| //===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the integer arithmetic instructions in the X86 |
| // architecture. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // LEA - Load Effective Address |
| let SchedRW = [WriteLEA] in { |
| let neverHasSideEffects = 1 in |
| def LEA16r : I<0x8D, MRMSrcMem, |
| (outs GR16:$dst), (ins i32mem:$src), |
| "lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize; |
| let isReMaterializable = 1 in |
| def LEA32r : I<0x8D, MRMSrcMem, |
| (outs GR32:$dst), (ins i32mem:$src), |
| "lea{l}\t{$src|$dst}, {$dst|$src}", |
| [(set GR32:$dst, lea32addr:$src)], IIC_LEA>, |
| Requires<[In32BitMode]>; |
| |
| def LEA64_32r : I<0x8D, MRMSrcMem, |
| (outs GR32:$dst), (ins lea64_32mem:$src), |
| "lea{l}\t{$src|$dst}, {$dst|$src}", |
| [(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>, |
| Requires<[In64BitMode]>; |
| |
| let isReMaterializable = 1 in |
| def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src), |
| "lea{q}\t{$src|$dst}, {$dst|$src}", |
| [(set GR64:$dst, lea64addr:$src)], IIC_LEA>; |
| } // SchedRW |
| |
| //===----------------------------------------------------------------------===// |
| // Fixed-Register Multiplication and Division Instructions. |
| // |
| |
| // SchedModel info for instruction that loads one value and gets the second |
| // (and possibly third) value from a register. |
| // This is used for instructions that put the memory operands before other |
| // uses. |
| class SchedLoadReg<SchedWrite SW> : Sched<[SW, |
| // Memory operand. |
| ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, |
| // Register reads (implicit or explicit). |
| ReadAfterLd, ReadAfterLd]>; |
| |
| // Extra precision multiplication |
| |
| // AL is really implied by AX, but the registers in Defs must match the |
| // SDNode results (i8, i32). |
| // AL,AH = AL*GR8 |
| let Defs = [AL,EFLAGS,AX], Uses = [AL] in |
| def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", |
| // FIXME: Used for 8-bit mul, ignore result upper 8 bits. |
| // This probably ought to be moved to a def : Pat<> if the |
| // syntax can be accepted. |
| [(set AL, (mul AL, GR8:$src)), |
| (implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>; |
| // AX,DX = AX*GR16 |
| let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in |
| def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), |
| "mul{w}\t$src", |
| [], IIC_MUL16_REG>, OpSize, Sched<[WriteIMul]>; |
| // EAX,EDX = EAX*GR32 |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in |
| def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), |
| "mul{l}\t$src", |
| [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/], |
| IIC_MUL32_REG>, Sched<[WriteIMul]>; |
| // RAX,RDX = RAX*GR64 |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in |
| def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src), |
| "mul{q}\t$src", |
| [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/], |
| IIC_MUL64>, Sched<[WriteIMul]>; |
| // AL,AH = AL*[mem8] |
| let Defs = [AL,EFLAGS,AX], Uses = [AL] in |
| def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), |
| "mul{b}\t$src", |
| // FIXME: Used for 8-bit mul, ignore result upper 8 bits. |
| // This probably ought to be moved to a def : Pat<> if the |
| // syntax can be accepted. |
| [(set AL, (mul AL, (loadi8 addr:$src))), |
| (implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>; |
| // AX,DX = AX*[mem16] |
| let mayLoad = 1, neverHasSideEffects = 1 in { |
| let Defs = [AX,DX,EFLAGS], Uses = [AX] in |
| def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), |
| "mul{w}\t$src", |
| [], IIC_MUL16_MEM>, OpSize, SchedLoadReg<WriteIMulLd>; |
| // EAX,EDX = EAX*[mem32] |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in |
| def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), |
| "mul{l}\t$src", |
| [], IIC_MUL32_MEM>, SchedLoadReg<WriteIMulLd>; |
| // RAX,RDX = RAX*[mem64] |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in |
| def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src), |
| "mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>; |
| } |
| |
| let neverHasSideEffects = 1 in { |
| // AL,AH = AL*GR8 |
| let Defs = [AL,EFLAGS,AX], Uses = [AL] in |
| def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", [], |
| IIC_IMUL8>, Sched<[WriteIMul]>; |
| // AX,DX = AX*GR16 |
| let Defs = [AX,DX,EFLAGS], Uses = [AX] in |
| def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", [], |
| IIC_IMUL16_RR>, OpSize, Sched<[WriteIMul]>; |
| // EAX,EDX = EAX*GR32 |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in |
| def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", [], |
| IIC_IMUL32_RR>, Sched<[WriteIMul]>; |
| // RAX,RDX = RAX*GR64 |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in |
| def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [], |
| IIC_IMUL64_RR>, Sched<[WriteIMul]>; |
| |
| let mayLoad = 1 in { |
| // AL,AH = AL*[mem8] |
| let Defs = [AL,EFLAGS,AX], Uses = [AL] in |
| def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), |
| "imul{b}\t$src", [], IIC_IMUL8>, SchedLoadReg<WriteIMulLd>; |
| // AX,DX = AX*[mem16] |
| let Defs = [AX,DX,EFLAGS], Uses = [AX] in |
| def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), |
| "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize, |
| SchedLoadReg<WriteIMulLd>; |
| // EAX,EDX = EAX*[mem32] |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in |
| def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), |
| "imul{l}\t$src", [], IIC_IMUL32_MEM>, SchedLoadReg<WriteIMulLd>; |
| // RAX,RDX = RAX*[mem64] |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in |
| def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), |
| "imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>; |
| } |
| } // neverHasSideEffects |
| |
| |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst" in { |
| |
| let isCommutable = 1, SchedRW = [WriteIMul] in { |
| // X = IMUL Y, Z --> X = IMUL Z, Y |
| // Register-Register Signed Integer Multiply |
| def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), |
| "imul{w}\t{$src2, $dst|$dst, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag GR16:$src1, GR16:$src2))], IIC_IMUL16_RR>, |
| TB, OpSize; |
| def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), |
| "imul{l}\t{$src2, $dst|$dst, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag GR32:$src1, GR32:$src2))], IIC_IMUL32_RR>, |
| TB; |
