blob: 3f181aadb11c4a8b18f6f11ba14dce2843fdae23 [file] [log] [blame]
//===-- PPCInstrInfo.td - The PowerPC Instruction Set ------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the subset of the 32-bit PowerPC instruction set, as used
// by the PowerPC instruction selector.
//
//===----------------------------------------------------------------------===//
include "PPCInstrFormats.td"
//===----------------------------------------------------------------------===//
// PowerPC specific type constraints.
//
def SDT_PPCstfiwx : SDTypeProfile<0, 2, [ // stfiwx
SDTCisVT<0, f64>, SDTCisPtrTy<1>
]>;
def SDT_PPCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_PPCCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
def SDT_PPCvperm : SDTypeProfile<1, 3, [
SDTCisVT<3, v16i8>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>
]>;
def SDT_PPCvcmp : SDTypeProfile<1, 3, [
SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>
]>;
def SDT_PPCcondbr : SDTypeProfile<0, 3, [
SDTCisVT<0, i32>, SDTCisVT<2, OtherVT>
]>;
def SDT_PPClbrx : SDTypeProfile<1, 2, [
SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>
]>;
def SDT_PPCstbrx : SDTypeProfile<0, 3, [
SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>
]>;
def SDT_PPClarx : SDTypeProfile<1, 1, [
SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def SDT_PPCstcx : SDTypeProfile<0, 2, [
SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def SDT_PPCTC_ret : SDTypeProfile<0, 2, [
SDTCisPtrTy<0>, SDTCisVT<1, i32>
]>;
def SDT_PPCnop : SDTypeProfile<0, 0, []>;
//===----------------------------------------------------------------------===//
// PowerPC specific DAG Nodes.
//
def PPCfcfid : SDNode<"PPCISD::FCFID" , SDTFPUnaryOp, []>;
def PPCfctidz : SDNode<"PPCISD::FCTIDZ", SDTFPUnaryOp, []>;
def PPCfctiwz : SDNode<"PPCISD::FCTIWZ", SDTFPUnaryOp, []>;
def PPCstfiwx : SDNode<"PPCISD::STFIWX", SDT_PPCstfiwx,
[SDNPHasChain, SDNPMayStore]>;
// This sequence is used for long double->int conversions. It changes the
// bits in the FPSCR which is not modelled.
def PPCmffs : SDNode<"PPCISD::MFFS", SDTypeProfile<1, 0, [SDTCisVT<0, f64>]>,
[SDNPOutGlue]>;
def PPCmtfsb0 : SDNode<"PPCISD::MTFSB0", SDTypeProfile<0, 1, [SDTCisInt<0>]>,
[SDNPInGlue, SDNPOutGlue]>;
def PPCmtfsb1 : SDNode<"PPCISD::MTFSB1", SDTypeProfile<0, 1, [SDTCisInt<0>]>,
[SDNPInGlue, SDNPOutGlue]>;
def PPCfaddrtz: SDNode<"PPCISD::FADDRTZ", SDTFPBinOp,
[SDNPInGlue, SDNPOutGlue]>;
def PPCmtfsf : SDNode<"PPCISD::MTFSF", SDTypeProfile<1, 3,
[SDTCisVT<0, f64>, SDTCisInt<1>, SDTCisVT<2, f64>,
SDTCisVT<3, f64>]>,
[SDNPInGlue]>;
def PPCfsel : SDNode<"PPCISD::FSEL",
// Type constraint for fsel.
SDTypeProfile<1, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,
SDTCisFP<0>, SDTCisVT<1, f64>]>, []>;
def PPChi : SDNode<"PPCISD::Hi", SDTIntBinOp, []>;
def PPClo : SDNode<"PPCISD::Lo", SDTIntBinOp, []>;
def PPCtoc_entry: SDNode<"PPCISD::TOC_ENTRY", SDTIntBinOp, [SDNPMayLoad]>;
def PPCvmaddfp : SDNode<"PPCISD::VMADDFP", SDTFPTernaryOp, []>;
def PPCvnmsubfp : SDNode<"PPCISD::VNMSUBFP", SDTFPTernaryOp, []>;
def PPCaddisGotTprelHA : SDNode<"PPCISD::ADDIS_GOT_TPREL_HA", SDTIntBinOp>;
def PPCldGotTprelL : SDNode<"PPCISD::LD_GOT_TPREL_L", SDTIntBinOp,
[SDNPMayLoad]>;
def PPCaddTls : SDNode<"PPCISD::ADD_TLS", SDTIntBinOp, []>;
def PPCaddisTlsgdHA : SDNode<"PPCISD::ADDIS_TLSGD_HA", SDTIntBinOp>;
def PPCaddiTlsgdL : SDNode<"PPCISD::ADDI_TLSGD_L", SDTIntBinOp>;
def PPCgetTlsAddr : SDNode<"PPCISD::GET_TLS_ADDR", SDTIntBinOp>;
def PPCaddisTlsldHA : SDNode<"PPCISD::ADDIS_TLSLD_HA", SDTIntBinOp>;
def PPCaddiTlsldL : SDNode<"PPCISD::ADDI_TLSLD_L", SDTIntBinOp>;
def PPCgetTlsldAddr : SDNode<"PPCISD::GET_TLSLD_ADDR", SDTIntBinOp>;
def PPCaddisDtprelHA : SDNode<"PPCISD::ADDIS_DTPREL_HA", SDTIntBinOp,
[SDNPHasChain]>;
def PPCaddiDtprelL : SDNode<"PPCISD::ADDI_DTPREL_L", SDTIntBinOp>;
def PPCvperm : SDNode<"PPCISD::VPERM", SDT_PPCvperm, []>;
// These nodes represent the 32-bit PPC shifts that operate on 6-bit shift
// amounts. These nodes are generated by the multi-precision shift code.
def PPCsrl : SDNode<"PPCISD::SRL" , SDTIntShiftOp>;
def PPCsra : SDNode<"PPCISD::SRA" , SDTIntShiftOp>;
def PPCshl : SDNode<"PPCISD::SHL" , SDTIntShiftOp>;
def PPCextsw_32 : SDNode<"PPCISD::EXTSW_32" , SDTIntUnaryOp>;
def PPCstd_32 : SDNode<"PPCISD::STD_32" , SDTStore,
[SDNPHasChain, SDNPMayStore]>;
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_PPCCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_PPCCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_PPCCall : SDTypeProfile<0, -1, [SDTCisInt<0>]>;
def PPCcall_Darwin : SDNode<"PPCISD::CALL_Darwin", SDT_PPCCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def PPCcall_SVR4 : SDNode<"PPCISD::CALL_SVR4", SDT_PPCCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def PPCcall_nop_SVR4 : SDNode<"PPCISD::CALL_NOP_SVR4", SDT_PPCCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def PPCnop : SDNode<"PPCISD::NOP", SDT_PPCnop, [SDNPInGlue, SDNPOutGlue]>;
def PPCload : SDNode<"PPCISD::LOAD", SDTypeProfile<1, 1, []>,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def PPCload_toc : SDNode<"PPCISD::LOAD_TOC", SDTypeProfile<0, 1, []>,
[SDNPHasChain, SDNPSideEffect,
SDNPInGlue, SDNPOutGlue]>;
def PPCtoc_restore : SDNode<"PPCISD::TOC_RESTORE", SDTypeProfile<0, 0, []>,
[SDNPHasChain, SDNPSideEffect,
SDNPInGlue, SDNPOutGlue]>;
def PPCmtctr : SDNode<"PPCISD::MTCTR", SDT_PPCCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def PPCbctrl_Darwin : SDNode<"PPCISD::BCTRL_Darwin", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def PPCbctrl_SVR4 : SDNode<"PPCISD::BCTRL_SVR4", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def retflag : SDNode<"PPCISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def PPCtc_return : SDNode<"PPCISD::TC_RETURN", SDT_PPCTC_ret,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def PPCvcmp : SDNode<"PPCISD::VCMP" , SDT_PPCvcmp, []>;
def PPCvcmp_o : SDNode<"PPCISD::VCMPo", SDT_PPCvcmp, [SDNPOutGlue]>;
def PPCcondbranch : SDNode<"PPCISD::COND_BRANCH", SDT_PPCcondbr,
[SDNPHasChain, SDNPOptInGlue]>;
def PPClbrx : SDNode<"PPCISD::LBRX", SDT_PPClbrx,
[SDNPHasChain, SDNPMayLoad]>;
def PPCstbrx : SDNode<"PPCISD::STBRX", SDT_PPCstbrx,
[SDNPHasChain, SDNPMayStore]>;
// Instructions to set/unset CR bit 6 for SVR4 vararg calls
def PPCcr6set : SDNode<"PPCISD::CR6SET", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def PPCcr6unset : SDNode<"PPCISD::CR6UNSET", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// Instructions to support atomic operations
def PPClarx : SDNode<"PPCISD::LARX", SDT_PPClarx,
[SDNPHasChain, SDNPMayLoad]>;
def PPCstcx : SDNode<"PPCISD::STCX", SDT_PPCstcx,
[SDNPHasChain, SDNPMayStore]>;
// Instructions to support medium and large code model
def PPCaddisTocHA : SDNode<"PPCISD::ADDIS_TOC_HA", SDTIntBinOp, []>;
def PPCldTocL : SDNode<"PPCISD::LD_TOC_L", SDTIntBinOp, [SDNPMayLoad]>;
def PPCaddiTocL : SDNode<"PPCISD::ADDI_TOC_L", SDTIntBinOp, []>;
// Instructions to support dynamic alloca.
def SDTDynOp : SDTypeProfile<1, 2, []>;
def PPCdynalloc : SDNode<"PPCISD::DYNALLOC", SDTDynOp, [SDNPHasChain]>;
//===----------------------------------------------------------------------===//
// PowerPC specific transformation functions and pattern fragments.
