| //===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Reid Spencer and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the writing of the LLVM IR as a set of C++ calls to the |
| // LLVM IR interface. The input module is assumed to be verified. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instruction.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/TypeSymbolTable.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Config/config.h" |
| #include <algorithm> |
| #include <iostream> |
| #include <set> |
| |
| using namespace llvm; |
| |
| static cl::opt<std::string> |
| FuncName("funcname", cl::desc("Specify the name of the generated function"), |
| cl::value_desc("function name")); |
| |
| enum WhatToGenerate { |
| GenProgram, |
| GenModule, |
| GenContents, |
| GenFunction, |
| GenInline, |
| GenVariable, |
| GenType |
| }; |
| |
| static cl::opt<WhatToGenerate> GenerationType(cl::Optional, |
| cl::desc("Choose what kind of output to generate"), |
| cl::init(GenProgram), |
| cl::values( |
| clEnumValN(GenProgram, "gen-program", "Generate a complete program"), |
| clEnumValN(GenModule, "gen-module", "Generate a module definition"), |
| clEnumValN(GenContents,"gen-contents", "Generate contents of a module"), |
| clEnumValN(GenFunction,"gen-function", "Generate a function definition"), |
| clEnumValN(GenInline, "gen-inline", "Generate an inline function"), |
| clEnumValN(GenVariable,"gen-variable", "Generate a variable definition"), |
| clEnumValN(GenType, "gen-type", "Generate a type definition"), |
| clEnumValEnd |
| ) |
| ); |
| |
| static cl::opt<std::string> NameToGenerate("for", cl::Optional, |
| cl::desc("Specify the name of the thing to generate"), |
| cl::init("!bad!")); |
| |
| namespace { |
| typedef std::vector<const Type*> TypeList; |
| typedef std::map<const Type*,std::string> TypeMap; |
| typedef std::map<const Value*,std::string> ValueMap; |
| typedef std::set<std::string> NameSet; |
| typedef std::set<const Type*> TypeSet; |
| typedef std::set<const Value*> ValueSet; |
| typedef std::map<const Value*,std::string> ForwardRefMap; |
| |
| class CppWriter { |
| const char* progname; |
| std::ostream &Out; |
| const Module *TheModule; |
| uint64_t uniqueNum; |
| TypeMap TypeNames; |
| ValueMap ValueNames; |
| TypeMap UnresolvedTypes; |
| TypeList TypeStack; |
| NameSet UsedNames; |
| TypeSet DefinedTypes; |
| ValueSet DefinedValues; |
| ForwardRefMap ForwardRefs; |
| bool is_inline; |
| |
| public: |
| inline CppWriter(std::ostream &o, const Module *M, const char* pn="llvm2cpp") |
| : progname(pn), Out(o), TheModule(M), uniqueNum(0), TypeNames(), |
| ValueNames(), UnresolvedTypes(), TypeStack(), is_inline(false) { } |
| |
| const Module* getModule() { return TheModule; } |
| |
| void printProgram(const std::string& fname, const std::string& modName ); |
| void printModule(const std::string& fname, const std::string& modName ); |
| void printContents(const std::string& fname, const std::string& modName ); |
| void printFunction(const std::string& fname, const std::string& funcName ); |
| void printInline(const std::string& fname, const std::string& funcName ); |
| void printVariable(const std::string& fname, const std::string& varName ); |
| void printType(const std::string& fname, const std::string& typeName ); |
| |
| void error(const std::string& msg); |
| |
| private: |
| void printLinkageType(GlobalValue::LinkageTypes LT); |
| void printCallingConv(unsigned cc); |
| void printEscapedString(const std::string& str); |
| void printCFP(const ConstantFP* CFP); |
| |
| std::string getCppName(const Type* val); |
| inline void printCppName(const Type* val); |
| |
| std::string getCppName(const Value* val); |
| inline void printCppName(const Value* val); |
| |
| bool printTypeInternal(const Type* Ty); |
| inline void printType(const Type* Ty); |
| void printTypes(const Module* M); |
| |
| void printConstant(const Constant *CPV); |
| void printConstants(const Module* M); |
