| //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the CodeGenDAGPatterns class, which is used to read and |
| // represent the patterns present in a .td file for instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenDAGPatterns.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include <algorithm> |
| #include <cstdio> |
| #include <set> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // EEVT::TypeSet Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static inline bool isInteger(MVT::SimpleValueType VT) { |
| return EVT(VT).isInteger(); |
| } |
| static inline bool isFloatingPoint(MVT::SimpleValueType VT) { |
| return EVT(VT).isFloatingPoint(); |
| } |
| static inline bool isVector(MVT::SimpleValueType VT) { |
| return EVT(VT).isVector(); |
| } |
| static inline bool isScalar(MVT::SimpleValueType VT) { |
| return !EVT(VT).isVector(); |
| } |
| |
| EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { |
| if (VT == MVT::iAny) |
| EnforceInteger(TP); |
| else if (VT == MVT::fAny) |
| EnforceFloatingPoint(TP); |
| else if (VT == MVT::vAny) |
| EnforceVector(TP); |
| else { |
| assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || |
| VT == MVT::iPTRAny) && "Not a concrete type!"); |
| TypeVec.push_back(VT); |
| } |
| } |
| |
| |
| EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { |
| assert(!VTList.empty() && "empty list?"); |
| TypeVec.append(VTList.begin(), VTList.end()); |
| |
| if (!VTList.empty()) |
| assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && |
| VTList[0] != MVT::fAny); |
| |
| // Verify no duplicates. |
| array_pod_sort(TypeVec.begin(), TypeVec.end()); |
| assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); |
| } |
| |
| /// FillWithPossibleTypes - Set to all legal types and return true, only valid |
| /// on completely unknown type sets. |
| bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, |
| bool (*Pred)(MVT::SimpleValueType), |
| const char *PredicateName) { |
| assert(isCompletelyUnknown()); |
| ArrayRef<MVT::SimpleValueType> LegalTypes = |
| TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); |
| |
| if (TP.hasError()) |
| return false; |
| |
| for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) |
| if (Pred == 0 || Pred(LegalTypes[i])) |
| TypeVec.push_back(LegalTypes[i]); |
| |
| // If we have nothing that matches the predicate, bail out. |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, no " + |
| std::string(PredicateName) + " types found"); |
| return false; |
| } |
| // No need to sort with one element. |
| if (TypeVec.size() == 1) return true; |
| |
| // Remove duplicates. |
| array_pod_sort(TypeVec.begin(), TypeVec.end()); |
| TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); |
| |
| return true; |
| } |
| |
| /// hasIntegerTypes - Return true if this TypeSet contains iAny or an |
| /// integer value type. |
| bool EEVT::TypeSet::hasIntegerTypes() const { |
| for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) |
| if (isInteger(TypeVec[i])) |
| return true; |
| return false; |
| } |
| |
| /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or |
| /// a floating point value type. |
| bool EEVT::TypeSet::hasFloatingPointTypes() const { |
| for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) |
| if (isFloatingPoint(TypeVec[i])) |
| return true; |
| return false; |
| } |
| |
| /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector |
| /// value type. |
| bool EEVT::TypeSet::hasVectorTypes() const { |
| for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) |
| if (isVector(TypeVec[i])) |
| return true; |
| return false; |
| } |
| |
| |
| std::string EEVT::TypeSet::getName() const { |
| if (TypeVec.empty()) return "<empty>"; |
| |
| std::string Result; |
| |
| for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { |
| std::string VTName = llvm::getEnumName(TypeVec[i]); |
| // Strip off MVT:: prefix if present. |
| if (VTName.substr(0,5) == "MVT::") |
| VTName = VTName.substr(5); |
| if (i) Result += ':'; |
| Result += VTName; |
| } |
| |
| if (TypeVec.size() == 1) |
| return Result; |
| return "{" + Result + "}"; |
| } |
| |
| /// MergeInTypeInfo - This merges in type information from the specified |
| /// argument. If 'this' changes, it returns true. If the two types are |
| /// contradictory (e.g. merge f32 into i32) then this flags an error. |
| bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ |
| if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) |
| return false; |
| |
| if (isCompletelyUnknown()) { |
| *this = InVT; |
| return true; |
| } |
| |
| assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); |
| |
| // Handle the abstract cases, seeing if we can resolve them better. |
| switch (TypeVec[0]) { |
| default: break; |
| case MVT::iPTR: |
| case MVT::iPTRAny: |
| if (InVT.hasIntegerTypes()) { |
| EEVT::TypeSet InCopy(InVT); |
| InCopy.EnforceInteger(TP); |
| InCopy.EnforceScalar(TP); |
| |
| if (InCopy.isConcrete()) { |
| // If the RHS has one integer type, upgrade iPTR to i32. |
| TypeVec[0] = InVT.TypeVec[0]; |
| return true; |
| } |
| |
| // If the input has multiple scalar integers, this doesn't add any info. |
| if (!InCopy.isCompletelyUnknown()) |
| return false; |
| } |
| break; |
| } |
| |
| // If the input constraint is iAny/iPTR and this is an integer type list, |
| // remove non-integer types from the list. |
| if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && |
| hasIntegerTypes()) { |
| bool MadeChange = EnforceInteger(TP); |
| |
| // If we're merging in iPTR/iPTRAny and the node currently has a list of |
| // multiple different integer types, replace them with a single iPTR. |
| if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && |
| TypeVec.size() != 1) { |
| TypeVec.resize(1); |
| TypeVec[0] = InVT.TypeVec[0]; |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| // If this is a type list and the RHS is a typelist as well, eliminate entries |
| // from this list that aren't in the other one. |
| bool MadeChange = false; |
| TypeSet InputSet(*this); |
| |
| for (unsigned i = 0; i != TypeVec.size(); ++i) { |
| bool InInVT = false; |
| for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) |
| if (TypeVec[i] == InVT.TypeVec[j]) { |
| InInVT = true; |
| break; |
| } |
| |
| if (InInVT) continue; |
| TypeVec.erase(TypeVec.begin()+i--); |
| MadeChange = true; |
| } |
| |
| // If we removed all of our types, we have a type contradiction. |
| if (!TypeVec.empty()) |
| return MadeChange; |
| |
| // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, merging '" + |
| InVT.getName() + "' into '" + InputSet.getName() + "'"); |
| return false; |
| } |
| |
| /// EnforceInteger - Remove all non-integer types from this set. |
| bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| // If we know nothing, then get the full set. |
| if (TypeVec.empty()) |
| return FillWithPossibleTypes(TP, isInteger, "integer"); |
| if (!hasFloatingPointTypes()) |
| return false; |
| |
| TypeSet InputSet(*this); |
| |
| // Filter out all the fp types. |
| for (unsigned i = 0; i != TypeVec.size(); ++i) |
| if (!isInteger(TypeVec[i])) |
| TypeVec.erase(TypeVec.begin()+i--); |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + |
| InputSet.getName() + "' needs to be integer"); |
| return false; |
| } |
| return true; |
| } |
| |
| /// EnforceFloatingPoint - Remove all integer types from this set. |
| bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| // If we know nothing, then get the full set. |
| if (TypeVec.empty()) |
| return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); |
| |
| if (!hasIntegerTypes()) |
| return false; |
| |
| TypeSet InputSet(*this); |
| |
| // Filter out all the fp types. |
| for (unsigned i = 0; i != TypeVec.size(); ++i) |
| if (!isFloatingPoint(TypeVec[i])) |
| TypeVec.erase(TypeVec.begin()+i--); |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + |
| InputSet.getName() + "' needs to be floating point"); |
| return false; |
| } |
| return true; |
| } |
| |
| /// EnforceScalar - Remove all vector types from this. |
| bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // If we know nothing, then get the full set. |
| if (TypeVec.empty()) |
| return FillWithPossibleTypes(TP, isScalar, "scalar"); |
| |
| if (!hasVectorTypes()) |
| return false; |
| |
| TypeSet InputSet(*this); |
| |
| // Filter out all the vector types. |
| for (unsigned i = 0; i != TypeVec.size(); ++i) |
| if (!isScalar(TypeVec[i])) |
| TypeVec.erase(TypeVec.begin()+i--); |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + |
| InputSet.getName() + "' needs to be scalar"); |
| return false; |
| } |
| return true; |
| } |
| |
| /// EnforceVector - Remove all vector types from this. |
| bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // If we know nothing, then get the full set. |
| if (TypeVec.empty()) |
| return FillWithPossibleTypes(TP, isVector, "vector"); |
| |
| TypeSet InputSet(*this); |
| bool MadeChange = false; |
| |
| // Filter out all the scalar types. |
| for (unsigned i = 0; i != TypeVec.size(); ++i) |
| if (!isVector(TypeVec[i])) { |
| TypeVec.erase(TypeVec.begin()+i--); |
| MadeChange = true; |
| } |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + |
| InputSet.getName() + "' needs to be a vector"); |
| return false; |
| } |
| return MadeChange; |
| } |
| |
| |
| |
| /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update |
| /// this an other based on this information. |
| bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // Both operands must be integer or FP, but we don't care which. |
| bool MadeChange = false; |
| |
| if (isCompletelyUnknown()) |
| MadeChange = FillWithPossibleTypes(TP); |
| |
| if (Other.isCompletelyUnknown()) |
| MadeChange = Other.FillWithPossibleTypes(TP); |
| |
| // If one side is known to be integer or known to be FP but the other side has |
| // no information, get at least the type integrality info in there. |
| if (!hasFloatingPointTypes()) |
| MadeChange |= Other.EnforceInteger(TP); |
| else if (!hasIntegerTypes()) |
| MadeChange |= Other.EnforceFloatingPoint(TP); |
| if (!Other.hasFloatingPointTypes()) |
| MadeChange |= EnforceInteger(TP); |
| else if (!Other.hasIntegerTypes()) |
| MadeChange |= EnforceFloatingPoint(TP); |
| |
| assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && |
| "Should have a type list now"); |
| |
| // If one contains vectors but the other doesn't pull vectors out. |
| if (!hasVectorTypes()) |
| MadeChange |= Other.EnforceScalar(TP); |
| if (!hasVectorTypes()) |
| MadeChange |= EnforceScalar(TP); |
| |
| if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { |
| // If we are down to concrete types, this code does not currently |
| // handle nodes which have multiple types, where some types are |
| // integer, and some are fp. Assert that this is not the case. |
| assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && |
| !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && |
| "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); |
| |
| // Otherwise, if these are both vector types, either this vector |
| // must have a larger bitsize than the other, or this element type |
| // must be larger than the other. |
| EVT Type(TypeVec[0]); |
| EVT OtherType(Other.TypeVec[0]); |
| |
| if (hasVectorTypes() && Other.hasVectorTypes()) { |
| if (Type.getSizeInBits() >= OtherType.getSizeInBits()) |
| if (Type.getVectorElementType().getSizeInBits() |
| >= OtherType.getVectorElementType().getSizeInBits()) { |
| TP.error("Type inference contradiction found, '" + |
| getName() + "' element type not smaller than '" + |
| Other.getName() +"'!"); |
| return false; |
| } |
| } |
| else |
| // For scalar types, the bitsize of this type must be larger |
| // than that of the other. |
| if (Type.getSizeInBits() >= OtherType.getSizeInBits()) { |
| TP.error("Type inference contradiction found, '" + |
| getName() + "' is not smaller than '" + |
| Other.getName() +"'!"); |
| return false; |
| } |
| } |
| |
| |
| // Handle int and fp as disjoint sets. This won't work for patterns |
| // that have mixed fp/int types but those are likely rare and would |
| // not have been accepted by this code previously. |
| |
| // Okay, find the smallest type from the current set and remove it from the |
| // largest set. |
| MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; |
| for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) |
| if (isInteger(TypeVec[i])) { |
| SmallestInt = TypeVec[i]; |
| break; |
| } |
| for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) |
| if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) |
| SmallestInt = TypeVec[i]; |
| |
| MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; |
| for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) |
| if (isFloatingPoint(TypeVec[i])) { |
| SmallestFP = TypeVec[i]; |
| break; |
| } |
| for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) |
| if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) |
| SmallestFP = TypeVec[i]; |
| |
| int OtherIntSize = 0; |
| int OtherFPSize = 0; |
| for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = |
| Other.TypeVec.begin(); |
| TVI != Other.TypeVec.end(); |
| /* NULL */) { |
| if (isInteger(*TVI)) { |
| ++OtherIntSize; |
| if (*TVI == SmallestInt) { |
| TVI = Other.TypeVec.erase(TVI); |
| --OtherIntSize; |
| MadeChange = true; |
| continue; |
| } |
| } |
| else if (isFloatingPoint(*TVI)) { |
| ++OtherFPSize; |
| if (*TVI == SmallestFP) { |
| TVI = Other.TypeVec.erase(TVI); |
| --OtherFPSize; |
| MadeChange = true; |
| continue; |
| } |
| } |
| ++TVI; |
| } |
| |
| // If this is the only type in the large set, the constraint can never be |
| // satisfied. |
| if ((Other.hasIntegerTypes() && OtherIntSize == 0) |
| || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) { |
| TP.error("Type inference contradiction found, '" + |
| Other.getName() + "' has nothing larger than '" + getName() +"'!"); |
| return false; |
| } |
| |
| // Okay, find the largest type in the Other set and remove it from the |
| // current set. |
| MVT::SimpleValueType LargestInt = MVT::Other; |
| for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) |
| if (isInteger(Other.TypeVec[i])) { |
| LargestInt = Other.TypeVec[i]; |
| break; |
| } |
| for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) |
| if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) |
| LargestInt = Other.TypeVec[i]; |
| |
| MVT::SimpleValueType LargestFP = MVT::Other; |
| for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) |
| if (isFloatingPoint(Other.TypeVec[i])) { |
| LargestFP = Other.TypeVec[i]; |
| break; |
| } |
| for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) |
| if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) |
| LargestFP = Other.TypeVec[i]; |
| |
| int IntSize = 0; |
| int FPSize = 0; |
| for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = |
| TypeVec.begin(); |
| TVI != TypeVec.end(); |
| /* NULL */) { |
| if (isInteger(*TVI)) { |
| ++IntSize; |
| if (*TVI == LargestInt) { |
| TVI = TypeVec.erase(TVI); |
