| //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits information about intrinsic functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenIntrinsics.h" |
| #include "CodeGenTarget.h" |
| #include "SequenceToOffsetTable.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/TableGen/StringMatcher.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| namespace { |
| class IntrinsicEmitter { |
| RecordKeeper &Records; |
| bool TargetOnly; |
| std::string TargetPrefix; |
| |
| public: |
| IntrinsicEmitter(RecordKeeper &R, bool T) |
| : Records(R), TargetOnly(T) {} |
| |
| void run(raw_ostream &OS); |
| |
| void EmitPrefix(raw_ostream &OS); |
| |
| void EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| |
| void EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| void EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| void EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| void EmitVerifier(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| void EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| void EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| void EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| void EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS); |
| void EmitSuffix(raw_ostream &OS); |
| }; |
| } // End anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // IntrinsicEmitter Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void IntrinsicEmitter::run(raw_ostream &OS) { |
| emitSourceFileHeader("Intrinsic Function Source Fragment", OS); |
| |
| std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly); |
| |
| if (TargetOnly && !Ints.empty()) |
| TargetPrefix = Ints[0].TargetPrefix; |
| |
| EmitPrefix(OS); |
| |
| // Emit the enum information. |
| EmitEnumInfo(Ints, OS); |
| |
| // Emit the intrinsic ID -> name table. |
| EmitIntrinsicToNameTable(Ints, OS); |
| |
| // Emit the intrinsic ID -> overload table. |
| EmitIntrinsicToOverloadTable(Ints, OS); |
| |
| // Emit the function name recognizer. |
| EmitFnNameRecognizer(Ints, OS); |
| |
| // Emit the intrinsic declaration generator. |
| EmitGenerator(Ints, OS); |
| |
| // Emit the intrinsic parameter attributes. |
| EmitAttributes(Ints, OS); |
| |
| // Emit intrinsic alias analysis mod/ref behavior. |
| EmitModRefBehavior(Ints, OS); |
| |
| // Emit code to translate GCC builtins into LLVM intrinsics. |
| EmitIntrinsicToGCCBuiltinMap(Ints, OS); |
| |
| EmitSuffix(OS); |
| } |
| |
| void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) { |
| OS << "// VisualStudio defines setjmp as _setjmp\n" |
| "#if defined(_MSC_VER) && defined(setjmp) && \\\n" |
| " !defined(setjmp_undefined_for_msvc)\n" |
| "# pragma push_macro(\"setjmp\")\n" |
| "# undef setjmp\n" |
| "# define setjmp_undefined_for_msvc\n" |
| "#endif\n\n"; |
| } |
| |
| void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) { |
| OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n" |
| "// let's return it to _setjmp state\n" |
| "# pragma pop_macro(\"setjmp\")\n" |
| "# undef setjmp_undefined_for_msvc\n" |
| "#endif\n\n"; |
| } |
| |
| void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS) { |
| OS << "// Enum values for Intrinsics.h\n"; |
| OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| OS << " " << Ints[i].EnumName; |
| OS << ((i != e-1) ? ", " : " "); |
| OS << std::string(40-Ints[i].EnumName.size(), ' ') |
| << "// " << Ints[i].Name << "\n"; |
| } |
| OS << "#endif\n\n"; |
| } |
| |
| void IntrinsicEmitter:: |
| EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS) { |
| // Build a 'first character of function name' -> intrinsic # mapping. |
| std::map<char, std::vector<unsigned> > IntMapping; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) |
| IntMapping[Ints[i].Name[5]].push_back(i); |
| |
| OS << "// Function name -> enum value recognizer code.\n"; |
| OS << "#ifdef GET_FUNCTION_RECOGNIZER\n"; |
| OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n"; |
