| //===- Reassociate.cpp - Reassociate binary expressions -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass reassociates commutative expressions in an order that is designed |
| // to promote better constant propagation, GCSE, LICM, PRE... |
| // |
| // For example: 4 + (x + 5) -> x + (4 + 5) |
| // |
| // In the implementation of this algorithm, constants are assigned rank = 0, |
| // function arguments are rank = 1, and other values are assigned ranks |
| // corresponding to the reverse post order traversal of current function |
| // (starting at 2), which effectively gives values in deep loops higher rank |
| // than values not in loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "reassociate" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumLinear , "Number of insts linearized"); |
| STATISTIC(NumChanged, "Number of insts reassociated"); |
| STATISTIC(NumAnnihil, "Number of expr tree annihilated"); |
| STATISTIC(NumFactor , "Number of multiplies factored"); |
| |
| namespace { |
| struct VISIBILITY_HIDDEN ValueEntry { |
| unsigned Rank; |
| Value *Op; |
| ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} |
| }; |
| inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { |
| return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. |
| } |
| } |
| |
| /// PrintOps - Print out the expression identified in the Ops list. |
| /// |
| static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) { |
| Module *M = I->getParent()->getParent()->getParent(); |
| cerr << Instruction::getOpcodeName(I->getOpcode()) << " " |
| << *Ops[0].Op->getType(); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M) |
| << "," << Ops[i].Rank; |
| } |
| |
| namespace { |
| class VISIBILITY_HIDDEN Reassociate : public FunctionPass { |
| std::map<BasicBlock*, unsigned> RankMap; |
| std::map<Value*, unsigned> ValueRankMap; |
| bool MadeChange; |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| Reassociate() : FunctionPass((intptr_t)&ID) {} |
| |
| bool runOnFunction(Function &F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| } |
| private: |
| void BuildRankMap(Function &F); |
| unsigned getRank(Value *V); |
| void ReassociateExpression(BinaryOperator *I); |
| void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops, |
| unsigned Idx = 0); |
| Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops); |
| void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops); |
| void LinearizeExpr(BinaryOperator *I); |
| Value *RemoveFactorFromExpression(Value *V, Value *Factor); |
| void ReassociateBB(BasicBlock *BB); |
| |
| void RemoveDeadBinaryOp(Value *V); |
| }; |
| |
| char Reassociate::ID = 0; |
| RegisterPass<Reassociate> X("reassociate", "Reassociate expressions"); |
| } |
| |
| // Public interface to the Reassociate pass |
| FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } |
| |
| void Reassociate::RemoveDeadBinaryOp(Value *V) { |
| Instruction *Op = dyn_cast<Instruction>(V); |
| if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty()) |
| return; |
| |
| Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1); |
| RemoveDeadBinaryOp(LHS); |
| RemoveDeadBinaryOp(RHS); |
| } |
| |
| |
| static bool isUnmovableInstruction(Instruction *I) { |
| if (I->getOpcode() == Instruction::PHI || |
| I->getOpcode() == Instruction::Alloca || |
| I->getOpcode() == Instruction::Load || |
| I->getOpcode() == Instruction::Malloc || |
| I->getOpcode() == Instruction::Invoke || |
| I->getOpcode() == Instruction::Call || |
| I->getOpcode() == Instruction::UDiv || |
| I->getOpcode() == Instruction::SDiv || |
| I->getOpcode() == Instruction::FDiv || |
| I->getOpcode() == Instruction::URem || |
| I->getOpcode() == Instruction::SRem || |
| I->getOpcode() == Instruction::FRem) |
| return true; |
| return false; |
| } |
| |
| void Reassociate::BuildRankMap(Function &F) { |
| unsigned i = 2; |
| |
| // Assign distinct ranks to function arguments |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) |
| ValueRankMap[I] = ++i; |
| |
| ReversePostOrderTraversal<Function*> RPOT(&F); |
| for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), |
| E = RPOT.end(); I != E; ++I) { |
| BasicBlock *BB = *I; |
| unsigned BBRank = RankMap[BB] = ++i << 16; |
| |
| // Walk the basic block, adding precomputed ranks for any instructions that |
