blob: 227019d97a26d8777820fc3df41b847b85891ca0 [file] [log] [blame]
//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate the machine model as decribed in
// the target description.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "subtarget-emitter"
#include "CodeGenSchedule.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Regex.h"
#include "llvm/TableGen/Error.h"
using namespace llvm;
#ifndef NDEBUG
static void dumpIdxVec(const IdxVec &V) {
for (unsigned i = 0, e = V.size(); i < e; ++i) {
dbgs() << V[i] << ", ";
}
}
static void dumpIdxVec(const SmallVectorImpl<unsigned> &V) {
for (unsigned i = 0, e = V.size(); i < e; ++i) {
dbgs() << V[i] << ", ";
}
}
#endif
// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
struct InstrsOp : public SetTheory::Operator {
void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) {
ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
}
};
// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
//
// TODO: Since this is a prefix match, perform a binary search over the
// instruction names using lower_bound. Note that the predefined instrs must be
// scanned linearly first. However, this is only safe if the regex pattern has
// no top-level bars. The DAG already has a list of patterns, so there's no
// reason to use top-level bars, but we need a way to verify they don't exist
// before implementing the optimization.
struct InstRegexOp : public SetTheory::Operator {
const CodeGenTarget &Target;
InstRegexOp(const CodeGenTarget &t): Target(t) {}
void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) {
SmallVector<Regex*, 4> RegexList;
for (DagInit::const_arg_iterator
AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) {
StringInit *SI = dyn_cast<StringInit>(*AI);
if (!SI)
PrintFatalError(Loc, "instregex requires pattern string: "
+ Expr->getAsString());
std::string pat = SI->getValue();
// Implement a python-style prefix match.
if (pat[0] != '^') {
pat.insert(0, "^(");
pat.insert(pat.end(), ')');
}
RegexList.push_back(new Regex(pat));
}
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I) {
for (SmallVectorImpl<Regex*>::iterator
RI = RegexList.begin(), RE = RegexList.end(); RI != RE; ++RI) {
if ((*RI)->match((*I)->TheDef->getName()))
Elts.insert((*I)->TheDef);
}
}
DeleteContainerPointers(RegexList);
}
};
/// CodeGenModels ctor interprets machine model records and populates maps.
CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
const CodeGenTarget &TGT):
Records(RK), Target(TGT) {
Sets.addFieldExpander("InstRW", "Instrs");
// Allow Set evaluation to recognize the dags used in InstRW records:
// (instrs Op1, Op1...)
Sets.addOperator("instrs", new InstrsOp);
Sets.addOperator("instregex", new InstRegexOp(Target));
// Instantiate a CodeGenProcModel for each SchedMachineModel with the values
// that are explicitly referenced in tablegen records. Resources associated
// with each processor will be derived later. Populate ProcModelMap with the
// CodeGenProcModel instances.
collectProcModels();
// Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
// defined, and populate SchedReads and SchedWrites vectors. Implicit
// SchedReadWrites that represent sequences derived from expanded variant will
// be inferred later.
collectSchedRW();
// Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
// required by an instruction definition, and populate SchedClassIdxMap. Set
// NumItineraryClasses to the number of explicit itinerary classes referenced
// by instructions. Set NumInstrSchedClasses to the number of itinerary
// classes plus any classes implied by instructions that derive from class
// Sched and provide SchedRW list. This does not infer any new classes from
// SchedVariant.
collectSchedClasses();
// Find instruction itineraries for each processor. Sort and populate
// CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
// all itinerary classes to be discovered.
collectProcItins();
// Find ItinRW records for each processor and itinerary class.
// (For per-operand resources mapped to itinerary classes).
collectProcItinRW();
// Infer new SchedClasses from SchedVariant.
inferSchedClasses();
// Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
// ProcResourceDefs.
collectProcResources();
}
/// Gather all processor models.
void CodeGenSchedModels::collectProcModels() {
RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName());
// Reserve space because we can. Reallocation would be ok.
ProcModels.reserve(ProcRecords.size()+1);
// Use idx=0 for NoModel/NoItineraries.
Record *NoModelDef = Records.getDef("NoSchedModel");
Record *NoItinsDef = Records.getDef("NoItineraries");
ProcModels.push_back(CodeGenProcModel(0, "NoSchedModel",
NoModelDef, NoItinsDef));
ProcModelMap[NoModelDef] = 0;
// For each processor, find a unique machine model.
for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i)
addProcModel(ProcRecords[i]);
}
/// Get a unique processor model based on the defined MachineModel and
/// ProcessorItineraries.
void CodeGenSchedModels::addProcModel(Record *ProcDef) {
Record *ModelKey = getModelOrItinDef(ProcDef);
if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
return;
std::string Name = ModelKey->getName();
if (ModelKey->isSubClassOf("SchedMachineModel")) {
Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
ProcModels.push_back(
CodeGenProcModel(ProcModels.size(), Name, ModelKey, ItinsDef));
}
else {
// An itinerary is defined without a machine model. Infer a new model.
if (!ModelKey->getValueAsListOfDefs("IID").empty())
Name = Name + "Model";
ProcModels.push_back(
CodeGenProcModel(ProcModels.size(), Name,
ProcDef->getValueAsDef("SchedModel"), ModelKey));
}
DEBUG(ProcModels.back().dump());
}
// Recursively find all reachable SchedReadWrite records.
static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
SmallPtrSet<Record*, 16> &RWSet) {
if (!RWSet.insert(RWDef))
return;
RWDefs.push_back(RWDef);
// Reads don't current have sequence records, but it can be added later.
if (RWDef->isSubClassOf("WriteSequence")) {
RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I)
scanSchedRW(*I, RWDefs, RWSet);
}
else if (RWDef->isSubClassOf("SchedVariant")) {
// Visit each variant (guarded by a different predicate).
RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) {
// Visit each RW in the sequence selected by the current variant.