| def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), |
| (ins GR64:$src1, GR64:$src2), |
| "imul{q}\t{$src2, $dst|$dst, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>, |
| TB; |
| } // isCommutable, SchedRW |
| |
| // Register-Memory Signed Integer Multiply |
| let SchedRW = [WriteIMulLd, ReadAfterLd] in { |
| def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), |
| (ins GR16:$src1, i16mem:$src2), |
| "imul{w}\t{$src2, $dst|$dst, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag GR16:$src1, (load addr:$src2)))], |
| IIC_IMUL16_RM>, |
| TB, OpSize; |
| def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), |
| (ins GR32:$src1, i32mem:$src2), |
| "imul{l}\t{$src2, $dst|$dst, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag GR32:$src1, (load addr:$src2)))], |
| IIC_IMUL32_RM>, |
| TB; |
| def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), |
| (ins GR64:$src1, i64mem:$src2), |
| "imul{q}\t{$src2, $dst|$dst, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag GR64:$src1, (load addr:$src2)))], |
| IIC_IMUL64_RM>, |
| TB; |
| } // SchedRW |
| } // Constraints = "$src1 = $dst" |
| |
| } // Defs = [EFLAGS] |
| |
| // Surprisingly enough, these are not two address instructions! |
| let Defs = [EFLAGS] in { |
| let SchedRW = [WriteIMul] in { |
| // Register-Integer Signed Integer Multiply |
| def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 |
| (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), |
| "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag GR16:$src1, imm:$src2))], |
| IIC_IMUL16_RRI>, OpSize; |
| def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 |
| (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), |
| "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag GR16:$src1, i16immSExt8:$src2))], |
| IIC_IMUL16_RRI>, |
| OpSize; |
| def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32 |
| (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), |
| "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag GR32:$src1, imm:$src2))], |
| IIC_IMUL32_RRI>; |
| def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8 |
| (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), |
| "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag GR32:$src1, i32immSExt8:$src2))], |
| IIC_IMUL32_RRI>; |
| def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32 |
| (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), |
| "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag GR64:$src1, i64immSExt32:$src2))], |
| IIC_IMUL64_RRI>; |
| def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8 |
| (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), |
| "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag GR64:$src1, i64immSExt8:$src2))], |
| IIC_IMUL64_RRI>; |
| } // SchedRW |
| |
| // Memory-Integer Signed Integer Multiply |
| let SchedRW = [WriteIMulLd] in { |
| def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 |
| (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), |
| "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag (load addr:$src1), imm:$src2))], |
| IIC_IMUL16_RMI>, |
| OpSize; |
| def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8 |
| (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2), |
| "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag (load addr:$src1), |
| i16immSExt8:$src2))], IIC_IMUL16_RMI>, |
| OpSize; |
| def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32 |
| (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2), |
| "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag (load addr:$src1), imm:$src2))], |
| IIC_IMUL32_RMI>; |
| def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8 |
| (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2), |
| "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag (load addr:$src1), |
| i32immSExt8:$src2))], |
| IIC_IMUL32_RMI>; |
| def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32 |
| (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2), |
| "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag (load addr:$src1), |
| i64immSExt32:$src2))], |
| IIC_IMUL64_RMI>; |
| def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8 |
| (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2), |
| "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag (load addr:$src1), |
| i64immSExt8:$src2))], |
| IIC_IMUL64_RMI>; |
| } // SchedRW |
| } // Defs = [EFLAGS] |
| |
| |
| |
| |
| // unsigned division/remainder |
| let hasSideEffects = 1 in { // so that we don't speculatively execute |
| let SchedRW = [WriteIDiv] in { |
| let Defs = [AL,EFLAGS,AX], Uses = [AX] in |
| def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH |
| "div{b}\t$src", [], IIC_DIV8_REG>; |
| let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in |
| def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX |
| "div{w}\t$src", [], IIC_DIV16>, OpSize; |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in |
| def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX |
| "div{l}\t$src", [], IIC_DIV32>; |
| // RDX:RAX/r64 = RAX,RDX |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in |
| def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), |
| "div{q}\t$src", [], IIC_DIV64>; |
| } // SchedRW |
| |
| let mayLoad = 1 in { |
| let Defs = [AL,EFLAGS,AX], Uses = [AX] in |
| def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH |
| "div{b}\t$src", [], IIC_DIV8_MEM>, |
| SchedLoadReg<WriteIDivLd>; |
| let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in |
| def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX |
| "div{w}\t$src", [], IIC_DIV16>, OpSize, |
| SchedLoadReg<WriteIDivLd>; |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX |
| def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), |
| "div{l}\t$src", [], IIC_DIV32>, |
| SchedLoadReg<WriteIDivLd>; |
| // RDX:RAX/[mem64] = RAX,RDX |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in |
| def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), |
| "div{q}\t$src", [], IIC_DIV64>, |
| SchedLoadReg<WriteIDivLd>; |
| } |
| |
| // Signed division/remainder. |
| let SchedRW = [WriteIDiv] in { |
| let Defs = [AL,EFLAGS,AX], Uses = [AX] in |
| def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH |
| "idiv{b}\t$src", [], IIC_IDIV8>; |
| let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in |
| def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX |
| "idiv{w}\t$src", [], IIC_IDIV16>, OpSize; |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in |
| def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX |
| "idiv{l}\t$src", [], IIC_IDIV32>; |
| // RDX:RAX/r64 = RAX,RDX |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in |
| def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), |
| "idiv{q}\t$src", [], IIC_IDIV64>; |
| } // SchedRW |
| |
| let mayLoad = 1 in { |
| let Defs = [AL,EFLAGS,AX], Uses = [AX] in |
| def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH |
| "idiv{b}\t$src", [], IIC_IDIV8>, |
| SchedLoadReg<WriteIDivLd>; |
| let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in |
| def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX |
| "idiv{w}\t$src", [], IIC_IDIV16>, OpSize, |
| SchedLoadReg<WriteIDivLd>; |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX |
| def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), |
| "idiv{l}\t$src", [], IIC_IDIV32>, |
| SchedLoadReg<WriteIDivLd>; |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX |
| def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), |
| "idiv{q}\t$src", [], IIC_IDIV64>, |
| SchedLoadReg<WriteIDivLd>; |
| } |
| } // hasSideEffects = 0 |
| |
| //===----------------------------------------------------------------------===// |
| // Two address Instructions. |
| // |
| |
| // unary instructions |
| let CodeSize = 2 in { |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { |
| def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1), |
| "neg{b}\t$dst", |
| [(set GR8:$dst, (ineg GR8:$src1)), |
| (implicit EFLAGS)], IIC_UNARY_REG>; |
| def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1), |
| "neg{w}\t$dst", |
| [(set GR16:$dst, (ineg GR16:$src1)), |
| (implicit EFLAGS)], IIC_UNARY_REG>, OpSize; |
| def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1), |
| "neg{l}\t$dst", |
| [(set GR32:$dst, (ineg GR32:$src1)), |
| (implicit EFLAGS)], IIC_UNARY_REG>; |
| def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst", |
| [(set GR64:$dst, (ineg GR64:$src1)), |
| (implicit EFLAGS)], IIC_UNARY_REG>; |
| } // Constraints = "$src1 = $dst", SchedRW |
| |
| // Read-modify-write negate. |
| let SchedRW = [WriteALULd, WriteRMW] in { |
| def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), |
| "neg{b}\t$dst", |
| [(store (ineg (loadi8 addr:$dst)), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>; |
| def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), |
| "neg{w}\t$dst", |
| [(store (ineg (loadi16 addr:$dst)), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize; |
| def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), |
| "neg{l}\t$dst", |
| [(store (ineg (loadi32 addr:$dst)), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>; |
| def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", |
| [(store (ineg (loadi64 addr:$dst)), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>; |
| } // SchedRW |
| } // Defs = [EFLAGS] |
| |
| |
| // Note: NOT does not set EFLAGS! |
| |
| let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { |
| // Match xor -1 to not. Favors these over a move imm + xor to save code size. |
| let AddedComplexity = 15 in { |
| def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1), |
| "not{b}\t$dst", |
| [(set GR8:$dst, (not GR8:$src1))], IIC_UNARY_REG>; |
| def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1), |
| "not{w}\t$dst", |
| [(set GR16:$dst, (not GR16:$src1))], IIC_UNARY_REG>, OpSize; |
| def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1), |
| "not{l}\t$dst", |
| [(set GR32:$dst, (not GR32:$src1))], IIC_UNARY_REG>; |
| def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst", |
| [(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>; |
| } |
| } // Constraints = "$src1 = $dst", SchedRW |
| |
| let SchedRW = [WriteALULd, WriteRMW] in { |
| def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), |
| "not{b}\t$dst", |
| [(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; |
| def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), |
| "not{w}\t$dst", |
| [(store (not (loadi16 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>, |
| OpSize; |
| def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), |
| "not{l}\t$dst", |
| [(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; |
| def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", |
| [(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; |
| } // SchedRW |
| } // CodeSize |
| |
| // TODO: inc/dec is slow for P4, but fast for Pentium-M. |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { |
| let CodeSize = 2 in |
| def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), |
| "inc{b}\t$dst", |
| [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))], |
| IIC_UNARY_REG>; |
| |
| let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. |
| def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), |
| "inc{w}\t$dst", |
| [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>, |
| OpSize, Requires<[In32BitMode]>; |
| def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), |
| "inc{l}\t$dst", |
| [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))], |
| IIC_UNARY_REG>, |
| Requires<[In32BitMode]>; |
| def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst", |
| [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))], |
| IIC_UNARY_REG>; |
| } // isConvertibleToThreeAddress = 1, CodeSize = 1 |
| |
| |
| // In 64-bit mode, single byte INC and DEC cannot be encoded. |
| let isConvertibleToThreeAddress = 1, CodeSize = 2 in { |
| // Can transform into LEA. |
| def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), |
| "inc{w}\t$dst", |
| [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], |
| IIC_UNARY_REG>, |
| OpSize, Requires<[In64BitMode]>; |
| def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), |
| "inc{l}\t$dst", |
| [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))], |
| IIC_UNARY_REG>, |
| Requires<[In64BitMode]>; |
| def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), |
| "dec{w}\t$dst", |
| [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))], |
| IIC_UNARY_REG>, |
| OpSize, Requires<[In64BitMode]>; |
| def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), |
| "dec{l}\t$dst", |
| [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))], |
| IIC_UNARY_REG>, |
| Requires<[In64BitMode]>; |