| |
| void printVariableUses(const GlobalVariable *GV); |
| void printVariableHead(const GlobalVariable *GV); |
| void printVariableBody(const GlobalVariable *GV); |
| |
| void printFunctionUses(const Function *F); |
| void printFunctionHead(const Function *F); |
| void printFunctionBody(const Function *F); |
| void printInstruction(const Instruction *I, const std::string& bbname); |
| std::string getOpName(Value*); |
| |
| void printModuleBody(); |
| |
| }; |
| |
| static unsigned indent_level = 0; |
| inline std::ostream& nl(std::ostream& Out, int delta = 0) { |
| Out << "\n"; |
| if (delta >= 0 || indent_level >= unsigned(-delta)) |
| indent_level += delta; |
| for (unsigned i = 0; i < indent_level; ++i) |
| Out << " "; |
| return Out; |
| } |
| |
| inline void in() { indent_level++; } |
| inline void out() { if (indent_level >0) indent_level--; } |
| |
| inline void |
| sanitize(std::string& str) { |
| for (size_t i = 0; i < str.length(); ++i) |
| if (!isalnum(str[i]) && str[i] != '_') |
| str[i] = '_'; |
| } |
| |
| inline std::string |
| getTypePrefix(const Type* Ty ) { |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: return "void_"; |
| case Type::IntegerTyID: |
| return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) + |
| "_"; |
| case Type::FloatTyID: return "float_"; |
| case Type::DoubleTyID: return "double_"; |
| case Type::LabelTyID: return "label_"; |
| case Type::FunctionTyID: return "func_"; |
| case Type::StructTyID: return "struct_"; |
| case Type::ArrayTyID: return "array_"; |
| case Type::PointerTyID: return "ptr_"; |
| case Type::PackedTyID: return "packed_"; |
| case Type::OpaqueTyID: return "opaque_"; |
| default: return "other_"; |
| } |
| return "unknown_"; |
| } |
| |
| // Looks up the type in the symbol table and returns a pointer to its name or |
| // a null pointer if it wasn't found. Note that this isn't the same as the |
| // Mode::getTypeName function which will return an empty string, not a null |
| // pointer if the name is not found. |
| inline const std::string* |
| findTypeName(const TypeSymbolTable& ST, const Type* Ty) |
| { |
| TypeSymbolTable::const_iterator TI = ST.begin(); |
| TypeSymbolTable::const_iterator TE = ST.end(); |
| for (;TI != TE; ++TI) |
| if (TI->second == Ty) |
| return &(TI->first); |
| return 0; |
| } |
| |
| void |
| CppWriter::error(const std::string& msg) { |
| std::cerr << progname << ": " << msg << "\n"; |
| exit(2); |
| } |
| |
| // printCFP - Print a floating point constant .. very carefully :) |
| // This makes sure that conversion to/from floating yields the same binary |
| // result so that we don't lose precision. |
| void |
| CppWriter::printCFP(const ConstantFP *CFP) { |
| Out << "ConstantFP::get("; |
| if (CFP->getType() == Type::DoubleTy) |
| Out << "Type::DoubleTy, "; |
| else |
| Out << "Type::FloatTy, "; |
| #if HAVE_PRINTF_A |
| char Buffer[100]; |
| sprintf(Buffer, "%A", CFP->getValue()); |
| if ((!strncmp(Buffer, "0x", 2) || |
| !strncmp(Buffer, "-0x", 3) || |
| !strncmp(Buffer, "+0x", 3)) && |
| (atof(Buffer) == CFP->getValue())) |
| if (CFP->getType() == Type::DoubleTy) |
| Out << "BitsToDouble(" << Buffer << ")"; |
| else |
| Out << "BitsToFloat(" << Buffer << ")"; |
| else { |
| #endif |
| std::string StrVal = ftostr(CFP->getValue()); |
| |
| while (StrVal[0] == ' ') |
| StrVal.erase(StrVal.begin()); |
| |
| // Check to make sure that the stringized number is not some string like |
| // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex. |
| if (((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| ((StrVal[0] == '-' || StrVal[0] == '+') && |
| (StrVal[1] >= '0' && StrVal[1] <= '9'))) && |
| (atof(StrVal.c_str()) == CFP->getValue())) |
| if (CFP->getType() == Type::DoubleTy) |
| Out << StrVal; |
| else |
| Out << StrVal; |
| else if (CFP->getType() == Type::DoubleTy) |
| Out << "BitsToDouble(0x" << std::hex << DoubleToBits(CFP->getValue()) |