//
def SHL32 : SDNodeXForm<imm, [{
// Transformation function: 31 - imm
return getI32Imm(31 - N->getZExtValue());
}]>;
def SRL32 : SDNodeXForm<imm, [{
// Transformation function: 32 - imm
return N->getZExtValue() ? getI32Imm(32 - N->getZExtValue()) : getI32Imm(0);
}]>;
def LO16 : SDNodeXForm<imm, [{
// Transformation function: get the low 16 bits.
return getI32Imm((unsigned short)N->getZExtValue());
}]>;
def HI16 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return getI32Imm((unsigned)N->getZExtValue() >> 16);
}]>;
def HA16 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
signed int Val = N->getZExtValue();
return getI32Imm((Val - (signed short)Val) >> 16);
}]>;
def MB : SDNodeXForm<imm, [{
// Transformation function: get the start bit of a mask
unsigned mb = 0, me;
(void)isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
return getI32Imm(mb);
}]>;
def ME : SDNodeXForm<imm, [{
// Transformation function: get the end bit of a mask
unsigned mb, me = 0;
(void)isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
return getI32Imm(me);
}]>;
def maskimm32 : PatLeaf<(imm), [{
// maskImm predicate - True if immediate is a run of ones.
unsigned mb, me;
if (N->getValueType(0) == MVT::i32)
return isRunOfOnes((unsigned)N->getZExtValue(), mb, me);
else
return false;
}]>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
// field. Used by instructions like 'addi'.
if (N->getValueType(0) == MVT::i32)
return (int32_t)N->getZExtValue() == (short)N->getZExtValue();
else
return (int64_t)N->getZExtValue() == (short)N->getZExtValue();
}]>;
def immZExt16 : PatLeaf<(imm), [{
// immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
// field. Used by instructions like 'ori'.
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
// imm16Shifted* - These match immediates where the low 16-bits are zero. There
// are two forms: imm16ShiftedSExt and imm16ShiftedZExt. These two forms are
// identical in 32-bit mode, but in 64-bit mode, they return true if the
// immediate fits into a sign/zero extended 32-bit immediate (with the low bits
// clear).
def imm16ShiftedZExt : PatLeaf<(imm), [{
// imm16ShiftedZExt predicate - True if only bits in the top 16-bits of the
// immediate are set. Used by instructions like 'xoris'.
return (N->getZExtValue() & ~uint64_t(0xFFFF0000)) == 0;
}], HI16>;
def imm16ShiftedSExt : PatLeaf<(imm), [{
// imm16ShiftedSExt predicate - True if only bits in the top 16-bits of the
// immediate are set. Used by instructions like 'addis'. Identical to
// imm16ShiftedZExt in 32-bit mode.
if (N->getZExtValue() & 0xFFFF) return false;
if (N->getValueType(0) == MVT::i32)
return true;
// For 64-bit, make sure it is sext right.
return N->getZExtValue() == (uint64_t)(int)N->getZExtValue();
}], HI16>;
// Some r+i load/store instructions (such as LD, STD, LDU, etc.) that require
// restricted memrix (offset/4) constants are alignment sensitive. If these
// offsets are hidden behind TOC entries than the values of the lower-order
// bits cannot be checked directly. As a result, we need to also incorporate
// an alignment check into the relevant patterns.
def aligned4load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 4;
}]>;
def aligned4store : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() >= 4;
}]>;
def aligned4sextloadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 4;
}]>;
def aligned4pre_store : PatFrag<
(ops node:$val, node:$base, node:$offset),
(pre_store node:$val, node:$base, node:$offset), [{
return cast<StoreSDNode>(N)->getAlignment() >= 4;
}]>;
def unaligned4load : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() < 4;
}]>;
def unaligned4store : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() < 4;
}]>;
def unaligned4sextloadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() < 4;
}]>;
//===----------------------------------------------------------------------===//
// PowerPC Flag Definitions.
class isPPC64 { bit PPC64 = 1; }
class isDOT {
list<Register> Defs = [CR0];
bit RC = 1;
}
class RegConstraint<string C> {
string Constraints = C;
}
class NoEncode<string E> {
string DisableEncoding = E;
}
//===----------------------------------------------------------------------===//
// PowerPC Operand Definitions.
def s5imm : Operand<i32> {
let PrintMethod = "printS5ImmOperand";
}
def u5imm : Operand<i32> {
let PrintMethod = "printU5ImmOperand";
}
def u6imm : Operand<i32> {
let PrintMethod = "printU6ImmOperand";
}
def s16imm : Operand<i32> {
let PrintMethod = "printS16ImmOperand";
}
def u16imm : Operand<i32> {
let PrintMethod = "printU16ImmOperand";
}
def s16immX4 : Operand<i32> { // Multiply imm by 4 before printing.
let PrintMethod = "printS16X4ImmOperand";
}
def directbrtarget : Operand<OtherVT> {
let PrintMethod = "printBranchOperand";
let EncoderMethod = "getDirectBrEncoding";
}
def condbrtarget : Operand<OtherVT> {
let PrintMethod = "printBranchOperand";
let EncoderMethod = "getCondBrEncoding";
}
def calltarget : Operand<iPTR> {
let EncoderMethod = "getDirectBrEncoding";
}
def aaddr : Operand<iPTR> {
let PrintMethod = "printAbsAddrOperand";
}
def symbolHi: Operand<i32> {
let PrintMethod = "printSymbolHi";
let EncoderMethod = "getHA16Encoding";
}
def symbolLo: Operand<i32> {
let PrintMethod = "printSymbolLo";
let EncoderMethod = "getLO16Encoding";
}
def crbitm: Operand<i8> {
let PrintMethod = "printcrbitm";
let EncoderMethod = "get_crbitm_encoding";
}
// Address operands
def memri : Operand<iPTR> {
let PrintMethod = "printMemRegImm";
let MIOperandInfo = (ops symbolLo:$imm, ptr_rc:$reg);
let EncoderMethod = "getMemRIEncoding";
}
def memrr : Operand<iPTR> {
let PrintMethod = "printMemRegReg";
let MIOperandInfo = (ops ptr_rc:$offreg, ptr_rc:$ptrreg);
}
def memrix : Operand<iPTR> { // memri where the imm is shifted 2 bits.
let PrintMethod = "printMemRegImmShifted";
let MIOperandInfo = (ops symbolLo:$imm, ptr_rc:$reg);
let EncoderMethod = "getMemRIXEncoding";
}
// PowerPC Predicate operand. 20 = (0<<5)|20 = always, CR0 is a dummy reg
// that doesn't matter.
def pred : PredicateOperand<OtherVT, (ops imm, CRRC),
(ops (i32 20), (i32 zero_reg))> {
let PrintMethod = "printPredicateOperand";
}
// Define PowerPC specific addressing mode.
def iaddr : ComplexPattern<iPTR, 2, "SelectAddrImm", [], []>;
def xaddr : ComplexPattern<iPTR, 2, "SelectAddrIdx", [], []>;
def xoaddr : ComplexPattern<iPTR, 2, "SelectAddrIdxOnly",[], []>;
def ixaddr : ComplexPattern<iPTR, 2, "SelectAddrImmShift", [], []>; // "std"
/// This is just the offset part of iaddr, used for preinc.
def iaddroff : ComplexPattern<iPTR, 1, "SelectAddrImmOffs", [], []>;
def xaddroff : ComplexPattern<iPTR, 1, "SelectAddrIdxOffs", [], []>;
//===----------------------------------------------------------------------===//
// PowerPC Instruction Predicate Definitions.
def In32BitMode : Predicate<"!PPCSubTarget.isPPC64()">;
def In64BitMode : Predicate<"PPCSubTarget.isPPC64()">;
def IsBookE : Predicate<"PPCSubTarget.isBookE()">;
//===----------------------------------------------------------------------===//
// PowerPC Instruction Definitions.
// Pseudo-instructions:
let hasCtrlDep = 1 in {
let Defs = [R1], Uses = [R1] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt), "#ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt1, u16imm:$amt2), "#ADJCALLSTACKUP $amt1 $amt2",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
def UPDATE_VRSAVE : Pseudo<(outs GPRC:$rD), (ins GPRC:$rS),
"UPDATE_VRSAVE $rD, $rS", []>;
}
let Defs = [R1], Uses = [R1] in
def DYNALLOC : Pseudo<(outs GPRC:$result), (ins GPRC:$negsize, memri:$fpsi), "#DYNALLOC",
[(set GPRC:$result,
(PPCdynalloc GPRC:$negsize, iaddr:$fpsi))]>;
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
// instruction selection into a branch sequence.
let usesCustomInserter = 1, // Expanded after instruction selection.
PPC970_Single = 1 in {
def SELECT_CC_I4 : Pseudo<(outs GPRC:$dst), (ins CRRC:$cond, GPRC:$T, GPRC:$F,
i32imm:$BROPC), "#SELECT_CC_I4",
[]>;
def SELECT_CC_I8 : Pseudo<(outs G8RC:$dst), (ins CRRC:$cond, G8RC:$T, G8RC:$F,
i32imm:$BROPC), "#SELECT_CC_I8",
[]>;
def SELECT_CC_F4 : Pseudo<(outs F4RC:$dst), (ins CRRC:$cond, F4RC:$T, F4RC:$F,
i32imm:$BROPC), "#SELECT_CC_F4",
[]>;
def SELECT_CC_F8 : Pseudo<(outs F8RC:$dst), (ins CRRC:$cond, F8RC:$T, F8RC:$F,
i32imm:$BROPC), "#SELECT_CC_F8",
[]>;
def SELECT_CC_VRRC: Pseudo<(outs VRRC:$dst), (ins CRRC:$cond, VRRC:$T, VRRC:$F,
i32imm:$BROPC), "#SELECT_CC_VRRC",
[]>;
}
// SPILL_CR - Indicate that we're dumping the CR register, so we'll need to
// scavenge a register for it.
let mayStore = 1 in
def SPILL_CR : Pseudo<(outs), (ins CRRC:$cond, memri:$F),
"#SPILL_CR", []>;
// RESTORE_CR - Indicate that we're restoring the CR register (previously
// spilled), so we'll need to scavenge a register for it.
let mayLoad = 1 in
def RESTORE_CR : Pseudo<(outs CRRC:$cond), (ins memri:$F),
"#RESTORE_CR", []>;
let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7 in {
let isCodeGenOnly = 1, isReturn = 1, Uses = [LR, RM] in
def BLR : XLForm_2_br<19, 16, 0, (outs), (ins pred:$p),
"b${p:cc}lr ${p:reg}", BrB,
[(retflag)]>;
let isBranch = 1, isIndirectBranch = 1, Uses = [CTR] in
def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", BrB, []>;
}
let Defs = [LR] in
def MovePCtoLR : Pseudo<(outs), (ins), "#MovePCtoLR", []>,
PPC970_Unit_BRU;
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7 in {
let isBarrier = 1 in {
def B : IForm<18, 0, 0, (outs), (ins directbrtarget:$dst),
"b $dst", BrB,
[(br bb:$dst)]>;
}
// BCC represents an arbitrary conditional branch on a predicate.
