| |
| BB = loop1MBB; |
| BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) |
| .addReg(ZeroReg).addReg(PtrReg); |
| BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) |
| .addReg(TmpDestReg).addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) |
| .addReg(TmpReg).addReg(OldVal3Reg); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(midMBB); |
| |
| BB = loop2MBB; |
| BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) |
| .addReg(TmpDestReg).addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) |
| .addReg(Tmp2Reg).addReg(NewVal3Reg); |
| BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) |
| .addReg(ZeroReg).addReg(PtrReg); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); |
| BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); |
| BB->addSuccessor(loop1MBB); |
| BB->addSuccessor(exitMBB); |
| |
| BB = midMBB; |
| BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) |
| .addReg(ZeroReg).addReg(PtrReg); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) |
| .addReg(ShiftReg); |
| } else { |
| llvm_unreachable("Unexpected instr type to insert"); |
| } |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Target Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| const TargetMachine &TM = getTargetMachine(); |
| SelectionDAG &DAG = DCI.DAG; |
| DebugLoc dl = N->getDebugLoc(); |
| switch (N->getOpcode()) { |
| default: break; |
| case PPCISD::SHL: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| if (C->isNullValue()) // 0 << V -> 0. |
| return N->getOperand(0); |
| } |
| break; |
| case PPCISD::SRL: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| if (C->isNullValue()) // 0 >>u V -> 0. |
| return N->getOperand(0); |
| } |
| break; |
| case PPCISD::SRA: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| if (C->isNullValue() || // 0 >>s V -> 0. |
| C->isAllOnesValue()) // -1 >>s V -> -1. |
| return N->getOperand(0); |
| } |
| break; |
| |
| case ISD::SINT_TO_FP: |
| if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { |
| if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { |
| // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. |
| // We allow the src/dst to be either f32/f64, but the intermediate |
| // type must be i64. |
| if (N->getOperand(0).getValueType() == MVT::i64 && |
| N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { |
| SDValue Val = N->getOperand(0).getOperand(0); |
| if (Val.getValueType() == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); |
| DCI.AddToWorklist(Val.getNode()); |
| } |
| |
| Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); |
| DCI.AddToWorklist(Val.getNode()); |
| Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); |
| DCI.AddToWorklist(Val.getNode()); |
| if (N->getValueType(0) == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, |
| DAG.getIntPtrConstant(0)); |
| DCI.AddToWorklist(Val.getNode()); |
| } |
| return Val; |
| } else if (N->getOperand(0).getValueType() == MVT::i32) { |
| // If the intermediate type is i32, we can avoid the load/store here |
| // too. |
| } |
| } |
| } |
| break; |
| case ISD::STORE: |
| // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). |
| if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && |
| !cast<StoreSDNode>(N)->isTruncatingStore() && |
| N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && |
| N->getOperand(1).getValueType() == MVT::i32 && |
| N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { |
| SDValue Val = N->getOperand(1).getOperand(0); |
| if (Val.getValueType() == MVT::f32) { |
| Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); |
| DCI.AddToWorklist(Val.getNode()); |
| } |
| Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); |
| DCI.AddToWorklist(Val.getNode()); |
| |
| Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, |
| N->getOperand(2), N->getOperand(3)); |
| DCI.AddToWorklist(Val.getNode()); |
| return Val; |
| } |
| |
| // Turn STORE (BSWAP) -> sthbrx/stwbrx. |
| if (cast<StoreSDNode>(N)->isUnindexed() && |
| N->getOperand(1).getOpcode() == ISD::BSWAP && |
| N->getOperand(1).getNode()->hasOneUse() && |
| (N->getOperand(1).getValueType() == MVT::i32 || |
| N->getOperand(1).getValueType() == MVT::i16)) { |
| SDValue BSwapOp = N->getOperand(1).getOperand(0); |
| // Do an any-extend to 32-bits if this is a half-word input. |
| if (BSwapOp.getValueType() == MVT::i16) |
| BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); |
| |
| SDValue Ops[] = { |
| N->getOperand(0), BSwapOp, N->getOperand(2), |
| DAG.getValueType(N->getOperand(1).getValueType()) |
| }; |
| return |
| DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), |
| Ops, array_lengthof(Ops), |
| cast<StoreSDNode>(N)->getMemoryVT(), |
| cast<StoreSDNode>(N)->getMemOperand()); |
| } |
| break; |
| case ISD::BSWAP: |
| // Turn BSWAP (LOAD) -> lhbrx/lwbrx. |
| if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && |
| N->getOperand(0).hasOneUse() && |
| (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { |
| SDValue Load = N->getOperand(0); |
| LoadSDNode *LD = cast<LoadSDNode>(Load); |
| // Create the byte-swapping load. |
| SDValue Ops[] = { |