| // we cannot move. This ensures that the ranks for these instructions are |
| // all different in the block. |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (isUnmovableInstruction(I)) |
| ValueRankMap[I] = ++BBRank; |
| } |
| } |
| |
| unsigned Reassociate::getRank(Value *V) { |
| if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument... |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (I == 0) return 0; // Otherwise it's a global or constant, rank 0. |
| |
| unsigned &CachedRank = ValueRankMap[I]; |
| if (CachedRank) return CachedRank; // Rank already known? |
| |
| // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that |
| // we can reassociate expressions for code motion! Since we do not recurse |
| // for PHI nodes, we cannot have infinite recursion here, because there |
| // cannot be loops in the value graph that do not go through PHI nodes. |
| unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; |
| for (unsigned i = 0, e = I->getNumOperands(); |
| i != e && Rank != MaxRank; ++i) |
| Rank = std::max(Rank, getRank(I->getOperand(i))); |
| |
| // If this is a not or neg instruction, do not count it for rank. This |
| // assures us that X and ~X will have the same rank. |
| if (!I->getType()->isInteger() || |
| (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) |
| ++Rank; |
| |
| //DOUT << "Calculated Rank[" << V->getName() << "] = " |
| // << Rank << "\n"; |
| |
| return CachedRank = Rank; |
| } |
| |
| /// isReassociableOp - Return true if V is an instruction of the specified |
| /// opcode and if it only has one use. |
| static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { |
| if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) && |
| cast<Instruction>(V)->getOpcode() == Opcode) |
| return cast<BinaryOperator>(V); |
| return 0; |
| } |
| |
| /// LowerNegateToMultiply - Replace 0-X with X*-1. |
| /// |
| static Instruction *LowerNegateToMultiply(Instruction *Neg) { |
| Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType()); |
| |
| Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, "",Neg); |
| Res->takeName(Neg); |
| Neg->replaceAllUsesWith(Res); |
| Neg->eraseFromParent(); |
| return Res; |
| } |
| |
| // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'. |
| // Note that if D is also part of the expression tree that we recurse to |
| // linearize it as well. Besides that case, this does not recurse into A,B, or |
| // C. |
| void Reassociate::LinearizeExpr(BinaryOperator *I) { |
| BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0)); |
| BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1)); |
| assert(isReassociableOp(LHS, I->getOpcode()) && |
| isReassociableOp(RHS, I->getOpcode()) && |
| "Not an expression that needs linearization?"); |
| |
| DOUT << "Linear" << *LHS << *RHS << *I; |
| |
| // Move the RHS instruction to live immediately before I, avoiding breaking |
| // dominator properties. |
| RHS->moveBefore(I); |
| |
| // Move operands around to do the linearization. |
| I->setOperand(1, RHS->getOperand(0)); |
| RHS->setOperand(0, LHS); |
| I->setOperand(0, RHS); |
| |
| ++NumLinear; |
| MadeChange = true; |
| DOUT << "Linearized: " << *I; |
| |
| // If D is part of this expression tree, tail recurse. |
| if (isReassociableOp(I->getOperand(1), I->getOpcode())) |
| LinearizeExpr(I); |
| } |
| |
| |
| /// LinearizeExprTree - Given an associative binary expression tree, traverse |
| /// all of the uses putting it into canonical form. This forces a left-linear |
| /// form of the the expression (((a+b)+c)+d), and collects information about the |
| /// rank of the non-tree operands. |
| /// |
| /// NOTE: These intentionally destroys the expression tree operands (turning |
| /// them into undef values) to reduce #uses of the values. This means that the |
| /// caller MUST use something like RewriteExprTree to put the values back in. |
| /// |
| void Reassociate::LinearizeExprTree(BinaryOperator *I, |
| std::vector<ValueEntry> &Ops) { |
| Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); |
| unsigned Opcode = I->getOpcode(); |
| |
| // First step, linearize the expression if it is in ((A+B)+(C+D)) form. |
| BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode); |
| BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode); |
| |
| // If this is a multiply expression tree and it contains internal negations, |
| // transform them into multiplies by -1 so they can be reassociated. |
| if (I->getOpcode() == Instruction::Mul) { |
| if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) { |
| LHS = LowerNegateToMultiply(cast<Instruction>(LHS)); |
| LHSBO = isReassociableOp(LHS, Opcode); |
| } |
| if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) { |
| RHS = LowerNegateToMultiply(cast<Instruction>(RHS)); |
| RHSBO = isReassociableOp(RHS, Opcode); |
| } |
| } |
| |
| if (!LHSBO) { |
| if (!RHSBO) { |
| // Neither the LHS or RHS as part of the tree, thus this is a leaf. As |
| // such, just remember these operands and their rank. |
| Ops.push_back(ValueEntry(getRank(LHS), LHS)); |
| Ops.push_back(ValueEntry(getRank(RHS), RHS)); |
| |
| // Clear the leaves out. |
| I->setOperand(0, UndefValue::get(I->getType())); |
| I->setOperand(1, UndefValue::get(I->getType())); |
| return; |
| } else { |
| // Turn X+(Y+Z) -> (Y+Z)+X |
| std::swap(LHSBO, RHSBO); |
| std::swap(LHS, RHS); |
| bool Success = !I->swapOperands(); |
| assert(Success && "swapOperands failed"); |
| MadeChange = true; |
| } |
| } else if (RHSBO) { |
| // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not |
| // part of the expression tree. |
| LinearizeExpr(I); |
| LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0)); |
| RHS = I->getOperand(1); |
| RHSBO = 0; |
| } |
| |
| // Okay, now we know that the LHS is a nested expression and that the RHS is |
| // not. Perform reassociation. |
| assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!"); |
| |
| // Move LHS right before I to make sure that the tree expression dominates all |
| // values. |
| LHSBO->moveBefore(I); |
| |
| // Linearize the expression tree on the LHS. |
| LinearizeExprTree(LHSBO, Ops); |
| |
| // Remember the RHS operand and its rank. |
| Ops.push_back(ValueEntry(getRank(RHS), RHS)); |
| |
| // Clear the RHS leaf out. |
| I->setOperand(1, UndefValue::get(I->getType())); |
| } |
| |
| // RewriteExprTree - Now that the operands for this expression tree are |
| // linearized and optimized, emit them in-order. This function is written to be |
| // tail recursive. |
| void Reassociate::RewriteExprTree(BinaryOperator *I, |
| std::vector<ValueEntry> &Ops, |
| unsigned i) { |
| if (i+2 == Ops.size()) { |
| if (I->getOperand(0) != Ops[i].Op || |
| I->getOperand(1) != Ops[i+1].Op) { |
| Value *OldLHS = I->getOperand(0); |
| DOUT << "RA: " << *I; |
| I->setOperand(0, Ops[i].Op); |
| I->setOperand(1, Ops[i+1].Op); |
| DOUT << "TO: " << *I; |
| MadeChange = true; |
| ++NumChanged; |
| |
| // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3) |
| // delete the extra, now dead, nodes. |
| RemoveDeadBinaryOp(OldLHS); |
| } |
| return; |
| } |
| assert(i+2 < Ops.size() && "Ops index out of range!"); |
| |
| if (I->getOperand(1) != Ops[i].Op) { |
| DOUT << "RA: " << *I; |
| I->setOperand(1, Ops[i].Op); |
| DOUT << "TO: " << *I; |
| MadeChange = true; |
| ++NumChanged; |
| } |
| |
| BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0)); |
| assert(LHS->getOpcode() == I->getOpcode() && |
| "Improper expression tree!"); |
| |
| // Compactify the tree instructions together with each other to guarantee |
| // that the expression tree is dominated by all of Ops. |
| LHS->moveBefore(I); |
| RewriteExprTree(LHS, Ops, i+1); |
| } |
| |
| |
| |
| // NegateValue - Insert instructions before the instruction pointed to by BI, |
| // that computes the negative version of the value specified. The negative |
| // version of the value is returned, and BI is left pointing at the instruction |
| // that should be processed next by the reassociation pass. |
| // |
| static Value *NegateValue(Value *V, Instruction *BI) { |
| // We are trying to expose opportunity for reassociation. One of the things |
| // that we want to do to achieve this is to push a negation as deep into an |
| // expression chain as possible, to expose the add instructions. In practice, |
| // this means that we turn this: |
| // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D |
| // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate |
| // the constants. We assume that instcombine will clean up the mess later if |