// FIXME: should be able to write a pattern for PPCcondbranch, but can't use
// a two-value operand where a dag node expects two operands. :(
let isCodeGenOnly = 1 in
def BCC : BForm<16, 0, 0, (outs), (ins pred:$cond, condbrtarget:$dst),
"b${cond:cc} ${cond:reg}, $dst"
/*[(PPCcondbranch CRRC:$crS, imm:$opc, bb:$dst)]*/>;
let Defs = [CTR], Uses = [CTR] in {
def BDZ : BForm_1<16, 18, 0, 0, (outs), (ins condbrtarget:$dst),
"bdz $dst">;
def BDNZ : BForm_1<16, 16, 0, 0, (outs), (ins condbrtarget:$dst),
"bdnz $dst">;
}
}
// Darwin ABI Calls.
let isCall = 1, PPC970_Unit = 7, Defs = [LR] in {
// Convenient aliases for call instructions
let Uses = [RM] in {
def BL_Darwin : IForm<18, 0, 1,
(outs), (ins calltarget:$func),
"bl $func", BrB, []>; // See Pat patterns below.
def BLA_Darwin : IForm<18, 1, 1,
(outs), (ins aaddr:$func),
"bla $func", BrB, [(PPCcall_Darwin (i32 imm:$func))]>;
}
let Uses = [CTR, RM] in {
def BCTRL_Darwin : XLForm_2_ext<19, 528, 20, 0, 1,
(outs), (ins),
"bctrl", BrB,
[(PPCbctrl_Darwin)]>, Requires<[In32BitMode]>;
}
}
// SVR4 ABI Calls.
let isCall = 1, PPC970_Unit = 7, Defs = [LR] in {
// Convenient aliases for call instructions
let Uses = [RM] in {
def BL_SVR4 : IForm<18, 0, 1,
(outs), (ins calltarget:$func),
"bl $func", BrB, []>; // See Pat patterns below.
def BLA_SVR4 : IForm<18, 1, 1,
(outs), (ins aaddr:$func),
"bla $func", BrB,
[(PPCcall_SVR4 (i32 imm:$func))]>;
}
let Uses = [CTR, RM] in {
def BCTRL_SVR4 : XLForm_2_ext<19, 528, 20, 0, 1,
(outs), (ins),
"bctrl", BrB,
[(PPCbctrl_SVR4)]>, Requires<[In32BitMode]>;
}
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
def TCRETURNdi :Pseudo< (outs),
(ins calltarget:$dst, i32imm:$offset),
"#TC_RETURNd $dst $offset",
[]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
def TCRETURNai :Pseudo<(outs), (ins aaddr:$func, i32imm:$offset),
"#TC_RETURNa $func $offset",
[(PPCtc_return (i32 imm:$func), imm:$offset)]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in
def TCRETURNri : Pseudo<(outs), (ins CTRRC:$dst, i32imm:$offset),
"#TC_RETURNr $dst $offset",
[]>;
let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, isBranch = 1,
isIndirectBranch = 1, isCall = 1, isReturn = 1, Uses = [CTR, RM] in
def TAILBCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", BrB, []>,
Requires<[In32BitMode]>;
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7,
isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in
def TAILB : IForm<18, 0, 0, (outs), (ins calltarget:$dst),
"b $dst", BrB,
[]>;
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7,
isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in
def TAILBA : IForm<18, 0, 0, (outs), (ins aaddr:$dst),
"ba $dst", BrB,
[]>;
// DCB* instructions.
def DCBA : DCB_Form<758, 0, (outs), (ins memrr:$dst),
"dcba $dst", LdStDCBF, [(int_ppc_dcba xoaddr:$dst)]>,
PPC970_DGroup_Single;
def DCBF : DCB_Form<86, 0, (outs), (ins memrr:$dst),
"dcbf $dst", LdStDCBF, [(int_ppc_dcbf xoaddr:$dst)]>,
PPC970_DGroup_Single;
def DCBI : DCB_Form<470, 0, (outs), (ins memrr:$dst),
"dcbi $dst", LdStDCBF, [(int_ppc_dcbi xoaddr:$dst)]>,
PPC970_DGroup_Single;
def DCBST : DCB_Form<54, 0, (outs), (ins memrr:$dst),
"dcbst $dst", LdStDCBF, [(int_ppc_dcbst xoaddr:$dst)]>,
PPC970_DGroup_Single;
def DCBT : DCB_Form<278, 0, (outs), (ins memrr:$dst),
"dcbt $dst", LdStDCBF, [(int_ppc_dcbt xoaddr:$dst)]>,
PPC970_DGroup_Single;
def DCBTST : DCB_Form<246, 0, (outs), (ins memrr:$dst),
"dcbtst $dst", LdStDCBF, [(int_ppc_dcbtst xoaddr:$dst)]>,
PPC970_DGroup_Single;
def DCBZ : DCB_Form<1014, 0, (outs), (ins memrr:$dst),
"dcbz $dst", LdStDCBF, [(int_ppc_dcbz xoaddr:$dst)]>,
PPC970_DGroup_Single;
def DCBZL : DCB_Form<1014, 1, (outs), (ins memrr:$dst),
"dcbzl $dst", LdStDCBF, [(int_ppc_dcbzl xoaddr:$dst)]>,
PPC970_DGroup_Single;
def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 1)),
(DCBT xoaddr:$dst)>;
// Atomic operations
let usesCustomInserter = 1 in {
let Defs = [CR0] in {
def ATOMIC_LOAD_ADD_I8 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_ADD_I8",
[(set GPRC:$dst, (atomic_load_add_8 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_SUB_I8 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_SUB_I8",
[(set GPRC:$dst, (atomic_load_sub_8 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_AND_I8 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_AND_I8",
[(set GPRC:$dst, (atomic_load_and_8 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_OR_I8 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_OR_I8",
[(set GPRC:$dst, (atomic_load_or_8 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_XOR_I8 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "ATOMIC_LOAD_XOR_I8",
[(set GPRC:$dst, (atomic_load_xor_8 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_NAND_I8 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_NAND_I8",
[(set GPRC:$dst, (atomic_load_nand_8 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_ADD_I16 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_ADD_I16",
[(set GPRC:$dst, (atomic_load_add_16 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_SUB_I16 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_SUB_I16",
[(set GPRC:$dst, (atomic_load_sub_16 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_AND_I16 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_AND_I16",
[(set GPRC:$dst, (atomic_load_and_16 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_OR_I16 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_OR_I16",
[(set GPRC:$dst, (atomic_load_or_16 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_XOR_I16 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_XOR_I16",
[(set GPRC:$dst, (atomic_load_xor_16 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_NAND_I16 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_NAND_I16",
[(set GPRC:$dst, (atomic_load_nand_16 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_ADD_I32 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_ADD_I32",
[(set GPRC:$dst, (atomic_load_add_32 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_SUB_I32 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_SUB_I32",
[(set GPRC:$dst, (atomic_load_sub_32 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_AND_I32 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_AND_I32",
[(set GPRC:$dst, (atomic_load_and_32 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_OR_I32 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_OR_I32",
[(set GPRC:$dst, (atomic_load_or_32 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_XOR_I32 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_XOR_I32",
[(set GPRC:$dst, (atomic_load_xor_32 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_LOAD_NAND_I32 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$incr), "#ATOMIC_LOAD_NAND_I32",
[(set GPRC:$dst, (atomic_load_nand_32 xoaddr:$ptr, GPRC:$incr))]>;
def ATOMIC_CMP_SWAP_I8 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "#ATOMIC_CMP_SWAP_I8",
[(set GPRC:$dst,
(atomic_cmp_swap_8 xoaddr:$ptr, GPRC:$old, GPRC:$new))]>;
def ATOMIC_CMP_SWAP_I16 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "#ATOMIC_CMP_SWAP_I16 $dst $ptr $old $new",
[(set GPRC:$dst,
(atomic_cmp_swap_16 xoaddr:$ptr, GPRC:$old, GPRC:$new))]>;
def ATOMIC_CMP_SWAP_I32 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$old, GPRC:$new), "#ATOMIC_CMP_SWAP_I32 $dst $ptr $old $new",
[(set GPRC:$dst,
(atomic_cmp_swap_32 xoaddr:$ptr, GPRC:$old, GPRC:$new))]>;
def ATOMIC_SWAP_I8 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "#ATOMIC_SWAP_i8",
[(set GPRC:$dst, (atomic_swap_8 xoaddr:$ptr, GPRC:$new))]>;
def ATOMIC_SWAP_I16 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "#ATOMIC_SWAP_I16",
[(set GPRC:$dst, (atomic_swap_16 xoaddr:$ptr, GPRC:$new))]>;
def ATOMIC_SWAP_I32 : Pseudo<
(outs GPRC:$dst), (ins memrr:$ptr, GPRC:$new), "#ATOMIC_SWAP_I32",
[(set GPRC:$dst, (atomic_swap_32 xoaddr:$ptr, GPRC:$new))]>;
}
}
// Instructions to support atomic operations
def LWARX : XForm_1<31, 20, (outs GPRC:$rD), (ins memrr:$src),
"lwarx $rD, $src", LdStLWARX,
[(set GPRC:$rD, (PPClarx xoaddr:$src))]>;
let Defs = [CR0] in
def STWCX : XForm_1<31, 150, (outs), (ins GPRC:$rS, memrr:$dst),
"stwcx. $rS, $dst", LdStSTWCX,
[(PPCstcx GPRC:$rS, xoaddr:$dst)]>,
isDOT;
let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
def TRAP : XForm_24<31, 4, (outs), (ins), "trap", LdStLoad, [(trap)]>;
//===----------------------------------------------------------------------===//
// PPC32 Load Instructions.