| --IntSize; |
| MadeChange = true; |
| continue; |
| } |
| } |
| else if (isFloatingPoint(*TVI)) { |
| ++FPSize; |
| if (*TVI == LargestFP) { |
| TVI = TypeVec.erase(TVI); |
| --FPSize; |
| MadeChange = true; |
| continue; |
| } |
| } |
| ++TVI; |
| } |
| |
| // If this is the only type in the small set, the constraint can never be |
| // satisfied. |
| if ((hasIntegerTypes() && IntSize == 0) |
| || (hasFloatingPointTypes() && FPSize == 0)) { |
| TP.error("Type inference contradiction found, '" + |
| getName() + "' has nothing smaller than '" + Other.getName()+"'!"); |
| return false; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type |
| /// whose element is specified by VTOperand. |
| bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, |
| TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // "This" must be a vector and "VTOperand" must be a scalar. |
| bool MadeChange = false; |
| MadeChange |= EnforceVector(TP); |
| MadeChange |= VTOperand.EnforceScalar(TP); |
| |
| // If we know the vector type, it forces the scalar to agree. |
| if (isConcrete()) { |
| EVT IVT = getConcrete(); |
| IVT = IVT.getVectorElementType(); |
| return MadeChange | |
| VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); |
| } |
| |
| // If the scalar type is known, filter out vector types whose element types |
| // disagree. |
| if (!VTOperand.isConcrete()) |
| return MadeChange; |
| |
| MVT::SimpleValueType VT = VTOperand.getConcrete(); |
| |
| TypeSet InputSet(*this); |
| |
| // Filter out all the types which don't have the right element type. |
| for (unsigned i = 0; i != TypeVec.size(); ++i) { |
| assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); |
| if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { |
| TypeVec.erase(TypeVec.begin()+i--); |
| MadeChange = true; |
| } |
| } |
| |
| if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, forcing '" + |
| InputSet.getName() + "' to have a vector element"); |
| return false; |
| } |
| return MadeChange; |
| } |
| |
| /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a |
| /// vector type specified by VTOperand. |
| bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, |
| TreePattern &TP) { |
| // "This" must be a vector and "VTOperand" must be a vector. |
| bool MadeChange = false; |
| MadeChange |= EnforceVector(TP); |
| MadeChange |= VTOperand.EnforceVector(TP); |
| |
| // "This" must be larger than "VTOperand." |
| MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); |
| |
| // If we know the vector type, it forces the scalar types to agree. |
| if (isConcrete()) { |
| EVT IVT = getConcrete(); |
| IVT = IVT.getVectorElementType(); |
| |
| EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); |
| MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); |
| } else if (VTOperand.isConcrete()) { |
| EVT IVT = VTOperand.getConcrete(); |
| IVT = IVT.getVectorElementType(); |
| |
| EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); |
| MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); |
| } |
| |
| return MadeChange; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helpers for working with extended types. |
| |
| /// Dependent variable map for CodeGenDAGPattern variant generation |
| typedef std::map<std::string, int> DepVarMap; |
| |
| /// Const iterator shorthand for DepVarMap |
| typedef DepVarMap::const_iterator DepVarMap_citer; |
| |
| static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { |
| if (N->isLeaf()) { |
| if (isa<DefInit>(N->getLeafValue())) |
| DepMap[N->getName()]++; |
| } else { |
| for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) |
| FindDepVarsOf(N->getChild(i), DepMap); |
| } |
| } |
| |
| /// Find dependent variables within child patterns |
| static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { |
| DepVarMap depcounts; |
| FindDepVarsOf(N, depcounts); |
| for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { |
| if (i->second > 1) // std::pair<std::string, int> |
| DepVars.insert(i->first); |
| } |
| } |
| |
| #ifndef NDEBUG |
| /// Dump the dependent variable set: |
| static void DumpDepVars(MultipleUseVarSet &DepVars) { |
| if (DepVars.empty()) { |
| DEBUG(errs() << "<empty set>"); |
| } else { |
| DEBUG(errs() << "[ "); |
| for (MultipleUseVarSet::const_iterator i = DepVars.begin(), |
| e = DepVars.end(); i != e; ++i) { |
| DEBUG(errs() << (*i) << " "); |
| } |
| DEBUG(errs() << "]"); |
| } |
| } |
| #endif |
| |
| |
| //===----------------------------------------------------------------------===// |
| // TreePredicateFn Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. |
| TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { |
| assert((getPredCode().empty() || getImmCode().empty()) && |
| ".td file corrupt: can't have a node predicate *and* an imm predicate"); |
| } |
| |
| std::string TreePredicateFn::getPredCode() const { |
| return PatFragRec->getRecord()->getValueAsString("PredicateCode"); |
| } |
| |
| std::string TreePredicateFn::getImmCode() const { |
| return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); |
| } |
| |
| |
| /// isAlwaysTrue - Return true if this is a noop predicate. |
| bool TreePredicateFn::isAlwaysTrue() const { |
| return getPredCode().empty() && getImmCode().empty(); |
| } |
| |
| /// Return the name to use in the generated code to reference this, this is |
| /// "Predicate_foo" if from a pattern fragment "foo". |
| std::string TreePredicateFn::getFnName() const { |
| return "Predicate_" + PatFragRec->getRecord()->getName(); |
| } |
| |
| /// getCodeToRunOnSDNode - Return the code for the function body that |
| /// evaluates this predicate. The argument is expected to be in "Node", |
| /// not N. This handles casting and conversion to a concrete node type as |
| /// appropriate. |
| std::string TreePredicateFn::getCodeToRunOnSDNode() const { |
| // Handle immediate predicates first. |
| std::string ImmCode = getImmCode(); |
| if (!ImmCode.empty()) { |
| std::string Result = |
| " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; |
| return Result + ImmCode; |
| } |
| |
| // Handle arbitrary node predicates. |
| assert(!getPredCode().empty() && "Don't have any predicate code!"); |
| std::string ClassName; |
| if (PatFragRec->getOnlyTree()->isLeaf()) |
| ClassName = "SDNode"; |
| else { |
| Record *Op = PatFragRec->getOnlyTree()->getOperator(); |
| ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); |
| } |
| std::string Result; |
| if (ClassName == "SDNode") |
| Result = " SDNode *N = Node;\n"; |
| else |
| Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; |
| |
| return Result + getPredCode(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PatternToMatch implementation |
| // |
| |
| |
| /// getPatternSize - Return the 'size' of this pattern. We want to match large |
| /// patterns before small ones. This is used to determine the size of a |
| /// pattern. |
| static unsigned getPatternSize(const TreePatternNode *P, |
| const CodeGenDAGPatterns &CGP) { |
| unsigned Size = 3; // The node itself. |
| // If the root node is a ConstantSDNode, increases its size. |
| // e.g. (set R32:$dst, 0). |
| if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) |
| Size += 2; |
| |
| // FIXME: This is a hack to statically increase the priority of patterns |
| // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. |
| // Later we can allow complexity / cost for each pattern to be (optionally) |
| // specified. To get best possible pattern match we'll need to dynamically |
| // calculate the complexity of all patterns a dag can potentially map to. |
| const ComplexPattern *AM = P->getComplexPatternInfo(CGP); |
| if (AM) |
| Size += AM->getNumOperands() * 3; |
| |
| // If this node has some predicate function that must match, it adds to the |
| // complexity of this node. |
| if (!P->getPredicateFns().empty()) |
| ++Size; |
| |
| // Count children in the count if they are also nodes. |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = P->getChild(i); |
| if (!Child->isLeaf() && Child->getNumTypes() && |
| Child->getType(0) != MVT::Other) |
| Size += getPatternSize(Child, CGP); |
| else if (Child->isLeaf()) { |
| if (isa<IntInit>(Child->getLeafValue())) |
| Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). |
| else if (Child->getComplexPatternInfo(CGP)) |
| Size += getPatternSize(Child, CGP); |
| else if (!Child->getPredicateFns().empty()) |
| ++Size; |
| } |
| } |
| |
| return Size; |
| } |
| |
| /// Compute the complexity metric for the input pattern. This roughly |
| /// corresponds to the number of nodes that are covered. |
| unsigned PatternToMatch:: |
| getPatternComplexity(const CodeGenDAGPatterns &CGP) const { |
| return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); |
| } |
| |
| |
| /// getPredicateCheck - Return a single string containing all of this |
| /// pattern's predicates concatenated with "&&" operators. |
| /// |
| std::string PatternToMatch::getPredicateCheck() const { |
| std::string PredicateCheck; |
| for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { |
| if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) { |
| Record *Def = Pred->getDef(); |
| if (!Def->isSubClassOf("Predicate")) { |
| #ifndef NDEBUG |
| Def->dump(); |
| #endif |
| llvm_unreachable("Unknown predicate type!"); |
| } |
| if (!PredicateCheck.empty()) |
| PredicateCheck += " && "; |
| PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; |
| } |
| } |
| |
| return PredicateCheck; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDTypeConstraint implementation |
| // |
| |
| SDTypeConstraint::SDTypeConstraint(Record *R) { |
| OperandNo = R->getValueAsInt("OperandNum"); |
| |
| if (R->isSubClassOf("SDTCisVT")) { |
| ConstraintType = SDTCisVT; |
| x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); |
| if (x.SDTCisVT_Info.VT == MVT::isVoid) |
| PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); |
| |
| } else if (R->isSubClassOf("SDTCisPtrTy")) { |
| ConstraintType = SDTCisPtrTy; |
| } else if (R->isSubClassOf("SDTCisInt")) { |
| ConstraintType = SDTCisInt; |
| } else if (R->isSubClassOf("SDTCisFP")) { |
| ConstraintType = SDTCisFP; |
| } else if (R->isSubClassOf("SDTCisVec")) { |
| ConstraintType = SDTCisVec; |
| } else if (R->isSubClassOf("SDTCisSameAs")) { |
| ConstraintType = SDTCisSameAs; |
| x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { |
| ConstraintType = SDTCisVTSmallerThanOp; |
| x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { |
| ConstraintType = SDTCisOpSmallerThanOp; |
| x.SDTCisOpSmallerThanOp_Info.BigOperandNum = |
| R->getValueAsInt("BigOperandNum"); |
| } else if (R->isSubClassOf("SDTCisEltOfVec")) { |
| ConstraintType = SDTCisEltOfVec; |
| x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); |
| } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { |
| ConstraintType = SDTCisSubVecOfVec; |
| x.SDTCisSubVecOfVec_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOpNum"); |
| } else { |
| errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree |
| /// N, and the result number in ResNo. |
| static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, |
| const SDNodeInfo &NodeInfo, |
| unsigned &ResNo) { |
| unsigned NumResults = NodeInfo.getNumResults(); |
| if (OpNo < NumResults) { |
| ResNo = OpNo; |
| return N; |
| } |
| |
| OpNo -= NumResults; |
| |
| if (OpNo >= N->getNumChildren()) { |
| errs() << "Invalid operand number in type constraint " |
| << (OpNo+NumResults) << " "; |
| N->dump(); |
| errs() << '\n'; |
| exit(1); |
| } |
| |
| return N->getChild(OpNo); |
| } |
| |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| /// constraint to the nodes operands. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, flag an error. |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, |
| const SDNodeInfo &NodeInfo, |
| TreePattern &TP) const { |
| if (TP.hasError()) |
| return false; |
| |
| unsigned ResNo = 0; // The result number being referenced. |
| TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); |
| |
| switch (ConstraintType) { |
| case SDTCisVT: |
| // Operand must be a particular type. |
| return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); |
| case SDTCisPtrTy: |
| // Operand must be same as target pointer type. |
| return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); |
| case SDTCisInt: |
| // Require it to be one of the legal integer VTs. |
| return NodeToApply->getExtType(ResNo).EnforceInteger(TP); |
| case SDTCisFP: |
| // Require it to be one of the legal fp VTs. |
| return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); |
| case SDTCisVec: |
| // Require it to be one of the legal vector VTs. |
| return NodeToApply->getExtType(ResNo).EnforceVector(TP); |
| case SDTCisSameAs: { |
| unsigned OResNo = 0; |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); |
| return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| |
| OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); |
| } |
| case SDTCisVTSmallerThanOp: { |
| // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must |
| // have an integer type that is smaller than the VT. |
| if (!NodeToApply->isLeaf() || |
| !isa<DefInit>(NodeToApply->getLeafValue()) || |
| !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() |
| ->isSubClassOf("ValueType")) { |
| TP.error(N->getOperator()->getName() + " expects a VT operand!"); |
| return false; |
| } |
| MVT::SimpleValueType VT = |
| getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); |
| |
| EEVT::TypeSet TypeListTmp(VT, TP); |
| |
| unsigned OResNo = 0; |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, |
| OResNo); |
| |
| return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); |
| } |
| case SDTCisOpSmallerThanOp: { |
| unsigned BResNo = 0; |
| TreePatternNode *BigOperand = |
| getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, |
| BResNo); |
| return NodeToApply->getExtType(ResNo). |
| EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); |
| } |
| case SDTCisEltOfVec: { |
| unsigned VResNo = 0; |
| TreePatternNode *VecOperand = |
| getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, |
| VResNo); |
| |
| // Filter vector types out of VecOperand that don't have the right element |
| // type. |
| return VecOperand->getExtType(VResNo). |
| EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); |
| } |
| case SDTCisSubVecOfVec: { |
| unsigned VResNo = 0; |
| TreePatternNode *BigVecOperand = |
| getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, |
| VResNo); |
| |
| // Filter vector types out of BigVecOperand that don't have the |
| // right subvector type. |
| return BigVecOperand->getExtType(VResNo). |
| EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); |
| } |
| } |
| llvm_unreachable("Invalid ConstraintType!"); |
| } |
| |
| // Update the node type to match an instruction operand or result as specified |
| // in the ins or outs lists on the instruction definition. Return true if the |
| // type was actually changed. |
| bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, |
| Record *Operand, |
| TreePattern &TP) { |