| << std::dec << "ULL) /* " << StrVal << " */"; |
| else |
| Out << "BitsToFloat(0x" << std::hex << FloatToBits(CFP->getValue()) |
| << std::dec << "U) /* " << StrVal << " */"; |
| #if HAVE_PRINTF_A |
| } |
| #endif |
| Out << ")"; |
| } |
| |
| void |
| CppWriter::printCallingConv(unsigned cc){ |
| // Print the calling convention. |
| switch (cc) { |
| case CallingConv::C: Out << "CallingConv::C"; break; |
| case CallingConv::CSRet: Out << "CallingConv::CSRet"; break; |
| case CallingConv::Fast: Out << "CallingConv::Fast"; break; |
| case CallingConv::Cold: Out << "CallingConv::Cold"; break; |
| case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break; |
| default: Out << cc; break; |
| } |
| } |
| |
| void |
| CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) { |
| switch (LT) { |
| case GlobalValue::InternalLinkage: |
| Out << "GlobalValue::InternalLinkage"; break; |
| case GlobalValue::LinkOnceLinkage: |
| Out << "GlobalValue::LinkOnceLinkage "; break; |
| case GlobalValue::WeakLinkage: |
| Out << "GlobalValue::WeakLinkage"; break; |
| case GlobalValue::AppendingLinkage: |
| Out << "GlobalValue::AppendingLinkage"; break; |
| case GlobalValue::ExternalLinkage: |
| Out << "GlobalValue::ExternalLinkage"; break; |
| case GlobalValue::DLLImportLinkage: |
| Out << "GlobalValue::DllImportLinkage"; break; |
| case GlobalValue::DLLExportLinkage: |
| Out << "GlobalValue::DllExportLinkage"; break; |
| case GlobalValue::ExternalWeakLinkage: |
| Out << "GlobalValue::ExternalWeakLinkage"; break; |
| case GlobalValue::GhostLinkage: |
| Out << "GlobalValue::GhostLinkage"; break; |
| } |
| } |
| |
| // printEscapedString - Print each character of the specified string, escaping |
| // it if it is not printable or if it is an escape char. |
| void |
| CppWriter::printEscapedString(const std::string &Str) { |
| for (unsigned i = 0, e = Str.size(); i != e; ++i) { |
| unsigned char C = Str[i]; |
| if (isprint(C) && C != '"' && C != '\\') { |
| Out << C; |
| } else { |
| Out << "\\x" |
| << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) |
| << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); |
| } |
| } |
| } |
| |
| std::string |
| CppWriter::getCppName(const Type* Ty) |
| { |
| // First, handle the primitive types .. easy |
| if (Ty->isPrimitiveType() || Ty->isInteger()) { |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: return "Type::VoidTy"; |
| case Type::IntegerTyID: { |
| unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); |
| return "IntegerType::get(" + utostr(BitWidth) + ")"; |
| } |
| case Type::FloatTyID: return "Type::FloatTy"; |
| case Type::DoubleTyID: return "Type::DoubleTy"; |
| case Type::LabelTyID: return "Type::LabelTy"; |
| default: |
| error("Invalid primitive type"); |
| break; |
| } |
| return "Type::VoidTy"; // shouldn't be returned, but make it sensible |
| } |
| |
| // Now, see if we've seen the type before and return that |
| TypeMap::iterator I = TypeNames.find(Ty); |
| if (I != TypeNames.end()) |
| return I->second; |
| |
| // Okay, let's build a new name for this type. Start with a prefix |
| const char* prefix = 0; |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: prefix = "FuncTy_"; break; |
| case Type::StructTyID: prefix = "StructTy_"; break; |
| case Type::ArrayTyID: prefix = "ArrayTy_"; break; |
| case Type::PointerTyID: prefix = "PointerTy_"; break; |
| case Type::OpaqueTyID: prefix = "OpaqueTy_"; break; |
| case Type::PackedTyID: prefix = "PackedTy_"; break; |
| default: prefix = "OtherTy_"; break; // prevent breakage |
| } |
| |
| // See if the type has a name in the symboltable and build accordingly |
| const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty); |
| std::string name; |
| if (tName) |
| name = std::string(prefix) + *tName; |
| else |
| name = std::string(prefix) + utostr(uniqueNum++); |
| sanitize(name); |
| |
| // Save the name |
| return TypeNames[Ty] = name; |
| } |
| |
| void |
| CppWriter::printCppName(const Type* Ty) |