//
// Unindexed (r+i) Loads.
let canFoldAsLoad = 1, PPC970_Unit = 2 in {
def LBZ : DForm_1<34, (outs GPRC:$rD), (ins memri:$src),
"lbz $rD, $src", LdStLoad,
[(set GPRC:$rD, (zextloadi8 iaddr:$src))]>;
def LHA : DForm_1<42, (outs GPRC:$rD), (ins memri:$src),
"lha $rD, $src", LdStLHA,
[(set GPRC:$rD, (sextloadi16 iaddr:$src))]>,
PPC970_DGroup_Cracked;
def LHZ : DForm_1<40, (outs GPRC:$rD), (ins memri:$src),
"lhz $rD, $src", LdStLoad,
[(set GPRC:$rD, (zextloadi16 iaddr:$src))]>;
def LWZ : DForm_1<32, (outs GPRC:$rD), (ins memri:$src),
"lwz $rD, $src", LdStLoad,
[(set GPRC:$rD, (load iaddr:$src))]>;
def LFS : DForm_1<48, (outs F4RC:$rD), (ins memri:$src),
"lfs $rD, $src", LdStLFD,
[(set F4RC:$rD, (load iaddr:$src))]>;
def LFD : DForm_1<50, (outs F8RC:$rD), (ins memri:$src),
"lfd $rD, $src", LdStLFD,
[(set F8RC:$rD, (load iaddr:$src))]>;
// Unindexed (r+i) Loads with Update (preinc).
let mayLoad = 1 in {
def LBZU : DForm_1<35, (outs GPRC:$rD, ptr_rc:$ea_result), (ins memri:$addr),
"lbzu $rD, $addr", LdStLoadUpd,
[]>, RegConstraint<"$addr.reg = $ea_result">,
NoEncode<"$ea_result">;
def LHAU : DForm_1<43, (outs GPRC:$rD, ptr_rc:$ea_result), (ins memri:$addr),
"lhau $rD, $addr", LdStLHAU,
[]>, RegConstraint<"$addr.reg = $ea_result">,
NoEncode<"$ea_result">;
def LHZU : DForm_1<41, (outs GPRC:$rD, ptr_rc:$ea_result), (ins memri:$addr),
"lhzu $rD, $addr", LdStLoadUpd,
[]>, RegConstraint<"$addr.reg = $ea_result">,
NoEncode<"$ea_result">;
def LWZU : DForm_1<33, (outs GPRC:$rD, ptr_rc:$ea_result), (ins memri:$addr),
"lwzu $rD, $addr", LdStLoadUpd,
[]>, RegConstraint<"$addr.reg = $ea_result">,
NoEncode<"$ea_result">;
def LFSU : DForm_1<49, (outs F4RC:$rD, ptr_rc:$ea_result), (ins memri:$addr),
"lfsu $rD, $addr", LdStLFDU,
[]>, RegConstraint<"$addr.reg = $ea_result">,
NoEncode<"$ea_result">;
def LFDU : DForm_1<51, (outs F8RC:$rD, ptr_rc:$ea_result), (ins memri:$addr),
"lfdu $rD, $addr", LdStLFDU,
[]>, RegConstraint<"$addr.reg = $ea_result">,
NoEncode<"$ea_result">;
// Indexed (r+r) Loads with Update (preinc).
def LBZUX : XForm_1<31, 119, (outs GPRC:$rD, ptr_rc:$ea_result),
(ins memrr:$addr),
"lbzux $rD, $addr", LdStLoadUpd,
[]>, RegConstraint<"$addr.offreg = $ea_result">,
NoEncode<"$ea_result">;
def LHAUX : XForm_1<31, 375, (outs GPRC:$rD, ptr_rc:$ea_result),
(ins memrr:$addr),
"lhaux $rD, $addr", LdStLHAU,
[]>, RegConstraint<"$addr.offreg = $ea_result">,
NoEncode<"$ea_result">;
def LHZUX : XForm_1<31, 311, (outs GPRC:$rD, ptr_rc:$ea_result),
(ins memrr:$addr),
"lhzux $rD, $addr", LdStLoadUpd,
[]>, RegConstraint<"$addr.offreg = $ea_result">,
NoEncode<"$ea_result">;
def LWZUX : XForm_1<31, 55, (outs GPRC:$rD, ptr_rc:$ea_result),
(ins memrr:$addr),
"lwzux $rD, $addr", LdStLoadUpd,
[]>, RegConstraint<"$addr.offreg = $ea_result">,
NoEncode<"$ea_result">;
def LFSUX : XForm_1<31, 567, (outs F4RC:$rD, ptr_rc:$ea_result),
(ins memrr:$addr),
"lfsux $rD, $addr", LdStLFDU,
[]>, RegConstraint<"$addr.offreg = $ea_result">,
NoEncode<"$ea_result">;
def LFDUX : XForm_1<31, 631, (outs F8RC:$rD, ptr_rc:$ea_result),
(ins memrr:$addr),
"lfdux $rD, $addr", LdStLFDU,
[]>, RegConstraint<"$addr.offreg = $ea_result">,
NoEncode<"$ea_result">;
}
}
// Indexed (r+r) Loads.
//
let canFoldAsLoad = 1, PPC970_Unit = 2 in {
def LBZX : XForm_1<31, 87, (outs GPRC:$rD), (ins memrr:$src),
"lbzx $rD, $src", LdStLoad,
[(set GPRC:$rD, (zextloadi8 xaddr:$src))]>;
def LHAX : XForm_1<31, 343, (outs GPRC:$rD), (ins memrr:$src),
"lhax $rD, $src", LdStLHA,
[(set GPRC:$rD, (sextloadi16 xaddr:$src))]>,
PPC970_DGroup_Cracked;
def LHZX : XForm_1<31, 279, (outs GPRC:$rD), (ins memrr:$src),
"lhzx $rD, $src", LdStLoad,
[(set GPRC:$rD, (zextloadi16 xaddr:$src))]>;
def LWZX : XForm_1<31, 23, (outs GPRC:$rD), (ins memrr:$src),
"lwzx $rD, $src", LdStLoad,
[(set GPRC:$rD, (load xaddr:$src))]>;
def LHBRX : XForm_1<31, 790, (outs GPRC:$rD), (ins memrr:$src),
"lhbrx $rD, $src", LdStLoad,
[(set GPRC:$rD, (PPClbrx xoaddr:$src, i16))]>;
def LWBRX : XForm_1<31, 534, (outs GPRC:$rD), (ins memrr:$src),
"lwbrx $rD, $src", LdStLoad,
[(set GPRC:$rD, (PPClbrx xoaddr:$src, i32))]>;
def LFSX : XForm_25<31, 535, (outs F4RC:$frD), (ins memrr:$src),
"lfsx $frD, $src", LdStLFD,
[(set F4RC:$frD, (load xaddr:$src))]>;
def LFDX : XForm_25<31, 599, (outs F8RC:$frD), (ins memrr:$src),
"lfdx $frD, $src", LdStLFD,
[(set F8RC:$frD, (load xaddr:$src))]>;
}
//===----------------------------------------------------------------------===//
// PPC32 Store Instructions.
//
// Unindexed (r+i) Stores.
let PPC970_Unit = 2 in {
def STB : DForm_1<38, (outs), (ins GPRC:$rS, memri:$src),
"stb $rS, $src", LdStStore,
[(truncstorei8 GPRC:$rS, iaddr:$src)]>;
def STH : DForm_1<44, (outs), (ins GPRC:$rS, memri:$src),
"sth $rS, $src", LdStStore,
[(truncstorei16 GPRC:$rS, iaddr:$src)]>;
def STW : DForm_1<36, (outs), (ins GPRC:$rS, memri:$src),
"stw $rS, $src", LdStStore,
[(store GPRC:$rS, iaddr:$src)]>;
def STFS : DForm_1<52, (outs), (ins F4RC:$rS, memri:$dst),
"stfs $rS, $dst", LdStSTFD,
[(store F4RC:$rS, iaddr:$dst)]>;
def STFD : DForm_1<54, (outs), (ins F8RC:$rS, memri:$dst),
"stfd $rS, $dst", LdStSTFD,
[(store F8RC:$rS, iaddr:$dst)]>;
}
// Unindexed (r+i) Stores with Update (preinc).
let PPC970_Unit = 2 in {
def STBU : DForm_1a<39, (outs ptr_rc:$ea_res), (ins GPRC:$rS,
symbolLo:$ptroff, ptr_rc:$ptrreg),
"stbu $rS, $ptroff($ptrreg)", LdStStoreUpd,
[(set ptr_rc:$ea_res,
(pre_truncsti8 GPRC:$rS, ptr_rc:$ptrreg,
iaddroff:$ptroff))]>,
RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">;
def STHU : DForm_1a<45, (outs ptr_rc:$ea_res), (ins GPRC:$rS,
symbolLo:$ptroff, ptr_rc:$ptrreg),
"sthu $rS, $ptroff($ptrreg)", LdStStoreUpd,
[(set ptr_rc:$ea_res,
(pre_truncsti16 GPRC:$rS, ptr_rc:$ptrreg,
iaddroff:$ptroff))]>,
RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">;
def STWU : DForm_1a<37, (outs ptr_rc:$ea_res), (ins GPRC:$rS,
symbolLo:$ptroff, ptr_rc:$ptrreg),
"stwu $rS, $ptroff($ptrreg)", LdStStoreUpd,
[(set ptr_rc:$ea_res, (pre_store GPRC:$rS, ptr_rc:$ptrreg,
iaddroff:$ptroff))]>,
RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">;
def STFSU : DForm_1a<37, (outs ptr_rc:$ea_res), (ins F4RC:$rS,
symbolLo:$ptroff, ptr_rc:$ptrreg),
"stfsu $rS, $ptroff($ptrreg)", LdStSTFDU,
[(set ptr_rc:$ea_res, (pre_store F4RC:$rS, ptr_rc:$ptrreg,
iaddroff:$ptroff))]>,
RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">;
def STFDU : DForm_1a<37, (outs ptr_rc:$ea_res), (ins F8RC:$rS,
symbolLo:$ptroff, ptr_rc:$ptrreg),
"stfdu $rS, $ptroff($ptrreg)", LdStSTFDU,
[(set ptr_rc:$ea_res, (pre_store F8RC:$rS, ptr_rc:$ptrreg,
iaddroff:$ptroff))]>,
RegConstraint<"$ptrreg = $ea_res">, NoEncode<"$ea_res">;
}
// Indexed (r+r) Stores.