| // The 'unknown' operand indicates that types should be inferred from the |
| // context. |
| if (Operand->isSubClassOf("unknown_class")) |
| return false; |
| |
| // The Operand class specifies a type directly. |
| if (Operand->isSubClassOf("Operand")) |
| return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), |
| TP); |
| |
| // PointerLikeRegClass has a type that is determined at runtime. |
| if (Operand->isSubClassOf("PointerLikeRegClass")) |
| return UpdateNodeType(ResNo, MVT::iPTR, TP); |
| |
| // Both RegisterClass and RegisterOperand operands derive their types from a |
| // register class def. |
| Record *RC = 0; |
| if (Operand->isSubClassOf("RegisterClass")) |
| RC = Operand; |
| else if (Operand->isSubClassOf("RegisterOperand")) |
| RC = Operand->getValueAsDef("RegClass"); |
| |
| assert(RC && "Unknown operand type"); |
| CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); |
| return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SDNodeInfo implementation |
| // |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { |
| EnumName = R->getValueAsString("Opcode"); |
| SDClassName = R->getValueAsString("SDClass"); |
| Record *TypeProfile = R->getValueAsDef("TypeProfile"); |
| NumResults = TypeProfile->getValueAsInt("NumResults"); |
| NumOperands = TypeProfile->getValueAsInt("NumOperands"); |
| |
| // Parse the properties. |
| Properties = 0; |
| std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); |
| for (unsigned i = 0, e = PropList.size(); i != e; ++i) { |
| if (PropList[i]->getName() == "SDNPCommutative") { |
| Properties |= 1 << SDNPCommutative; |
| } else if (PropList[i]->getName() == "SDNPAssociative") { |
| Properties |= 1 << SDNPAssociative; |
| } else if (PropList[i]->getName() == "SDNPHasChain") { |
| Properties |= 1 << SDNPHasChain; |
| } else if (PropList[i]->getName() == "SDNPOutGlue") { |
| Properties |= 1 << SDNPOutGlue; |
| } else if (PropList[i]->getName() == "SDNPInGlue") { |
| Properties |= 1 << SDNPInGlue; |
| } else if (PropList[i]->getName() == "SDNPOptInGlue") { |
| Properties |= 1 << SDNPOptInGlue; |
| } else if (PropList[i]->getName() == "SDNPMayStore") { |
| Properties |= 1 << SDNPMayStore; |
| } else if (PropList[i]->getName() == "SDNPMayLoad") { |
| Properties |= 1 << SDNPMayLoad; |
| } else if (PropList[i]->getName() == "SDNPSideEffect") { |
| Properties |= 1 << SDNPSideEffect; |
| } else if (PropList[i]->getName() == "SDNPMemOperand") { |
| Properties |= 1 << SDNPMemOperand; |
| } else if (PropList[i]->getName() == "SDNPVariadic") { |
| Properties |= 1 << SDNPVariadic; |
| } else { |
| errs() << "Unknown SD Node property '" << PropList[i]->getName() |
| << "' on node '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| |
| // Parse the type constraints. |
| std::vector<Record*> ConstraintList = |
| TypeProfile->getValueAsListOfDefs("Constraints"); |
| TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); |
| } |
| |
| /// getKnownType - If the type constraints on this node imply a fixed type |
| /// (e.g. all stores return void, etc), then return it as an |
| /// MVT::SimpleValueType. Otherwise, return EEVT::Other. |
| MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { |
| unsigned NumResults = getNumResults(); |
| assert(NumResults <= 1 && |
| "We only work with nodes with zero or one result so far!"); |
| assert(ResNo == 0 && "Only handles single result nodes so far"); |
| |
| for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { |
| // Make sure that this applies to the correct node result. |
| if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # |
| continue; |
| |
| switch (TypeConstraints[i].ConstraintType) { |
| default: break; |
| case SDTypeConstraint::SDTCisVT: |
| return TypeConstraints[i].x.SDTCisVT_Info.VT; |
| case SDTypeConstraint::SDTCisPtrTy: |
| return MVT::iPTR; |
| } |
| } |
| return MVT::Other; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePatternNode implementation |
| // |
| |
| TreePatternNode::~TreePatternNode() { |
| #if 0 // FIXME: implement refcounted tree nodes! |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| delete getChild(i); |
| #endif |
| } |
| |
| static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { |
| if (Operator->getName() == "set" || |
| Operator->getName() == "implicit") |
| return 0; // All return nothing. |
| |
| if (Operator->isSubClassOf("Intrinsic")) |
| return CDP.getIntrinsic(Operator).IS.RetVTs.size(); |
| |
| if (Operator->isSubClassOf("SDNode")) |
| return CDP.getSDNodeInfo(Operator).getNumResults(); |
| |
| if (Operator->isSubClassOf("PatFrag")) { |
| // If we've already parsed this pattern fragment, get it. Otherwise, handle |
| // the forward reference case where one pattern fragment references another |
| // before it is processed. |
| if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) |
| return PFRec->getOnlyTree()->getNumTypes(); |
| |
| // Get the result tree. |
| DagInit *Tree = Operator->getValueAsDag("Fragment"); |
| Record *Op = 0; |
| if (Tree) |
| if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) |
| Op = DI->getDef(); |
| assert(Op && "Invalid Fragment"); |
| return GetNumNodeResults(Op, CDP); |
| } |
| |
| if (Operator->isSubClassOf("Instruction")) { |
| CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); |
| |
| // FIXME: Should allow access to all the results here. |
| unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; |
| |
| // Add on one implicit def if it has a resolvable type. |
| if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) |
| ++NumDefsToAdd; |
| return NumDefsToAdd; |
| } |
| |
| if (Operator->isSubClassOf("SDNodeXForm")) |
| return 1; // FIXME: Generalize SDNodeXForm |
| |
| Operator->dump(); |
| errs() << "Unhandled node in GetNumNodeResults\n"; |
| exit(1); |
| } |
| |
| void TreePatternNode::print(raw_ostream &OS) const { |
| if (isLeaf()) |
| OS << *getLeafValue(); |
| else |
| OS << '(' << getOperator()->getName(); |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| OS << ':' << getExtType(i).getName(); |
| |
| if (!isLeaf()) { |
| if (getNumChildren() != 0) { |
| OS << " "; |
| getChild(0)->print(OS); |
| for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| OS << ", "; |
| getChild(i)->print(OS); |
| } |
| } |
| OS << ")"; |
| } |
| |
| for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) |
| OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; |
| if (TransformFn) |
| OS << "<<X:" << TransformFn->getName() << ">>"; |
| if (!getName().empty()) |
| OS << ":$" << getName(); |
| |
| } |
| void TreePatternNode::dump() const { |
| print(errs()); |
| } |
| |
| /// isIsomorphicTo - Return true if this node is recursively |
| /// isomorphic to the specified node. For this comparison, the node's |
| /// entire state is considered. The assigned name is ignored, since |
| /// nodes with differing names are considered isomorphic. However, if |
| /// the assigned name is present in the dependent variable set, then |
| /// the assigned name is considered significant and the node is |
| /// isomorphic if the names match. |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, |
| const MultipleUseVarSet &DepVars) const { |
| if (N == this) return true; |
| if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || |
| getPredicateFns() != N->getPredicateFns() || |
| getTransformFn() != N->getTransformFn()) |
| return false; |
| |
| if (isLeaf()) { |
| if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { |
| if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { |
| return ((DI->getDef() == NDI->getDef()) |
| && (DepVars.find(getName()) == DepVars.end() |
| || getName() == N->getName())); |
| } |
| } |
| return getLeafValue() == N->getLeafValue(); |
| } |
| |
| if (N->getOperator() != getOperator() || |
| N->getNumChildren() != getNumChildren()) return false; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) |
| return false; |
| return true; |
| } |
| |
| /// clone - Make a copy of this tree and all of its children. |
| /// |
| TreePatternNode *TreePatternNode::clone() const { |
| TreePatternNode *New; |
| if (isLeaf()) { |
| New = new TreePatternNode(getLeafValue(), getNumTypes()); |
| } else { |
| std::vector<TreePatternNode*> CChildren; |
| CChildren.reserve(Children.size()); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| CChildren.push_back(getChild(i)->clone()); |
| New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); |
| } |
| New->setName(getName()); |
| New->Types = Types; |
| New->setPredicateFns(getPredicateFns()); |
| New->setTransformFn(getTransformFn()); |
| return New; |
| } |
| |
| /// RemoveAllTypes - Recursively strip all the types of this tree. |
| void TreePatternNode::RemoveAllTypes() { |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| Types[i] = EEVT::TypeSet(); // Reset to unknown type. |
| if (isLeaf()) return; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| getChild(i)->RemoveAllTypes(); |
| } |
| |
| |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| /// with actual values specified by ArgMap. |
| void TreePatternNode:: |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { |
| if (isLeaf()) return; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = getChild(i); |
| if (Child->isLeaf()) { |
| Init *Val = Child->getLeafValue(); |
| if (isa<DefInit>(Val) && |
| cast<DefInit>(Val)->getDef()->getName() == "node") { |
| // We found a use of a formal argument, replace it with its value. |
| TreePatternNode *NewChild = ArgMap[Child->getName()]; |
| assert(NewChild && "Couldn't find formal argument!"); |
| assert((Child->getPredicateFns().empty() || |
| NewChild->getPredicateFns() == Child->getPredicateFns()) && |
| "Non-empty child predicate clobbered!"); |
| setChild(i, NewChild); |
| } |
| } else { |
| getChild(i)->SubstituteFormalArguments(ArgMap); |
| } |
| } |
| } |
| |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrag references. |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { |
| if (TP.hasError()) |
| return 0; |
| |
| if (isLeaf()) |
| return this; // nothing to do. |
| Record *Op = getOperator(); |
| |
| if (!Op->isSubClassOf("PatFrag")) { |
| // Just recursively inline children nodes. |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = getChild(i); |
| TreePatternNode *NewChild = Child->InlinePatternFragments(TP); |
| |
| assert((Child->getPredicateFns().empty() || |
| NewChild->getPredicateFns() == Child->getPredicateFns()) && |
| "Non-empty child predicate clobbered!"); |
| |
| setChild(i, NewChild); |
| } |
| return this; |
| } |
| |
| // Otherwise, we found a reference to a fragment. First, look up its |
| // TreePattern record. |
| TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); |
| |
| // Verify that we are passing the right number of operands. |
| if (Frag->getNumArgs() != Children.size()) { |
| TP.error("'" + Op->getName() + "' fragment requires " + |
| utostr(Frag->getNumArgs()) + " operands!"); |
| return 0; |
| } |
| |
| TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); |
| |
| TreePredicateFn PredFn(Frag); |
| if (!PredFn.isAlwaysTrue()) |
| FragTree->addPredicateFn(PredFn); |
| |
| // Resolve formal arguments to their actual value. |
| if (Frag->getNumArgs()) { |
| // Compute the map of formal to actual arguments. |
| std::map<std::string, TreePatternNode*> ArgMap; |
| for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) |
| ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); |
| |
| FragTree->SubstituteFormalArguments(ArgMap); |
| } |
| |
| FragTree->setName(getName()); |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| FragTree->UpdateNodeType(i, getExtType(i), TP); |
| |
| // Transfer in the old predicates. |
| for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) |
| FragTree->addPredicateFn(getPredicateFns()[i]); |
| |
| // Get a new copy of this fragment to stitch into here. |
| //delete this; // FIXME: implement refcounting! |
| |
| // The fragment we inlined could have recursive inlining that is needed. See |
| // if there are any pattern fragments in it and inline them as needed. |
| return FragTree->InlinePatternFragments(TP); |
| } |
| |
| /// getImplicitType - Check to see if the specified record has an implicit |
| /// type which should be applied to it. This will infer the type of register |
| /// references from the register file information, for example. |
| /// |
| static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, |
| bool NotRegisters, TreePattern &TP) { |
| // Check to see if this is a register operand. |
| if (R->isSubClassOf("RegisterOperand")) { |
| assert(ResNo == 0 && "Regoperand ref only has one result!"); |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| Record *RegClass = R->getValueAsDef("RegClass"); |
| const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
| return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); |
| } |
| |
| // Check to see if this is a register or a register class. |
| if (R->isSubClassOf("RegisterClass")) { |
| assert(ResNo == 0 && "Regclass ref only has one result!"); |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
| return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); |
| } |
| |
| if (R->isSubClassOf("PatFrag")) { |
| assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); |
| // Pattern fragment types will be resolved when they are inlined. |
| return EEVT::TypeSet(); // Unknown. |
| } |
| |
| if (R->isSubClassOf("Register")) { |
| assert(ResNo == 0 && "Registers only produce one result!"); |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
| return EEVT::TypeSet(T.getRegisterVTs(R)); |
| } |
| |
| if (R->isSubClassOf("SubRegIndex")) { |
| assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); |
| return EEVT::TypeSet(); |
| } |
| |
| if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { |
| assert(ResNo == 0 && "This node only has one result!"); |
| // Using a VTSDNode or CondCodeSDNode. |
| return EEVT::TypeSet(MVT::Other, TP); |
| } |
| |
| if (R->isSubClassOf("ComplexPattern")) { |
| assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), |
| TP); |
| } |
| if (R->isSubClassOf("PointerLikeRegClass")) { |
| assert(ResNo == 0 && "Regclass can only have one result!"); |
| return EEVT::TypeSet(MVT::iPTR, TP); |
| } |
| |
| if (R->getName() == "node" || R->getName() == "srcvalue" || |
| R->getName() == "zero_reg") { |
| // Placeholder. |
| return EEVT::TypeSet(); // Unknown. |
| } |
| |
| TP.error("Unknown node flavor used in pattern: " + R->getName()); |
| return EEVT::TypeSet(MVT::Other, TP); |
| } |
| |
| |
| /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the |
| /// CodeGenIntrinsic information for it, otherwise return a null pointer. |
| const CodeGenIntrinsic *TreePatternNode:: |
| getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { |
| if (getOperator() != CDP.get_intrinsic_void_sdnode() && |
| getOperator() != CDP.get_intrinsic_w_chain_sdnode() && |
| getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) |
| return 0; |
| |
| unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); |