| { |
| printEscapedString(getCppName(Ty)); |
| } |
| |
| std::string |
| CppWriter::getCppName(const Value* val) { |
| std::string name; |
| ValueMap::iterator I = ValueNames.find(val); |
| if (I != ValueNames.end() && I->first == val) |
| return I->second; |
| |
| if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) { |
| name = std::string("gvar_") + |
| getTypePrefix(GV->getType()->getElementType()); |
| } else if (isa<Function>(val)) { |
| name = std::string("func_"); |
| } else if (const Constant* C = dyn_cast<Constant>(val)) { |
| name = std::string("const_") + getTypePrefix(C->getType()); |
| } else if (const Argument* Arg = dyn_cast<Argument>(val)) { |
| if (is_inline) { |
| unsigned argNum = std::distance(Arg->getParent()->arg_begin(), |
| Function::const_arg_iterator(Arg)) + 1; |
| name = std::string("arg_") + utostr(argNum); |
| NameSet::iterator NI = UsedNames.find(name); |
| if (NI != UsedNames.end()) |
| name += std::string("_") + utostr(uniqueNum++); |
| UsedNames.insert(name); |
| return ValueNames[val] = name; |
| } else { |
| name = getTypePrefix(val->getType()); |
| } |
| } else { |
| name = getTypePrefix(val->getType()); |
| } |
| name += (val->hasName() ? val->getName() : utostr(uniqueNum++)); |
| sanitize(name); |
| NameSet::iterator NI = UsedNames.find(name); |
| if (NI != UsedNames.end()) |
| name += std::string("_") + utostr(uniqueNum++); |
| UsedNames.insert(name); |
| return ValueNames[val] = name; |
| } |
| |
| void |
| CppWriter::printCppName(const Value* val) { |
| printEscapedString(getCppName(val)); |
| } |
| |
| bool |
| CppWriter::printTypeInternal(const Type* Ty) { |
| // We don't print definitions for primitive types |
| if (Ty->isPrimitiveType() || Ty->isInteger()) |
| return false; |
| |
| // If we already defined this type, we don't need to define it again. |
| if (DefinedTypes.find(Ty) != DefinedTypes.end()) |
| return false; |
| |
| // Everything below needs the name for the type so get it now. |
| std::string typeName(getCppName(Ty)); |
| |
| // Search the type stack for recursion. If we find it, then generate this |
| // as an OpaqueType, but make sure not to do this multiple times because |
| // the type could appear in multiple places on the stack. Once the opaque |
| // definition is issued, it must not be re-issued. Consequently we have to |
| // check the UnresolvedTypes list as well. |
| TypeList::const_iterator TI = std::find(TypeStack.begin(),TypeStack.end(),Ty); |
| if (TI != TypeStack.end()) { |
| TypeMap::const_iterator I = UnresolvedTypes.find(Ty); |
| if (I == UnresolvedTypes.end()) { |
| Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();"; |
| nl(Out); |
| UnresolvedTypes[Ty] = typeName; |
| } |
| return true; |
| } |
| |
| // We're going to print a derived type which, by definition, contains other |
| // types. So, push this one we're printing onto the type stack to assist with |
| // recursive definitions. |
| TypeStack.push_back(Ty); |
| |
| // Print the type definition |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: { |
| const FunctionType* FT = cast<FunctionType>(Ty); |
| Out << "std::vector<const Type*>" << typeName << "_args;"; |
| nl(Out); |
| FunctionType::param_iterator PI = FT->param_begin(); |
| FunctionType::param_iterator PE = FT->param_end(); |
| for (; PI != PE; ++PI) { |
| const Type* argTy = static_cast<const Type*>(*PI); |
| bool isForward = printTypeInternal(argTy); |
| std::string argName(getCppName(argTy)); |
| Out << typeName << "_args.push_back(" << argName; |
| if (isForward) |
| Out << "_fwd"; |
| Out << ");"; |
| nl(Out); |
| } |
| bool isForward = printTypeInternal(FT->getReturnType()); |
| std::string retTypeName(getCppName(FT->getReturnType())); |
| Out << "FunctionType* " << typeName << " = FunctionType::get("; |
| in(); nl(Out) << "/*Result=*/" << retTypeName; |
| if (isForward) |
| Out << "_fwd"; |
| Out << ","; |
| nl(Out) << "/*Params=*/" << typeName << "_args,"; |
| nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");"; |
| out(); |
| nl(Out); |
| break; |
| } |
| case Type::StructTyID: { |
| const StructType* ST = cast<StructType>(Ty); |
| Out << "std::vector<const Type*>" << typeName << "_fields;"; |
| nl(Out); |
| StructType::element_iterator EI = ST->element_begin(); |
| StructType::element_iterator EE = ST->element_end(); |
| for (; EI != EE; ++EI) { |
| const Type* fieldTy = static_cast<const Type*>(*EI); |
| bool isForward = printTypeInternal(fieldTy); |
| std::string fieldName(getCppName(fieldTy)); |
| Out << typeName << "_fields.push_back(" << fieldName; |
| if (isForward) |
| Out << "_fwd"; |
| Out << ");"; |
| nl(Out); |
| } |
| Out << "StructType* " << typeName << " = StructType::get(" |
| << typeName << "_fields);"; |
| nl(Out); |
| break; |
| } |
| case Type::ArrayTyID: { |
| const ArrayType* AT = cast<ArrayType>(Ty); |
| const Type* ET = AT->getElementType(); |
| bool isForward = printTypeInternal(ET); |
| std::string elemName(getCppName(ET)); |
| Out << "ArrayType* " << typeName << " = ArrayType::get(" |
| << elemName << (isForward ? "_fwd" : "") |
| << ", " << utostr(AT->getNumElements()) << ");"; |
| nl(Out); |
| break; |
| } |
| case Type::PointerTyID: { |
| const PointerType* PT = cast<PointerType>(Ty); |
| const Type* ET = PT->getElementType(); |
| bool isForward = printTypeInternal(ET); |
| std::string elemName(getCppName(ET)); |
| Out << "PointerType* " << typeName << " = PointerType::get(" |
| << elemName << (isForward ? "_fwd" : "") << ");"; |
| nl(Out); |
| break; |
| } |
| case Type::PackedTyID: { |
| const PackedType* PT = cast<PackedType>(Ty); |
| const Type* ET = PT->getElementType(); |
| bool isForward = printTypeInternal(ET); |
| std::string elemName(getCppName(ET)); |
| Out << "PackedType* " << typeName << " = PackedType::get(" |
| << elemName << (isForward ? "_fwd" : "") |
| << ", " << utostr(PT->getNumElements()) << ");"; |
| nl(Out); |
| break; |
| } |
| case Type::OpaqueTyID: { |
| Out << "OpaqueType* " << typeName << " = OpaqueType::get();"; |
| nl(Out); |
| break; |
| } |
| default: |
| error("Invalid TypeID"); |
| } |
| |
| // If the type had a name, make sure we recreate it. |
| const std::string* progTypeName = |
| findTypeName(TheModule->getTypeSymbolTable(),Ty); |
| if (progTypeName) |
| Out << "mod->addTypeName(\"" << *progTypeName << "\", " |
| << typeName << ");"; |
| nl(Out); |
| |
| // Pop us off the type stack |
| TypeStack.pop_back(); |
| |
| // Indicate that this type is now defined. |
| DefinedTypes.insert(Ty); |
| |
| // Early resolve as many unresolved types as possible. Search the unresolved |
| // types map for the type we just printed. Now that its definition is complete |
| // we can resolve any previous references to it. This prevents a cascade of |
| // unresolved types. |
| TypeMap::iterator I = UnresolvedTypes.find(Ty); |
| if (I != UnresolvedTypes.end()) { |
| Out << "cast<OpaqueType>(" << I->second |
| << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");"; |
| nl(Out); |
| Out << I->second << " = cast<"; |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: Out << "FunctionType"; break; |
| case Type::ArrayTyID: Out << "ArrayType"; break; |
| case Type::StructTyID: Out << "StructType"; break; |
| case Type::PackedTyID: Out << "PackedType"; break; |
| case Type::PointerTyID: Out << "PointerType"; break; |
| case Type::OpaqueTyID: Out << "OpaqueType"; break; |
| default: Out << "NoSuchDerivedType"; break; |
| } |
| Out << ">(" << I->second << "_fwd.get());"; |
| nl(Out); nl(Out); |
| UnresolvedTypes.erase(I); |
| } |
| |
| // Finally, separate the type definition from other with a newline. |
| nl(Out); |
| |
| // We weren't a recursive type |
| return false; |
| } |
| |
| // Prints a type definition. Returns true if it could not resolve all the types |
| // in the definition but had to use a forward reference. |
| void |
| CppWriter::printType(const Type* Ty) { |