| OS << " switch (Name[5]) { // Dispatch on first letter.\n"; |
| OS << " default: break;\n"; |
| // Emit the intrinsic matching stuff by first letter. |
| for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(), |
| E = IntMapping.end(); I != E; ++I) { |
| OS << " case '" << I->first << "':\n"; |
| std::vector<unsigned> &IntList = I->second; |
| |
| // Emit all the overloaded intrinsics first, build a table of the |
| // non-overloaded ones. |
| std::vector<StringMatcher::StringPair> MatchTable; |
| |
| for (unsigned i = 0, e = IntList.size(); i != e; ++i) { |
| unsigned IntNo = IntList[i]; |
| std::string Result = "return " + TargetPrefix + "Intrinsic::" + |
| Ints[IntNo].EnumName + ";"; |
| |
| if (!Ints[IntNo].isOverloaded) { |
| MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result)); |
| continue; |
| } |
| |
| // For overloaded intrinsics, only the prefix needs to match |
| std::string TheStr = Ints[IntNo].Name.substr(6); |
| TheStr += '.'; // Require "bswap." instead of bswap. |
| OS << " if (NameR.startswith(\"" << TheStr << "\")) " |
| << Result << '\n'; |
| } |
| |
| // Emit the matcher logic for the fixed length strings. |
| StringMatcher("NameR", MatchTable, OS).Emit(1); |
| OS << " break; // end of '" << I->first << "' case.\n"; |
| } |
| |
| OS << " }\n"; |
| OS << "#endif\n\n"; |
| } |
| |
| void IntrinsicEmitter:: |
| EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS) { |
| OS << "// Intrinsic ID to name table\n"; |
| OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; |
| OS << " // Note that entry #0 is the invalid intrinsic!\n"; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) |
| OS << " \"" << Ints[i].Name << "\",\n"; |
| OS << "#endif\n\n"; |
| } |
| |
| void IntrinsicEmitter:: |
| EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS) { |
| OS << "// Intrinsic ID to overload bitset\n"; |
| OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; |
| OS << "static const uint8_t OTable[] = {\n"; |
| OS << " 0"; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| // Add one to the index so we emit a null bit for the invalid #0 intrinsic. |
| if ((i+1)%8 == 0) |
| OS << ",\n 0"; |
| if (Ints[i].isOverloaded) |
| OS << " | (1<<" << (i+1)%8 << ')'; |
| } |
| OS << "\n};\n\n"; |
| // OTable contains a true bit at the position if the intrinsic is overloaded. |
| OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; |
| OS << "#endif\n\n"; |
| } |
| |
| |
| // NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp! |
| enum IIT_Info { |
| // Common values should be encoded with 0-15. |
| IIT_Done = 0, |
| IIT_I1 = 1, |
| IIT_I8 = 2, |
| IIT_I16 = 3, |
| IIT_I32 = 4, |
| IIT_I64 = 5, |
| IIT_F16 = 6, |
| IIT_F32 = 7, |
| IIT_F64 = 8, |
| IIT_V2 = 9, |
| IIT_V4 = 10, |
| IIT_V8 = 11, |
| IIT_V16 = 12, |
| IIT_V32 = 13, |
| IIT_PTR = 14, |
| IIT_ARG = 15, |
| |
| // Values from 16+ are only encodable with the inefficient encoding. |
| IIT_MMX = 16, |
| IIT_METADATA = 17, |
| IIT_EMPTYSTRUCT = 18, |
| IIT_STRUCT2 = 19, |
| IIT_STRUCT3 = 20, |
| IIT_STRUCT4 = 21, |
| IIT_STRUCT5 = 22, |
| IIT_EXTEND_VEC_ARG = 23, |
| IIT_TRUNC_VEC_ARG = 24, |
| IIT_ANYPTR = 25 |
| }; |
| |
| |
| static void EncodeFixedValueType(MVT::SimpleValueType VT, |
| std::vector<unsigned char> &Sig) { |
| if (EVT(VT).isInteger()) { |
| unsigned BitWidth = EVT(VT).getSizeInBits(); |
| switch (BitWidth) { |
| default: PrintFatalError("unhandled integer type width in intrinsic!"); |
| case 1: return Sig.push_back(IIT_I1); |
| case 8: return Sig.push_back(IIT_I8); |
| case 16: return Sig.push_back(IIT_I16); |
| case 32: return Sig.push_back(IIT_I32); |
| case 64: return Sig.push_back(IIT_I64); |
| } |
| } |
| |
| switch (VT) { |
| default: PrintFatalError("unhandled MVT in intrinsic!"); |
| case MVT::f16: return Sig.push_back(IIT_F16); |
| case MVT::f32: return Sig.push_back(IIT_F32); |
| case MVT::f64: return Sig.push_back(IIT_F64); |