| return &CDP.getIntrinsicInfo(IID); |
| } |
| |
| /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, |
| /// return the ComplexPattern information, otherwise return null. |
| const ComplexPattern * |
| TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { |
| if (!isLeaf()) return 0; |
| |
| DefInit *DI = dyn_cast<DefInit>(getLeafValue()); |
| if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) |
| return &CGP.getComplexPattern(DI->getDef()); |
| return 0; |
| } |
| |
| /// NodeHasProperty - Return true if this node has the specified property. |
| bool TreePatternNode::NodeHasProperty(SDNP Property, |
| const CodeGenDAGPatterns &CGP) const { |
| if (isLeaf()) { |
| if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) |
| return CP->hasProperty(Property); |
| return false; |
| } |
| |
| Record *Operator = getOperator(); |
| if (!Operator->isSubClassOf("SDNode")) return false; |
| |
| return CGP.getSDNodeInfo(Operator).hasProperty(Property); |
| } |
| |
| |
| |
| |
| /// TreeHasProperty - Return true if any node in this tree has the specified |
| /// property. |
| bool TreePatternNode::TreeHasProperty(SDNP Property, |
| const CodeGenDAGPatterns &CGP) const { |
| if (NodeHasProperty(Property, CGP)) |
| return true; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (getChild(i)->TreeHasProperty(Property, CGP)) |
| return true; |
| return false; |
| } |
| |
| /// isCommutativeIntrinsic - Return true if the node corresponds to a |
| /// commutative intrinsic. |
| bool |
| TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { |
| if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) |
| return Int->isCommutative; |
| return false; |
| } |
| |
| |
| /// ApplyTypeConstraints - Apply all of the type constraints relevant to |
| /// this node and its children in the tree. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, flag an error. |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { |
| if (TP.hasError()) |
| return false; |
| |
| CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); |
| if (isLeaf()) { |
| if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { |
| // If it's a regclass or something else known, include the type. |
| bool MadeChange = false; |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, |
| NotRegisters, TP), TP); |
| return MadeChange; |
| } |
| |
| if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { |
| assert(Types.size() == 1 && "Invalid IntInit"); |
| |
| // Int inits are always integers. :) |
| bool MadeChange = Types[0].EnforceInteger(TP); |
| |
| if (!Types[0].isConcrete()) |
| return MadeChange; |
| |
| MVT::SimpleValueType VT = getType(0); |
| if (VT == MVT::iPTR || VT == MVT::iPTRAny) |
| return MadeChange; |
| |
| unsigned Size = EVT(VT).getSizeInBits(); |
| // Make sure that the value is representable for this type. |
| if (Size >= 32) return MadeChange; |
| |
| // Check that the value doesn't use more bits than we have. It must either |
| // be a sign- or zero-extended equivalent of the original. |
| int64_t SignBitAndAbove = II->getValue() >> (Size - 1); |
| if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) |
| return MadeChange; |
| |
| TP.error("Integer value '" + itostr(II->getValue()) + |
| "' is out of range for type '" + getEnumName(getType(0)) + "'!"); |
| return false; |
| } |
| return false; |
| } |
| |
| // special handling for set, which isn't really an SDNode. |
| if (getOperator()->getName() == "set") { |
| assert(getNumTypes() == 0 && "Set doesn't produce a value"); |
| assert(getNumChildren() >= 2 && "Missing RHS of a set?"); |
| unsigned NC = getNumChildren(); |
| |
| TreePatternNode *SetVal = getChild(NC-1); |
| bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); |
| |
| for (unsigned i = 0; i < NC-1; ++i) { |
| TreePatternNode *Child = getChild(i); |
| MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); |
| |
| // Types of operands must match. |
| MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); |
| MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); |
| } |
| return MadeChange; |
| } |
| |
| if (getOperator()->getName() == "implicit") { |
| assert(getNumTypes() == 0 && "Node doesn't produce a value"); |
| |
| bool MadeChange = false; |
| for (unsigned i = 0; i < getNumChildren(); ++i) |
| MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| return MadeChange; |
| } |
| |
| if (getOperator()->getName() == "COPY_TO_REGCLASS") { |
| bool MadeChange = false; |
| MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); |
| MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| assert(getChild(0)->getNumTypes() == 1 && |
| getChild(1)->getNumTypes() == 1 && "Unhandled case"); |
| |
| // child #1 of COPY_TO_REGCLASS should be a register class. We don't care |
| // what type it gets, so if it didn't get a concrete type just give it the |
| // first viable type from the reg class. |
| if (!getChild(1)->hasTypeSet(0) && |
| !getChild(1)->getExtType(0).isCompletelyUnknown()) { |
| MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; |
| MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); |
| } |
| return MadeChange; |
| } |
| |
| if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { |
| bool MadeChange = false; |
| |
| // Apply the result type to the node. |
| unsigned NumRetVTs = Int->IS.RetVTs.size(); |
| unsigned NumParamVTs = Int->IS.ParamVTs.size(); |
| |
| for (unsigned i = 0, e = NumRetVTs; i != e; ++i) |
| MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); |
| |
| if (getNumChildren() != NumParamVTs + 1) { |
| TP.error("Intrinsic '" + Int->Name + "' expects " + |
| utostr(NumParamVTs) + " operands, not " + |
| utostr(getNumChildren() - 1) + " operands!"); |
| return false; |
| } |
| |
| // Apply type info to the intrinsic ID. |
| MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); |
| |
| for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { |
| MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; |
| assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); |
| MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); |
| } |
| return MadeChange; |
| } |
| |
| if (getOperator()->isSubClassOf("SDNode")) { |
| const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); |
| |
| // Check that the number of operands is sane. Negative operands -> varargs. |
| if (NI.getNumOperands() >= 0 && |
| getNumChildren() != (unsigned)NI.getNumOperands()) { |
| TP.error(getOperator()->getName() + " node requires exactly " + |
| itostr(NI.getNumOperands()) + " operands!"); |
| return false; |
| } |
| |
| bool MadeChange = NI.ApplyTypeConstraints(this, TP); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| return MadeChange; |
| } |
| |
| if (getOperator()->isSubClassOf("Instruction")) { |
| const DAGInstruction &Inst = CDP.getInstruction(getOperator()); |
| CodeGenInstruction &InstInfo = |
| CDP.getTargetInfo().getInstruction(getOperator()); |
| |
| bool MadeChange = false; |
| |
| // Apply the result types to the node, these come from the things in the |
| // (outs) list of the instruction. |
| // FIXME: Cap at one result so far. |
| unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; |
| for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) |
| MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); |
| |
| // If the instruction has implicit defs, we apply the first one as a result. |
| // FIXME: This sucks, it should apply all implicit defs. |
| if (!InstInfo.ImplicitDefs.empty()) { |
| unsigned ResNo = NumResultsToAdd; |
| |
| // FIXME: Generalize to multiple possible types and multiple possible |
| // ImplicitDefs. |
| MVT::SimpleValueType VT = |
| InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); |
| |
| if (VT != MVT::Other) |
| MadeChange |= UpdateNodeType(ResNo, VT, TP); |
| } |
| |
| // If this is an INSERT_SUBREG, constrain the source and destination VTs to |
| // be the same. |
| if (getOperator()->getName() == "INSERT_SUBREG") { |
| assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); |
| MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); |
| MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); |
| } |
| |
| unsigned ChildNo = 0; |
| for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { |
| Record *OperandNode = Inst.getOperand(i); |
| |
| // If the instruction expects a predicate or optional def operand, we |
| // codegen this by setting the operand to it's default value if it has a |
| // non-empty DefaultOps field. |
| if (OperandNode->isSubClassOf("OperandWithDefaultOps") && |
| !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) |
| continue; |
| |
| // Verify that we didn't run out of provided operands. |
| if (ChildNo >= getNumChildren()) { |
| TP.error("Instruction '" + getOperator()->getName() + |
| "' expects more operands than were provided."); |
| return false; |
| } |
| |
| TreePatternNode *Child = getChild(ChildNo++); |
| unsigned ChildResNo = 0; // Instructions always use res #0 of their op. |
| MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); |
| MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); |
| } |
| |
| if (ChildNo != getNumChildren()) { |
| TP.error("Instruction '" + getOperator()->getName() + |
| "' was provided too many operands!"); |
| return false; |
| } |
| |
| return MadeChange; |
| } |
| |
| assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); |
| |
| // Node transforms always take one operand. |
| if (getNumChildren() != 1) { |
| TP.error("Node transform '" + getOperator()->getName() + |
| "' requires one operand!"); |
| return false; |
| } |
| |
| bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| |
| // If either the output or input of the xform does not have exact |
| // type info. We assume they must be the same. Otherwise, it is perfectly |
| // legal to transform from one type to a completely different type. |
| #if 0 |
| if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { |
| bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); |
| MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); |
| return MadeChange; |
| } |
| #endif |
| return MadeChange; |
| } |
| |
| /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the |
| /// RHS of a commutative operation, not the on LHS. |
| static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { |
| if (!N->isLeaf() && N->getOperator()->getName() == "imm") |
| return true; |
| if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) |
| return true; |
| return false; |
| } |
| |
| |
| /// canPatternMatch - If it is impossible for this pattern to match on this |
| /// target, fill in Reason and return false. Otherwise, return true. This is |
| /// used as a sanity check for .td files (to prevent people from writing stuff |
| /// that can never possibly work), and to prevent the pattern permuter from |
| /// generating stuff that is useless. |
| bool TreePatternNode::canPatternMatch(std::string &Reason, |
| const CodeGenDAGPatterns &CDP) { |
| if (isLeaf()) return true; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->canPatternMatch(Reason, CDP)) |
| return false; |
| |
| // If this is an intrinsic, handle cases that would make it not match. For |
| // example, if an operand is required to be an immediate. |
| if (getOperator()->isSubClassOf("Intrinsic")) { |
| // TODO: |
| return true; |
| } |
| |
| // If this node is a commutative operator, check that the LHS isn't an |
| // immediate. |
| const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); |
| bool isCommIntrinsic = isCommutativeIntrinsic(CDP); |
| if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { |
| // Scan all of the operands of the node and make sure that only the last one |
| // is a constant node, unless the RHS also is. |
| if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { |
| bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. |
| for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) |
| if (OnlyOnRHSOfCommutative(getChild(i))) { |
| Reason="Immediate value must be on the RHS of commutative operators!"; |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePattern implementation |
| // |
| |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), |
| isInputPattern(isInput), HasError(false) { |
| for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) |
| Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), |
| isInputPattern(isInput), HasError(false) { |
| Trees.push_back(ParseTreePattern(Pat, "")); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), |
| isInputPattern(isInput), HasError(false) { |
| Trees.push_back(Pat); |
| } |
| |
| void TreePattern::error(const std::string &Msg) { |
| if (HasError) |
| return; |
| dump(); |
| PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); |
| HasError = true; |
| } |
| |
| void TreePattern::ComputeNamedNodes() { |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| ComputeNamedNodes(Trees[i]); |
| } |
| |
| void TreePattern::ComputeNamedNodes(TreePatternNode *N) { |
| if (!N->getName().empty()) |
| NamedNodes[N->getName()].push_back(N); |
| |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| ComputeNamedNodes(N->getChild(i)); |
| } |
| |
| |
| TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ |
| if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { |
| Record *R = DI->getDef(); |
| |
| // Direct reference to a leaf DagNode or PatFrag? Turn it into a |
| // TreePatternNode of its own. For example: |
| /// (foo GPR, imm) -> (foo GPR, (imm)) |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) |
| return ParseTreePattern( |
| DagInit::get(DI, "", |
| std::vector<std::pair<Init*, std::string> >()), |
| OpName); |
| |
| // Input argument? |
| TreePatternNode *Res = new TreePatternNode(DI, 1); |
| if (R->getName() == "node" && !OpName.empty()) { |
| if (OpName.empty()) |
| error("'node' argument requires a name to match with operand list"); |
| Args.push_back(OpName); |
| } |
| |
| Res->setName(OpName); |
| return Res; |
| } |
| |
| if (IntInit *II = dyn_cast<IntInit>(TheInit)) { |
| if (!OpName.empty()) |
| error("Constant int argument should not have a name!"); |
| return new TreePatternNode(II, 1); |
| } |
| |
| if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { |
| // Turn this into an IntInit. |
| Init *II = BI->convertInitializerTo(IntRecTy::get()); |
| if (II == 0 || !isa<IntInit>(II)) |
| error("Bits value must be constants!"); |
| return ParseTreePattern(II, OpName); |
| } |
| |
| DagInit *Dag = dyn_cast<DagInit>(TheInit); |
| if (!Dag) { |
| TheInit->dump(); |
| error("Pattern has unexpected init kind!"); |
| } |
| DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); |
| if (!OpDef) error("Pattern has unexpected operator type!"); |
| Record *Operator = OpDef->getDef(); |
| |
| if (Operator->isSubClassOf("ValueType")) { |
| // If the operator is a ValueType, then this must be "type cast" of a leaf |
| // node. |
| if (Dag->getNumArgs() != 1) |
| error("Type cast only takes one operand!"); |
| |
| TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); |
| |
| // Apply the type cast. |
| assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); |
| New->UpdateNodeType(0, getValueType(Operator), *this); |
| |
| if (!OpName.empty()) |
| error("ValueType cast should not have a name!"); |
| return New; |
| } |
| |
| // Verify that this is something that makes sense for an operator. |
| if (!Operator->isSubClassOf("PatFrag") && |
| !Operator->isSubClassOf("SDNode") && |
| !Operator->isSubClassOf("Instruction") && |
| !Operator->isSubClassOf("SDNodeXForm") && |
| !Operator->isSubClassOf("Intrinsic") && |
| Operator->getName() != "set" && |
| Operator->getName() != "implicit") |
| error("Unrecognized node '" + Operator->getName() + "'!"); |
| |
| // Check to see if this is something that is illegal in an input pattern. |
| if (isInputPattern) { |
| if (Operator->isSubClassOf("Instruction") || |
| Operator->isSubClassOf("SDNodeXForm")) |
| error("Cannot use '" + Operator->getName() + "' in an input pattern!"); |
| } else { |
| if (Operator->isSubClassOf("Intrinsic")) |
| error("Cannot use '" + Operator->getName() + "' in an output pattern!"); |
| |
| if (Operator->isSubClassOf("SDNode") && |
| Operator->getName() != "imm" && |
| Operator->getName() != "fpimm" && |
| Operator->getName() != "tglobaltlsaddr" && |
| Operator->getName() != "tconstpool" && |
| Operator->getName() != "tjumptable" && |
| Operator->getName() != "tframeindex" && |
| Operator->getName() != "texternalsym" && |
| Operator->getName() != "tblockaddress" && |
| Operator->getName() != "tglobaladdr" && |
| Operator->getName() != "bb" && |
| Operator->getName() != "vt") |
| error("Cannot use '" + Operator->getName() + "' in an output pattern!"); |
| } |
| |
| std::vector<TreePatternNode*> Children; |
| |
| // Parse all the operands. |
| for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) |
| Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); |
| |
| // If the operator is an intrinsic, then this is just syntactic sugar for for |
| // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and |
| // convert the intrinsic name to a number. |
| if (Operator->isSubClassOf("Intrinsic")) { |
| const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); |
| unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; |
| |
| // If this intrinsic returns void, it must have side-effects and thus a |
| // chain. |
| if (Int.IS.RetVTs.empty()) |
| Operator = getDAGPatterns().get_intrinsic_void_sdnode(); |
| else if (Int.ModRef != CodeGenIntrinsic::NoMem) |
| // Has side-effects, requires chain. |
| Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); |
| else // Otherwise, no chain. |
| Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); |
| |
| TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); |
| Children.insert(Children.begin(), IIDNode); |
| } |
| |
| unsigned NumResults = GetNumNodeResults(Operator, CDP); |
| TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); |
| Result->setName(OpName); |
| |
| if (!Dag->getName().empty()) { |
| assert(Result->getName().empty()); |
| Result->setName(Dag->getName()); |
| } |
| return Result; |
| } |
| |
| /// SimplifyTree - See if we can simplify this tree to eliminate something that |
| /// will never match in favor of something obvious that will. This is here |
| /// strictly as a convenience to target authors because it allows them to write |
| /// more type generic things and have useless type casts fold away. |
| /// |
| /// This returns true if any change is made. |
| static bool SimplifyTree(TreePatternNode *&N) { |
| if (N->isLeaf()) |
| return false; |
| |
| // If we have a bitconvert with a resolved type and if the source and |
| // destination types are the same, then the bitconvert is useless, remove it. |
| if (N->getOperator()->getName() == "bitconvert" && |
| N->getExtType(0).isConcrete() && |
| N->getExtType(0) == N->getChild(0)->getExtType(0) && |
| N->getName().empty()) { |
| N = N->getChild(0); |
| SimplifyTree(N); |
| return true; |
| } |
| |
| // Walk all children. |
| bool MadeChange = false; |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| MadeChange |= SimplifyTree(Child); |
| N->setChild(i, Child); |
| } |
| return MadeChange; |
| } |
| |
| |
| |
| /// InferAllTypes - Infer/propagate as many types throughout the expression |
| /// patterns as possible. Return true if all types are inferred, false |
| /// otherwise. Flags an error if a type contradiction is found. |
| bool TreePattern:: |
| InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { |
| if (NamedNodes.empty()) |
| ComputeNamedNodes(); |
| |
| bool MadeChange = true; |
| while (MadeChange) { |
| MadeChange = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) { |
| MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); |
| MadeChange |= SimplifyTree(Trees[i]); |
| } |
| |
| // If there are constraints on our named nodes, apply them. |
| for (StringMap<SmallVector<TreePatternNode*,1> >::iterator |
| I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { |
| SmallVectorImpl<TreePatternNode*> &Nodes = I->second; |
| |
| // If we have input named node types, propagate their types to the named |
| // values here. |
| if (InNamedTypes) { |
| // FIXME: Should be error? |
| assert(InNamedTypes->count(I->getKey()) && |
| "Named node in output pattern but not input pattern?"); |
| |
| const SmallVectorImpl<TreePatternNode*> &InNodes = |
| InNamedTypes->find(I->getKey())->second; |
| |
| // The input types should be fully resolved by now. |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { |
| // If this node is a register class, and it is the root of the pattern |
| // then we're mapping something onto an input register. We allow |
| // changing the type of the input register in this case. This allows |
| // us to match things like: |
| // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; |
| if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { |
| DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue()); |
| if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || |
| DI->getDef()->isSubClassOf("RegisterOperand"))) |
| continue; |
| } |
| |
| assert(Nodes[i]->getNumTypes() == 1 && |
| InNodes[0]->getNumTypes() == 1 && |
| "FIXME: cannot name multiple result nodes yet"); |
| MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), |
| *this); |
| } |
| } |
| |
| // If there are multiple nodes with the same name, they must all have the |
| // same type. |
| if (I->second.size() > 1) { |
| for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { |
| TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; |
| assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && |
| "FIXME: cannot name multiple result nodes yet"); |
| |
| MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); |
| MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); |
| } |
| } |
| } |
| } |
| |
| bool HasUnresolvedTypes = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); |
| return !HasUnresolvedTypes; |
| } |
| |
| void TreePattern::print(raw_ostream &OS) const { |
| OS << getRecord()->getName(); |
| if (!Args.empty()) { |
| OS << "(" << Args[0]; |
| for (unsigned i = 1, e = Args.size(); i != e; ++i) |
| OS << ", " << Args[i]; |
| OS << ")"; |
| } |
| OS << ": "; |
| |
| if (Trees.size() > 1) |
| OS << "[\n"; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) { |
| OS << "\t"; |
| Trees[i]->print(OS); |
| OS << "\n"; |
| } |
| |
| if (Trees.size() > 1) |
| OS << "]\n"; |
| } |
| |
| void TreePattern::dump() const { print(errs()); } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenDAGPatterns implementation |
| // |
| |
| CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : |
| Records(R), Target(R) { |
| |
| Intrinsics = LoadIntrinsics(Records, false); |
| TgtIntrinsics = LoadIntrinsics(Records, true); |
| ParseNodeInfo(); |
| ParseNodeTransforms(); |
| ParseComplexPatterns(); |
| ParsePatternFragments(); |
| ParseDefaultOperands(); |
| ParseInstructions(); |
| ParsePatterns(); |
| |
| // Generate variants. For example, commutative patterns can match |
| // multiple ways. Add them to PatternsToMatch as well. |
| GenerateVariants(); |
| |
| // Infer instruction flags. For example, we can detect loads, |
| // stores, and side effects in many cases by examining an |
| // instruction's pattern. |
| InferInstructionFlags(); |
| |
| // Verify that instruction flags match the patterns. |
| VerifyInstructionFlags(); |
| } |
| |
| CodeGenDAGPatterns::~CodeGenDAGPatterns() { |
| for (pf_iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) |
| delete I->second; |
| } |
| |
| |
| Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { |
| Record *N = Records.getDef(Name); |
| if (!N || !N->isSubClassOf("SDNode")) { |
| errs() << "Error getting SDNode '" << Name << "'!\n"; |
| exit(1); |
| } |
| return N; |
| } |
| |
| // Parse all of the SDNode definitions for the target, populating SDNodes. |
| void CodeGenDAGPatterns::ParseNodeInfo() { |
| std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); |
| while (!Nodes.empty()) { |
| SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); |
| Nodes.pop_back(); |
| } |
| |
| // Get the builtin intrinsic nodes. |
| intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); |
| intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); |
| intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); |
| } |
| |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms |
| /// map, and emit them to the file as functions. |
| void CodeGenDAGPatterns::ParseNodeTransforms() { |
| std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); |
| while (!Xforms.empty()) { |
| Record *XFormNode = Xforms.back(); |
| Record *SDNode = XFormNode->getValueAsDef("Opcode"); |
| std::string Code = XFormNode->getValueAsString("XFormFunction"); |
| SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); |
| |
| Xforms.pop_back(); |
| } |
| } |
| |
| void CodeGenDAGPatterns::ParseComplexPatterns() { |
| std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); |
| while (!AMs.empty()) { |
| ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); |
| AMs.pop_back(); |
| } |
| } |
| |
| |
| /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td |
| /// file, building up the PatternFragments map. After we've collected them all, |
| /// inline fragments together as necessary, so that there are no references left |
| /// inside a pattern fragment to a pattern fragment. |
| /// |
| void CodeGenDAGPatterns::ParsePatternFragments() { |
| std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); |
| |
| // First step, parse all of the fragments. |
| for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { |
| DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); |
| TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); |
| PatternFragments[Fragments[i]] = P; |
| |
| // Validate the argument list, converting it to set, to discard duplicates. |
| std::vector<std::string> &Args = P->getArgList(); |
| std::set<std::string> OperandsSet(Args.begin(), Args.end()); |
| |
| if (OperandsSet.count("")) |
| P->error("Cannot have unnamed 'node' values in pattern fragment!"); |
| |
| // Parse the operands list. |
| DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); |
| DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); |
| // Special cases: ops == outs == ins. Different names are used to |
| // improve readability. |
| if (!OpsOp || |
| (OpsOp->getDef()->getName() != "ops" && |
| OpsOp->getDef()->getName() != "outs" && |
| OpsOp->getDef()->getName() != "ins")) |
| P->error("Operands list should start with '(ops ... '!"); |
| |
| // Copy over the arguments. |
| Args.clear(); |
| for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { |
| if (!isa<DefInit>(OpsList->getArg(j)) || |
| cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") |
| P->error("Operands list should all be 'node' values."); |
| if (OpsList->getArgName(j).empty()) |
| P->error("Operands list should have names for each operand!"); |
| if (!OperandsSet.count(OpsList->getArgName(j))) |
| P->error("'" + OpsList->getArgName(j) + |
| "' does not occur in pattern or was multiply specified!"); |
| OperandsSet.erase(OpsList->getArgName(j)); |
| Args.push_back(OpsList->getArgName(j)); |
| } |
| |
| if (!OperandsSet.empty()) |
| P->error("Operands list does not contain an entry for operand '" + |
| *OperandsSet.begin() + "'!"); |
| |
| // If there is a code init for this fragment, keep track of the fact that |
| // this fragment uses it. |
| TreePredicateFn PredFn(P); |
| if (!PredFn.isAlwaysTrue()) |
| P->getOnlyTree()->addPredicateFn(PredFn); |
| |
| // If there is a node transformation corresponding to this, keep track of |
| // it. |
| Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); |
| if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? |
| P->getOnlyTree()->setTransformFn(Transform); |
| } |
| |
| // Now that we've parsed all of the tree fragments, do a closure on them so |
| // that there are not references to PatFrags left inside of them. |
| for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { |
| TreePattern *ThePat = PatternFragments[Fragments[i]]; |
| ThePat->InlinePatternFragments(); |
| |
| // Infer as many types as possible. Don't worry about it if we don't infer |
| // all of them, some may depend on the inputs of the pattern. |
| ThePat->InferAllTypes(); |
| ThePat->resetError(); |
| |
| // If debugging, print out the pattern fragment result. |
| DEBUG(ThePat->dump()); |
| } |
| } |
| |
| void CodeGenDAGPatterns::ParseDefaultOperands() { |
| std::vector<Record*> DefaultOps; |
| DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); |
| |
| // Find some SDNode. |
| assert(!SDNodes.empty() && "No SDNodes parsed?"); |
| Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); |
| |
| for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { |
| DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); |
| |
| // Clone the DefaultInfo dag node, changing the operator from 'ops' to |
| // SomeSDnode so that we can parse this. |
| std::vector<std::pair<Init*, std::string> > Ops; |
| for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) |
| Ops.push_back(std::make_pair(DefaultInfo->getArg(op), |
| DefaultInfo->getArgName(op))); |
| DagInit *DI = DagInit::get(SomeSDNode, "", Ops); |
| |
| // Create a TreePattern to parse this. |
| TreePattern P(DefaultOps[i], DI, false, *this); |
| assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); |
| |
| // Copy the operands over into a DAGDefaultOperand. |
| DAGDefaultOperand DefaultOpInfo; |
| |
| TreePatternNode *T = P.getTree(0); |
| for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { |
| TreePatternNode *TPN = T->getChild(op); |
| while (TPN->ApplyTypeConstraints(P, false)) |
| /* Resolve all types */; |
| |
| if (TPN->ContainsUnresolvedType()) { |
| PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" + |
| DefaultOps[i]->getName() +"' doesn't have a concrete type!"); |
| } |
| DefaultOpInfo.DefaultOps.push_back(TPN); |
| } |
| |
| // Insert it into the DefaultOperands map so we can find it later. |