| assert(TypeStack.empty()); |
| TypeStack.clear(); |
| printTypeInternal(Ty); |
| assert(TypeStack.empty()); |
| } |
| |
| void |
| CppWriter::printTypes(const Module* M) { |
| |
| // Walk the symbol table and print out all its types |
| const TypeSymbolTable& symtab = M->getTypeSymbolTable(); |
| for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end(); |
| TI != TE; ++TI) { |
| |
| // For primitive types and types already defined, just add a name |
| TypeMap::const_iterator TNI = TypeNames.find(TI->second); |
| if (TI->second->isInteger() || TI->second->isPrimitiveType() || |
| TNI != TypeNames.end()) { |
| Out << "mod->addTypeName(\""; |
| printEscapedString(TI->first); |
| Out << "\", " << getCppName(TI->second) << ");"; |
| nl(Out); |
| // For everything else, define the type |
| } else { |
| printType(TI->second); |
| } |
| } |
| |
| // Add all of the global variables to the value table... |
| for (Module::const_global_iterator I = TheModule->global_begin(), |
| E = TheModule->global_end(); I != E; ++I) { |
| if (I->hasInitializer()) |
| printType(I->getInitializer()->getType()); |
| printType(I->getType()); |
| } |
| |
| // Add all the functions to the table |
| for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); |
| FI != FE; ++FI) { |
| printType(FI->getReturnType()); |
| printType(FI->getFunctionType()); |
| // Add all the function arguments |
| for(Function::const_arg_iterator AI = FI->arg_begin(), |
| AE = FI->arg_end(); AI != AE; ++AI) { |
| printType(AI->getType()); |
| } |
| |
| // Add all of the basic blocks and instructions |
| for (Function::const_iterator BB = FI->begin(), |
| E = FI->end(); BB != E; ++BB) { |
| printType(BB->getType()); |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; |
| ++I) { |
| printType(I->getType()); |
| for (unsigned i = 0; i < I->getNumOperands(); ++i) |
| printType(I->getOperand(i)->getType()); |
| } |
| } |
| } |
| } |
| |
| |
| // printConstant - Print out a constant pool entry... |
| void CppWriter::printConstant(const Constant *CV) { |
| // First, if the constant is actually a GlobalValue (variable or function) or |
| // its already in the constant list then we've printed it already and we can |
| // just return. |
| if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end()) |
| return; |
| |
| std::string constName(getCppName(CV)); |
| std::string typeName(getCppName(CV->getType())); |
| if (CV->isNullValue()) { |
| Out << "Constant* " << constName << " = Constant::getNullValue(" |
| << typeName << ");"; |
| nl(Out); |
| return; |
| } |
| if (isa<GlobalValue>(CV)) { |
| // Skip variables and functions, we emit them elsewhere |
| return; |
| } |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| Out << "ConstantInt* " << constName << " = ConstantInt::get(" |
| << typeName << ", " << CI->getZExtValue() << ");"; |
| } else if (isa<ConstantAggregateZero>(CV)) { |
| Out << "ConstantAggregateZero* " << constName |
| << " = ConstantAggregateZero::get(" << typeName << ");"; |
| } else if (isa<ConstantPointerNull>(CV)) { |
| Out << "ConstantPointerNull* " << constName |
| << " = ConstanPointerNull::get(" << typeName << ");"; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| Out << "ConstantFP* " << constName << " = "; |
| printCFP(CFP); |
| Out << ";"; |
| } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { |
| if (CA->isString() && CA->getType()->getElementType() == Type::Int8Ty) { |
| Out << "Constant* " << constName << " = ConstantArray::get(\""; |
| printEscapedString(CA->getAsString()); |
| // Determine if we want null termination or not. |
| if (CA->getType()->getNumElements() <= CA->getAsString().length()) |
| Out << "\", false";// No null terminator |
| else |
| Out << "\", true"; // Indicate that the null terminator should be added. |
| Out << ");"; |
| } else { |
| Out << "std::vector<Constant*> " << constName << "_elems;"; |
| nl(Out); |
| unsigned N = CA->getNumOperands(); |