| // we introduce tons of unnecessary negation instructions... |
| // |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getOpcode() == Instruction::Add && I->hasOneUse()) { |
| // Push the negates through the add. |
| I->setOperand(0, NegateValue(I->getOperand(0), BI)); |
| I->setOperand(1, NegateValue(I->getOperand(1), BI)); |
| |
| // We must move the add instruction here, because the neg instructions do |
| // not dominate the old add instruction in general. By moving it, we are |
| // assured that the neg instructions we just inserted dominate the |
| // instruction we are about to insert after them. |
| // |
| I->moveBefore(BI); |
| I->setName(I->getName()+".neg"); |
| return I; |
| } |
| |
| // Insert a 'neg' instruction that subtracts the value from zero to get the |
| // negation. |
| // |
| return BinaryOperator::createNeg(V, V->getName() + ".neg", BI); |
| } |
| |
| /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is |
| /// only used by an add, transform this into (X+(0-Y)) to promote better |
| /// reassociation. |
| static Instruction *BreakUpSubtract(Instruction *Sub) { |
| // Don't bother to break this up unless either the LHS is an associable add or |
| // if this is only used by one. |
| if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) && |
| !isReassociableOp(Sub->getOperand(1), Instruction::Add) && |
| !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add))) |
| return 0; |
| |
| // Convert a subtract into an add and a neg instruction... so that sub |
| // instructions can be commuted with other add instructions... |
| // |
| // Calculate the negative value of Operand 1 of the sub instruction... |
| // and set it as the RHS of the add instruction we just made... |
| // |
| Value *NegVal = NegateValue(Sub->getOperand(1), Sub); |
| Instruction *New = |
| BinaryOperator::createAdd(Sub->getOperand(0), NegVal, "", Sub); |
| New->takeName(Sub); |
| |
| // Everyone now refers to the add instruction. |
| Sub->replaceAllUsesWith(New); |
| Sub->eraseFromParent(); |
| |
| DOUT << "Negated: " << *New; |
| return New; |
| } |
| |
| /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used |
| /// by one, change this into a multiply by a constant to assist with further |
| /// reassociation. |
| static Instruction *ConvertShiftToMul(Instruction *Shl) { |
| // If an operand of this shift is a reassociable multiply, or if the shift |
| // is used by a reassociable multiply or add, turn into a multiply. |
| if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) || |
| (Shl->hasOneUse() && |
| (isReassociableOp(Shl->use_back(), Instruction::Mul) || |
| isReassociableOp(Shl->use_back(), Instruction::Add)))) { |
| Constant *MulCst = ConstantInt::get(Shl->getType(), 1); |
| MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); |
| |
| Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst, |
| "", Shl); |
| Mul->takeName(Shl); |
| Shl->replaceAllUsesWith(Mul); |
| Shl->eraseFromParent(); |
| return Mul; |
| } |
| return 0; |
| } |
| |
| // Scan backwards and forwards among values with the same rank as element i to |
| // see if X exists. If X does not exist, return i. |
| static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i, |
| Value *X) { |
| unsigned XRank = Ops[i].Rank; |
| unsigned e = Ops.size(); |
| for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) |
| if (Ops[j].Op == X) |
| return j; |
| // Scan backwards |
| for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) |
| if (Ops[j].Op == X) |
| return j; |
| return i; |
| } |
| |
| /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together |
| /// and returning the result. Insert the tree before I. |
| static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) { |
| if (Ops.size() == 1) return Ops.back(); |
| |
| Value *V1 = Ops.back(); |
| Ops.pop_back(); |
| Value *V2 = EmitAddTreeOfValues(I, Ops); |
| return BinaryOperator::createAdd(V2, V1, "tmp", I); |
| } |
| |
| /// RemoveFactorFromExpression - If V is an expression tree that is a |
| /// multiplication sequence, and if this sequence contains a multiply by Factor, |
| /// remove Factor from the tree and return the new tree. |
| Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { |
| BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); |