| DefaultOperands[DefaultOps[i]] = DefaultOpInfo; |
| } |
| } |
| |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an |
| /// instruction input. Return true if this is a real use. |
| static bool HandleUse(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs) { |
| // No name -> not interesting. |
| if (Pat->getName().empty()) { |
| if (Pat->isLeaf()) { |
| DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); |
| if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || |
| DI->getDef()->isSubClassOf("RegisterOperand"))) |
| I->error("Input " + DI->getDef()->getName() + " must be named!"); |
| } |
| return false; |
| } |
| |
| Record *Rec; |
| if (Pat->isLeaf()) { |
| DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); |
| if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); |
| Rec = DI->getDef(); |
| } else { |
| Rec = Pat->getOperator(); |
| } |
| |
| // SRCVALUE nodes are ignored. |
| if (Rec->getName() == "srcvalue") |
| return false; |
| |
| TreePatternNode *&Slot = InstInputs[Pat->getName()]; |
| if (!Slot) { |
| Slot = Pat; |
| return true; |
| } |
| Record *SlotRec; |
| if (Slot->isLeaf()) { |
| SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); |
| } else { |
| assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); |
| SlotRec = Slot->getOperator(); |
| } |
| |
| // Ensure that the inputs agree if we've already seen this input. |
| if (Rec != SlotRec) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| if (Slot->getExtTypes() != Pat->getExtTypes()) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| return true; |
| } |
| |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is |
| /// part of "I", the instruction), computing the set of inputs and outputs of |
| /// the pattern. Report errors if we see anything naughty. |
| void CodeGenDAGPatterns:: |
| FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs, |
| std::map<std::string, TreePatternNode*>&InstResults, |
| std::vector<Record*> &InstImpResults) { |
| if (Pat->isLeaf()) { |
| bool isUse = HandleUse(I, Pat, InstInputs); |
| if (!isUse && Pat->getTransformFn()) |
| I->error("Cannot specify a transform function for a non-input value!"); |
| return; |
| } |
| |
| if (Pat->getOperator()->getName() == "implicit") { |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Dest = Pat->getChild(i); |
| if (!Dest->isLeaf()) |
| I->error("implicitly defined value should be a register!"); |
| |
| DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); |
| if (!Val || !Val->getDef()->isSubClassOf("Register")) |
| I->error("implicitly defined value should be a register!"); |
| InstImpResults.push_back(Val->getDef()); |
| } |
| return; |
| } |
| |
| if (Pat->getOperator()->getName() != "set") { |
| // If this is not a set, verify that the children nodes are not void typed, |
| // and recurse. |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
| if (Pat->getChild(i)->getNumTypes() == 0) |
| I->error("Cannot have void nodes inside of patterns!"); |
| FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, |
| InstImpResults); |
| } |
| |
| // If this is a non-leaf node with no children, treat it basically as if |
| // it were a leaf. This handles nodes like (imm). |
| bool isUse = HandleUse(I, Pat, InstInputs); |
| |
| if (!isUse && Pat->getTransformFn()) |
| I->error("Cannot specify a transform function for a non-input value!"); |
| return; |
| } |
| |
| // Otherwise, this is a set, validate and collect instruction results. |
| if (Pat->getNumChildren() == 0) |
| I->error("set requires operands!"); |
| |
| if (Pat->getTransformFn()) |
| I->error("Cannot specify a transform function on a set node!"); |
| |
| // Check the set destinations. |
| unsigned NumDests = Pat->getNumChildren()-1; |
| for (unsigned i = 0; i != NumDests; ++i) { |
| TreePatternNode *Dest = Pat->getChild(i); |
| if (!Dest->isLeaf()) |
| I->error("set destination should be a register!"); |
| |
| DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); |
| if (!Val) |
| I->error("set destination should be a register!"); |
| |
| if (Val->getDef()->isSubClassOf("RegisterClass") || |
| Val->getDef()->isSubClassOf("RegisterOperand") || |
| Val->getDef()->isSubClassOf("PointerLikeRegClass")) { |
| if (Dest->getName().empty()) |
| I->error("set destination must have a name!"); |
| if (InstResults.count(Dest->getName())) |
| I->error("cannot set '" + Dest->getName() +"' multiple times"); |
| InstResults[Dest->getName()] = Dest; |
| } else if (Val->getDef()->isSubClassOf("Register")) { |
| InstImpResults.push_back(Val->getDef()); |
| } else { |
| I->error("set destination should be a register!"); |
| } |
| } |
| |
| // Verify and collect info from the computation. |
| FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), |
| InstInputs, InstResults, InstImpResults); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Analysis |
| //===----------------------------------------------------------------------===// |
| |
| class InstAnalyzer { |
| const CodeGenDAGPatterns &CDP; |
| public: |
| bool hasSideEffects; |
| bool mayStore; |
| bool mayLoad; |
| bool isBitcast; |
| bool isVariadic; |
| |
| InstAnalyzer(const CodeGenDAGPatterns &cdp) |
| : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), |
| isBitcast(false), isVariadic(false) {} |
| |
| void Analyze(const TreePattern *Pat) { |
| // Assume only the first tree is the pattern. The others are clobber nodes. |
| AnalyzeNode(Pat->getTree(0)); |
| } |
| |
| void Analyze(const PatternToMatch *Pat) { |
| AnalyzeNode(Pat->getSrcPattern()); |
| } |
| |
| private: |
| bool IsNodeBitcast(const TreePatternNode *N) const { |
| if (hasSideEffects || mayLoad || mayStore || isVariadic) |
| return false; |
| |
| if (N->getNumChildren() != 2) |
| return false; |
| |
| const TreePatternNode *N0 = N->getChild(0); |
| if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) |
| return false; |
| |
| const TreePatternNode *N1 = N->getChild(1); |
| if (N1->isLeaf()) |
| return false; |
| if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) |
| return false; |
| |
| const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); |
| if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) |
| return false; |
| return OpInfo.getEnumName() == "ISD::BITCAST"; |
| } |
| |
| public: |
| void AnalyzeNode(const TreePatternNode *N) { |
| if (N->isLeaf()) { |
| if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { |
| Record *LeafRec = DI->getDef(); |
| // Handle ComplexPattern leaves. |
| if (LeafRec->isSubClassOf("ComplexPattern")) { |
| const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); |
| if (CP.hasProperty(SDNPMayStore)) mayStore = true; |
| if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; |
| if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; |
| } |
| } |
| return; |
| } |
| |
| // Analyze children. |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| AnalyzeNode(N->getChild(i)); |
| |
| // Ignore set nodes, which are not SDNodes. |
| if (N->getOperator()->getName() == "set") { |
| isBitcast = IsNodeBitcast(N); |
| return; |
| } |
| |
| // Get information about the SDNode for the operator. |
| const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); |
| |
| // Notice properties of the node. |
| if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; |
| if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; |
| if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true; |
| if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true; |
| |
| if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { |
| // If this is an intrinsic, analyze it. |
| if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) |
| mayLoad = true;// These may load memory. |
| |
| if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) |
| mayStore = true;// Intrinsics that can write to memory are 'mayStore'. |
| |
| if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) |
| // WriteMem intrinsics can have other strange effects. |
| hasSideEffects = true; |
| } |
| } |
| |
| }; |
| |
| static bool InferFromPattern(CodeGenInstruction &InstInfo, |
| const InstAnalyzer &PatInfo, |
| Record *PatDef) { |
| bool Error = false; |
| |
| // Remember where InstInfo got its flags. |
| if (InstInfo.hasUndefFlags()) |
| InstInfo.InferredFrom = PatDef; |
| |
| // Check explicitly set flags for consistency. |
| if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && |
| !InstInfo.hasSideEffects_Unset) { |
| // Allow explicitly setting hasSideEffects = 1 on instructions, even when |
| // the pattern has no side effects. That could be useful for div/rem |
| // instructions that may trap. |
| if (!InstInfo.hasSideEffects) { |
| Error = true; |
| PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + |
| Twine(InstInfo.hasSideEffects)); |
| } |
| } |
| |
| if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { |
| Error = true; |
| PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + |
| Twine(InstInfo.mayStore)); |
| } |
| |
| if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { |
| // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. |
| // Some targets translate imediates to loads. |
| if (!InstInfo.mayLoad) { |
| Error = true; |
| PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + |
| Twine(InstInfo.mayLoad)); |
| } |
| } |
| |
| // Transfer inferred flags. |
| InstInfo.hasSideEffects |= PatInfo.hasSideEffects; |
| InstInfo.mayStore |= PatInfo.mayStore; |
| InstInfo.mayLoad |= PatInfo.mayLoad; |
| |
| // These flags are silently added without any verification. |
| InstInfo.isBitcast |= PatInfo.isBitcast; |
| |
| // Don't infer isVariadic. This flag means something different on SDNodes and |
| // instructions. For example, a CALL SDNode is variadic because it has the |
| // call arguments as operands, but a CALL instruction is not variadic - it |
| // has argument registers as implicit, not explicit uses. |
| |
| return Error; |
| } |
| |
| /// hasNullFragReference - Return true if the DAG has any reference to the |
| /// null_frag operator. |
| static bool hasNullFragReference(DagInit *DI) { |
| DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); |
| if (!OpDef) return false; |
| Record *Operator = OpDef->getDef(); |
| |
| // If this is the null fragment, return true. |
| if (Operator->getName() == "null_frag") return true; |
| // If any of the arguments reference the null fragment, return true. |
| for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { |
| DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); |
| if (Arg && hasNullFragReference(Arg)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// hasNullFragReference - Return true if any DAG in the list references |
| /// the null_frag operator. |
| static bool hasNullFragReference(ListInit *LI) { |
| for (unsigned i = 0, e = LI->getSize(); i != e; ++i) { |
| DagInit *DI = dyn_cast<DagInit>(LI->getElement(i)); |
| assert(DI && "non-dag in an instruction Pattern list?!"); |
| if (hasNullFragReference(DI)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Get all the instructions in a tree. |
| static void |
| getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { |
| if (Tree->isLeaf()) |
| return; |
| if (Tree->getOperator()->isSubClassOf("Instruction")) |
| Instrs.push_back(Tree->getOperator()); |
| for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) |
| getInstructionsInTree(Tree->getChild(i), Instrs); |
| } |
| |
| /// ParseInstructions - Parse all of the instructions, inlining and resolving |
| /// any fragments involved. This populates the Instructions list with fully |
| /// resolved instructions. |
| void CodeGenDAGPatterns::ParseInstructions() { |
| std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); |
| |
| for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
| ListInit *LI = 0; |
| |
| if (isa<ListInit>(Instrs[i]->getValueInit("Pattern"))) |
| LI = Instrs[i]->getValueAsListInit("Pattern"); |
| |
| // If there is no pattern, only collect minimal information about the |
| // instruction for its operand list. We have to assume that there is one |
| // result, as we have no detailed info. A pattern which references the |
| // null_frag operator is as-if no pattern were specified. Normally this |
| // is from a multiclass expansion w/ a SDPatternOperator passed in as |
| // null_frag. |
| if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) { |
| std::vector<Record*> Results; |
| std::vector<Record*> Operands; |
| |
| CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); |
| |
| if (InstInfo.Operands.size() != 0) { |
| if (InstInfo.Operands.NumDefs == 0) { |
| // These produce no results |
| for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) |
| Operands.push_back(InstInfo.Operands[j].Rec); |
| } else { |
| // Assume the first operand is the result. |
| Results.push_back(InstInfo.Operands[0].Rec); |
| |
| // The rest are inputs. |
| for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) |
| Operands.push_back(InstInfo.Operands[j].Rec); |
| } |
| } |
| |
| // Create and insert the instruction. |
| std::vector<Record*> ImpResults; |
| Instructions.insert(std::make_pair(Instrs[i], |
| DAGInstruction(0, Results, Operands, ImpResults))); |
| continue; // no pattern. |
| } |
| |
| // Parse the instruction. |
| TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); |
| // Inline pattern fragments into it. |
| I->InlinePatternFragments(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we can |
| // never do anything with this instruction pattern: report it to the user. |
| if (!I->InferAllTypes()) |
| I->error("Could not infer all types in pattern!"); |
| |
| // InstInputs - Keep track of all of the inputs of the instruction, along |
| // with the record they are declared as. |
| std::map<std::string, TreePatternNode*> InstInputs; |
| |
| // InstResults - Keep track of all the virtual registers that are 'set' |
| // in the instruction, including what reg class they are. |
| std::map<std::string, TreePatternNode*> InstResults; |
| |
| std::vector<Record*> InstImpResults; |
| |
| // Verify that the top-level forms in the instruction are of void type, and |
| // fill in the InstResults map. |
| for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { |
| TreePatternNode *Pat = I->getTree(j); |
| if (Pat->getNumTypes() != 0) |
| I->error("Top-level forms in instruction pattern should have" |
| " void types"); |
| |
| // Find inputs and outputs, and verify the structure of the uses/defs. |
| FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, |
| InstImpResults); |
| } |
| |
| // Now that we have inputs and outputs of the pattern, inspect the operands |
| // list for the instruction. This determines the order that operands are |
| // added to the machine instruction the node corresponds to. |
| unsigned NumResults = InstResults.size(); |
| |
| // Parse the operands list from the (ops) list, validating it. |
| assert(I->getArgList().empty() && "Args list should still be empty here!"); |
| CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); |
| |