| } // isConvertibleToThreeAddress = 1, CodeSize = 2 |
| |
| } // Constraints = "$src1 = $dst", SchedRW |
| |
| let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in { |
| def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", |
| [(store (add (loadi8 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>; |
| def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", |
| [(store (add (loadi16 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, |
| OpSize, Requires<[In32BitMode]>; |
| def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", |
| [(store (add (loadi32 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, |
| Requires<[In32BitMode]>; |
| def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", |
| [(store (add (loadi64 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>; |
| |
| // These are duplicates of their 32-bit counterparts. Only needed so X86 knows |
| // how to unfold them. |
| // FIXME: What is this for?? |
| def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", |
| [(store (add (loadi16 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, |
| OpSize, Requires<[In64BitMode]>; |
| def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", |
| [(store (add (loadi32 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, |
| Requires<[In64BitMode]>; |
| def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", |
| [(store (add (loadi16 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, |
| OpSize, Requires<[In64BitMode]>; |
| def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", |
| [(store (add (loadi32 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, |
| Requires<[In64BitMode]>; |
| } // CodeSize = 2, SchedRW |
| |
| let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { |
| let CodeSize = 2 in |
| def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), |
| "dec{b}\t$dst", |
| [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))], |
| IIC_UNARY_REG>; |
| let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. |
| def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), |
| "dec{w}\t$dst", |
| [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))], |
| IIC_UNARY_REG>, |
| OpSize, Requires<[In32BitMode]>; |
| def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), |
| "dec{l}\t$dst", |
| [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))], |
| IIC_UNARY_REG>, |
| Requires<[In32BitMode]>; |
| def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst", |
| [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))], |
| IIC_UNARY_REG>; |
| } // CodeSize = 2 |
| } // Constraints = "$src1 = $dst", SchedRW |
| |
| |
| let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in { |
| def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", |
| [(store (add (loadi8 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>; |
| def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", |
| [(store (add (loadi16 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, |
| OpSize, Requires<[In32BitMode]>; |
| def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", |
| [(store (add (loadi32 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>, |
| Requires<[In32BitMode]>; |
| def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", |
| [(store (add (loadi64 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)], IIC_UNARY_MEM>; |
| } // CodeSize = 2, SchedRW |
| } // Defs = [EFLAGS] |
| |
| |
| /// X86TypeInfo - This is a bunch of information that describes relevant X86 |
| /// information about value types. For example, it can tell you what the |
| /// register class and preferred load to use. |
| class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass, |
| PatFrag loadnode, X86MemOperand memoperand, ImmType immkind, |
| Operand immoperand, SDPatternOperator immoperator, |
| Operand imm8operand, SDPatternOperator imm8operator, |
| bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> { |
| /// VT - This is the value type itself. |
| ValueType VT = vt; |
| |
| /// InstrSuffix - This is the suffix used on instructions with this type. For |
| /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q". |
| string InstrSuffix = instrsuffix; |
| |
| /// RegClass - This is the register class associated with this type. For |
| /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64. |
| RegisterClass RegClass = regclass; |
| |
| /// LoadNode - This is the load node associated with this type. For |
| /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64. |
| PatFrag LoadNode = loadnode; |
| |
| /// MemOperand - This is the memory operand associated with this type. For |
| /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem. |
| X86MemOperand MemOperand = memoperand; |
| |
| /// ImmEncoding - This is the encoding of an immediate of this type. For |
| /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32 |
| /// since the immediate fields of i64 instructions is a 32-bit sign extended |
| /// value. |
| ImmType ImmEncoding = immkind; |
| |
| /// ImmOperand - This is the operand kind of an immediate of this type. For |
| /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 -> |
| /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign |
| /// extended value. |
| Operand ImmOperand = immoperand; |
| |
| /// ImmOperator - This is the operator that should be used to match an |
| /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32). |
| SDPatternOperator ImmOperator = immoperator; |
| |
| /// Imm8Operand - This is the operand kind to use for an imm8 of this type. |
| /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is |
| /// only used for instructions that have a sign-extended imm8 field form. |
| Operand Imm8Operand = imm8operand; |
| |
| /// Imm8Operator - This is the operator that should be used to match an 8-bit |
| /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8). |
| SDPatternOperator Imm8Operator = imm8operator; |
| |
| /// HasOddOpcode - This bit is true if the instruction should have an odd (as |
| /// opposed to even) opcode. Operations on i8 are usually even, operations on |
| /// other datatypes are odd. |
| bit HasOddOpcode = hasOddOpcode; |
| |
| /// HasOpSizePrefix - This bit is set to true if the instruction should have |
| /// the 0x66 operand size prefix. This is set for i16 types. |
| bit HasOpSizePrefix = hasOpSizePrefix; |
| |
| /// HasREX_WPrefix - This bit is set to true if the instruction should have |