| case MVT::Metadata: return Sig.push_back(IIT_METADATA); |
| case MVT::x86mmx: return Sig.push_back(IIT_MMX); |
| // MVT::OtherVT is used to mean the empty struct type here. |
| case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); |
| } |
| } |
| |
| #ifdef _MSC_VER |
| #pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function. |
| #endif |
| |
| static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, |
| std::vector<unsigned char> &Sig) { |
| |
| if (R->isSubClassOf("LLVMMatchType")) { |
| unsigned Number = R->getValueAsInt("Number"); |
| assert(Number < ArgCodes.size() && "Invalid matching number!"); |
| if (R->isSubClassOf("LLVMExtendedElementVectorType")) |
| Sig.push_back(IIT_EXTEND_VEC_ARG); |
| else if (R->isSubClassOf("LLVMTruncatedElementVectorType")) |
| Sig.push_back(IIT_TRUNC_VEC_ARG); |
| else |
| Sig.push_back(IIT_ARG); |
| return Sig.push_back((Number << 2) | ArgCodes[Number]); |
| } |
| |
| MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); |
| |
| unsigned Tmp = 0; |
| switch (VT) { |
| default: break; |
| case MVT::iPTRAny: ++Tmp; // FALL THROUGH. |
| case MVT::vAny: ++Tmp; // FALL THROUGH. |
| case MVT::fAny: ++Tmp; // FALL THROUGH. |
| case MVT::iAny: { |
| // If this is an "any" valuetype, then the type is the type of the next |
| // type in the list specified to getIntrinsic(). |
| Sig.push_back(IIT_ARG); |
| |
| // Figure out what arg # this is consuming, and remember what kind it was. |
| unsigned ArgNo = ArgCodes.size(); |
| ArgCodes.push_back(Tmp); |
| |
| // Encode what sort of argument it must be in the low 2 bits of the ArgNo. |
| return Sig.push_back((ArgNo << 2) | Tmp); |
| } |
| |
| case MVT::iPTR: { |
| unsigned AddrSpace = 0; |
| if (R->isSubClassOf("LLVMQualPointerType")) { |
| AddrSpace = R->getValueAsInt("AddrSpace"); |
| assert(AddrSpace < 256 && "Address space exceeds 255"); |
| } |
| if (AddrSpace) { |
| Sig.push_back(IIT_ANYPTR); |
| Sig.push_back(AddrSpace); |
| } else { |
| Sig.push_back(IIT_PTR); |
| } |
| return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig); |
| } |
| } |
| |
| if (EVT(VT).isVector()) { |
| EVT VVT = VT; |
| switch (VVT.getVectorNumElements()) { |
| default: PrintFatalError("unhandled vector type width in intrinsic!"); |
| case 2: Sig.push_back(IIT_V2); break; |
| case 4: Sig.push_back(IIT_V4); break; |
| case 8: Sig.push_back(IIT_V8); break; |
| case 16: Sig.push_back(IIT_V16); break; |
| case 32: Sig.push_back(IIT_V32); break; |
| } |
| |
| return EncodeFixedValueType(VVT.getVectorElementType(). |
| getSimpleVT().SimpleTy, Sig); |
| } |
| |
| EncodeFixedValueType(VT, Sig); |
| } |
| |
| #ifdef _MSC_VER |
| #pragma optimize("",on) |
| #endif |
| |
| /// ComputeFixedEncoding - If we can encode the type signature for this |
| /// intrinsic into 32 bits, return it. If not, return ~0U. |
| static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, |
| std::vector<unsigned char> &TypeSig) { |
| std::vector<unsigned char> ArgCodes; |
| |
| if (Int.IS.RetVTs.empty()) |
| TypeSig.push_back(IIT_Done); |
| else if (Int.IS.RetVTs.size() == 1 && |
| Int.IS.RetVTs[0] == MVT::isVoid) |
| TypeSig.push_back(IIT_Done); |
| else { |
| switch (Int.IS.RetVTs.size()) { |
| case 1: break; |
| case 2: TypeSig.push_back(IIT_STRUCT2); break; |
| case 3: TypeSig.push_back(IIT_STRUCT3); break; |
| case 4: TypeSig.push_back(IIT_STRUCT4); break; |
| case 5: TypeSig.push_back(IIT_STRUCT5); break; |
| default: assert(0 && "Unhandled case in struct"); |
| } |
| |
| for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) |
| EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig); |
| } |
| |
| for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) |
| EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig); |
| } |
| |
| static void printIITEntry(raw_ostream &OS, unsigned char X) { |
| OS << (unsigned)X; |
| } |
| |
| void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS) { |