RecVec Selected = (*VI)->getValueAsListOfDefs("Selected");
for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I)
scanSchedRW(*I, RWDefs, RWSet);
}
}
}
// Collect and sort all SchedReadWrites reachable via tablegen records.
// More may be inferred later when inferring new SchedClasses from variants.
void CodeGenSchedModels::collectSchedRW() {
// Reserve idx=0 for invalid writes/reads.
SchedWrites.resize(1);
SchedReads.resize(1);
SmallPtrSet<Record*, 16> RWSet;
// Find all SchedReadWrites referenced by instruction defs.
RecVec SWDefs, SRDefs;
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I) {
Record *SchedDef = (*I)->TheDef;
if (SchedDef->isValueUnset("SchedRW"))
continue;
RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) {
if ((*RWI)->isSubClassOf("SchedWrite"))
scanSchedRW(*RWI, SWDefs, RWSet);
else {
assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(*RWI, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by InstRW.
RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) {
// For all OperandReadWrites.
RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites");
for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end();
RWI != RWE; ++RWI) {
if ((*RWI)->isSubClassOf("SchedWrite"))
scanSchedRW(*RWI, SWDefs, RWSet);
else {
assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(*RWI, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by ItinRW.
RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) {
// For all OperandReadWrites.
RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites");
for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end();
RWI != RWE; ++RWI) {
if ((*RWI)->isSubClassOf("SchedWrite"))
scanSchedRW(*RWI, SWDefs, RWSet);
else {
assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(*RWI, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
// for the loop below that initializes Alias vectors.
RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord());
for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) {
Record *MatchDef = (*AI)->getValueAsDef("MatchRW");
Record *AliasDef = (*AI)->getValueAsDef("AliasRW");
if (MatchDef->isSubClassOf("SchedWrite")) {
if (!AliasDef->isSubClassOf("SchedWrite"))
PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite");
scanSchedRW(AliasDef, SWDefs, RWSet);
}
else {
assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
if (!AliasDef->isSubClassOf("SchedRead"))
PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead");
scanSchedRW(AliasDef, SRDefs, RWSet);
}
}
// Sort and add the SchedReadWrites directly referenced by instructions or
// itinerary resources. Index reads and writes in separate domains.
std::sort(SWDefs.begin(), SWDefs.end(), LessRecord());
for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) {
assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite");
SchedWrites.push_back(CodeGenSchedRW(SchedWrites.size(), *SWI));
}
std::sort(SRDefs.begin(), SRDefs.end(), LessRecord());
for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) {
assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite");
SchedReads.push_back(CodeGenSchedRW(SchedReads.size(), *SRI));
}
// Initialize WriteSequence vectors.
for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(),
WE = SchedWrites.end(); WI != WE; ++WI) {
if (!WI->IsSequence)
continue;
findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence,
/*IsRead=*/false);
}
// Initialize Aliases vectors.
for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) {
Record *AliasDef = (*AI)->getValueAsDef("AliasRW");
getSchedRW(AliasDef).IsAlias = true;
Record *MatchDef = (*AI)->getValueAsDef("MatchRW");
CodeGenSchedRW &RW = getSchedRW(MatchDef);
if (RW.IsAlias)
PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias");
RW.Aliases.push_back(*AI);
}
DEBUG(
for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
dbgs() << WIdx << ": ";
SchedWrites[WIdx].dump();
dbgs() << '\n';
}
for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) {
dbgs() << RIdx << ": ";
SchedReads[RIdx].dump();
dbgs() << '\n';
}
RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
for (RecIter RI = RWDefs.begin(), RE = RWDefs.end();
RI != RE; ++RI) {
if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) {
const std::string &Name = (*RI)->getName();
if (Name != "NoWrite" && Name != "ReadDefault")
dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n';
}
});
}
/// Compute a SchedWrite name from a sequence of writes.
std::string CodeGenSchedModels::genRWName(const IdxVec& Seq, bool IsRead) {
std::string Name("(");
for (IdxIter I = Seq.begin(), E = Seq.end(); I != E; ++I) {
if (I != Seq.begin())
Name += '_';
Name += getSchedRW(*I, IsRead).Name;
}
Name += ')';
return Name;
}
unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead,
unsigned After) const {
const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
assert(After < RWVec.size() && "start position out of bounds");
for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After,
E = RWVec.end(); I != E; ++I) {
if (I->TheDef == Def)
return I - RWVec.begin();
}
return 0;
}
bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) {
Record *ReadDef = SchedReads[i].TheDef;
if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
continue;
RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef)
!= ValidWrites.end()) {
return true;
}
}
return false;
}
namespace llvm {
void splitSchedReadWrites(const RecVec &RWDefs,
RecVec &WriteDefs, RecVec &ReadDefs) {
for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) {
if ((*RWI)->isSubClassOf("SchedWrite"))
WriteDefs.push_back(*RWI);
else {
assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
ReadDefs.push_back(*RWI);
}
}
}
} // namespace llvm
// Split the SchedReadWrites defs and call findRWs for each list.
void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
IdxVec &Writes, IdxVec &Reads) const {
RecVec WriteDefs;
RecVec ReadDefs;
splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
findRWs(WriteDefs, Writes, false);
findRWs(ReadDefs, Reads, true);
}
// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
bool IsRead) const {
for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) {
unsigned Idx = getSchedRWIdx(*RI, IsRead);
assert(Idx && "failed to collect SchedReadWrite");
RWs.push_back(Idx);
}
}
void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
bool IsRead) const {
const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
if (!SchedRW.IsSequence) {
RWSeq.push_back(RWIdx);
return;
}
int Repeat =
SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
for (int i = 0; i < Repeat; ++i) {
for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end();
I != E; ++I) {
expandRWSequence(*I, RWSeq, IsRead);
}
}
}
// Expand a SchedWrite as a sequence following any aliases that coincide with
// the given processor model.