| LD->getChain(), // Chain |
| LD->getBasePtr(), // Ptr |
| DAG.getValueType(N->getValueType(0)) // VT |
| }; |
| SDValue BSLoad = |
| DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, |
| DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, |
| LD->getMemoryVT(), LD->getMemOperand()); |
| |
| // If this is an i16 load, insert the truncate. |
| SDValue ResVal = BSLoad; |
| if (N->getValueType(0) == MVT::i16) |
| ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); |
| |
| // First, combine the bswap away. This makes the value produced by the |
| // load dead. |
| DCI.CombineTo(N, ResVal); |
| |
| // Next, combine the load away, we give it a bogus result value but a real |
| // chain result. The result value is dead because the bswap is dead. |
| DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); |
| |
| // Return N so it doesn't get rechecked! |
| return SDValue(N, 0); |
| } |
| |
| break; |
| case PPCISD::VCMP: { |
| // If a VCMPo node already exists with exactly the same operands as this |
| // node, use its result instead of this node (VCMPo computes both a CR6 and |
| // a normal output). |
| // |
| if (!N->getOperand(0).hasOneUse() && |
| !N->getOperand(1).hasOneUse() && |
| !N->getOperand(2).hasOneUse()) { |
| |
| // Scan all of the users of the LHS, looking for VCMPo's that match. |
| SDNode *VCMPoNode = 0; |
| |
| SDNode *LHSN = N->getOperand(0).getNode(); |
| for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); |
| UI != E; ++UI) |
| if (UI->getOpcode() == PPCISD::VCMPo && |
| UI->getOperand(1) == N->getOperand(1) && |
| UI->getOperand(2) == N->getOperand(2) && |
| UI->getOperand(0) == N->getOperand(0)) { |
| VCMPoNode = *UI; |
| break; |
| } |
| |
| // If there is no VCMPo node, or if the flag value has a single use, don't |
| // transform this. |
| if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) |
| break; |
| |
| // Look at the (necessarily single) use of the flag value. If it has a |
| // chain, this transformation is more complex. Note that multiple things |
| // could use the value result, which we should ignore. |
| SDNode *FlagUser = 0; |
| for (SDNode::use_iterator UI = VCMPoNode->use_begin(); |
| FlagUser == 0; ++UI) { |
| assert(UI != VCMPoNode->use_end() && "Didn't find user!"); |
| SDNode *User = *UI; |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { |
| if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { |
| FlagUser = User; |
| break; |
| } |
| } |
| } |
| |
| // If the user is a MFCR instruction, we know this is safe. Otherwise we |
| // give up for right now. |
| if (FlagUser->getOpcode() == PPCISD::MFCR) |
| return SDValue(VCMPoNode, 0); |
| } |
| break; |
| } |
| case ISD::BR_CC: { |
| // If this is a branch on an altivec predicate comparison, lower this so |
| // that we don't have to do a MFCR: instead, branch directly on CR6. This |
| // lowering is done pre-legalize, because the legalizer lowers the predicate |
| // compare down to code that is difficult to reassemble. |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); |
| int CompareOpc; |
| bool isDot; |
| |
| if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && |
| isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && |
| getAltivecCompareInfo(LHS, CompareOpc, isDot)) { |
| assert(isDot && "Can't compare against a vector result!"); |
| |
| // If this is a comparison against something other than 0/1, then we know |
| // that the condition is never/always true. |
| unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); |
| if (Val != 0 && Val != 1) { |
| if (CC == ISD::SETEQ) // Cond never true, remove branch. |
| return N->getOperand(0); |
| // Always !=, turn it into an unconditional branch. |
| return DAG.getNode(ISD::BR, dl, MVT::Other, |
| N->getOperand(0), N->getOperand(4)); |
| } |
| |
| bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); |
| |
| // Create the PPCISD altivec 'dot' comparison node. |
| SDValue Ops[] = { |
| LHS.getOperand(2), // LHS of compare |
| LHS.getOperand(3), // RHS of compare |
| DAG.getConstant(CompareOpc, MVT::i32) |
| }; |
| EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; |
| SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); |
| |
| // Unpack the result based on how the target uses it. |
| PPC::Predicate CompOpc; |
| switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { |
| default: // Can't happen, don't crash on invalid number though. |
| case 0: // Branch on the value of the EQ bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; |
| break; |
| case 1: // Branch on the inverted value of the EQ bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; |
| break; |
| case 2: // Branch on the value of the LT bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; |
| break; |
| case 3: // Branch on the inverted value of the LT bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; |
| break; |
| } |
| |
| return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), |
| DAG.getConstant(CompOpc, MVT::i32), |
| DAG.getRegister(PPC::CR6, MVT::i32), |
| N->getOperand(4), CompNode.getValue(1)); |
| } |
| break; |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); |