| for (unsigned i = 0; i < N; ++i) { |
| printConstant(CA->getOperand(i)); // recurse to print operands |
| Out << constName << "_elems.push_back(" |
| << getCppName(CA->getOperand(i)) << ");"; |
| nl(Out); |
| } |
| Out << "Constant* " << constName << " = ConstantArray::get(" |
| << typeName << ", " << constName << "_elems);"; |
| } |
| } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { |
| Out << "std::vector<Constant*> " << constName << "_fields;"; |
| nl(Out); |
| unsigned N = CS->getNumOperands(); |
| for (unsigned i = 0; i < N; i++) { |
| printConstant(CS->getOperand(i)); |
| Out << constName << "_fields.push_back(" |
| << getCppName(CS->getOperand(i)) << ");"; |
| nl(Out); |
| } |
| Out << "Constant* " << constName << " = ConstantStruct::get(" |
| << typeName << ", " << constName << "_fields);"; |
| } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) { |
| Out << "std::vector<Constant*> " << constName << "_elems;"; |
| nl(Out); |
| unsigned N = CP->getNumOperands(); |
| for (unsigned i = 0; i < N; ++i) { |
| printConstant(CP->getOperand(i)); |
| Out << constName << "_elems.push_back(" |
| << getCppName(CP->getOperand(i)) << ");"; |
| nl(Out); |
| } |
| Out << "Constant* " << constName << " = ConstantPacked::get(" |
| << typeName << ", " << constName << "_elems);"; |
| } else if (isa<UndefValue>(CV)) { |
| Out << "UndefValue* " << constName << " = UndefValue::get(" |
| << typeName << ");"; |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| if (CE->getOpcode() == Instruction::GetElementPtr) { |
| Out << "std::vector<Constant*> " << constName << "_indices;"; |
| nl(Out); |
| printConstant(CE->getOperand(0)); |
| for (unsigned i = 1; i < CE->getNumOperands(); ++i ) { |
| printConstant(CE->getOperand(i)); |
| Out << constName << "_indices.push_back(" |
| << getCppName(CE->getOperand(i)) << ");"; |
| nl(Out); |
| } |
| Out << "Constant* " << constName |
| << " = ConstantExpr::getGetElementPtr(" |
| << getCppName(CE->getOperand(0)) << ", " |
| << constName << "_indices);"; |
| } else if (CE->isCast()) { |
| printConstant(CE->getOperand(0)); |
| Out << "Constant* " << constName << " = ConstantExpr::getCast("; |
| switch (CE->getOpcode()) { |
| default: assert(0 && "Invalid cast opcode"); |
| case Instruction::Trunc: Out << "Instruction::Trunc"; break; |
| case Instruction::ZExt: Out << "Instruction::ZExt"; break; |
| case Instruction::SExt: Out << "Instruction::SExt"; break; |
| case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break; |
| case Instruction::FPExt: Out << "Instruction::FPExt"; break; |
| case Instruction::FPToUI: Out << "Instruction::FPToUI"; break; |
| case Instruction::FPToSI: Out << "Instruction::FPToSI"; break; |
| case Instruction::UIToFP: Out << "Instruction::UIToFP"; break; |
| case Instruction::SIToFP: Out << "Instruction::SIToFP"; break; |
| case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break; |
| case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break; |
| case Instruction::BitCast: Out << "Instruction::BitCast"; break; |
| } |
| Out << ", " << getCppName(CE->getOperand(0)) << ", " |
| << getCppName(CE->getType()) << ");"; |
| } else { |
| unsigned N = CE->getNumOperands(); |
| for (unsigned i = 0; i < N; ++i ) { |
| printConstant(CE->getOperand(i)); |
| } |
| Out << "Constant* " << constName << " = ConstantExpr::"; |
| switch (CE->getOpcode()) { |
| case Instruction::Add: Out << "getAdd("; break; |
| case Instruction::Sub: Out << "getSub("; break; |
| case Instruction::Mul: Out << "getMul("; break; |
| case Instruction::UDiv: Out << "getUDiv("; break; |
| case Instruction::SDiv: Out << "getSDiv("; break; |
| case Instruction::FDiv: Out << "getFDiv("; break; |
| case Instruction::URem: Out << "getURem("; break; |
| case Instruction::SRem: Out << "getSRem("; break; |
| case Instruction::FRem: Out << "getFRem("; break; |
| case Instruction::And: Out << "getAnd("; break; |
| case Instruction::Or: Out << "getOr("; break; |