//
let PPC970_Unit = 2 in {
def STBX : XForm_8<31, 215, (outs), (ins GPRC:$rS, memrr:$dst),
"stbx $rS, $dst", LdStStore,
[(truncstorei8 GPRC:$rS, xaddr:$dst)]>,
PPC970_DGroup_Cracked;
def STHX : XForm_8<31, 407, (outs), (ins GPRC:$rS, memrr:$dst),
"sthx $rS, $dst", LdStStore,
[(truncstorei16 GPRC:$rS, xaddr:$dst)]>,
PPC970_DGroup_Cracked;
def STWX : XForm_8<31, 151, (outs), (ins GPRC:$rS, memrr:$dst),
"stwx $rS, $dst", LdStStore,
[(store GPRC:$rS, xaddr:$dst)]>,
PPC970_DGroup_Cracked;
def STBUX : XForm_8<31, 247, (outs ptr_rc:$ea_res),
(ins GPRC:$rS, ptr_rc:$ptroff, ptr_rc:$ptrreg),
"stbux $rS, $ptroff, $ptrreg", LdStStoreUpd,
[(set ptr_rc:$ea_res,
(pre_truncsti8 GPRC:$rS,
ptr_rc:$ptrreg, xaddroff:$ptroff))]>,
RegConstraint<"$ptroff = $ea_res">, NoEncode<"$ea_res">,
PPC970_DGroup_Cracked;
def STHUX : XForm_8<31, 439, (outs ptr_rc:$ea_res),
(ins GPRC:$rS, ptr_rc:$ptroff, ptr_rc:$ptrreg),
"sthux $rS, $ptroff, $ptrreg", LdStStoreUpd,
[(set ptr_rc:$ea_res,
(pre_truncsti16 GPRC:$rS,
ptr_rc:$ptrreg, xaddroff:$ptroff))]>,
RegConstraint<"$ptroff = $ea_res">, NoEncode<"$ea_res">,
PPC970_DGroup_Cracked;
def STWUX : XForm_8<31, 183, (outs ptr_rc:$ea_res),
(ins GPRC:$rS, ptr_rc:$ptroff, ptr_rc:$ptrreg),
"stwux $rS, $ptroff, $ptrreg", LdStStoreUpd,
[(set ptr_rc:$ea_res,
(pre_store GPRC:$rS, ptr_rc:$ptrreg, xaddroff:$ptroff))]>,
RegConstraint<"$ptroff = $ea_res">, NoEncode<"$ea_res">,
PPC970_DGroup_Cracked;
def STFSUX : XForm_8<31, 695, (outs ptr_rc:$ea_res),
(ins F4RC:$rS, ptr_rc:$ptroff, ptr_rc:$ptrreg),
"stfsux $rS, $ptroff, $ptrreg", LdStSTFDU,
[(set ptr_rc:$ea_res,
(pre_store F4RC:$rS, ptr_rc:$ptrreg, xaddroff:$ptroff))]>,
RegConstraint<"$ptroff = $ea_res">, NoEncode<"$ea_res">,
PPC970_DGroup_Cracked;
def STFDUX : XForm_8<31, 759, (outs ptr_rc:$ea_res),
(ins F8RC:$rS, ptr_rc:$ptroff, ptr_rc:$ptrreg),
"stfdux $rS, $ptroff, $ptrreg", LdStSTFDU,
[(set ptr_rc:$ea_res,
(pre_store F8RC:$rS, ptr_rc:$ptrreg, xaddroff:$ptroff))]>,
RegConstraint<"$ptroff = $ea_res">, NoEncode<"$ea_res">,
PPC970_DGroup_Cracked;
def STHBRX: XForm_8<31, 918, (outs), (ins GPRC:$rS, memrr:$dst),
"sthbrx $rS, $dst", LdStStore,
[(PPCstbrx GPRC:$rS, xoaddr:$dst, i16)]>,
PPC970_DGroup_Cracked;
def STWBRX: XForm_8<31, 662, (outs), (ins GPRC:$rS, memrr:$dst),
"stwbrx $rS, $dst", LdStStore,
[(PPCstbrx GPRC:$rS, xoaddr:$dst, i32)]>,
PPC970_DGroup_Cracked;
def STFIWX: XForm_28<31, 983, (outs), (ins F8RC:$frS, memrr:$dst),
"stfiwx $frS, $dst", LdStSTFD,
[(PPCstfiwx F8RC:$frS, xoaddr:$dst)]>;
def STFSX : XForm_28<31, 663, (outs), (ins F4RC:$frS, memrr:$dst),
"stfsx $frS, $dst", LdStSTFD,
[(store F4RC:$frS, xaddr:$dst)]>;
def STFDX : XForm_28<31, 727, (outs), (ins F8RC:$frS, memrr:$dst),
"stfdx $frS, $dst", LdStSTFD,
[(store F8RC:$frS, xaddr:$dst)]>;
}
def SYNC : XForm_24_sync<31, 598, (outs), (ins),
"sync", LdStSync,
[(int_ppc_sync)]>;
//===----------------------------------------------------------------------===//
// PPC32 Arithmetic Instructions.
//
let PPC970_Unit = 1 in { // FXU Operations.
def ADDI : DForm_2<14, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"addi $rD, $rA, $imm", IntSimple,
[(set GPRC:$rD, (add GPRC:$rA, immSExt16:$imm))]>;
def ADDIL : DForm_2<14, (outs GPRC:$rD), (ins GPRC:$rA, symbolLo:$imm),
"addi $rD, $rA, $imm", IntSimple,
[(set GPRC:$rD, (add GPRC:$rA, immSExt16:$imm))]>;
let Defs = [CARRY] in {
def ADDIC : DForm_2<12, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"addic $rD, $rA, $imm", IntGeneral,
[(set GPRC:$rD, (addc GPRC:$rA, immSExt16:$imm))]>,
PPC970_DGroup_Cracked;
def ADDICo : DForm_2<13, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"addic. $rD, $rA, $imm", IntGeneral,
[]>;
}
def ADDIS : DForm_2<15, (outs GPRC:$rD), (ins GPRC:$rA, symbolHi:$imm),
"addis $rD, $rA, $imm", IntSimple,
[(set GPRC:$rD, (add GPRC:$rA, imm16ShiftedSExt:$imm))]>;
def LA : DForm_2<14, (outs GPRC:$rD), (ins GPRC:$rA, symbolLo:$sym),
"la $rD, $sym($rA)", IntGeneral,
[(set GPRC:$rD, (add GPRC:$rA,
(PPClo tglobaladdr:$sym, 0)))]>;
def MULLI : DForm_2< 7, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"mulli $rD, $rA, $imm", IntMulLI,
[(set GPRC:$rD, (mul GPRC:$rA, immSExt16:$imm))]>;
let Defs = [CARRY] in {
def SUBFIC : DForm_2< 8, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"subfic $rD, $rA, $imm", IntGeneral,
[(set GPRC:$rD, (subc immSExt16:$imm, GPRC:$rA))]>;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
def LI : DForm_2_r0<14, (outs GPRC:$rD), (ins symbolLo:$imm),
"li $rD, $imm", IntSimple,
[(set GPRC:$rD, immSExt16:$imm)]>;
def LIS : DForm_2_r0<15, (outs GPRC:$rD), (ins symbolHi:$imm),
"lis $rD, $imm", IntSimple,
[(set GPRC:$rD, imm16ShiftedSExt:$imm)]>;
}
}
let PPC970_Unit = 1 in { // FXU Operations.
def ANDIo : DForm_4<28, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
"andi. $dst, $src1, $src2", IntGeneral,
[(set GPRC:$dst, (and GPRC:$src1, immZExt16:$src2))]>,
isDOT;
def ANDISo : DForm_4<29, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
"andis. $dst, $src1, $src2", IntGeneral,
[(set GPRC:$dst, (and GPRC:$src1,imm16ShiftedZExt:$src2))]>,
isDOT;
def ORI : DForm_4<24, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
"ori $dst, $src1, $src2", IntSimple,
[(set GPRC:$dst, (or GPRC:$src1, immZExt16:$src2))]>;
def ORIS : DForm_4<25, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
"oris $dst, $src1, $src2", IntSimple,
[(set GPRC:$dst, (or GPRC:$src1, imm16ShiftedZExt:$src2))]>;
def XORI : DForm_4<26, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
"xori $dst, $src1, $src2", IntSimple,
[(set GPRC:$dst, (xor GPRC:$src1, immZExt16:$src2))]>;
def XORIS : DForm_4<27, (outs GPRC:$dst), (ins GPRC:$src1, u16imm:$src2),
"xoris $dst, $src1, $src2", IntSimple,
[(set GPRC:$dst, (xor GPRC:$src1,imm16ShiftedZExt:$src2))]>;
def NOP : DForm_4_zero<24, (outs), (ins), "nop", IntSimple,
[]>;
def CMPWI : DForm_5_ext<11, (outs CRRC:$crD), (ins GPRC:$rA, s16imm:$imm),
"cmpwi $crD, $rA, $imm", IntCompare>;
def CMPLWI : DForm_6_ext<10, (outs CRRC:$dst), (ins GPRC:$src1, u16imm:$src2),
"cmplwi $dst, $src1, $src2", IntCompare>;
}
let PPC970_Unit = 1 in { // FXU Operations.