| switch (Op.getOpcode()) { |
| default: break; |
| case PPCISD::LBRX: { |
| // lhbrx is known to have the top bits cleared out. |
| if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) |
| KnownZero = 0xFFFF0000; |
| break; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { |
| default: break; |
| case Intrinsic::ppc_altivec_vcmpbfp_p: |
| case Intrinsic::ppc_altivec_vcmpeqfp_p: |
| case Intrinsic::ppc_altivec_vcmpequb_p: |
| case Intrinsic::ppc_altivec_vcmpequh_p: |
| case Intrinsic::ppc_altivec_vcmpequw_p: |
| case Intrinsic::ppc_altivec_vcmpgefp_p: |
| case Intrinsic::ppc_altivec_vcmpgtfp_p: |
| case Intrinsic::ppc_altivec_vcmpgtsb_p: |
| case Intrinsic::ppc_altivec_vcmpgtsh_p: |
| case Intrinsic::ppc_altivec_vcmpgtsw_p: |
| case Intrinsic::ppc_altivec_vcmpgtub_p: |
| case Intrinsic::ppc_altivec_vcmpgtuh_p: |
| case Intrinsic::ppc_altivec_vcmpgtuw_p: |
| KnownZero = ~1U; // All bits but the low one are known to be zero. |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| /// getConstraintType - Given a constraint, return the type of |
| /// constraint it is for this target. |
| PPCTargetLowering::ConstraintType |
| PPCTargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'b': |
| case 'r': |
| case 'f': |
| case 'v': |
| case 'y': |
| return C_RegisterClass; |
| case 'Z': |
| // FIXME: While Z does indicate a memory constraint, it specifically |
| // indicates an r+r address (used in conjunction with the 'y' modifier |
| // in the replacement string). Currently, we're forcing the base |
| // register to be r0 in the asm printer (which is interpreted as zero) |
| // and forming the complete address in the second register. This is |
| // suboptimal. |
| return C_Memory; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| PPCTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (CallOperandVal == NULL) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'b': |
| if (type->isIntegerTy()) |
| weight = CW_Register; |
| break; |
| case 'f': |
| if (type->isFloatTy()) |
| weight = CW_Register; |
| break; |
| case 'd': |
| if (type->isDoubleTy()) |
| weight = CW_Register; |
| break; |
| case 'v': |
| if (type->isVectorTy()) |
| weight = CW_Register; |
| break; |
| case 'y': |
| weight = CW_Register; |
| break; |
| case 'Z': |
| weight = CW_Memory; |
| break; |
| } |
| return weight; |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const { |
| if (Constraint.size() == 1) { |
| // GCC RS6000 Constraint Letters |
| switch (Constraint[0]) { |
| case 'b': // R1-R31 |
| case 'r': // R0-R31 |
| if (VT == MVT::i64 && PPCSubTarget.isPPC64()) |
| return std::make_pair(0U, &PPC::G8RCRegClass); |
| return std::make_pair(0U, &PPC::GPRCRegClass); |
| case 'f': |
| if (VT == MVT::f32 || VT == MVT::i32) |
| return std::make_pair(0U, &PPC::F4RCRegClass); |
| if (VT == MVT::f64 || VT == MVT::i64) |
| return std::make_pair(0U, &PPC::F8RCRegClass); |
| break; |
| case 'v': |
| return std::make_pair(0U, &PPC::VRRCRegClass); |
| case 'y': // crrc |
| return std::make_pair(0U, &PPC::CRRCRegClass); |
| } |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(0,0); |
| |
| // Only support length 1 constraints. |
| if (Constraint.length() > 1) return; |
| |
| char Letter = Constraint[0]; |
| switch (Letter) { |
| default: break; |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': { |
| ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); |
| if (!CST) return; // Must be an immediate to match. |
| unsigned Value = CST->getZExtValue(); |
| switch (Letter) { |
| default: llvm_unreachable("Unknown constraint letter!"); |
| case 'I': // "I" is a signed 16-bit constant. |
| if ((short)Value == (int)Value) |
| Result = DAG.getTargetConstant(Value, Op.getValueType()); |
| break; |
| case 'J': // "J" is a constant with only the high-order 16 bits nonzero. |
| case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. |
| if ((short)Value == 0) |
| Result = DAG.getTargetConstant(Value, Op.getValueType()); |
| break; |
| case 'K': // "K" is a constant with only the low-order 16 bits nonzero. |
| if ((Value >> 16) == 0) |
| Result = DAG.getTargetConstant(Value, Op.getValueType()); |
| break; |
| case 'M': // "M" is a constant that is greater than 31. |
| if (Value > 31) |
| Result = DAG.getTargetConstant(Value, Op.getValueType()); |
| break; |
| case 'N': // "N" is a positive constant that is an exact power of two. |
| if ((int)Value > 0 && isPowerOf2_32(Value)) |
| Result = DAG.getTargetConstant(Value, Op.getValueType()); |
| break; |
| case 'O': // "O" is the constant zero. |
| if (Value == 0) |
| Result = DAG.getTargetConstant(Value, Op.getValueType()); |
| break; |
| case 'P': // "P" is a constant whose negation is a signed 16-bit constant. |
| if ((short)-Value == (int)-Value) |
| Result = DAG.getTargetConstant(Value, Op.getValueType()); |
| break; |
| } |
| break; |
| } |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| |
| // Handle standard constraint letters. |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| // isLegalAddressingMode - Return true if the addressing mode represented |