| // Check that all of the results occur first in the list. |
| std::vector<Record*> Results; |
| TreePatternNode *Res0Node = 0; |
| for (unsigned i = 0; i != NumResults; ++i) { |
| if (i == CGI.Operands.size()) |
| I->error("'" + InstResults.begin()->first + |
| "' set but does not appear in operand list!"); |
| const std::string &OpName = CGI.Operands[i].Name; |
| |
| // Check that it exists in InstResults. |
| TreePatternNode *RNode = InstResults[OpName]; |
| if (RNode == 0) |
| I->error("Operand $" + OpName + " does not exist in operand list!"); |
| |
| if (i == 0) |
| Res0Node = RNode; |
| Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); |
| if (R == 0) |
| I->error("Operand $" + OpName + " should be a set destination: all " |
| "outputs must occur before inputs in operand list!"); |
| |
| if (CGI.Operands[i].Rec != R) |
| I->error("Operand $" + OpName + " class mismatch!"); |
| |
| // Remember the return type. |
| Results.push_back(CGI.Operands[i].Rec); |
| |
| // Okay, this one checks out. |
| InstResults.erase(OpName); |
| } |
| |
| // Loop over the inputs next. Make a copy of InstInputs so we can destroy |
| // the copy while we're checking the inputs. |
| std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); |
| |
| std::vector<TreePatternNode*> ResultNodeOperands; |
| std::vector<Record*> Operands; |
| for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { |
| CGIOperandList::OperandInfo &Op = CGI.Operands[i]; |
| const std::string &OpName = Op.Name; |
| if (OpName.empty()) |
| I->error("Operand #" + utostr(i) + " in operands list has no name!"); |
| |
| if (!InstInputsCheck.count(OpName)) { |
| // If this is an operand with a DefaultOps set filled in, we can ignore |
| // this. When we codegen it, we will do so as always executed. |
| if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { |
| // Does it have a non-empty DefaultOps field? If so, ignore this |
| // operand. |
| if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) |
| continue; |
| } |
| I->error("Operand $" + OpName + |
| " does not appear in the instruction pattern"); |
| } |
| TreePatternNode *InVal = InstInputsCheck[OpName]; |
| InstInputsCheck.erase(OpName); // It occurred, remove from map. |
| |
| if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { |
| Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); |
| if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) |
| I->error("Operand $" + OpName + "'s register class disagrees" |
| " between the operand and pattern"); |
| } |
| Operands.push_back(Op.Rec); |
| |
| // Construct the result for the dest-pattern operand list. |
| TreePatternNode *OpNode = InVal->clone(); |
| |
| // No predicate is useful on the result. |
| OpNode->clearPredicateFns(); |
| |
| // Promote the xform function to be an explicit node if set. |
| if (Record *Xform = OpNode->getTransformFn()) { |
| OpNode->setTransformFn(0); |
| std::vector<TreePatternNode*> Children; |
| Children.push_back(OpNode); |
| OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); |
| } |
| |
| ResultNodeOperands.push_back(OpNode); |
| } |
| |
| if (!InstInputsCheck.empty()) |
| I->error("Input operand $" + InstInputsCheck.begin()->first + |
| " occurs in pattern but not in operands list!"); |
| |
| TreePatternNode *ResultPattern = |
| new TreePatternNode(I->getRecord(), ResultNodeOperands, |
| GetNumNodeResults(I->getRecord(), *this)); |
| // Copy fully inferred output node type to instruction result pattern. |
| for (unsigned i = 0; i != NumResults; ++i) |
| ResultPattern->setType(i, Res0Node->getExtType(i)); |
| |
| // Create and insert the instruction. |
| // FIXME: InstImpResults should not be part of DAGInstruction. |
| DAGInstruction TheInst(I, Results, Operands, InstImpResults); |
| Instructions.insert(std::make_pair(I->getRecord(), TheInst)); |
| |
| // Use a temporary tree pattern to infer all types and make sure that the |
| // constructed result is correct. This depends on the instruction already |
| // being inserted into the Instructions map. |
| TreePattern Temp(I->getRecord(), ResultPattern, false, *this); |
| Temp.InferAllTypes(&I->getNamedNodesMap()); |
| |
| DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; |
| TheInsertedInst.setResultPattern(Temp.getOnlyTree()); |
| |
| DEBUG(I->dump()); |
| } |
| |
| // If we can, convert the instructions to be patterns that are matched! |
| for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II = |
| Instructions.begin(), |
| E = Instructions.end(); II != E; ++II) { |
| DAGInstruction &TheInst = II->second; |
| TreePattern *I = TheInst.getPattern(); |
| if (I == 0) continue; // No pattern. |
| |
| // FIXME: Assume only the first tree is the pattern. The others are clobber |
| // nodes. |
| TreePatternNode *Pattern = I->getTree(0); |
| TreePatternNode *SrcPattern; |
| if (Pattern->getOperator()->getName() == "set") { |
| SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); |
| } else{ |
| // Not a set (store or something?) |
| SrcPattern = Pattern; |
| } |
| |
| Record *Instr = II->first; |
| AddPatternToMatch(I, |
| PatternToMatch(Instr, |
| Instr->getValueAsListInit("Predicates"), |
| SrcPattern, |
| TheInst.getResultPattern(), |
| TheInst.getImpResults(), |
| Instr->getValueAsInt("AddedComplexity"), |
| Instr->getID())); |
| } |
| } |
| |
| |
| typedef std::pair<const TreePatternNode*, unsigned> NameRecord; |
| |
| static void FindNames(const TreePatternNode *P, |
| std::map<std::string, NameRecord> &Names, |
| TreePattern *PatternTop) { |
| if (!P->getName().empty()) { |
| NameRecord &Rec = Names[P->getName()]; |
| // If this is the first instance of the name, remember the node. |
| if (Rec.second++ == 0) |
| Rec.first = P; |
| else if (Rec.first->getExtTypes() != P->getExtTypes()) |
| PatternTop->error("repetition of value: $" + P->getName() + |
| " where different uses have different types!"); |
| } |
| |
| if (!P->isLeaf()) { |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| FindNames(P->getChild(i), Names, PatternTop); |
| } |
| } |
| |
| void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, |
| const PatternToMatch &PTM) { |
| // Do some sanity checking on the pattern we're about to match. |
| std::string Reason; |
| if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { |
| PrintWarning(Pattern->getRecord()->getLoc(), |
| Twine("Pattern can never match: ") + Reason); |
| return; |
| } |
| |
| // If the source pattern's root is a complex pattern, that complex pattern |
| // must specify the nodes it can potentially match. |
| if (const ComplexPattern *CP = |
| PTM.getSrcPattern()->getComplexPatternInfo(*this)) |
| if (CP->getRootNodes().empty()) |
| Pattern->error("ComplexPattern at root must specify list of opcodes it" |
| " could match"); |
| |
| |
| // Find all of the named values in the input and output, ensure they have the |
| // same type. |
| std::map<std::string, NameRecord> SrcNames, DstNames; |
| FindNames(PTM.getSrcPattern(), SrcNames, Pattern); |
| FindNames(PTM.getDstPattern(), DstNames, Pattern); |
| |
| // Scan all of the named values in the destination pattern, rejecting them if |
| // they don't exist in the input pattern. |
| for (std::map<std::string, NameRecord>::iterator |
| I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { |
| if (SrcNames[I->first].first == 0) |
| Pattern->error("Pattern has input without matching name in output: $" + |
| I->first); |
| } |
| |
| // Scan all of the named values in the source pattern, rejecting them if the |
| // name isn't used in the dest, and isn't used to tie two values together. |
| for (std::map<std::string, NameRecord>::iterator |
| I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) |
| if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) |
| Pattern->error("Pattern has dead named input: $" + I->first); |
| |
| PatternsToMatch.push_back(PTM); |
| } |
| |
| |
| |
| void CodeGenDAGPatterns::InferInstructionFlags() { |
| const std::vector<const CodeGenInstruction*> &Instructions = |
| Target.getInstructionsByEnumValue(); |
| |
| // First try to infer flags from the primary instruction pattern, if any. |
| SmallVector<CodeGenInstruction*, 8> Revisit; |
| unsigned Errors = 0; |
| for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { |
| CodeGenInstruction &InstInfo = |
| const_cast<CodeGenInstruction &>(*Instructions[i]); |
| |
| // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0. |
| // This flag is obsolete and will be removed. |
| if (InstInfo.neverHasSideEffects) { |
| assert(!InstInfo.hasSideEffects); |
| InstInfo.hasSideEffects_Unset = false; |
| } |
| |
| // Get the primary instruction pattern. |
| const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); |
| if (!Pattern) { |
| if (InstInfo.hasUndefFlags()) |
| Revisit.push_back(&InstInfo); |
| continue; |
| } |
| InstAnalyzer PatInfo(*this); |
| PatInfo.Analyze(Pattern); |
| Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); |
| } |
| |
| // Second, look for single-instruction patterns defined outside the |
| // instruction. |
| for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { |
| const PatternToMatch &PTM = *I; |
| |
| // We can only infer from single-instruction patterns, otherwise we won't |
| // know which instruction should get the flags. |
| SmallVector<Record*, 8> PatInstrs; |
| getInstructionsInTree(PTM.getDstPattern(), PatInstrs); |
| if (PatInstrs.size() != 1) |
| continue; |
| |
| // Get the single instruction. |
| CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); |
| |
| // Only infer properties from the first pattern. We'll verify the others. |
| if (InstInfo.InferredFrom) |
| continue; |
| |
| InstAnalyzer PatInfo(*this); |
| PatInfo.Analyze(&PTM); |
| Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); |
| } |
| |
| if (Errors) |
| PrintFatalError("pattern conflicts"); |
| |
| // Revisit instructions with undefined flags and no pattern. |
| if (Target.guessInstructionProperties()) { |
| for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { |
| CodeGenInstruction &InstInfo = *Revisit[i]; |
| if (InstInfo.InferredFrom) |
| continue; |
| // The mayLoad and mayStore flags default to false. |
| // Conservatively assume hasSideEffects if it wasn't explicit. |
| if (InstInfo.hasSideEffects_Unset) |
| InstInfo.hasSideEffects = true; |
| } |
| return; |
| } |
| |
| // Complain about any flags that are still undefined. |
| for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { |
| CodeGenInstruction &InstInfo = *Revisit[i]; |
| if (InstInfo.InferredFrom) |
| continue; |
| if (InstInfo.hasSideEffects_Unset) |
| PrintError(InstInfo.TheDef->getLoc(), |
| "Can't infer hasSideEffects from patterns"); |
| if (InstInfo.mayStore_Unset) |
| PrintError(InstInfo.TheDef->getLoc(), |
| "Can't infer mayStore from patterns"); |
| if (InstInfo.mayLoad_Unset) |
| PrintError(InstInfo.TheDef->getLoc(), |
| "Can't infer mayLoad from patterns"); |
| } |
| } |
| |
| |
| /// Verify instruction flags against pattern node properties. |
| void CodeGenDAGPatterns::VerifyInstructionFlags() { |
| unsigned Errors = 0; |
| for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { |
| const PatternToMatch &PTM = *I; |
| SmallVector<Record*, 8> Instrs; |
| getInstructionsInTree(PTM.getDstPattern(), Instrs); |
| if (Instrs.empty()) |
| continue; |
| |
| // Count the number of instructions with each flag set. |
| unsigned NumSideEffects = 0; |
| unsigned NumStores = 0; |
| unsigned NumLoads = 0; |
| for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
| const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); |
| NumSideEffects += InstInfo.hasSideEffects; |
| NumStores += InstInfo.mayStore; |
| NumLoads += InstInfo.mayLoad; |
| } |
| |
| // Analyze the source pattern. |
| InstAnalyzer PatInfo(*this); |
| PatInfo.Analyze(&PTM); |
| |
| // Collect error messages. |
| SmallVector<std::string, 4> Msgs; |
| |
| // Check for missing flags in the output. |
| // Permit extra flags for now at least. |
| if (PatInfo.hasSideEffects && !NumSideEffects) |
| Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); |
| |
| // Don't verify store flags on instructions with side effects. At least for |
| // intrinsics, side effects implies mayStore. |
| if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) |
| Msgs.push_back("pattern may store, but mayStore isn't set"); |
| |
| // Similarly, mayStore implies mayLoad on intrinsics. |
| if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) |
| Msgs.push_back("pattern may load, but mayLoad isn't set"); |
| |
| // Print error messages. |
| if (Msgs.empty()) |
| continue; |
| ++Errors; |
| |
| for (unsigned i = 0, e = Msgs.size(); i != e; ++i) |
| PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " + |
| (Instrs.size() == 1 ? |
| "instruction" : "output instructions")); |
| // Provide the location of the relevant instruction definitions. |
| for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
| if (Instrs[i] != PTM.getSrcRecord()) |
| PrintError(Instrs[i]->getLoc(), "defined here"); |
| const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); |
| if (InstInfo.InferredFrom && |
| InstInfo.InferredFrom != InstInfo.TheDef && |
| InstInfo.InferredFrom != PTM.getSrcRecord()) |
| PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern"); |
| } |
| } |
| if (Errors) |
| PrintFatalError("Errors in DAG patterns"); |
| } |
| |
| /// Given a pattern result with an unresolved type, see if we can find one |
| /// instruction with an unresolved result type. Force this result type to an |
| /// arbitrary element if it's possible types to converge results. |
| static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { |
| if (N->isLeaf()) |
| return false; |
| |
| // Analyze children. |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| if (ForceArbitraryInstResultType(N->getChild(i), TP)) |
| return true; |
| |
| if (!N->getOperator()->isSubClassOf("Instruction")) |
| return false; |
| |
| // If this type is already concrete or completely unknown we can't do |
| // anything. |
| for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { |
| if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) |
| continue; |
| |
| // Otherwise, force its type to the first possibility (an arbitrary choice). |
| if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void CodeGenDAGPatterns::ParsePatterns() { |
| std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); |
| |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| Record *CurPattern = Patterns[i]; |
| DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); |
| |
| // If the pattern references the null_frag, there's nothing to do. |
| if (hasNullFragReference(Tree)) |
| continue; |
| |
| TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); |
| |
| // Inline pattern fragments into it. |
| Pattern->InlinePatternFragments(); |
| |
| ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); |
| if (LI->getSize() == 0) continue; // no pattern. |
| |
| // Parse the instruction. |
| TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); |
| |
| // Inline pattern fragments into it. |