void CodeGenSchedModels::expandRWSeqForProc(
unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
const CodeGenProcModel &ProcModel) const {
const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
Record *AliasDef = 0;
for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end();
AI != AE; ++AI) {
const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
if ((*AI)->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
if (&getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef) {
expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
RWSeq, IsRead,ProcModel);
return;
}
if (!SchedWrite.IsSequence) {
RWSeq.push_back(RWIdx);
return;
}
int Repeat =
SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
for (int i = 0; i < Repeat; ++i) {
for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end();
I != E; ++I) {
expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel);
}
}
}
// Find the existing SchedWrite that models this sequence of writes.
unsigned CodeGenSchedModels::findRWForSequence(const IdxVec &Seq,
bool IsRead) {
std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end();
I != E; ++I) {
if (I->Sequence == Seq)
return I - RWVec.begin();
}
// Index zero reserved for invalid RW.
return 0;
}
/// Add this ReadWrite if it doesn't already exist.
unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
bool IsRead) {
assert(!Seq.empty() && "cannot insert empty sequence");
if (Seq.size() == 1)
return Seq.back();
unsigned Idx = findRWForSequence(Seq, IsRead);
if (Idx)
return Idx;
unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size();
CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
if (IsRead)
SchedReads.push_back(SchedRW);
else
SchedWrites.push_back(SchedRW);
return RWIdx;
}
/// Visit all the instruction definitions for this target to gather and
/// enumerate the itinerary classes. These are the explicitly specified
/// SchedClasses. More SchedClasses may be inferred.
void CodeGenSchedModels::collectSchedClasses() {
// NoItinerary is always the first class at Idx=0
SchedClasses.resize(1);
SchedClasses.back().Index = 0;
SchedClasses.back().Name = "NoInstrModel";
SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary");
SchedClasses.back().ProcIndices.push_back(0);
// Create a SchedClass for each unique combination of itinerary class and
// SchedRW list.
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I) {
Record *ItinDef = (*I)->TheDef->getValueAsDef("Itinerary");
IdxVec Writes, Reads;
if (!(*I)->TheDef->isValueUnset("SchedRW"))
findRWs((*I)->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
// ProcIdx == 0 indicates the class applies to all processors.
IdxVec ProcIndices(1, 0);
unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices);
InstrClassMap[(*I)->TheDef] = SCIdx;
}
// Create classes for InstRW defs.
RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord());
for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI)
createInstRWClass(*OI);
NumInstrSchedClasses = SchedClasses.size();
bool EnableDump = false;
DEBUG(EnableDump = true);
if (!EnableDump)
return;
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I) {
std::string InstName = (*I)->TheDef->getName();
unsigned SCIdx = InstrClassMap.lookup((*I)->TheDef);
if (!SCIdx) {
dbgs() << "No machine model for " << (*I)->TheDef->getName() << '\n';
continue;
}
CodeGenSchedClass &SC = getSchedClass(SCIdx);
if (SC.ProcIndices[0] != 0)
PrintFatalError((*I)->TheDef->getLoc(), "Instruction's sched class "
"must not be subtarget specific.");
IdxVec ProcIndices;
if (SC.ItinClassDef->getName() != "NoItinerary") {
ProcIndices.push_back(0);
dbgs() << "Itinerary for " << InstName << ": "
<< SC.ItinClassDef->getName() << '\n';
}
if (!SC.Writes.empty()) {
ProcIndices.push_back(0);
dbgs() << "SchedRW machine model for " << InstName;
for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI)
dbgs() << " " << SchedWrites[*WI].Name;
for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
dbgs() << " " << SchedReads[*RI].Name;
dbgs() << '\n';
}
const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end();
RWI != RWE; ++RWI) {
const CodeGenProcModel &ProcModel =
getProcModel((*RWI)->getValueAsDef("SchedModel"));
ProcIndices.push_back(ProcModel.Index);
dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName;
IdxVec Writes;
IdxVec Reads;
findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI)
dbgs() << " " << SchedWrites[*WI].Name;
for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI)
dbgs() << " " << SchedReads[*RI].Name;
dbgs() << '\n';
}
for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(),
PE = ProcModels.end(); PI != PE; ++PI) {
if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index))
dbgs() << "No machine model for " << (*I)->TheDef->getName()
<< " on processor " << PI->ModelName << '\n';
}
}
}
/// Find an SchedClass that has been inferred from a per-operand list of
/// SchedWrites and SchedReads.
unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef,
const IdxVec &Writes,
const IdxVec &Reads) const {
for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) {
if (I->ItinClassDef == ItinClassDef
&& I->Writes == Writes && I->Reads == Reads) {
return I - schedClassBegin();
}
}
return 0;
}
// Get the SchedClass index for an instruction.
unsigned CodeGenSchedModels::getSchedClassIdx(
const CodeGenInstruction &Inst) const {
return InstrClassMap.lookup(Inst.TheDef);
}
std::string CodeGenSchedModels::createSchedClassName(
Record *ItinClassDef, const IdxVec &OperWrites, const IdxVec &OperReads) {
std::string Name;
if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
Name = ItinClassDef->getName();
for (IdxIter WI = OperWrites.begin(), WE = OperWrites.end(); WI != WE; ++WI) {
if (!Name.empty())
Name += '_';
Name += SchedWrites[*WI].Name;
}
for (IdxIter RI = OperReads.begin(), RE = OperReads.end(); RI != RE; ++RI) {
Name += '_';
Name += SchedReads[*RI].Name;
}
return Name;
}
std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
std::string Name;
for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
if (I != InstDefs.begin())
Name += '_';
Name += (*I)->getName();
}
return Name;
}
/// Add an inferred sched class from an itinerary class and per-operand list of
/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
/// processors that may utilize this class.
unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
const IdxVec &OperWrites,
const IdxVec &OperReads,
const IdxVec &ProcIndices)
{
assert(!ProcIndices.empty() && "expect at least one ProcIdx");
unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads);
if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
IdxVec PI;
std::set_union(SchedClasses[Idx].ProcIndices.begin(),
SchedClasses[Idx].ProcIndices.end(),
ProcIndices.begin(), ProcIndices.end(),
std::back_inserter(PI));
SchedClasses[Idx].ProcIndices.swap(PI);
return Idx;
}
Idx = SchedClasses.size();
SchedClasses.resize(Idx+1);
CodeGenSchedClass &SC = SchedClasses.back();
SC.Index = Idx;
SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads);
SC.ItinClassDef = ItinClassDef;
SC.Writes = OperWrites;
SC.Reads = OperReads;
SC.ProcIndices = ProcIndices;
return Idx;
}
// Create classes for each set of opcodes that are in the same InstReadWrite
// definition across all processors.
void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
// ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
// intersects with an existing class via a previous InstRWDef. Instrs that do
// not intersect with an existing class refer back to their former class as
// determined from ItinDef or SchedRW.
SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs;
// Sort Instrs into sets.
const RecVec *InstDefs = Sets.expand(InstRWDef);
if (InstDefs->empty())
PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) {
InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I);
if (Pos == InstrClassMap.end())
PrintFatalError((*I)->getLoc(), "No sched class for instruction.");
unsigned SCIdx = Pos->second;
unsigned CIdx = 0, CEnd = ClassInstrs.size();
for (; CIdx != CEnd; ++CIdx) {
if (ClassInstrs[CIdx].first == SCIdx)
break;
}
if (CIdx == CEnd) {
ClassInstrs.resize(CEnd + 1);
ClassInstrs[CIdx].first = SCIdx;
}
ClassInstrs[CIdx].second.push_back(*I);
}
// For each set of Instrs, create a new class if necessary, and map or remap
// the Instrs to it.
unsigned CIdx = 0, CEnd = ClassInstrs.size();
for (; CIdx != CEnd; ++CIdx) {
unsigned OldSCIdx = ClassInstrs[CIdx].first;
ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second;
// If the all instrs in the current class are accounted for, then leave
// them mapped to their old class.
if (OldSCIdx && SchedClasses[OldSCIdx].InstRWs.size() == InstDefs.size()) {
assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
"expected a generic SchedClass");
continue;
}
unsigned SCIdx = SchedClasses.size();
SchedClasses.resize(SCIdx+1);
CodeGenSchedClass &SC = SchedClasses.back();
SC.Index = SCIdx;
SC.Name = createSchedClassName(InstDefs);
// Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
SC.Writes = SchedClasses[OldSCIdx].Writes;
SC.Reads = SchedClasses[OldSCIdx].Reads;
SC.ProcIndices.push_back(0);
// Map each Instr to this new class.
// Note that InstDefs may be a smaller list than InstRWDef's "Instrs".
Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
SmallSet<unsigned, 4> RemappedClassIDs;
for (ArrayRef<Record*>::const_iterator
II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) {
unsigned OldSCIdx = InstrClassMap[*II];
if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx)) {
for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(),
RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) {
if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) {
PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " +
(*II)->getName() + " also matches " +
(*RI)->getValue("Instrs")->getValue()->getAsString());
}
assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def");
SC.InstRWs.push_back(*RI);
}
}
InstrClassMap[*II] = SCIdx;
}
SC.InstRWs.push_back(InstRWDef);
}
}
// True if collectProcItins found anything.
bool CodeGenSchedModels::hasItineraries() const {
for (CodeGenSchedModels::ProcIter PI = procModelBegin(), PE = procModelEnd();
PI != PE; ++PI) {
if (PI->hasItineraries())
return true;
}
return false;
}
// Gather the processor itineraries.
void CodeGenSchedModels::collectProcItins() {
for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(),
PE = ProcModels.end(); PI != PE; ++PI) {
CodeGenProcModel &ProcModel = *PI;
if (!ProcModel.hasItineraries())
continue;
RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
// Populate ItinDefList with Itinerary records.
ProcModel.ItinDefList.resize(NumInstrSchedClasses);
// Insert each itinerary data record in the correct position within
// the processor model's ItinDefList.
for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) {
Record *ItinData = ItinRecords[i];
Record *ItinDef = ItinData->getValueAsDef("TheClass");
bool FoundClass = false;
for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd();
SCI != SCE; ++SCI) {
// Multiple SchedClasses may share an itinerary. Update all of them.
if (SCI->ItinClassDef == ItinDef) {
ProcModel.ItinDefList[SCI->Index] = ItinData;
FoundClass = true;
}
}
if (!FoundClass) {
DEBUG(dbgs() << ProcModel.ItinsDef->getName()
<< " missing class for itinerary " << ItinDef->getName() << '\n');
}
}
// Check for missing itinerary entries.
assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
DEBUG(
for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
if (!ProcModel.ItinDefList[i])
dbgs() << ProcModel.ItinsDef->getName()
<< " missing itinerary for class "
<< SchedClasses[i].Name << '\n';
});
}
}
// Gather the read/write types for each itinerary class.
void CodeGenSchedModels::collectProcItinRW() {
RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord());
for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) {
if (!(*II)->getValueInit("SchedModel")->isComplete())
PrintFatalError((*II)->getLoc(), "SchedModel is undefined");
Record *ModelDef = (*II)->getValueAsDef("SchedModel");
ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
if (I == ProcModelMap.end()) {
PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel "
+ ModelDef->getName());
}
ProcModels[I->second].ItinRWDefs.push_back(*II);
}
}
/// Infer new classes from existing classes. In the process, this may create new
/// SchedWrites from sequences of existing SchedWrites.
void CodeGenSchedModels::inferSchedClasses() {
DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
// Visit all existing classes and newly created classes.