| // If we can compute a 32-bit fixed encoding for this intrinsic, do so and |
| // capture it in this vector, otherwise store a ~0U. |
| std::vector<unsigned> FixedEncodings; |
| |
| SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; |
| |
| std::vector<unsigned char> TypeSig; |
| |
| // Compute the unique argument type info. |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| // Get the signature for the intrinsic. |
| TypeSig.clear(); |
| ComputeFixedEncoding(Ints[i], TypeSig); |
| |
| // Check to see if we can encode it into a 32-bit word. We can only encode |
| // 8 nibbles into a 32-bit word. |
| if (TypeSig.size() <= 8) { |
| bool Failed = false; |
| unsigned Result = 0; |
| for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { |
| // If we had an unencodable argument, bail out. |
| if (TypeSig[i] > 15) { |
| Failed = true; |
| break; |
| } |
| Result = (Result << 4) | TypeSig[e-i-1]; |
| } |
| |
| // If this could be encoded into a 31-bit word, return it. |
| if (!Failed && (Result >> 31) == 0) { |
| FixedEncodings.push_back(Result); |
| continue; |
| } |
| } |
| |
| // Otherwise, we're going to unique the sequence into the |
| // LongEncodingTable, and use its offset in the 32-bit table instead. |
| LongEncodingTable.add(TypeSig); |
| |
| // This is a placehold that we'll replace after the table is laid out. |
| FixedEncodings.push_back(~0U); |
| } |
| |
| LongEncodingTable.layout(); |
| |
| OS << "// Global intrinsic function declaration type table.\n"; |
| OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; |
| |
| OS << "static const unsigned IIT_Table[] = {\n "; |
| |
| for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { |
| if ((i & 7) == 7) |
| OS << "\n "; |
| |
| // If the entry fit in the table, just emit it. |
| if (FixedEncodings[i] != ~0U) { |
| OS << "0x" << utohexstr(FixedEncodings[i]) << ", "; |
| continue; |
| } |
| |
| TypeSig.clear(); |
| ComputeFixedEncoding(Ints[i], TypeSig); |
| |
| |
| // Otherwise, emit the offset into the long encoding table. We emit it this |
| // way so that it is easier to read the offset in the .def file. |
| OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; |
| } |
| |
| OS << "0\n};\n\n"; |
| |
| // Emit the shared table of register lists. |
| OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; |
| if (!LongEncodingTable.empty()) |
| LongEncodingTable.emit(OS, printIITEntry); |
| OS << " 255\n};\n\n"; |
| |
| OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL |
| } |
| |
| enum ModRefKind { |
| MRK_none, |
| MRK_readonly, |
| MRK_readnone |
| }; |
| |
| static ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) { |
| switch (intrinsic.ModRef) { |
| case CodeGenIntrinsic::NoMem: |
| return MRK_readnone; |
| case CodeGenIntrinsic::ReadArgMem: |
| case CodeGenIntrinsic::ReadMem: |
| return MRK_readonly; |
| case CodeGenIntrinsic::ReadWriteArgMem: |
| case CodeGenIntrinsic::ReadWriteMem: |
| return MRK_none; |
| } |
| llvm_unreachable("bad mod-ref kind"); |
| } |
| |
| namespace { |
| struct AttributeComparator { |
| bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { |
| // Sort throwing intrinsics after non-throwing intrinsics. |
| if (L->canThrow != R->canThrow) |
| return R->canThrow; |
| |
| if (L->isNoReturn != R->isNoReturn) |
| return R->isNoReturn; |
| |
| // Try to order by readonly/readnone attribute. |
| ModRefKind LK = getModRefKind(*L); |
| ModRefKind RK = getModRefKind(*R); |
| if (LK != RK) return (LK > RK); |
| |
| // Order by argument attributes. |
| // This is reliable because each side is already sorted internally. |
| return (L->ArgumentAttributes < R->ArgumentAttributes); |
| } |
| }; |
| } // End anonymous namespace |
| |
| /// EmitAttributes - This emits the Intrinsic::getAttributes method. |
| void IntrinsicEmitter:: |
| EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { |
| OS << "// Add parameter attributes that are not common to all intrinsics.\n"; |
| OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; |
| if (TargetOnly) |
| OS << "static AttributeSet getAttributes(LLVMContext &C, " << TargetPrefix |
| << "Intrinsic::ID id) {\n"; |
| else |
| OS << "AttributeSet Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; |
| |
| // Compute the maximum number of attribute arguments and the map |
| typedef std::map<const CodeGenIntrinsic*, unsigned, |
| AttributeComparator> UniqAttrMapTy; |
| UniqAttrMapTy UniqAttributes; |
| unsigned maxArgAttrs = 0; |
| unsigned AttrNum = 0; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| const CodeGenIntrinsic &intrinsic = Ints[i]; |
| maxArgAttrs = |
| std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); |
| unsigned &N = UniqAttributes[&intrinsic]; |
| if (N) continue; |
| assert(AttrNum < 256 && "Too many unique attributes for table!"); |
| N = ++AttrNum; |
| } |
| |
| // Emit an array of AttributeSet. Most intrinsics will have at least one |
| // entry, for the function itself (index ~1), which is usually nounwind. |
| OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n"; |
| |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| const CodeGenIntrinsic &intrinsic = Ints[i]; |
| |
| OS << " " << UniqAttributes[&intrinsic] << ", // " |
| << intrinsic.Name << "\n"; |
| } |
| OS << " };\n\n"; |
| |
| OS << " AttributeSet AS[" << maxArgAttrs+1 << "];\n"; |
| OS << " unsigned NumAttrs = 0;\n"; |
| OS << " if (id != 0) {\n"; |
| OS << " SmallVector<Attribute::AttrKind, 8> AttrVec;\n"; |
| OS << " switch(IntrinsicsToAttributesMap[id - "; |
| if (TargetOnly) |
| OS << "Intrinsic::num_intrinsics"; |
| else |
| OS << "1"; |
| OS << "]) {\n"; |
| OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; |
| for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), |
| E = UniqAttributes.end(); I != E; ++I) { |
| OS << " case " << I->second << ":\n"; |
| |
| const CodeGenIntrinsic &intrinsic = *(I->first); |
| |
| // Keep track of the number of attributes we're writing out. |
| unsigned numAttrs = 0; |
| |
| // The argument attributes are alreadys sorted by argument index. |
| unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); |
| if (ae) { |
| while (ai != ae) { |
| unsigned argNo = intrinsic.ArgumentAttributes[ai].first; |
| |
| OS << " AttrVec.clear();\n"; |
| |
| do { |
| switch (intrinsic.ArgumentAttributes[ai].second) { |
| case CodeGenIntrinsic::NoCapture: |
| OS << " AttrVec.push_back(Attribute::NoCapture);\n"; |
| break; |
| } |
| |
| ++ai; |
| } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); |
| |
| OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, " |
| << argNo+1 << ", AttrVec);\n"; |
| } |
| } |
| |
| ModRefKind modRef = getModRefKind(intrinsic); |
| |
| if (!intrinsic.canThrow || modRef || intrinsic.isNoReturn) { |
| OS << " AttrVec.clear();\n"; |
| |
| if (!intrinsic.canThrow) |
| OS << " AttrVec.push_back(Attribute::NoUnwind);\n"; |
| if (intrinsic.isNoReturn) |
| OS << " AttrVec.push_back(Attribute::NoReturn);\n"; |
| |
| switch (modRef) { |
| case MRK_none: break; |
| case MRK_readonly: |
| OS << " AttrVec.push_back(Attribute::ReadOnly);\n"; |
| break; |
| case MRK_readnone: |
| OS << " AttrVec.push_back(Attribute::ReadNone);\n"; |
| break; |
| } |
| OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, " |
| << "AttributeSet::FunctionIndex, AttrVec);\n"; |
| } |
| |
| if (numAttrs) { |
| OS << " NumAttrs = " << numAttrs << ";\n"; |
| OS << " break;\n"; |
| } else { |
| OS << " return AttributeSet();\n"; |
| } |
| } |
| |
| OS << " }\n"; |
| OS << " }\n"; |
| OS << " return AttributeSet::get(C, ArrayRef<AttributeSet>(AS, " |
| "NumAttrs));\n"; |
| OS << "}\n"; |
| OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; |
| } |
| |
| /// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior. |
| void IntrinsicEmitter:: |
| EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){ |