| /// the 0x40 REX prefix. This is set for i64 types. |
| bit HasREX_WPrefix = hasREX_WPrefix; |
| } |
| |
| def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">; |
| |
| |
| def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem , |
| Imm8 , i8imm , imm, i8imm , invalid_node, |
| 0, 0, 0>; |
| def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, |
| Imm16, i16imm, imm, i16i8imm, i16immSExt8, |
| 1, 1, 0>; |
| def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, |
| Imm32, i32imm, imm, i32i8imm, i32immSExt8, |
| 1, 0, 0>; |
| def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, |
| Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8, |
| 1, 0, 1>; |
| |
| /// ITy - This instruction base class takes the type info for the instruction. |
| /// Using this, it: |
| /// 1. Concatenates together the instruction mnemonic with the appropriate |
| /// suffix letter, a tab, and the arguments. |
| /// 2. Infers whether the instruction should have a 0x66 prefix byte. |
| /// 3. Infers whether the instruction should have a 0x40 REX_W prefix. |
| /// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations) |
| /// or 1 (for i16,i32,i64 operations). |
| class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, |
| string mnemonic, string args, list<dag> pattern, |
| InstrItinClass itin = IIC_BIN_NONMEM> |
| : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4}, |
| opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode }, |
| f, outs, ins, |
| !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern, |
| itin> { |
| |
| // Infer instruction prefixes from type info. |
| let hasOpSizePrefix = typeinfo.HasOpSizePrefix; |
| let hasREX_WPrefix = typeinfo.HasREX_WPrefix; |
| } |
| |
| // BinOpRR - Instructions like "add reg, reg, reg". |
| class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| dag outlist, list<dag> pattern, InstrItinClass itin, |
| Format f = MRMDestReg> |
| : ITy<opcode, f, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>, |
| Sched<[WriteALU]>; |
| |
| // BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has |
| // just a regclass (no eflags) as a result. |
| class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, |
| (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))], |
| IIC_BIN_NONMEM>; |
| |
| // BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has |
| // just a EFLAGS as a result. |
| class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f = MRMDestReg> |
| : BinOpRR<opcode, mnemonic, typeinfo, (outs), |
| [(set EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))], |
| IIC_BIN_NONMEM, f>; |
| |
| // BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has |
| // both a regclass and EFLAGS as a result. |
| class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))], |
| IIC_BIN_NONMEM>; |
| |
| // BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has |
| // both a regclass and EFLAGS as a result, and has EFLAGS as input. |
| class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2, |
| EFLAGS))], IIC_BIN_NONMEM>; |
| |
| // BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding). |
| class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> |
| : ITy<opcode, MRMSrcReg, typeinfo, |
| (outs typeinfo.RegClass:$dst), |
| (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), |
| mnemonic, "{$src2, $dst|$dst, $src2}", [], IIC_BIN_NONMEM>, |
| Sched<[WriteALU]> { |
| // The disassembler should know about this, but not the asmparser. |
| let isCodeGenOnly = 1; |
| let hasSideEffects = 0; |
| } |
| |
| // BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding). |
| class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> |
| : ITy<opcode, MRMSrcReg, typeinfo, (outs), |
| (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM>, |
| Sched<[WriteALU]> { |
| // The disassembler should know about this, but not the asmparser. |
| let isCodeGenOnly = 1; |
| let hasSideEffects = 0; |
| } |
| |
| // BinOpRM - Instructions like "add reg, reg, [mem]". |
| class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| dag outlist, list<dag> pattern> |
| : ITy<opcode, MRMSrcMem, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>, |
| Sched<[WriteALULd, ReadAfterLd]>; |
| |
| // BinOpRM_R - Instructions like "add reg, reg, [mem]". |
| class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, |
| (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; |
| |
| // BinOpRM_F - Instructions like "cmp reg, [mem]". |
| class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode> |
| : BinOpRM<opcode, mnemonic, typeinfo, (outs), |
| [(set EFLAGS, |
| (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; |
| |
| // BinOpRM_RF - Instructions like "add reg, reg, [mem]". |
| class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; |
| |
| // BinOpRM_RFF - Instructions like "adc reg, reg, [mem]". |
| class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2), |
| EFLAGS))]>; |
| |
| // BinOpRI - Instructions like "add reg, reg, imm". |
| class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Format f, dag outlist, list<dag> pattern> |
| : ITy<opcode, f, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>, |
| Sched<[WriteALU]> { |
| let ImmT = typeinfo.ImmEncoding; |
| } |
| |
| // BinOpRI_R - Instructions like "add reg, reg, imm". |
| class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, |
| (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; |
| |
| // BinOpRI_F - Instructions like "cmp reg, imm". |
| class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpRI<opcode, mnemonic, typeinfo, f, (outs), |
| [(set EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; |
| |
| // BinOpRI_RF - Instructions like "add reg, reg, imm". |
| class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; |
| // BinOpRI_RFF - Instructions like "adc reg, reg, imm". |
| class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2, |
| EFLAGS))]>; |
| |
| // BinOpRI8 - Instructions like "add reg, reg, imm8". |
| class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Format f, dag outlist, list<dag> pattern> |
| : ITy<opcode, f, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>, |
| Sched<[WriteALU]> { |
| let ImmT = Imm8; // Always 8-bit immediate. |
| } |
| |
| // BinOpRI8_R - Instructions like "add reg, reg, imm8". |
| class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, |
| (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; |