| if (!BO) return 0; |
| |
| std::vector<ValueEntry> Factors; |
| LinearizeExprTree(BO, Factors); |
| |
| bool FoundFactor = false; |
| for (unsigned i = 0, e = Factors.size(); i != e; ++i) |
| if (Factors[i].Op == Factor) { |
| FoundFactor = true; |
| Factors.erase(Factors.begin()+i); |
| break; |
| } |
| if (!FoundFactor) { |
| // Make sure to restore the operands to the expression tree. |
| RewriteExprTree(BO, Factors); |
| return 0; |
| } |
| |
| if (Factors.size() == 1) return Factors[0].Op; |
| |
| RewriteExprTree(BO, Factors); |
| return BO; |
| } |
| |
| /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively |
| /// add its operands as factors, otherwise add V to the list of factors. |
| static void FindSingleUseMultiplyFactors(Value *V, |
| std::vector<Value*> &Factors) { |
| BinaryOperator *BO; |
| if ((!V->hasOneUse() && !V->use_empty()) || |
| !(BO = dyn_cast<BinaryOperator>(V)) || |
| BO->getOpcode() != Instruction::Mul) { |
| Factors.push_back(V); |
| return; |
| } |
| |
| // Otherwise, add the LHS and RHS to the list of factors. |
| FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); |
| FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); |
| } |
| |
| |
| |
| Value *Reassociate::OptimizeExpression(BinaryOperator *I, |
| std::vector<ValueEntry> &Ops) { |
| // Now that we have the linearized expression tree, try to optimize it. |
| // Start by folding any constants that we found. |
| bool IterateOptimization = false; |
| if (Ops.size() == 1) return Ops[0].Op; |
| |
| unsigned Opcode = I->getOpcode(); |
| |
| if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op)) |
| if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) { |
| Ops.pop_back(); |
| Ops.back().Op = ConstantExpr::get(Opcode, V1, V2); |
| return OptimizeExpression(I, Ops); |
| } |
| |
| // Check for destructive annihilation due to a constant being used. |
| if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op)) |
| switch (Opcode) { |
| default: break; |
| case Instruction::And: |
| if (CstVal->isZero()) { // ... & 0 -> 0 |
| ++NumAnnihil; |
| return CstVal; |
| } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ... |
| Ops.pop_back(); |
| } |
| break; |
| case Instruction::Mul: |
| if (CstVal->isZero()) { // ... * 0 -> 0 |
| ++NumAnnihil; |
| return CstVal; |
| } else if (cast<ConstantInt>(CstVal)->isOne()) { |
| Ops.pop_back(); // ... * 1 -> ... |
| } |
| break; |
| case Instruction::Or: |
| if (CstVal->isAllOnesValue()) { // ... | -1 -> -1 |
| ++NumAnnihil; |
| return CstVal; |
| } |
| // FALLTHROUGH! |
| case Instruction::Add: |
| case Instruction::Xor: |
| if (CstVal->isZero()) // ... [|^+] 0 -> ... |
| Ops.pop_back(); |
| break; |
| } |
| if (Ops.size() == 1) return Ops[0].Op; |
| |
| // Handle destructive annihilation do to identities between elements in the |
| // argument list here. |
| switch (Opcode) { |
| default: break; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. |
| // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| // First, check for X and ~X in the operand list. |
| assert(i < Ops.size()); |
| if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. |
| Value *X = BinaryOperator::getNotArgument(Ops[i].Op); |
| unsigned FoundX = FindInOperandList(Ops, i, X); |
| if (FoundX != i) { |
| if (Opcode == Instruction::And) { // ...&X&~X = 0 |
| ++NumAnnihil; |
| return Constant::getNullValue(X->getType()); |
| } else if (Opcode == Instruction::Or) { // ...|X|~X = -1 |
| ++NumAnnihil; |
| return ConstantInt::getAllOnesValue(X->getType()); |
| } |
| } |
| } |
| |
| // Next, check for duplicate pairs of values, which we assume are next to |
| // each other, due to our sorting criteria. |
| assert(i < Ops.size()); |
| if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { |
| if (Opcode == Instruction::And || Opcode == Instruction::Or) { |
| // Drop duplicate values. |
| Ops.erase(Ops.begin()+i); |
| --i; --e; |
| IterateOptimization = true; |
| ++NumAnnihil; |
| } else { |
| assert(Opcode == Instruction::Xor); |
| if (e == 2) { |
| ++NumAnnihil; |
| return Constant::getNullValue(Ops[0].Op->getType()); |
| } |
| // ... X^X -> ... |
| Ops.erase(Ops.begin()+i, Ops.begin()+i+2); |
| i -= 1; e -= 2; |
| IterateOptimization = true; |
| ++NumAnnihil; |
| } |
| } |
| } |