| OS << "// Determine intrinsic alias analysis mod/ref behavior.\n" |
| << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n" |
| << "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && " |
| << "\"Unknown intrinsic.\");\n\n"; |
| |
| OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n" |
| << " /* invalid */ UnknownModRefBehavior,\n"; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ "; |
| switch (Ints[i].ModRef) { |
| case CodeGenIntrinsic::NoMem: |
| OS << "DoesNotAccessMemory,\n"; |
| break; |
| case CodeGenIntrinsic::ReadArgMem: |
| OS << "OnlyReadsArgumentPointees,\n"; |
| break; |
| case CodeGenIntrinsic::ReadMem: |
| OS << "OnlyReadsMemory,\n"; |
| break; |
| case CodeGenIntrinsic::ReadWriteArgMem: |
| OS << "OnlyAccessesArgumentPointees,\n"; |
| break; |
| case CodeGenIntrinsic::ReadWriteMem: |
| OS << "UnknownModRefBehavior,\n"; |
| break; |
| } |
| } |
| OS << "};\n\n" |
| << "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n" |
| << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n"; |
| } |
| |
| /// EmitTargetBuiltins - All of the builtins in the specified map are for the |
| /// same target, and we already checked it. |
| static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM, |
| const std::string &TargetPrefix, |
| raw_ostream &OS) { |
| |
| std::vector<StringMatcher::StringPair> Results; |
| |
| for (std::map<std::string, std::string>::const_iterator I = BIM.begin(), |
| E = BIM.end(); I != E; ++I) { |
| std::string ResultCode = |
| "return " + TargetPrefix + "Intrinsic::" + I->second + ";"; |
| Results.push_back(StringMatcher::StringPair(I->first, ResultCode)); |
| } |
| |
| StringMatcher("BuiltinName", Results, OS).Emit(); |
| } |
| |
| |
| void IntrinsicEmitter:: |
| EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, |
| raw_ostream &OS) { |
| typedef std::map<std::string, std::map<std::string, std::string> > BIMTy; |
| BIMTy BuiltinMap; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| if (!Ints[i].GCCBuiltinName.empty()) { |
| // Get the map for this target prefix. |
| std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix]; |
| |
| if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName, |
| Ints[i].EnumName)).second) |
| PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() + |
| "': duplicate GCC builtin name!"); |
| } |
| } |
| |
| OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n"; |
| OS << "// This is used by the C front-end. The GCC builtin name is passed\n"; |
| OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; |
| OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; |
| OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n"; |
| |
| if (TargetOnly) { |
| OS << "static " << TargetPrefix << "Intrinsic::ID " |
| << "getIntrinsicForGCCBuiltin(const char " |
| << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; |
| } else { |
| OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char " |
| << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; |
| } |
| |
| OS << " StringRef BuiltinName(BuiltinNameStr);\n"; |
| OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; |
| |
| // Note: this could emit significantly better code if we cared. |
| for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ |
| OS << " "; |
| if (!I->first.empty()) |
| OS << "if (TargetPrefix == \"" << I->first << "\") "; |
| else |
| OS << "/* Target Independent Builtins */ "; |
| OS << "{\n"; |
| |
| // Emit the comparisons for this target prefix. |
| EmitTargetBuiltins(I->second, TargetPrefix, OS); |
| OS << " }\n"; |
| } |
| OS << " return "; |
| if (!TargetPrefix.empty()) |
| OS << "(" << TargetPrefix << "Intrinsic::ID)"; |
| OS << "Intrinsic::not_intrinsic;\n"; |
| OS << "}\n"; |
| OS << "#endif\n\n"; |
| } |
| |
| namespace llvm { |
| |
| void EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly = false) { |
| IntrinsicEmitter(RK, TargetOnly).run(OS); |
| } |
| |
| } // End llvm namespace |