| |
| // BinOpRI8_F - Instructions like "cmp reg, imm8". |
| class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), |
| [(set EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; |
| |
| // BinOpRI8_RF - Instructions like "add reg, reg, imm8". |
| class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; |
| |
| // BinOpRI8_RFF - Instructions like "adc reg, reg, imm8". |
| class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2, |
| EFLAGS))]>; |
| |
| // BinOpMR - Instructions like "add [mem], reg". |
| class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| list<dag> pattern> |
| : ITy<opcode, MRMDestMem, typeinfo, |
| (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src), |
| mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>, |
| Sched<[WriteALULd, WriteRMW]>; |
| |
| // BinOpMR_RMW - Instructions like "add [mem], reg". |
| class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpMR<opcode, mnemonic, typeinfo, |
| [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst), |
| (implicit EFLAGS)]>; |
| |
| // BinOpMR_RMW_FF - Instructions like "adc [mem], reg". |
| class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpMR<opcode, mnemonic, typeinfo, |
| [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS), |
| addr:$dst), |
| (implicit EFLAGS)]>; |
| |
| // BinOpMR_F - Instructions like "cmp [mem], reg". |
| class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpMR<opcode, mnemonic, typeinfo, |
| [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>; |
| |
| // BinOpMI - Instructions like "add [mem], imm". |
| class BinOpMI<string mnemonic, X86TypeInfo typeinfo, |
| Format f, list<dag> pattern, bits<8> opcode = 0x80> |
| : ITy<opcode, f, typeinfo, |
| (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src), |
| mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>, |
| Sched<[WriteALULd, WriteRMW]> { |
| let ImmT = typeinfo.ImmEncoding; |
| } |
| |
| // BinOpMI_RMW - Instructions like "add [mem], imm". |
| class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpMI<mnemonic, typeinfo, f, |
| [(store (opnode (typeinfo.VT (load addr:$dst)), |
| typeinfo.ImmOperator:$src), addr:$dst), |
| (implicit EFLAGS)]>; |
| // BinOpMI_RMW_FF - Instructions like "adc [mem], imm". |
| class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpMI<mnemonic, typeinfo, f, |
| [(store (opnode (typeinfo.VT (load addr:$dst)), |
| typeinfo.ImmOperator:$src, EFLAGS), addr:$dst), |
| (implicit EFLAGS)]>; |
| |
| // BinOpMI_F - Instructions like "cmp [mem], imm". |
| class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f, bits<8> opcode = 0x80> |
| : BinOpMI<mnemonic, typeinfo, f, |
| [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)), |
| typeinfo.ImmOperator:$src))], |
| opcode>; |
| |
| // BinOpMI8 - Instructions like "add [mem], imm8". |
| class BinOpMI8<string mnemonic, X86TypeInfo typeinfo, |
| Format f, list<dag> pattern> |
| : ITy<0x82, f, typeinfo, |
| (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src), |
| mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM> { |
| let ImmT = Imm8; // Always 8-bit immediate. |
| } |
| |
| // BinOpMI8_RMW - Instructions like "add [mem], imm8". |
| class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpMI8<mnemonic, typeinfo, f, |
| [(store (opnode (load addr:$dst), |
| typeinfo.Imm8Operator:$src), addr:$dst), |
| (implicit EFLAGS)]>; |
| |
| // BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8". |
| class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpMI8<mnemonic, typeinfo, f, |
| [(store (opnode (load addr:$dst), |
| typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst), |
| (implicit EFLAGS)]>; |
| |
| // BinOpMI8_F - Instructions like "cmp [mem], imm8". |
| class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpMI8<mnemonic, typeinfo, f, |
| [(set EFLAGS, (opnode (load addr:$dst), |
| typeinfo.Imm8Operator:$src))]>; |
| |
| // BinOpAI - Instructions like "add %eax, %eax, imm". |
| class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Register areg, string operands> |
| : ITy<opcode, RawFrm, typeinfo, |
| (outs), (ins typeinfo.ImmOperand:$src), |
| mnemonic, operands, []> { |
| let ImmT = typeinfo.ImmEncoding; |
| let Uses = [areg]; |
| let Defs = [areg]; |
| let hasSideEffects = 0; |
| } |
| |
| /// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is |
| /// defined with "(set GPR:$dst, EFLAGS, (...". |
| /// |
| /// It would be nice to get rid of the second and third argument here, but |
| /// tblgen can't handle dependent type references aggressively enough: PR8330 |
| multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, |
| string mnemonic, Format RegMRM, Format MemMRM, |
| SDNode opnodeflag, SDNode opnode, |
| bit CommutableRR, bit ConvertibleToThreeAddress> { |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst" in { |
| let isCommutable = CommutableRR, |
| isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>; |
| def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>; |
| def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>; |
| def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>; |
| } // isCommutable |
| |
| def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; |
| def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; |
| def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; |
| def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; |
| |
| def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>; |
| def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>; |
| def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>; |
| def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>; |
| |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| // NOTE: These are order specific, we want the ri8 forms to be listed |
| // first so that they are slightly preferred to the ri forms. |
| def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>; |
| def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>; |
| def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>; |
| |
| def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>; |
| def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>; |
| def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>; |
| def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>; |
| } |
| } // Constraints = "$src1 = $dst" |
| |
| def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>; |