| break; |
| |
| case Instruction::Add: |
| // Scan the operand lists looking for X and -X pairs. If we find any, we |
| // can simplify the expression. X+-X == 0. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| assert(i < Ops.size()); |
| // Check for X and -X in the operand list. |
| if (BinaryOperator::isNeg(Ops[i].Op)) { |
| Value *X = BinaryOperator::getNegArgument(Ops[i].Op); |
| unsigned FoundX = FindInOperandList(Ops, i, X); |
| if (FoundX != i) { |
| // Remove X and -X from the operand list. |
| if (Ops.size() == 2) { |
| ++NumAnnihil; |
| return Constant::getNullValue(X->getType()); |
| } else { |
| Ops.erase(Ops.begin()+i); |
| if (i < FoundX) |
| --FoundX; |
| else |
| --i; // Need to back up an extra one. |
| Ops.erase(Ops.begin()+FoundX); |
| IterateOptimization = true; |
| ++NumAnnihil; |
| --i; // Revisit element. |
| e -= 2; // Removed two elements. |
| } |
| } |
| } |
| } |
| |
| |
| // Scan the operand list, checking to see if there are any common factors |
| // between operands. Consider something like A*A+A*B*C+D. We would like to |
| // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. |
| // To efficiently find this, we count the number of times a factor occurs |
| // for any ADD operands that are MULs. |
| std::map<Value*, unsigned> FactorOccurrences; |
| unsigned MaxOcc = 0; |
| Value *MaxOccVal = 0; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) { |
| if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) { |
| // Compute all of the factors of this added value. |
| std::vector<Value*> Factors; |
| FindSingleUseMultiplyFactors(BOp, Factors); |
| assert(Factors.size() > 1 && "Bad linearize!"); |
| |
| // Add one to FactorOccurrences for each unique factor in this op. |
| if (Factors.size() == 2) { |
| unsigned Occ = ++FactorOccurrences[Factors[0]]; |
| if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; } |
| if (Factors[0] != Factors[1]) { // Don't double count A*A. |
| Occ = ++FactorOccurrences[Factors[1]]; |
| if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; } |
| } |
| } else { |
| std::set<Value*> Duplicates; |
| for (unsigned i = 0, e = Factors.size(); i != e; ++i) { |
| if (Duplicates.insert(Factors[i]).second) { |
| unsigned Occ = ++FactorOccurrences[Factors[i]]; |
| if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // If any factor occurred more than one time, we can pull it out. |
| if (MaxOcc > 1) { |
| DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n"; |
| |
| // Create a new instruction that uses the MaxOccVal twice. If we don't do |
| // this, we could otherwise run into situations where removing a factor |
| // from an expression will drop a use of maxocc, and this can cause |
| // RemoveFactorFromExpression on successive values to behave differently. |
| Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal); |
| std::vector<Value*> NewMulOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { |
| NewMulOps.push_back(V); |
| Ops.erase(Ops.begin()+i); |
| --i; --e; |
| } |
| } |
| |
| // No need for extra uses anymore. |
| delete DummyInst; |
| |
| unsigned NumAddedValues = NewMulOps.size(); |
| Value *V = EmitAddTreeOfValues(I, NewMulOps); |
| Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I); |
| |
| // Now that we have inserted V and its sole use, optimize it. This allows |
| // us to handle cases that require multiple factoring steps, such as this: |
| // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) |
| if (NumAddedValues > 1) |
| ReassociateExpression(cast<BinaryOperator>(V)); |
| |
| ++NumFactor; |
| |
| if (Ops.empty()) |
| return V2; |
| |
| // Add the new value to the list of things being added. |
| Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); |
| |
| // Rewrite the tree so that there is now a use of V. |
| RewriteExprTree(I, Ops); |
| return OptimizeExpression(I, Ops); |
| } |
| break; |
| //case Instruction::Mul: |
| } |
| |
| if (IterateOptimization) |
| return OptimizeExpression(I, Ops); |
| return 0; |
| } |
| |
| |
| /// ReassociateBB - Inspect all of the instructions in this basic block, |
| /// reassociating them as we go. |
| void Reassociate::ReassociateBB(BasicBlock *BB) { |
| for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) { |
| Instruction *BI = BBI++; |