for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
if (SchedClasses[Idx].ItinClassDef)
inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
if (!SchedClasses[Idx].InstRWs.empty())
inferFromInstRWs(Idx);
if (!SchedClasses[Idx].Writes.empty()) {
inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
Idx, SchedClasses[Idx].ProcIndices);
}
assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
"too many SchedVariants");
}
}
/// Infer classes from per-processor itinerary resources.
void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
unsigned FromClassIdx) {
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
const CodeGenProcModel &PM = ProcModels[PIdx];
// For all ItinRW entries.
bool HasMatch = false;
for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
II != IE; ++II) {
RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
continue;
if (HasMatch)
PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
+ ItinClassDef->getName()
+ " in ItinResources for " + PM.ModelName);
HasMatch = true;
IdxVec Writes, Reads;
findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
IdxVec ProcIndices(1, PIdx);
inferFromRW(Writes, Reads, FromClassIdx, ProcIndices);
}
}
}
/// Infer classes from per-processor InstReadWrite definitions.
void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) {
const RecVec *InstDefs = Sets.expand(*RWI);
RecIter II = InstDefs->begin(), IE = InstDefs->end();
for (; II != IE; ++II) {
if (InstrClassMap[*II] == SCIdx)
break;
}
// If this class no longer has any instructions mapped to it, it has become
// irrelevant.
if (II == IE)
continue;
IdxVec Writes, Reads;
findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
unsigned PIdx = getProcModel((*RWI)->getValueAsDef("SchedModel")).Index;
IdxVec ProcIndices(1, PIdx);
inferFromRW(Writes, Reads, SCIdx, ProcIndices);
}
}
namespace {
// Helper for substituteVariantOperand.
struct TransVariant {
Record *VarOrSeqDef; // Variant or sequence.
unsigned RWIdx; // Index of this variant or sequence's matched type.
unsigned ProcIdx; // Processor model index or zero for any.
unsigned TransVecIdx; // Index into PredTransitions::TransVec.
TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
};
// Associate a predicate with the SchedReadWrite that it guards.
// RWIdx is the index of the read/write variant.
struct PredCheck {
bool IsRead;
unsigned RWIdx;
Record *Predicate;
PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
};
// A Predicate transition is a list of RW sequences guarded by a PredTerm.
struct PredTransition {
// A predicate term is a conjunction of PredChecks.
SmallVector<PredCheck, 4> PredTerm;
SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
SmallVector<unsigned, 4> ProcIndices;
};
// Encapsulate a set of partially constructed transitions.
// The results are built by repeated calls to substituteVariants.
class PredTransitions {
CodeGenSchedModels &SchedModels;
public:
std::vector<PredTransition> TransVec;
PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
bool IsRead, unsigned StartIdx);
void substituteVariants(const PredTransition &Trans);
#ifndef NDEBUG
void dump() const;
#endif
private:
bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
void getIntersectingVariants(
const CodeGenSchedRW &SchedRW, unsigned TransIdx,
std::vector<TransVariant> &IntersectingVariants);
void pushVariant(const TransVariant &VInfo, bool IsRead);
};
} // anonymous
// Return true if this predicate is mutually exclusive with a PredTerm. This
// degenerates into checking if the predicate is mutually exclusive with any
// predicate in the Term's conjunction.
//
// All predicates associated with a given SchedRW are considered mutually
// exclusive. This should work even if the conditions expressed by the
// predicates are not exclusive because the predicates for a given SchedWrite
// are always checked in the order they are defined in the .td file. Later
// conditions implicitly negate any prior condition.
bool PredTransitions::mutuallyExclusive(Record *PredDef,
ArrayRef<PredCheck> Term) {
for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end();
I != E; ++I) {
if (I->Predicate == PredDef)
return false;
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead);
assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) {
if ((*VI)->getValueAsDef("Predicate") == PredDef)
return true;
}
}
return false;
}
static bool hasAliasedVariants(const CodeGenSchedRW &RW,
CodeGenSchedModels &SchedModels) {
if (RW.HasVariants)
return true;
for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW"));
if (AliasRW.HasVariants)
return true;
if (AliasRW.IsSequence) {
IdxVec ExpandedRWs;
SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
SI != SE; ++SI) {
if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead),
SchedModels)) {
return true;
}
}
}
}
return false;
}
static bool hasVariant(ArrayRef<PredTransition> Transitions,
CodeGenSchedModels &SchedModels) {
for (ArrayRef<PredTransition>::iterator
PTI = Transitions.begin(), PTE = Transitions.end();
PTI != PTE; ++PTI) {
for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator
WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end();
WSI != WSE; ++WSI) {
for (SmallVectorImpl<unsigned>::const_iterator
WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels))
return true;
}
}
for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator
RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end();
RSI != RSE; ++RSI) {
for (SmallVectorImpl<unsigned>::const_iterator
RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) {
if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels))
return true;
}
}
}
return false;
}
// Populate IntersectingVariants with any variants or aliased sequences of the
// given SchedRW whose processor indices and predicates are not mutually
// exclusive with the given transition,
void PredTransitions::getIntersectingVariants(
const CodeGenSchedRW &SchedRW, unsigned TransIdx,
std::vector<TransVariant> &IntersectingVariants) {
std::vector<TransVariant> Variants;
if (SchedRW.HasVariants) {
unsigned VarProcIdx = 0;
if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
}
// Push each variant. Assign TransVecIdx later.
const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI)
Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0));
}
for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
AI != AE; ++AI) {
// If either the SchedAlias itself or the SchedReadWrite that it aliases
// to is defined within a processor model, constrain all variants to
// that processor.
unsigned AliasProcIdx = 0;
if ((*AI)->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
}
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
if (AliasRW.HasVariants) {
const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI)
Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0));
}
if (AliasRW.IsSequence) {
Variants.push_back(
TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0));
}
}
for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) {
TransVariant &Variant = Variants[VIdx];
// Don't expand variants if the processor models don't intersect.