def NAND : XForm_6<31, 476, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"nand $rA, $rS, $rB", IntSimple,
[(set GPRC:$rA, (not (and GPRC:$rS, GPRC:$rB)))]>;
def AND : XForm_6<31, 28, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"and $rA, $rS, $rB", IntSimple,
[(set GPRC:$rA, (and GPRC:$rS, GPRC:$rB))]>;
def ANDC : XForm_6<31, 60, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"andc $rA, $rS, $rB", IntSimple,
[(set GPRC:$rA, (and GPRC:$rS, (not GPRC:$rB)))]>;
def OR : XForm_6<31, 444, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"or $rA, $rS, $rB", IntSimple,
[(set GPRC:$rA, (or GPRC:$rS, GPRC:$rB))]>;
def NOR : XForm_6<31, 124, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"nor $rA, $rS, $rB", IntSimple,
[(set GPRC:$rA, (not (or GPRC:$rS, GPRC:$rB)))]>;
def ORC : XForm_6<31, 412, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"orc $rA, $rS, $rB", IntSimple,
[(set GPRC:$rA, (or GPRC:$rS, (not GPRC:$rB)))]>;
def EQV : XForm_6<31, 284, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"eqv $rA, $rS, $rB", IntSimple,
[(set GPRC:$rA, (not (xor GPRC:$rS, GPRC:$rB)))]>;
def XOR : XForm_6<31, 316, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"xor $rA, $rS, $rB", IntSimple,
[(set GPRC:$rA, (xor GPRC:$rS, GPRC:$rB))]>;
def SLW : XForm_6<31, 24, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"slw $rA, $rS, $rB", IntGeneral,
[(set GPRC:$rA, (PPCshl GPRC:$rS, GPRC:$rB))]>;
def SRW : XForm_6<31, 536, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"srw $rA, $rS, $rB", IntGeneral,
[(set GPRC:$rA, (PPCsrl GPRC:$rS, GPRC:$rB))]>;
let Defs = [CARRY] in {
def SRAW : XForm_6<31, 792, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"sraw $rA, $rS, $rB", IntShift,
[(set GPRC:$rA, (PPCsra GPRC:$rS, GPRC:$rB))]>;
}
}
let PPC970_Unit = 1 in { // FXU Operations.
let Defs = [CARRY] in {
def SRAWI : XForm_10<31, 824, (outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH),
"srawi $rA, $rS, $SH", IntShift,
[(set GPRC:$rA, (sra GPRC:$rS, (i32 imm:$SH)))]>;
}
def CNTLZW : XForm_11<31, 26, (outs GPRC:$rA), (ins GPRC:$rS),
"cntlzw $rA, $rS", IntGeneral,
[(set GPRC:$rA, (ctlz GPRC:$rS))]>;
def EXTSB : XForm_11<31, 954, (outs GPRC:$rA), (ins GPRC:$rS),
"extsb $rA, $rS", IntSimple,
[(set GPRC:$rA, (sext_inreg GPRC:$rS, i8))]>;
def EXTSH : XForm_11<31, 922, (outs GPRC:$rA), (ins GPRC:$rS),
"extsh $rA, $rS", IntSimple,
[(set GPRC:$rA, (sext_inreg GPRC:$rS, i16))]>;
def CMPW : XForm_16_ext<31, 0, (outs CRRC:$crD), (ins GPRC:$rA, GPRC:$rB),
"cmpw $crD, $rA, $rB", IntCompare>;
def CMPLW : XForm_16_ext<31, 32, (outs CRRC:$crD), (ins GPRC:$rA, GPRC:$rB),
"cmplw $crD, $rA, $rB", IntCompare>;
}
let PPC970_Unit = 3 in { // FPU Operations.
//def FCMPO : XForm_17<63, 32, (outs CRRC:$crD), (ins FPRC:$fA, FPRC:$fB),
// "fcmpo $crD, $fA, $fB", FPCompare>;
def FCMPUS : XForm_17<63, 0, (outs CRRC:$crD), (ins F4RC:$fA, F4RC:$fB),
"fcmpu $crD, $fA, $fB", FPCompare>;
def FCMPUD : XForm_17<63, 0, (outs CRRC:$crD), (ins F8RC:$fA, F8RC:$fB),
"fcmpu $crD, $fA, $fB", FPCompare>;
let Uses = [RM] in {
def FCTIWZ : XForm_26<63, 15, (outs F8RC:$frD), (ins F8RC:$frB),
"fctiwz $frD, $frB", FPGeneral,
[(set F8RC:$frD, (PPCfctiwz F8RC:$frB))]>;
def FRSP : XForm_26<63, 12, (outs F4RC:$frD), (ins F8RC:$frB),
"frsp $frD, $frB", FPGeneral,
[(set F4RC:$frD, (fround F8RC:$frB))]>;
def FSQRT : XForm_26<63, 22, (outs F8RC:$frD), (ins F8RC:$frB),
"fsqrt $frD, $frB", FPSqrt,
[(set F8RC:$frD, (fsqrt F8RC:$frB))]>;
def FSQRTS : XForm_26<59, 22, (outs F4RC:$frD), (ins F4RC:$frB),
"fsqrts $frD, $frB", FPSqrt,
[(set F4RC:$frD, (fsqrt F4RC:$frB))]>;
}
}
/// Note that FMR is defined as pseudo-ops on the PPC970 because they are
/// often coalesced away and we don't want the dispatch group builder to think
/// that they will fill slots (which could cause the load of a LSU reject to
/// sneak into a d-group with a store).
def FMR : XForm_26<63, 72, (outs F4RC:$frD), (ins F4RC:$frB),
"fmr $frD, $frB", FPGeneral,
[]>, // (set F4RC:$frD, F4RC:$frB)
PPC970_Unit_Pseudo;
let PPC970_Unit = 3 in { // FPU Operations.
// These are artificially split into two different forms, for 4/8 byte FP.
def FABSS : XForm_26<63, 264, (outs F4RC:$frD), (ins F4RC:$frB),
"fabs $frD, $frB", FPGeneral,
[(set F4RC:$frD, (fabs F4RC:$frB))]>;
def FABSD : XForm_26<63, 264, (outs F8RC:$frD), (ins F8RC:$frB),
"fabs $frD, $frB", FPGeneral,
[(set F8RC:$frD, (fabs F8RC:$frB))]>;
def FNABSS : XForm_26<63, 136, (outs F4RC:$frD), (ins F4RC:$frB),
"fnabs $frD, $frB", FPGeneral,
[(set F4RC:$frD, (fneg (fabs F4RC:$frB)))]>;
def FNABSD : XForm_26<63, 136, (outs F8RC:$frD), (ins F8RC:$frB),
"fnabs $frD, $frB", FPGeneral,
[(set F8RC:$frD, (fneg (fabs F8RC:$frB)))]>;
def FNEGS : XForm_26<63, 40, (outs F4RC:$frD), (ins F4RC:$frB),
"fneg $frD, $frB", FPGeneral,
[(set F4RC:$frD, (fneg F4RC:$frB))]>;
def FNEGD : XForm_26<63, 40, (outs F8RC:$frD), (ins F8RC:$frB),
"fneg $frD, $frB", FPGeneral,
[(set F8RC:$frD, (fneg F8RC:$frB))]>;
}
// XL-Form instructions. condition register logical ops.
//
def MCRF : XLForm_3<19, 0, (outs CRRC:$BF), (ins CRRC:$BFA),
"mcrf $BF, $BFA", BrMCR>,
PPC970_DGroup_First, PPC970_Unit_CRU;
def CREQV : XLForm_1<19, 289, (outs CRBITRC:$CRD),
(ins CRBITRC:$CRA, CRBITRC:$CRB),
"creqv $CRD, $CRA, $CRB", BrCR,
[]>;
def CROR : XLForm_1<19, 449, (outs CRBITRC:$CRD),
(ins CRBITRC:$CRA, CRBITRC:$CRB),
"cror $CRD, $CRA, $CRB", BrCR,
[]>;
def CRSET : XLForm_1_ext<19, 289, (outs CRBITRC:$dst), (ins),
"creqv $dst, $dst, $dst", BrCR,
[]>;
def CRUNSET: XLForm_1_ext<19, 193, (outs CRBITRC:$dst), (ins),
"crxor $dst, $dst, $dst", BrCR,
[]>;
let Defs = [CR1EQ], CRD = 6 in {
def CR6SET : XLForm_1_ext<19, 289, (outs), (ins),
"creqv 6, 6, 6", BrCR,
[(PPCcr6set)]>;
def CR6UNSET: XLForm_1_ext<19, 193, (outs), (ins),
"crxor 6, 6, 6", BrCR,
[(PPCcr6unset)]>;
}
// XFX-Form instructions. Instructions that deal with SPRs.
//
let Uses = [CTR] in {
def MFCTR : XFXForm_1_ext<31, 339, 9, (outs GPRC:$rT), (ins),
"mfctr $rT", SprMFSPR>,
PPC970_DGroup_First, PPC970_Unit_FXU;
}
let Defs = [CTR], Pattern = [(PPCmtctr GPRC:$rS)] in {
def MTCTR : XFXForm_7_ext<31, 467, 9, (outs), (ins GPRC:$rS),
"mtctr $rS", SprMTSPR>,
PPC970_DGroup_First, PPC970_Unit_FXU;
}
let Defs = [LR] in {
def MTLR : XFXForm_7_ext<31, 467, 8, (outs), (ins GPRC:$rS),
"mtlr $rS", SprMTSPR>,
PPC970_DGroup_First, PPC970_Unit_FXU;
}
let Uses = [LR] in {
def MFLR : XFXForm_1_ext<31, 339, 8, (outs GPRC:$rT), (ins),
"mflr $rT", SprMFSPR>,
PPC970_DGroup_First, PPC970_Unit_FXU;
}
// Move to/from VRSAVE: despite being a SPR, the VRSAVE register is renamed like
// a GPR on the PPC970. As such, copies in and out have the same performance
// characteristics as an OR instruction.
def MTVRSAVE : XFXForm_7_ext<31, 467, 256, (outs), (ins GPRC:$rS),
"mtspr 256, $rS", IntGeneral>,
PPC970_DGroup_Single, PPC970_Unit_FXU;
def MFVRSAVE : XFXForm_1_ext<31, 339, 256, (outs GPRC:$rT), (ins),
"mfspr $rT, 256", IntGeneral>,
PPC970_DGroup_First, PPC970_Unit_FXU;
def MTCRF : XFXForm_5<31, 144, (outs crbitm:$FXM), (ins GPRC:$rS),
"mtcrf $FXM, $rS", BrMCRX>,
PPC970_MicroCode, PPC970_Unit_CRU;
// This is a pseudo for MFCR, which implicitly uses all 8 of its subregisters;
// declaring that here gives the local register allocator problems with this:
// vreg = MCRF CR0
// MFCR <kill of whatever preg got assigned to vreg>
// while not declaring it breaks DeadMachineInstructionElimination.