| def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>; |
| |
| // NOTE: These are order specific, we want the mi8 forms to be listed |
| // first so that they are slightly preferred to the mi forms. |
| def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>; |
| def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>; |
| def NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>; |
| def NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, |
| "{$src, %al|AL, $src}">; |
| def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, |
| "{$src, %ax|AX, $src}">; |
| def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, |
| "{$src, %eax|EAX, $src}">; |
| def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, |
| "{$src, %rax|RAX, $src}">; |
| } |
| } |
| |
| /// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is |
| /// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and |
| /// SBB. |
| /// |
| /// It would be nice to get rid of the second and third argument here, but |
| /// tblgen can't handle dependent type references aggressively enough: PR8330 |
| multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, |
| string mnemonic, Format RegMRM, Format MemMRM, |
| SDNode opnode, bit CommutableRR, |
| bit ConvertibleToThreeAddress> { |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst" in { |
| let isCommutable = CommutableRR, |
| isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>; |
| def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>; |
| } // isCommutable |
| |
| def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; |
| def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; |
| def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; |
| def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; |
| |
| def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>; |
| def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>; |
| def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>; |
| def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>; |
| |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| // NOTE: These are order specific, we want the ri8 forms to be listed |
| // first so that they are slightly preferred to the ri forms. |
| def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>; |
| def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>; |
| def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>; |
| |
| def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>; |
| def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>; |
| def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>; |
| def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>; |
| } |
| } // Constraints = "$src1 = $dst" |
| |
| def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>; |
| def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>; |
| |
| // NOTE: These are order specific, we want the mi8 forms to be listed |
| // first so that they are slightly preferred to the mi forms. |
| def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; |
| def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8mi : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>; |
| def NAME#16mi : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; |
| def NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, |
| "{$src, %al|AL, $src}">; |
| def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, |
| "{$src, %ax|AX, $src}">; |
| def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, |
| "{$src, %eax|EAX, $src}">; |
| def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, |
| "{$src, %rax|RAX, $src}">; |
| } |
| } |
| |
| /// ArithBinOp_F - This is an arithmetic binary operator where the pattern is |
| /// defined with "(set EFLAGS, (...". It would be really nice to find a way |
| /// to factor this with the other ArithBinOp_*. |
| /// |
| multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, |
| string mnemonic, Format RegMRM, Format MemMRM, |
| SDNode opnode, |
| bit CommutableRR, bit ConvertibleToThreeAddress> { |
| let Defs = [EFLAGS] in { |
| let isCommutable = CommutableRR, |
| isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>; |
| def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>; |
| } // isCommutable |
| |
| def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>; |
| def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>; |
| def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>; |
| def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>; |
| |
| def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>; |
| def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>; |
| def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>; |
| def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>; |
| |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| // NOTE: These are order specific, we want the ri8 forms to be listed |
| // first so that they are slightly preferred to the ri forms. |
| def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>; |
| def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>; |
| def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>; |
| |
| def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>; |
| def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>; |
| def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>; |
| def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>; |
| } |
| |
| def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>; |
| def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>; |
| |
| // NOTE: These are order specific, we want the mi8 forms to be listed |
| // first so that they are slightly preferred to the mi forms. |
| def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>; |
| def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8mi : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>; |
| def NAME#16mi : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>; |
| def NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, |
| "{$src, %al|AL, $src}">; |
| def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, |
| "{$src, %ax|AX, $src}">; |
| def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, |
| "{$src, %eax|EAX, $src}">; |
| def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, |
| "{$src, %rax|RAX, $src}">; |
| } |
| } |
| |
| |
| defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m, |