// A zero processor index means any processor.
SmallVector<unsigned, 4> &ProcIndices = TransVec[TransIdx].ProcIndices;
if (ProcIndices[0] && Variants[VIdx].ProcIdx) {
unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
Variant.ProcIdx);
if (!Cnt)
continue;
if (Cnt > 1) {
const CodeGenProcModel &PM =
*(SchedModels.procModelBegin() + Variant.ProcIdx);
PrintFatalError(Variant.VarOrSeqDef->getLoc(),
"Multiple variants defined for processor " +
PM.ModelName +
" Ensure only one SchedAlias exists per RW.");
}
}
if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
continue;
}
if (IntersectingVariants.empty()) {
// The first variant builds on the existing transition.
Variant.TransVecIdx = TransIdx;
IntersectingVariants.push_back(Variant);
}
else {
// Push another copy of the current transition for more variants.
Variant.TransVecIdx = TransVec.size();
IntersectingVariants.push_back(Variant);
TransVec.push_back(TransVec[TransIdx]);
}
}
}
// Push the Reads/Writes selected by this variant onto the PredTransition
// specified by VInfo.
void PredTransitions::
pushVariant(const TransVariant &VInfo, bool IsRead) {
PredTransition &Trans = TransVec[VInfo.TransVecIdx];
// If this operand transition is reached through a processor-specific alias,
// then the whole transition is specific to this processor.
if (VInfo.ProcIdx != 0)
Trans.ProcIndices.assign(1, VInfo.ProcIdx);
IdxVec SelectedRWs;
if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef));
RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
}
else {
assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
"variant must be a SchedVariant or aliased WriteSequence");
SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
}
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead
? Trans.ReadSequences : Trans.WriteSequences;
if (SchedRW.IsVariadic) {
unsigned OperIdx = RWSequences.size()-1;
// Make N-1 copies of this transition's last sequence.
for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) {
RWSequences.push_back(RWSequences[OperIdx]);
}
// Push each of the N elements of the SelectedRWs onto a copy of the last
// sequence (split the current operand into N operands).
// Note that write sequences should be expanded within this loop--the entire
// sequence belongs to a single operand.
for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
RWI != RWE; ++RWI, ++OperIdx) {
IdxVec ExpandedRWs;
if (IsRead)
ExpandedRWs.push_back(*RWI);
else
SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
ExpandedRWs.begin(), ExpandedRWs.end());
}
assert(OperIdx == RWSequences.size() && "missed a sequence");
}
else {
// Push this transition's expanded sequence onto this transition's last
// sequence (add to the current operand's sequence).
SmallVectorImpl<unsigned> &Seq = RWSequences.back();
IdxVec ExpandedRWs;
for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
RWI != RWE; ++RWI) {
if (IsRead)
ExpandedRWs.push_back(*RWI);
else
SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
}
Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
}
}
// RWSeq is a sequence of all Reads or all Writes for the next read or write
// operand. StartIdx is an index into TransVec where partial results
// starts. RWSeq must be applied to all transitions between StartIdx and the end
// of TransVec.
void PredTransitions::substituteVariantOperand(
const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
// Visit each original RW within the current sequence.
for (SmallVectorImpl<unsigned>::const_iterator
RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
// Push this RW on all partial PredTransitions or distribute variants.
// New PredTransitions may be pushed within this loop which should not be
// revisited (TransEnd must be loop invariant).
for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
TransIdx != TransEnd; ++TransIdx) {
// In the common case, push RW onto the current operand's sequence.
if (!hasAliasedVariants(SchedRW, SchedModels)) {
if (IsRead)
TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
else
TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
continue;
}
// Distribute this partial PredTransition across intersecting variants.
// This will push a copies of TransVec[TransIdx] on the back of TransVec.
std::vector<TransVariant> IntersectingVariants;
getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
if (IntersectingVariants.empty())
PrintFatalError(SchedRW.TheDef->getLoc(),
"No variant of this type has "
"a matching predicate on any processor");
// Now expand each variant on top of its copy of the transition.
for (std::vector<TransVariant>::const_iterator
IVI = IntersectingVariants.begin(),
IVE = IntersectingVariants.end();
IVI != IVE; ++IVI) {
pushVariant(*IVI, IsRead);
}
}
}
}
// For each variant of a Read/Write in Trans, substitute the sequence of
// Read/Writes guarded by the variant. This is exponential in the number of
// variant Read/Writes, but in practice detection of mutually exclusive
// predicates should result in linear growth in the total number variants.
//
// This is one step in a breadth-first search of nested variants.
void PredTransitions::substituteVariants(const PredTransition &Trans) {
// Build up a set of partial results starting at the back of
// PredTransitions. Remember the first new transition.
unsigned StartIdx = TransVec.size();
TransVec.resize(TransVec.size() + 1);
TransVec.back().PredTerm = Trans.PredTerm;
TransVec.back().ProcIndices = Trans.ProcIndices;
// Visit each original write sequence.
for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator
WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
WSI != WSE; ++WSI) {
// Push a new (empty) write sequence onto all partial Transitions.
for (std::vector<PredTransition>::iterator I =
TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
I->WriteSequences.resize(I->WriteSequences.size() + 1);
}
substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
}
// Visit each original read sequence.
for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator
RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
RSI != RSE; ++RSI) {
// Push a new (empty) read sequence onto all partial Transitions.
for (std::vector<PredTransition>::iterator I =
TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
I->ReadSequences.resize(I->ReadSequences.size() + 1);
}
substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
}
}
// Create a new SchedClass for each variant found by inferFromRW. Pass
static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
unsigned FromClassIdx,
CodeGenSchedModels &SchedModels) {
// For each PredTransition, create a new CodeGenSchedTransition, which usually
// requires creating a new SchedClass.
for (ArrayRef<PredTransition>::iterator
I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
IdxVec OperWritesVariant;
for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator
WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end();
WSI != WSE; ++WSI) {
// Create a new write representing the expanded sequence.