| Result->InlinePatternFragments(); |
| |
| if (Result->getNumTrees() != 1) |
| Result->error("Cannot handle instructions producing instructions " |
| "with temporaries yet!"); |
| |
| bool IterateInference; |
| bool InferredAllPatternTypes, InferredAllResultTypes; |
| do { |
| // Infer as many types as possible. If we cannot infer all of them, we |
| // can never do anything with this pattern: report it to the user. |
| InferredAllPatternTypes = |
| Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we |
| // can never do anything with this pattern: report it to the user. |
| InferredAllResultTypes = |
| Result->InferAllTypes(&Pattern->getNamedNodesMap()); |
| |
| IterateInference = false; |
| |
| // Apply the type of the result to the source pattern. This helps us |
| // resolve cases where the input type is known to be a pointer type (which |
| // is considered resolved), but the result knows it needs to be 32- or |
| // 64-bits. Infer the other way for good measure. |
| for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), |
| Pattern->getTree(0)->getNumTypes()); |
| i != e; ++i) { |
| IterateInference = Pattern->getTree(0)-> |
| UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); |
| IterateInference |= Result->getTree(0)-> |
| UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); |
| } |
| |
| // If our iteration has converged and the input pattern's types are fully |
| // resolved but the result pattern is not fully resolved, we may have a |
| // situation where we have two instructions in the result pattern and |
| // the instructions require a common register class, but don't care about |
| // what actual MVT is used. This is actually a bug in our modelling: |
| // output patterns should have register classes, not MVTs. |
| // |
| // In any case, to handle this, we just go through and disambiguate some |
| // arbitrary types to the result pattern's nodes. |
| if (!IterateInference && InferredAllPatternTypes && |
| !InferredAllResultTypes) |
| IterateInference = ForceArbitraryInstResultType(Result->getTree(0), |
| *Result); |
| } while (IterateInference); |
| |
| // Verify that we inferred enough types that we can do something with the |
| // pattern and result. If these fire the user has to add type casts. |
| if (!InferredAllPatternTypes) |
| Pattern->error("Could not infer all types in pattern!"); |
| if (!InferredAllResultTypes) { |
| Pattern->dump(); |
| Result->error("Could not infer all types in pattern result!"); |
| } |
| |
| // Validate that the input pattern is correct. |
| std::map<std::string, TreePatternNode*> InstInputs; |
| std::map<std::string, TreePatternNode*> InstResults; |
| std::vector<Record*> InstImpResults; |
| for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) |
| FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), |
| InstInputs, InstResults, |
| InstImpResults); |
| |
| // Promote the xform function to be an explicit node if set. |
| TreePatternNode *DstPattern = Result->getOnlyTree(); |
| std::vector<TreePatternNode*> ResultNodeOperands; |
| for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { |
| TreePatternNode *OpNode = DstPattern->getChild(ii); |
| if (Record *Xform = OpNode->getTransformFn()) { |
| OpNode->setTransformFn(0); |
| std::vector<TreePatternNode*> Children; |
| Children.push_back(OpNode); |
| OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); |
| } |
| ResultNodeOperands.push_back(OpNode); |
| } |
| DstPattern = Result->getOnlyTree(); |
| if (!DstPattern->isLeaf()) |
| DstPattern = new TreePatternNode(DstPattern->getOperator(), |
| ResultNodeOperands, |
| DstPattern->getNumTypes()); |
| |
| for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) |
| DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); |
| |
| TreePattern Temp(Result->getRecord(), DstPattern, false, *this); |
| Temp.InferAllTypes(); |
| |
| |
| AddPatternToMatch(Pattern, |
| PatternToMatch(CurPattern, |
| CurPattern->getValueAsListInit("Predicates"), |
| Pattern->getTree(0), |
| Temp.getOnlyTree(), InstImpResults, |
| CurPattern->getValueAsInt("AddedComplexity"), |
| CurPattern->getID())); |
| } |
| } |
| |
| /// CombineChildVariants - Given a bunch of permutations of each child of the |
| /// 'operator' node, put them together in all possible ways. |
| static void CombineChildVariants(TreePatternNode *Orig, |
| const std::vector<std::vector<TreePatternNode*> > &ChildVariants, |
| std::vector<TreePatternNode*> &OutVariants, |
| CodeGenDAGPatterns &CDP, |
| const MultipleUseVarSet &DepVars) { |
| // Make sure that each operand has at least one variant to choose from. |
| for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| if (ChildVariants[i].empty()) |
| return; |
| |
| // The end result is an all-pairs construction of the resultant pattern. |
| std::vector<unsigned> Idxs; |
| Idxs.resize(ChildVariants.size()); |
| bool NotDone; |
| do { |
| #ifndef NDEBUG |
| DEBUG(if (!Idxs.empty()) { |
| errs() << Orig->getOperator()->getName() << ": Idxs = [ "; |
| for (unsigned i = 0; i < Idxs.size(); ++i) { |
| errs() << Idxs[i] << " "; |
| } |
| errs() << "]\n"; |
| }); |
| #endif |
| // Create the variant and add it to the output list. |
| std::vector<TreePatternNode*> NewChildren; |
| for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| NewChildren.push_back(ChildVariants[i][Idxs[i]]); |
| TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, |
| Orig->getNumTypes()); |
| |
| // Copy over properties. |
| R->setName(Orig->getName()); |
| R->setPredicateFns(Orig->getPredicateFns()); |
| R->setTransformFn(Orig->getTransformFn()); |
| for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) |
| R->setType(i, Orig->getExtType(i)); |
| |
| // If this pattern cannot match, do not include it as a variant. |
| std::string ErrString; |
| if (!R->canPatternMatch(ErrString, CDP)) { |
| delete R; |
| } else { |
| bool AlreadyExists = false; |
| |
| // Scan to see if this pattern has already been emitted. We can get |
| // duplication due to things like commuting: |
| // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) |
| // which are the same pattern. Ignore the dups. |
| for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) |
| if (R->isIsomorphicTo(OutVariants[i], DepVars)) { |
| AlreadyExists = true; |
| break; |
| } |
| |
| if (AlreadyExists) |
| delete R; |
| else |
| OutVariants.push_back(R); |
| } |
| |
| // Increment indices to the next permutation by incrementing the |
| // indicies from last index backward, e.g., generate the sequence |
| // [0, 0], [0, 1], [1, 0], [1, 1]. |
| int IdxsIdx; |
| for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { |
| if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) |
| Idxs[IdxsIdx] = 0; |
| else |
| break; |
| } |
| NotDone = (IdxsIdx >= 0); |
| } while (NotDone); |
| } |
| |
| /// CombineChildVariants - A helper function for binary operators. |
| /// |
| static void CombineChildVariants(TreePatternNode *Orig, |
| const std::vector<TreePatternNode*> &LHS, |
| const std::vector<TreePatternNode*> &RHS, |
| std::vector<TreePatternNode*> &OutVariants, |
| CodeGenDAGPatterns &CDP, |
| const MultipleUseVarSet &DepVars) { |
| std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| ChildVariants.push_back(LHS); |
| ChildVariants.push_back(RHS); |
| CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); |
| } |
| |
| |
| static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, |
| std::vector<TreePatternNode *> &Children) { |
| assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); |
| Record *Operator = N->getOperator(); |
| |
| // Only permit raw nodes. |
| if (!N->getName().empty() || !N->getPredicateFns().empty() || |
| N->getTransformFn()) { |
| Children.push_back(N); |
| return; |
| } |
| |
| if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) |
| Children.push_back(N->getChild(0)); |
| else |
| GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); |
| |
| if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) |
| Children.push_back(N->getChild(1)); |
| else |
| GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); |
| } |
| |
| /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of |
| /// the (potentially recursive) pattern by using algebraic laws. |
| /// |
| static void GenerateVariantsOf(TreePatternNode *N, |
| std::vector<TreePatternNode*> &OutVariants, |
| CodeGenDAGPatterns &CDP, |
| const MultipleUseVarSet &DepVars) { |
| // We cannot permute leaves. |
| if (N->isLeaf()) { |
| OutVariants.push_back(N); |
| return; |
| } |
| |
| // Look up interesting info about the node. |
| const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); |
| |
| // If this node is associative, re-associate. |
| if (NodeInfo.hasProperty(SDNPAssociative)) { |
| // Re-associate by pulling together all of the linked operators |
| std::vector<TreePatternNode*> MaximalChildren; |
| GatherChildrenOfAssociativeOpcode(N, MaximalChildren); |
| |
| // Only handle child sizes of 3. Otherwise we'll end up trying too many |
| // permutations. |
| if (MaximalChildren.size() == 3) { |
| // Find the variants of all of our maximal children. |
| std::vector<TreePatternNode*> AVariants, BVariants, CVariants; |
| GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); |
| GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); |
| GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); |
| |
| // There are only two ways we can permute the tree: |
| // (A op B) op C and A op (B op C) |
| // Within these forms, we can also permute A/B/C. |
| |
| // Generate legal pair permutations of A/B/C. |
| std::vector<TreePatternNode*> ABVariants; |
| std::vector<TreePatternNode*> BAVariants; |
| std::vector<TreePatternNode*> ACVariants; |
| std::vector<TreePatternNode*> CAVariants; |
| std::vector<TreePatternNode*> BCVariants; |
| std::vector<TreePatternNode*> CBVariants; |
| CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); |
| CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); |
| CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); |
| CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); |
| CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); |
| CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); |
| |
| // Combine those into the result: (x op x) op x |
| CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); |
| |
| // Combine those into the result: x op (x op x) |
| CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); |
| CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); |
| return; |
| } |
| } |
| |
| // Compute permutations of all children. |
| std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| ChildVariants.resize(N->getNumChildren()); |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); |
| |
| // Build all permutations based on how the children were formed. |
| CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); |
| |
| // If this node is commutative, consider the commuted order. |
| bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); |
| if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { |
| assert((N->getNumChildren()==2 || isCommIntrinsic) && |
| "Commutative but doesn't have 2 children!"); |
| // Don't count children which are actually register references. |
| unsigned NC = 0; |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| if (Child->isLeaf()) |
| if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { |
| Record *RR = DI->getDef(); |
| if (RR->isSubClassOf("Register")) |
| continue; |
| } |
| NC++; |
| } |
| // Consider the commuted order. |
| if (isCommIntrinsic) { |
| // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd |
| // operands are the commutative operands, and there might be more operands |
| // after those. |
| assert(NC >= 3 && |
| "Commutative intrinsic should have at least 3 childrean!"); |
| std::vector<std::vector<TreePatternNode*> > Variants; |
| Variants.push_back(ChildVariants[0]); // Intrinsic id. |
| Variants.push_back(ChildVariants[2]); |
| Variants.push_back(ChildVariants[1]); |
| for (unsigned i = 3; i != NC; ++i) |
| Variants.push_back(ChildVariants[i]); |
| CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); |
| } else if (NC == 2) |
| CombineChildVariants(N, ChildVariants[1], ChildVariants[0], |
| OutVariants, CDP, DepVars); |
| } |
| } |
| |
| |
| // GenerateVariants - Generate variants. For example, commutative patterns can |
| // match multiple ways. Add them to PatternsToMatch as well. |
| void CodeGenDAGPatterns::GenerateVariants() { |
| DEBUG(errs() << "Generating instruction variants.\n"); |
| |
| // Loop over all of the patterns we've collected, checking to see if we can |
| // generate variants of the instruction, through the exploitation of |
| // identities. This permits the target to provide aggressive matching without |
| // the .td file having to contain tons of variants of instructions. |
| // |
| // Note that this loop adds new patterns to the PatternsToMatch list, but we |
| // intentionally do not reconsider these. Any variants of added patterns have |
| // already been added. |
| // |
| for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| MultipleUseVarSet DepVars; |
| std::vector<TreePatternNode*> Variants; |
| FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); |
| DEBUG(errs() << "Dependent/multiply used variables: "); |
| DEBUG(DumpDepVars(DepVars)); |
| DEBUG(errs() << "\n"); |
| GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, |
| DepVars); |
| |
| assert(!Variants.empty() && "Must create at least original variant!"); |
| Variants.erase(Variants.begin()); // Remove the original pattern. |
| |
| if (Variants.empty()) // No variants for this pattern. |
| continue; |
| |
| DEBUG(errs() << "FOUND VARIANTS OF: "; |
| PatternsToMatch[i].getSrcPattern()->dump(); |
| errs() << "\n"); |
| |
| for (unsigned v = 0, e = Variants.size(); v != e; ++v) { |
| TreePatternNode *Variant = Variants[v]; |
| |
| DEBUG(errs() << " VAR#" << v << ": "; |
| Variant->dump(); |
| errs() << "\n"); |
| |
| // Scan to see if an instruction or explicit pattern already matches this. |
| bool AlreadyExists = false; |
| for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { |
| // Skip if the top level predicates do not match. |
| if (PatternsToMatch[i].getPredicates() != |
| PatternsToMatch[p].getPredicates()) |
| continue; |
| // Check to see if this variant already exists. |
| if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), |
| DepVars)) { |
| DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); |
| AlreadyExists = true; |
| break; |
| } |
| } |
| // If we already have it, ignore the variant. |
| if (AlreadyExists) continue; |
| |
| // Otherwise, add it to the list of patterns we have. |
| PatternsToMatch. |
| push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), |
| PatternsToMatch[i].getPredicates(), |
| Variant, PatternsToMatch[i].getDstPattern(), |
| PatternsToMatch[i].getDstRegs(), |
| PatternsToMatch[i].getAddedComplexity(), |
| Record::getNewUID())); |
| } |
| |
| DEBUG(errs() << "\n"); |
| } |
| } |