| X86and_flag, and, 1, 0>; |
| defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m, |
| X86or_flag, or, 1, 0>; |
| defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m, |
| X86xor_flag, xor, 1, 0>; |
| defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m, |
| X86add_flag, add, 1, 1>; |
| let isCompare = 1 in { |
| defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m, |
| X86sub_flag, sub, 0, 0>; |
| } |
| |
| // Arithmetic. |
| let Uses = [EFLAGS] in { |
| defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag, |
| 1, 0>; |
| defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag, |
| 0, 0>; |
| } |
| |
| let isCompare = 1 in { |
| defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Semantically, test instructions are similar like AND, except they don't |
| // generate a result. From an encoding perspective, they are very different: |
| // they don't have all the usual imm8 and REV forms, and are encoded into a |
| // different space. |
| def X86testpat : PatFrag<(ops node:$lhs, node:$rhs), |
| (X86cmp (and_su node:$lhs, node:$rhs), 0)>; |
| |
| let isCompare = 1, Defs = [EFLAGS] in { |
| let isCommutable = 1 in { |
| def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>; |
| def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>; |
| def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>; |
| def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>; |
| } // isCommutable |
| |
| def TEST8rm : BinOpRM_F<0x84, "test", Xi8 , X86testpat>; |
| def TEST16rm : BinOpRM_F<0x84, "test", Xi16, X86testpat>; |
| def TEST32rm : BinOpRM_F<0x84, "test", Xi32, X86testpat>; |
| def TEST64rm : BinOpRM_F<0x84, "test", Xi64, X86testpat>; |
| |
| def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>; |
| def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>; |
| def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>; |
| def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>; |
| |
| def TEST8mi : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>; |
| def TEST16mi : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>; |
| def TEST32mi : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>; |
| def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>; |
| |
| def TEST8i8 : BinOpAI<0xA8, "test", Xi8 , AL, |
| "{$src, %al|AL, $src}">; |
| def TEST16i16 : BinOpAI<0xA8, "test", Xi16, AX, |
| "{$src, %ax|AX, $src}">; |
| def TEST32i32 : BinOpAI<0xA8, "test", Xi32, EAX, |
| "{$src, %eax|EAX, $src}">; |
| def TEST64i32 : BinOpAI<0xA8, "test", Xi64, RAX, |
| "{$src, %rax|RAX, $src}">; |
| |
| // When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the |
| // register class is constrained to GR8_NOREX. |
| let isPseudo = 1 in |
| def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask), |
| "", [], IIC_BIN_NONMEM>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ANDN Instruction |
| // |
| multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop, |
| PatFrag ld_frag> { |
| def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), |
| !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), |
| [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))], |
| IIC_BIN_NONMEM>, Sched<[WriteALU]>; |
| def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), |
| !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), |
| [(set RC:$dst, EFLAGS, |
| (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))], IIC_BIN_MEM>, |
| Sched<[WriteALULd, ReadAfterLd]>; |
| } |
| |
| let Predicates = [HasBMI], Defs = [EFLAGS] in { |
| defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8, VEX_4V; |
| defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8, VEX_4V, VEX_W; |
| } |
| |
| let Predicates = [HasBMI] in { |
| def : Pat<(and (not GR32:$src1), GR32:$src2), |
| (ANDN32rr GR32:$src1, GR32:$src2)>; |
| def : Pat<(and (not GR64:$src1), GR64:$src2), |
| (ANDN64rr GR64:$src1, GR64:$src2)>; |
| def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)), |
| (ANDN32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)), |
| (ANDN64rm GR64:$src1, addr:$src2)>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MULX Instruction |
| // |
| multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop> { |
| let neverHasSideEffects = 1 in { |
| let isCommutable = 1 in |
| def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src), |
| !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), |
| [], IIC_MUL8>, T8XD, VEX_4V; |
| |
| let mayLoad = 1 in |
| def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src), |
| !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), |
| [], IIC_MUL8>, T8XD, VEX_4V; |
| } |
| } |
| |
| let Predicates = [HasBMI2] in { |
| let Uses = [EDX] in |
| defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem>; |
| let Uses = [RDX] in |
| defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem>, VEX_W; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ADCX Instruction |
| // |
| let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in { |
| def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), |
| "adcx{l}\t{$src, $dst|$dst, $src}", |
| [], IIC_BIN_NONMEM>, T8, OpSize; |
| |
| def ADCX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), |
| "adcx{q}\t{$src, $dst|$dst, $src}", |
| [], IIC_BIN_NONMEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>; |
| |
| let mayLoad = 1 in { |
| def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), |
| "adcx{l}\t{$src, $dst|$dst, $src}", |
| [], IIC_BIN_MEM>, T8, OpSize; |
| |
| def ADCX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), |
| "adcx{q}\t{$src, $dst|$dst, $src}", |
| [], IIC_BIN_MEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ADOX Instruction |
| // |
| let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in { |
| def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), |
| "adox{l}\t{$src, $dst|$dst, $src}", |
| [], IIC_BIN_NONMEM>, T8XS; |
| |
| def ADOX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), |
| "adox{q}\t{$src, $dst|$dst, $src}", |
| [], IIC_BIN_NONMEM>, T8XS, REX_W, Requires<[In64BitMode]>; |
| |
| let mayLoad = 1 in { |
| def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), |
| "adox{l}\t{$src, $dst|$dst, $src}", |
| [], IIC_BIN_MEM>, T8XS; |
| |
| def ADOX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), |
| "adox{q}\t{$src, $dst|$dst, $src}", |
| [], IIC_BIN_MEM>, T8XS, REX_W, Requires<[In64BitMode]>; |
| } |
| } |