OperWritesVariant.push_back(
SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false));
}
IdxVec OperReadsVariant;
for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator
RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end();
RSI != RSE; ++RSI) {
// Create a new read representing the expanded sequence.
OperReadsVariant.push_back(
SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true));
}
IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end());
CodeGenSchedTransition SCTrans;
SCTrans.ToClassIdx =
SchedModels.addSchedClass(/*ItinClassDef=*/0, OperWritesVariant,
OperReadsVariant, ProcIndices);
SCTrans.ProcIndices = ProcIndices;
// The final PredTerm is unique set of predicates guarding the transition.
RecVec Preds;
for (SmallVectorImpl<PredCheck>::const_iterator
PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) {
Preds.push_back(PI->Predicate);
}
RecIter PredsEnd = std::unique(Preds.begin(), Preds.end());
Preds.resize(PredsEnd - Preds.begin());
SCTrans.PredTerm = Preds;
SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans);
}
}
// Create new SchedClasses for the given ReadWrite list. If any of the
// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
// of the ReadWrite list, following Aliases if necessary.
void CodeGenSchedModels::inferFromRW(const IdxVec &OperWrites,
const IdxVec &OperReads,
unsigned FromClassIdx,
const IdxVec &ProcIndices) {
DEBUG(dbgs() << "INFER RW: ");
// Create a seed transition with an empty PredTerm and the expanded sequences
// of SchedWrites for the current SchedClass.
std::vector<PredTransition> LastTransitions;
LastTransitions.resize(1);
LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
ProcIndices.end());
for (IdxIter I = OperWrites.begin(), E = OperWrites.end(); I != E; ++I) {
IdxVec WriteSeq;
expandRWSequence(*I, WriteSeq, /*IsRead=*/false);
unsigned Idx = LastTransitions[0].WriteSequences.size();
LastTransitions[0].WriteSequences.resize(Idx + 1);
SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx];
for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI)
Seq.push_back(*WI);
DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
}
DEBUG(dbgs() << " Reads: ");
for (IdxIter I = OperReads.begin(), E = OperReads.end(); I != E; ++I) {
IdxVec ReadSeq;
expandRWSequence(*I, ReadSeq, /*IsRead=*/true);
unsigned Idx = LastTransitions[0].ReadSequences.size();
LastTransitions[0].ReadSequences.resize(Idx + 1);
SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx];
for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI)
Seq.push_back(*RI);
DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
}
DEBUG(dbgs() << '\n');
// Collect all PredTransitions for individual operands.
// Iterate until no variant writes remain.
while (hasVariant(LastTransitions, *this)) {
PredTransitions Transitions(*this);
for (std::vector<PredTransition>::const_iterator
I = LastTransitions.begin(), E = LastTransitions.end();
I != E; ++I) {
Transitions.substituteVariants(*I);
}
DEBUG(Transitions.dump());
LastTransitions.swap(Transitions.TransVec);
}
// If the first transition has no variants, nothing to do.
if (LastTransitions[0].PredTerm.empty())
return;
// WARNING: We are about to mutate the SchedClasses vector. Do not refer to
// OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
inferFromTransitions(LastTransitions, FromClassIdx, *this);
}
// Collect and sort WriteRes, ReadAdvance, and ProcResources.
void CodeGenSchedModels::collectProcResources() {
// Add any subtarget-specific SchedReadWrites that are directly associated
// with processor resources. Refer to the parent SchedClass's ProcIndices to
// determine which processors they apply to.
for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd();
SCI != SCE; ++SCI) {
if (SCI->ItinClassDef)
collectItinProcResources(SCI->ItinClassDef);
else {
// This class may have a default ReadWrite list which can be overriden by
// InstRW definitions.
if (!SCI->InstRWs.empty()) {
for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end();
RWI != RWE; ++RWI) {
Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel");
IdxVec ProcIndices(1, getProcModel(RWModelDef).Index);
IdxVec Writes, Reads;
findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
collectRWResources(Writes, Reads, ProcIndices);
}
}
collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices);
}
}
// Add resources separately defined by each subtarget.
RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) {
Record *ModelDef = (*WRI)->getValueAsDef("SchedModel");
addWriteRes(*WRI, getProcModel(ModelDef).Index);
}
RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) {
Record *ModelDef = (*RAI)->getValueAsDef("SchedModel");
addReadAdvance(*RAI, getProcModel(ModelDef).Index);
}
// Finalize each ProcModel by sorting the record arrays.
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
CodeGenProcModel &PM = ProcModels[PIdx];
std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(),
LessRecord());
std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(),
LessRecord());
std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(),
LessRecord());
DEBUG(
PM.dump();
dbgs() << "WriteResDefs: ";
for (RecIter RI = PM.WriteResDefs.begin(),
RE = PM.WriteResDefs.end(); RI != RE; ++RI) {
if ((*RI)->isSubClassOf("WriteRes"))
dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
else
dbgs() << (*RI)->getName() << " ";
}
dbgs() << "\nReadAdvanceDefs: ";
for (RecIter RI = PM.ReadAdvanceDefs.begin(),
RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) {
if ((*RI)->isSubClassOf("ReadAdvance"))
dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
else
dbgs() << (*RI)->getName() << " ";
}
dbgs() << "\nProcResourceDefs: ";
for (RecIter RI = PM.ProcResourceDefs.begin(),
RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) {
dbgs() << (*RI)->getName() << " ";
}
dbgs() << '\n');
}
}
// Collect itinerary class resources for each processor.
void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
const CodeGenProcModel &PM = ProcModels[PIdx];
// For all ItinRW entries.