| // by AM is legal for this target, for a load/store of the specified type. |
| bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| Type *Ty) const { |
| // FIXME: PPC does not allow r+i addressing modes for vectors! |
| |
| // PPC allows a sign-extended 16-bit immediate field. |
| if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) |
| return false; |
| |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| // PPC only support r+r, |
| switch (AM.Scale) { |
| case 0: // "r+i" or just "i", depending on HasBaseReg. |
| break; |
| case 1: |
| if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. |
| return false; |
| // Otherwise we have r+r or r+i. |
| break; |
| case 2: |
| if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. |
| return false; |
| // Allow 2*r as r+r. |
| break; |
| default: |
| // No other scales are supported. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode for load / store of the |
| /// given type. |
| bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ |
| // PPC allows a sign-extended 16-bit immediate field. |
| return (V > -(1 << 16) && V < (1 << 16)-1); |
| } |
| |
| bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const { |
| return false; |
| } |
| |
| SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MFI->setReturnAddressIsTaken(true); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| |
| // Make sure the function does not optimize away the store of the RA to |
| // the stack. |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setLRStoreRequired(); |
| bool isPPC64 = PPCSubTarget.isPPC64(); |
| bool isDarwinABI = PPCSubTarget.isDarwinABI(); |
| |
| if (Depth > 0) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = |
| |
| DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), |
| isPPC64? MVT::i64 : MVT::i32); |
| return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| FrameAddr, Offset), |
| MachinePointerInfo(), false, false, false, 0); |
| } |
| |
| // Just load the return address off the stack. |
| SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); |
| return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), |
| RetAddrFI, MachinePointerInfo(), false, false, false, 0); |
| } |
| |
| SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| bool isPPC64 = PtrVT == MVT::i64; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MFI->setFrameAddressIsTaken(true); |
| bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) || |
| MFI->hasVarSizedObjects()) && |
| MFI->getStackSize() && |
| !MF.getFunction()->getAttributes(). |
| hasAttribute(AttributeSet::FunctionIndex, Attribute::Naked); |
| unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : |
| (is31 ? PPC::R31 : PPC::R1); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, |
| PtrVT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), |
| FrameAddr, MachinePointerInfo(), false, false, |
| false, 0); |
| return FrameAddr; |
| } |
| |
| bool |
| PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The PowerPC target isn't yet aware of offsets. |
| return false; |
| } |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. If DstAlign is zero that means it's safe to destination |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it |
| /// means there isn't a need to check it against alignment requirement, |
| /// probably because the source does not need to be loaded. If 'IsMemset' is |
| /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that |
| /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy |
| /// source is constant so it does not need to be loaded. |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, |
| unsigned DstAlign, unsigned SrcAlign, |
| bool IsMemset, bool ZeroMemset, |
| bool MemcpyStrSrc, |
| MachineFunction &MF) const { |
| if (this->PPCSubTarget.isPPC64()) { |
| return MVT::i64; |
| } else { |
| return MVT::i32; |
| } |
| } |
| |
| bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, |
| bool *Fast) const { |
| if (DisablePPCUnaligned) |
| return false; |
| |
| // PowerPC supports unaligned memory access for simple non-vector types. |
| // Although accessing unaligned addresses is not as efficient as accessing |
| // aligned addresses, it is generally more efficient than manual expansion, |
| // and generally only traps for software emulation when crossing page |
| // boundaries. |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (VT.getSimpleVT().isVector()) |
| return false; |
| |
| if (VT == MVT::ppcf128) |
| return false; |
| |
| if (Fast) |
| *Fast = true; |
| |
| return true; |
| } |
| |
| /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than |
| /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to |
| /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd |
| /// is expanded to mul + add. |
| bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const { |
| if (!VT.isSimple()) |
| return false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f32: |
| case MVT::f64: |
| case MVT::v4f32: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { |
| if (DisableILPPref) |
| return TargetLowering::getSchedulingPreference(N); |
| |
| return Sched::ILP; |
| } |
| |