// As it turns out, in all cases where we currently use this,
// we're only interested in one subregister of it. Represent this in the
// instruction to keep the register allocator from becoming confused.
//
// FIXME: Make this a real Pseudo instruction when the JIT switches to MC.
def MFCRpseud: XFXForm_3<31, 19, (outs GPRC:$rT), (ins crbitm:$FXM),
"#MFCRpseud", SprMFCR>,
PPC970_MicroCode, PPC970_Unit_CRU;
def MFCR : XFXForm_3<31, 19, (outs GPRC:$rT), (ins),
"mfcr $rT", SprMFCR>,
PPC970_MicroCode, PPC970_Unit_CRU;
def MFOCRF: XFXForm_5a<31, 19, (outs GPRC:$rT), (ins crbitm:$FXM),
"mfocrf $rT, $FXM", SprMFCR>,
PPC970_DGroup_First, PPC970_Unit_CRU;
// Instructions to manipulate FPSCR. Only long double handling uses these.
// FPSCR is not modelled; we use the SDNode Flag to keep things in order.
let Uses = [RM], Defs = [RM] in {
def MTFSB0 : XForm_43<63, 70, (outs), (ins u5imm:$FM),
"mtfsb0 $FM", IntMTFSB0,
[(PPCmtfsb0 (i32 imm:$FM))]>,
PPC970_DGroup_Single, PPC970_Unit_FPU;
def MTFSB1 : XForm_43<63, 38, (outs), (ins u5imm:$FM),
"mtfsb1 $FM", IntMTFSB0,
[(PPCmtfsb1 (i32 imm:$FM))]>,
PPC970_DGroup_Single, PPC970_Unit_FPU;
// MTFSF does not actually produce an FP result. We pretend it copies
// input reg B to the output. If we didn't do this it would look like the
// instruction had no outputs (because we aren't modelling the FPSCR) and
// it would be deleted.
def MTFSF : XFLForm<63, 711, (outs F8RC:$FRA),
(ins i32imm:$FM, F8RC:$rT, F8RC:$FRB),
"mtfsf $FM, $rT", "$FRB = $FRA", IntMTFSB0,
[(set F8RC:$FRA, (PPCmtfsf (i32 imm:$FM),
F8RC:$rT, F8RC:$FRB))]>,
PPC970_DGroup_Single, PPC970_Unit_FPU;
}
let Uses = [RM] in {
def MFFS : XForm_42<63, 583, (outs F8RC:$rT), (ins),
"mffs $rT", IntMFFS,
[(set F8RC:$rT, (PPCmffs))]>,
PPC970_DGroup_Single, PPC970_Unit_FPU;
def FADDrtz: AForm_2<63, 21,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB),
"fadd $FRT, $FRA, $FRB", FPAddSub,
[(set F8RC:$FRT, (PPCfaddrtz F8RC:$FRA, F8RC:$FRB))]>,
PPC970_DGroup_Single, PPC970_Unit_FPU;
}
let PPC970_Unit = 1 in { // FXU Operations.
// XO-Form instructions. Arithmetic instructions that can set overflow bit
//
def ADD4 : XOForm_1<31, 266, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"add $rT, $rA, $rB", IntSimple,
[(set GPRC:$rT, (add GPRC:$rA, GPRC:$rB))]>;
let Defs = [CARRY] in {
def ADDC : XOForm_1<31, 10, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"addc $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (addc GPRC:$rA, GPRC:$rB))]>,
PPC970_DGroup_Cracked;
}
def DIVW : XOForm_1<31, 491, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"divw $rT, $rA, $rB", IntDivW,
[(set GPRC:$rT, (sdiv GPRC:$rA, GPRC:$rB))]>,
PPC970_DGroup_First, PPC970_DGroup_Cracked;
def DIVWU : XOForm_1<31, 459, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"divwu $rT, $rA, $rB", IntDivW,
[(set GPRC:$rT, (udiv GPRC:$rA, GPRC:$rB))]>,
PPC970_DGroup_First, PPC970_DGroup_Cracked;
def MULHW : XOForm_1<31, 75, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"mulhw $rT, $rA, $rB", IntMulHW,
[(set GPRC:$rT, (mulhs GPRC:$rA, GPRC:$rB))]>;
def MULHWU : XOForm_1<31, 11, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"mulhwu $rT, $rA, $rB", IntMulHWU,
[(set GPRC:$rT, (mulhu GPRC:$rA, GPRC:$rB))]>;
def MULLW : XOForm_1<31, 235, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"mullw $rT, $rA, $rB", IntMulHW,
[(set GPRC:$rT, (mul GPRC:$rA, GPRC:$rB))]>;
def SUBF : XOForm_1<31, 40, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"subf $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (sub GPRC:$rB, GPRC:$rA))]>;
let Defs = [CARRY] in {
def SUBFC : XOForm_1<31, 8, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"subfc $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (subc GPRC:$rB, GPRC:$rA))]>,
PPC970_DGroup_Cracked;
}
def NEG : XOForm_3<31, 104, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"neg $rT, $rA", IntSimple,
[(set GPRC:$rT, (ineg GPRC:$rA))]>;
let Uses = [CARRY], Defs = [CARRY] in {
def ADDE : XOForm_1<31, 138, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"adde $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (adde GPRC:$rA, GPRC:$rB))]>;
def ADDME : XOForm_3<31, 234, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"addme $rT, $rA", IntGeneral,
[(set GPRC:$rT, (adde GPRC:$rA, -1))]>;
def ADDZE : XOForm_3<31, 202, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"addze $rT, $rA", IntGeneral,
[(set GPRC:$rT, (adde GPRC:$rA, 0))]>;
def SUBFE : XOForm_1<31, 136, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"subfe $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (sube GPRC:$rB, GPRC:$rA))]>;
def SUBFME : XOForm_3<31, 232, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"subfme $rT, $rA", IntGeneral,
[(set GPRC:$rT, (sube -1, GPRC:$rA))]>;
def SUBFZE : XOForm_3<31, 200, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"subfze $rT, $rA", IntGeneral,
[(set GPRC:$rT, (sube 0, GPRC:$rA))]>;
}
}
// A-Form instructions. Most of the instructions executed in the FPU are of
// this type.
//
let PPC970_Unit = 3 in { // FPU Operations.
let Uses = [RM] in {
def FMADD : AForm_1<63, 29,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
"fmadd $FRT, $FRA, $FRC, $FRB", FPFused,
[(set F8RC:$FRT,
(fma F8RC:$FRA, F8RC:$FRC, F8RC:$FRB))]>;
def FMADDS : AForm_1<59, 29,
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
"fmadds $FRT, $FRA, $FRC, $FRB", FPGeneral,
[(set F4RC:$FRT,
(fma F4RC:$FRA, F4RC:$FRC, F4RC:$FRB))]>;
def FMSUB : AForm_1<63, 28,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
"fmsub $FRT, $FRA, $FRC, $FRB", FPFused,
[(set F8RC:$FRT,
(fma F8RC:$FRA, F8RC:$FRC, (fneg F8RC:$FRB)))]>;
def FMSUBS : AForm_1<59, 28,
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
"fmsubs $FRT, $FRA, $FRC, $FRB", FPGeneral,
[(set F4RC:$FRT,
(fma F4RC:$FRA, F4RC:$FRC, (fneg F4RC:$FRB)))]>;
def FNMADD : AForm_1<63, 31,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
"fnmadd $FRT, $FRA, $FRC, $FRB", FPFused,
[(set F8RC:$FRT,
(fneg (fma F8RC:$FRA, F8RC:$FRC, F8RC:$FRB)))]>;
def FNMADDS : AForm_1<59, 31,
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
"fnmadds $FRT, $FRA, $FRC, $FRB", FPGeneral,
[(set F4RC:$FRT,
(fneg (fma F4RC:$FRA, F4RC:$FRC, F4RC:$FRB)))]>;
def FNMSUB : AForm_1<63, 30,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
"fnmsub $FRT, $FRA, $FRC, $FRB", FPFused,
[(set F8RC:$FRT, (fneg (fma F8RC:$FRA, F8RC:$FRC,
(fneg F8RC:$FRB))))]>;
def FNMSUBS : AForm_1<59, 30,
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
"fnmsubs $FRT, $FRA, $FRC, $FRB", FPGeneral,
[(set F4RC:$FRT, (fneg (fma F4RC:$FRA, F4RC:$FRC,
(fneg F4RC:$FRB))))]>;
}
// FSEL is artificially split into 4 and 8-byte forms for the result. To avoid
// having 4 of these, force the comparison to always be an 8-byte double (code
// should use an FMRSD if the input comparison value really wants to be a float)
// and 4/8 byte forms for the result and operand type..