bool HasMatch = false;
for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
II != IE; ++II) {
RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
continue;
if (HasMatch)
PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
+ ItinClassDef->getName()
+ " in ItinResources for " + PM.ModelName);
HasMatch = true;
IdxVec Writes, Reads;
findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
IdxVec ProcIndices(1, PIdx);
collectRWResources(Writes, Reads, ProcIndices);
}
}
}
void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
const IdxVec &ProcIndices) {
const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
if (SchedRW.TheDef) {
if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
PI != PE; ++PI) {
addWriteRes(SchedRW.TheDef, *PI);
}
}
else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
PI != PE; ++PI) {
addReadAdvance(SchedRW.TheDef, *PI);
}
}
}
for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
AI != AE; ++AI) {
IdxVec AliasProcIndices;
if ((*AI)->getValueInit("SchedModel")->isComplete()) {
AliasProcIndices.push_back(
getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
}
else
AliasProcIndices = ProcIndices;
const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
IdxVec ExpandedRWs;
expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
SI != SE; ++SI) {
collectRWResources(*SI, IsRead, AliasProcIndices);
}
}
}
// Collect resources for a set of read/write types and processor indices.
void CodeGenSchedModels::collectRWResources(const IdxVec &Writes,
const IdxVec &Reads,
const IdxVec &ProcIndices) {
for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI)
collectRWResources(*WI, /*IsRead=*/false, ProcIndices);
for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI)
collectRWResources(*RI, /*IsRead=*/true, ProcIndices);
}
// Find the processor's resource units for this kind of resource.
Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
const CodeGenProcModel &PM) const {
if (ProcResKind->isSubClassOf("ProcResourceUnits"))
return ProcResKind;
Record *ProcUnitDef = 0;
RecVec ProcResourceDefs =
Records.getAllDerivedDefinitions("ProcResourceUnits");
for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end();
RI != RE; ++RI) {
if ((*RI)->getValueAsDef("Kind") == ProcResKind
&& (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) {
if (ProcUnitDef) {
PrintFatalError((*RI)->getLoc(),
"Multiple ProcessorResourceUnits associated with "
+ ProcResKind->getName());
}
ProcUnitDef = *RI;
}
}
RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end();
RI != RE; ++RI) {
if (*RI == ProcResKind
&& (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) {
if (ProcUnitDef) {
PrintFatalError((*RI)->getLoc(),
"Multiple ProcessorResourceUnits associated with "
+ ProcResKind->getName());
}
ProcUnitDef = *RI;
}
}
if (!ProcUnitDef) {
PrintFatalError(ProcResKind->getLoc(),
"No ProcessorResources associated with "
+ ProcResKind->getName());
}
return ProcUnitDef;
}
// Iteratively add a resource and its super resources.
void CodeGenSchedModels::addProcResource(Record *ProcResKind,
CodeGenProcModel &PM) {
for (;;) {
Record *ProcResUnits = findProcResUnits(ProcResKind, PM);
// See if this ProcResource is already associated with this processor.
RecIter I = std::find(PM.ProcResourceDefs.begin(),
PM.ProcResourceDefs.end(), ProcResUnits);
if (I != PM.ProcResourceDefs.end())
return;
PM.ProcResourceDefs.push_back(ProcResUnits);
if (ProcResUnits->isSubClassOf("ProcResGroup"))
return;
if (!ProcResUnits->getValueInit("Super")->isComplete())
return;
ProcResKind = ProcResUnits->getValueAsDef("Super");
}
}
// Add resources for a SchedWrite to this processor if they don't exist.
void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
assert(PIdx && "don't add resources to an invalid Processor model");
RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef);
if (WRI != WRDefs.end())
return;
WRDefs.push_back(ProcWriteResDef);
// Visit ProcResourceKinds referenced by the newly discovered WriteRes.
RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
WritePRI != WritePRE; ++WritePRI) {
addProcResource(*WritePRI, ProcModels[PIdx]);
}
}
// Add resources for a ReadAdvance to this processor if they don't exist.
void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
unsigned PIdx) {
RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef);
if (I != RADefs.end())
return;
RADefs.push_back(ProcReadAdvanceDef);
}
unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(),
PRDef);
if (PRPos == ProcResourceDefs.end())
PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
"the ProcResources list for " + ModelName);
// Idx=0 is reserved for invalid.
return 1 + (PRPos - ProcResourceDefs.begin());
}
#ifndef NDEBUG
void CodeGenProcModel::dump() const {
dbgs() << Index << ": " << ModelName << " "
<< (ModelDef ? ModelDef->getName() : "inferred") << " "
<< (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
}
void CodeGenSchedRW::dump() const {
dbgs() << Name << (IsVariadic ? " (V) " : " ");
if (IsSequence) {
dbgs() << "(";
dumpIdxVec(Sequence);
dbgs() << ")";
}
}
void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
<< " Writes: ";
for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
SchedModels->getSchedWrite(Writes[i]).dump();
if (i < N-1) {
dbgs() << '\n';
dbgs().indent(10);
}
}
dbgs() << "\n Reads: ";
for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
SchedModels->getSchedRead(Reads[i]).dump();
if (i < N-1) {
dbgs() << '\n';
dbgs().indent(10);
}
}
dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
}
void PredTransitions::dump() const {
dbgs() << "Expanded Variants:\n";
for (std::vector<PredTransition>::const_iterator
TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
dbgs() << "{";
for (SmallVectorImpl<PredCheck>::const_iterator
PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
PCI != PCE; ++PCI) {
if (PCI != TI->PredTerm.begin())
dbgs() << ", ";
dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
<< ":" << PCI->Predicate->getName();
}
dbgs() << "},\n => {";
for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator
WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
WSI != WSE; ++WSI) {
dbgs() << "(";
for (SmallVectorImpl<unsigned>::const_iterator
WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
if (WI != WSI->begin())
dbgs() << ", ";
dbgs() << SchedModels.getSchedWrite(*WI).Name;
}
dbgs() << "),";
}
dbgs() << "}\n";
}
}
#endif // NDEBUG