| if (BI->getOpcode() == Instruction::Shl && |
| isa<ConstantInt>(BI->getOperand(1))) |
| if (Instruction *NI = ConvertShiftToMul(BI)) { |
| MadeChange = true; |
| BI = NI; |
| } |
| |
| // Reject cases where it is pointless to do this. |
| if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() || |
| isa<VectorType>(BI->getType())) |
| continue; // Floating point ops are not associative. |
| |
| // If this is a subtract instruction which is not already in negate form, |
| // see if we can convert it to X+-Y. |
| if (BI->getOpcode() == Instruction::Sub) { |
| if (!BinaryOperator::isNeg(BI)) { |
| if (Instruction *NI = BreakUpSubtract(BI)) { |
| MadeChange = true; |
| BI = NI; |
| } |
| } else { |
| // Otherwise, this is a negation. See if the operand is a multiply tree |
| // and if this is not an inner node of a multiply tree. |
| if (isReassociableOp(BI->getOperand(1), Instruction::Mul) && |
| (!BI->hasOneUse() || |
| !isReassociableOp(BI->use_back(), Instruction::Mul))) { |
| BI = LowerNegateToMultiply(BI); |
| MadeChange = true; |
| } |
| } |
| } |
| |
| // If this instruction is a commutative binary operator, process it. |
| if (!BI->isAssociative()) continue; |
| BinaryOperator *I = cast<BinaryOperator>(BI); |
| |
| // If this is an interior node of a reassociable tree, ignore it until we |
| // get to the root of the tree, to avoid N^2 analysis. |
| if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode())) |
| continue; |
| |
| // If this is an add tree that is used by a sub instruction, ignore it |
| // until we process the subtract. |
| if (I->hasOneUse() && I->getOpcode() == Instruction::Add && |
| cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub) |
| continue; |
| |
| ReassociateExpression(I); |
| } |
| } |
| |
| void Reassociate::ReassociateExpression(BinaryOperator *I) { |
| |
| // First, walk the expression tree, linearizing the tree, collecting |
| std::vector<ValueEntry> Ops; |
| LinearizeExprTree(I, Ops); |
| |
| DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n"; |
| |
| // Now that we have linearized the tree to a list and have gathered all of |
| // the operands and their ranks, sort the operands by their rank. Use a |
| // stable_sort so that values with equal ranks will have their relative |
| // positions maintained (and so the compiler is deterministic). Note that |
| // this sorts so that the highest ranking values end up at the beginning of |
| // the vector. |
| std::stable_sort(Ops.begin(), Ops.end()); |
| |
| // OptimizeExpression - Now that we have the expression tree in a convenient |
| // sorted form, optimize it globally if possible. |
| if (Value *V = OptimizeExpression(I, Ops)) { |
| // This expression tree simplified to something that isn't a tree, |
| // eliminate it. |
| DOUT << "Reassoc to scalar: " << *V << "\n"; |
| I->replaceAllUsesWith(V); |
| RemoveDeadBinaryOp(I); |
| return; |
| } |
| |
| // We want to sink immediates as deeply as possible except in the case where |
| // this is a multiply tree used only by an add, and the immediate is a -1. |
| // In this case we reassociate to put the negation on the outside so that we |
| // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y |
| if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && |
| cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add && |
| isa<ConstantInt>(Ops.back().Op) && |
| cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { |
| Ops.insert(Ops.begin(), Ops.back()); |
| Ops.pop_back(); |
| } |
| |
| DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n"; |
| |
| if (Ops.size() == 1) { |
| // This expression tree simplified to something that isn't a tree, |
| // eliminate it. |
| I->replaceAllUsesWith(Ops[0].Op); |
| RemoveDeadBinaryOp(I); |
| } else { |
| // Now that we ordered and optimized the expressions, splat them back into |
| // the expression tree, removing any unneeded nodes. |
| RewriteExprTree(I, Ops); |
| } |
| } |
| |
| |
| bool Reassociate::runOnFunction(Function &F) { |
| // Recalculate the rank map for F |
| BuildRankMap(F); |
| |
| MadeChange = false; |
| for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) |
| ReassociateBB(FI); |
| |
| // We are done with the rank map... |
| RankMap.clear(); |
| ValueRankMap.clear(); |
| return MadeChange; |
| } |
| |