def FSELD : AForm_1<63, 23,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC, F8RC:$FRB),
"fsel $FRT, $FRA, $FRC, $FRB", FPGeneral,
[(set F8RC:$FRT, (PPCfsel F8RC:$FRA,F8RC:$FRC,F8RC:$FRB))]>;
def FSELS : AForm_1<63, 23,
(outs F4RC:$FRT), (ins F8RC:$FRA, F4RC:$FRC, F4RC:$FRB),
"fsel $FRT, $FRA, $FRC, $FRB", FPGeneral,
[(set F4RC:$FRT, (PPCfsel F8RC:$FRA,F4RC:$FRC,F4RC:$FRB))]>;
let Uses = [RM] in {
def FADD : AForm_2<63, 21,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB),
"fadd $FRT, $FRA, $FRB", FPAddSub,
[(set F8RC:$FRT, (fadd F8RC:$FRA, F8RC:$FRB))]>;
def FADDS : AForm_2<59, 21,
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB),
"fadds $FRT, $FRA, $FRB", FPGeneral,
[(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))]>;
def FDIV : AForm_2<63, 18,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB),
"fdiv $FRT, $FRA, $FRB", FPDivD,
[(set F8RC:$FRT, (fdiv F8RC:$FRA, F8RC:$FRB))]>;
def FDIVS : AForm_2<59, 18,
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB),
"fdivs $FRT, $FRA, $FRB", FPDivS,
[(set F4RC:$FRT, (fdiv F4RC:$FRA, F4RC:$FRB))]>;
def FMUL : AForm_3<63, 25,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRC),
"fmul $FRT, $FRA, $FRC", FPFused,
[(set F8RC:$FRT, (fmul F8RC:$FRA, F8RC:$FRC))]>;
def FMULS : AForm_3<59, 25,
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRC),
"fmuls $FRT, $FRA, $FRC", FPGeneral,
[(set F4RC:$FRT, (fmul F4RC:$FRA, F4RC:$FRC))]>;
def FSUB : AForm_2<63, 20,
(outs F8RC:$FRT), (ins F8RC:$FRA, F8RC:$FRB),
"fsub $FRT, $FRA, $FRB", FPAddSub,
[(set F8RC:$FRT, (fsub F8RC:$FRA, F8RC:$FRB))]>;
def FSUBS : AForm_2<59, 20,
(outs F4RC:$FRT), (ins F4RC:$FRA, F4RC:$FRB),
"fsubs $FRT, $FRA, $FRB", FPGeneral,
[(set F4RC:$FRT, (fsub F4RC:$FRA, F4RC:$FRB))]>;
}
}
let PPC970_Unit = 1 in { // FXU Operations.
def ISEL : AForm_4<31, 15,
(outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB, pred:$cond),
"isel $rT, $rA, $rB, $cond", IntGeneral,
[]>;
}
let PPC970_Unit = 1 in { // FXU Operations.
// M-Form instructions. rotate and mask instructions.
//
let isCommutable = 1 in {
// RLWIMI can be commuted if the rotate amount is zero.
def RLWIMI : MForm_2<20,
(outs GPRC:$rA), (ins GPRC:$rSi, GPRC:$rS, u5imm:$SH, u5imm:$MB,
u5imm:$ME), "rlwimi $rA, $rS, $SH, $MB, $ME", IntRotate,
[]>, PPC970_DGroup_Cracked, RegConstraint<"$rSi = $rA">,
NoEncode<"$rSi">;
}
def RLWINM : MForm_2<21,
(outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
"rlwinm $rA, $rS, $SH, $MB, $ME", IntGeneral,
[]>;
def RLWINMo : MForm_2<21,
(outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
"rlwinm. $rA, $rS, $SH, $MB, $ME", IntGeneral,
[]>, isDOT, PPC970_DGroup_Cracked;
def RLWNM : MForm_2<23,
(outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB, u5imm:$MB, u5imm:$ME),
"rlwnm $rA, $rS, $rB, $MB, $ME", IntGeneral,
[]>;
}
//===----------------------------------------------------------------------===//
// PowerPC Instruction Patterns
//
// Arbitrary immediate support. Implement in terms of LIS/ORI.
def : Pat<(i32 imm:$imm),
(ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Implement the 'not' operation with the NOR instruction.
def NOT : Pat<(not GPRC:$in),
(NOR GPRC:$in, GPRC:$in)>;
// ADD an arbitrary immediate.
def : Pat<(add GPRC:$in, imm:$imm),
(ADDIS (ADDI GPRC:$in, (LO16 imm:$imm)), (HA16 imm:$imm))>;
// OR an arbitrary immediate.
def : Pat<(or GPRC:$in, imm:$imm),
(ORIS (ORI GPRC:$in, (LO16 imm:$imm)), (HI16 imm:$imm))>;
// XOR an arbitrary immediate.
def : Pat<(xor GPRC:$in, imm:$imm),
(XORIS (XORI GPRC:$in, (LO16 imm:$imm)), (HI16 imm:$imm))>;
// SUBFIC
def : Pat<(sub immSExt16:$imm, GPRC:$in),
(SUBFIC GPRC:$in, imm:$imm)>;
// SHL/SRL
def : Pat<(shl GPRC:$in, (i32 imm:$imm)),
(RLWINM GPRC:$in, imm:$imm, 0, (SHL32 imm:$imm))>;
def : Pat<(srl GPRC:$in, (i32 imm:$imm)),
(RLWINM GPRC:$in, (SRL32 imm:$imm), imm:$imm, 31)>;
// ROTL
def : Pat<(rotl GPRC:$in, GPRC:$sh),
(RLWNM GPRC:$in, GPRC:$sh, 0, 31)>;
def : Pat<(rotl GPRC:$in, (i32 imm:$imm)),
(RLWINM GPRC:$in, imm:$imm, 0, 31)>;
// RLWNM
def : Pat<(and (rotl GPRC:$in, GPRC:$sh), maskimm32:$imm),
(RLWNM GPRC:$in, GPRC:$sh, (MB maskimm32:$imm), (ME maskimm32:$imm))>;
// Calls
def : Pat<(PPCcall_Darwin (i32 tglobaladdr:$dst)),
(BL_Darwin tglobaladdr:$dst)>;
def : Pat<(PPCcall_Darwin (i32 texternalsym:$dst)),
(BL_Darwin texternalsym:$dst)>;
def : Pat<(PPCcall_SVR4 (i32 tglobaladdr:$dst)),
(BL_SVR4 tglobaladdr:$dst)>;
def : Pat<(PPCcall_SVR4 (i32 texternalsym:$dst)),
(BL_SVR4 texternalsym:$dst)>;
def : Pat<(PPCtc_return (i32 tglobaladdr:$dst), imm:$imm),
(TCRETURNdi tglobaladdr:$dst, imm:$imm)>;
def : Pat<(PPCtc_return (i32 texternalsym:$dst), imm:$imm),
(TCRETURNdi texternalsym:$dst, imm:$imm)>;
def : Pat<(PPCtc_return CTRRC:$dst, imm:$imm),
(TCRETURNri CTRRC:$dst, imm:$imm)>;
// Hi and Lo for Darwin Global Addresses.
def : Pat<(PPChi tglobaladdr:$in, 0), (LIS tglobaladdr:$in)>;
def : Pat<(PPClo tglobaladdr:$in, 0), (LI tglobaladdr:$in)>;
def : Pat<(PPChi tconstpool:$in, 0), (LIS tconstpool:$in)>;
def : Pat<(PPClo tconstpool:$in, 0), (LI tconstpool:$in)>;
def : Pat<(PPChi tjumptable:$in, 0), (LIS tjumptable:$in)>;
def : Pat<(PPClo tjumptable:$in, 0), (LI tjumptable:$in)>;
def : Pat<(PPChi tblockaddress:$in, 0), (LIS tblockaddress:$in)>;
def : Pat<(PPClo tblockaddress:$in, 0), (LI tblockaddress:$in)>;
def : Pat<(PPChi tglobaltlsaddr:$g, GPRC:$in),
(ADDIS GPRC:$in, tglobaltlsaddr:$g)>;
def : Pat<(PPClo tglobaltlsaddr:$g, GPRC:$in),
(ADDIL GPRC:$in, tglobaltlsaddr:$g)>;
def : Pat<(add GPRC:$in, (PPChi tglobaladdr:$g, 0)),
(ADDIS GPRC:$in, tglobaladdr:$g)>;
def : Pat<(add GPRC:$in, (PPChi tconstpool:$g, 0)),
(ADDIS GPRC:$in, tconstpool:$g)>;
def : Pat<(add GPRC:$in, (PPChi tjumptable:$g, 0)),
(ADDIS GPRC:$in, tjumptable:$g)>;
def : Pat<(add GPRC:$in, (PPChi tblockaddress:$g, 0)),
(ADDIS GPRC:$in, tblockaddress:$g)>;
// Standard shifts. These are represented separately from the real shifts above
// so that we can distinguish between shifts that allow 5-bit and 6-bit shift
// amounts.
def : Pat<(sra GPRC:$rS, GPRC:$rB),
(SRAW GPRC:$rS, GPRC:$rB)>;
def : Pat<(srl GPRC:$rS, GPRC:$rB),
(SRW GPRC:$rS, GPRC:$rB)>;
def : Pat<(shl GPRC:$rS, GPRC:$rB),
(SLW GPRC:$rS, GPRC:$rB)>;
def : Pat<(zextloadi1 iaddr:$src),
(LBZ iaddr:$src)>;
def : Pat<(zextloadi1 xaddr:$src),
(LBZX xaddr:$src)>;
def : Pat<(extloadi1 iaddr:$src),
(LBZ iaddr:$src)>;
def : Pat<(extloadi1 xaddr:$src),
(LBZX xaddr:$src)>;
def : Pat<(extloadi8 iaddr:$src),
(LBZ iaddr:$src)>;
def : Pat<(extloadi8 xaddr:$src),
(LBZX xaddr:$src)>;
def : Pat<(extloadi16 iaddr:$src),
(LHZ iaddr:$src)>;
def : Pat<(extloadi16 xaddr:$src),
(LHZX xaddr:$src)>;
def : Pat<(f64 (extloadf32 iaddr:$src)),
(COPY_TO_REGCLASS (LFS iaddr:$src), F8RC)>;
def : Pat<(f64 (extloadf32 xaddr:$src)),
(COPY_TO_REGCLASS (LFSX xaddr:$src), F8RC)>;
def : Pat<(f64 (fextend F4RC:$src)),
(COPY_TO_REGCLASS F4RC:$src, F8RC)>;
// Memory barriers
def : Pat<(membarrier (i32 imm /*ll*/),
(i32 imm /*ls*/),
(i32 imm /*sl*/),
(i32 imm /*ss*/),
(i32 imm /*device*/)),
(SYNC)>;
def : Pat<(atomic_fence (imm), (imm)), (SYNC)>;
include "PPCInstrAltivec.td"
include "PPCInstr64Bit.td"