| case Instruction::Xor: Out << "getXor("; break; |
| case Instruction::ICmp: |
| Out << "getICmp(ICmpInst::ICMP_"; |
| switch (CE->getPredicate()) { |
| case ICmpInst::ICMP_EQ: Out << "EQ"; break; |
| case ICmpInst::ICMP_NE: Out << "NE"; break; |
| case ICmpInst::ICMP_SLT: Out << "SLT"; break; |
| case ICmpInst::ICMP_ULT: Out << "ULT"; break; |
| case ICmpInst::ICMP_SGT: Out << "SGT"; break; |
| case ICmpInst::ICMP_UGT: Out << "UGT"; break; |
| case ICmpInst::ICMP_SLE: Out << "SLE"; break; |
| case ICmpInst::ICMP_ULE: Out << "ULE"; break; |
| case ICmpInst::ICMP_SGE: Out << "SGE"; break; |
| case ICmpInst::ICMP_UGE: Out << "UGE"; break; |
| default: error("Invalid ICmp Predicate"); |
| } |
| break; |
| case Instruction::FCmp: |
| Out << "getFCmp(FCmpInst::FCMP_"; |
| switch (CE->getPredicate()) { |
| case FCmpInst::FCMP_FALSE: Out << "FALSE"; break; |
| case FCmpInst::FCMP_ORD: Out << "ORD"; break; |
| case FCmpInst::FCMP_UNO: Out << "UNO"; break; |
| case FCmpInst::FCMP_OEQ: Out << "OEQ"; break; |
| case FCmpInst::FCMP_UEQ: Out << "UEQ"; break; |
| case FCmpInst::FCMP_ONE: Out << "ONE"; break; |
| case FCmpInst::FCMP_UNE: Out << "UNE"; break; |
| case FCmpInst::FCMP_OLT: Out << "OLT"; break; |
| case FCmpInst::FCMP_ULT: Out << "ULT"; break; |
| case FCmpInst::FCMP_OGT: Out << "OGT"; break; |
| case FCmpInst::FCMP_UGT: Out << "UGT"; break; |
| case FCmpInst::FCMP_OLE: Out << "OLE"; break; |
| case FCmpInst::FCMP_ULE: Out << "ULE"; break; |
| case FCmpInst::FCMP_OGE: Out << "OGE"; break; |
| case FCmpInst::FCMP_UGE: Out << "UGE"; break; |
| case FCmpInst::FCMP_TRUE: Out << "TRUE"; break; |
| default: error("Invalid FCmp Predicate"); |
| } |
| break; |
| case Instruction::Shl: Out << "getShl("; break; |
| case Instruction::LShr: Out << "getLShr("; break; |
| case Instruction::AShr: Out << "getAShr("; break; |
| case Instruction::Select: Out << "getSelect("; break; |
| case Instruction::ExtractElement: Out << "getExtractElement("; break; |
| case Instruction::InsertElement: Out << "getInsertElement("; break; |
| case Instruction::ShuffleVector: Out << "getShuffleVector("; break; |
| default: |
| error("Invalid constant expression"); |
| break; |
| } |
| Out << getCppName(CE->getOperand(0)); |
| for (unsigned i = 1; i < CE->getNumOperands(); ++i) |
| Out << ", " << getCppName(CE->getOperand(i)); |
| Out << ");"; |
| } |
| } else { |
| error("Bad Constant"); |
| Out << "Constant* " << constName << " = 0; "; |
| } |
| nl(Out); |
| } |
| |
| void |
| CppWriter::printConstants(const Module* M) { |
| // Traverse all the global variables looking for constant initializers |
| for (Module::const_global_iterator I = TheModule->global_begin(), |
| E = TheModule->global_end(); I != E; ++I) |
| if (I->hasInitializer()) |
| printConstant(I->getInitializer()); |
| |
| // Traverse the LLVM functions looking for constants |
| for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); |
| FI != FE; ++FI) { |
| // Add all of the basic blocks and instructions |
| for (Function::const_iterator BB = FI->begin(), |
| E = FI->end(); BB != E; ++BB) { |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; |
| ++I) { |
| for (unsigned i = 0; i < I->getNumOperands(); ++i) { |
| if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) { |
| printConstant(C); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void CppWriter::printVariableUses(const GlobalVariable *GV) { |
| nl(Out) << "// Type Definitions"; |
| nl(Out); |
| printType(GV->getType()); |
| if (GV->hasInitializer()) { |
| Constant* Init = GV->getInitializer(); |
| printType(Init->getType()); |
| if (Function* F = dyn_cast<Function>(Init)) { |
| nl(Out)<< "/ Function Declarations"; nl(Out); |
| printFunctionHead(F); |
| } else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) { |
| nl(Out) << "// Global Variable Declarations"; nl(Out); |
| printVariableHead(gv); |
| } else { |
| nl(Out) << "// Constant Definitions"; nl(Out); |
| printConstant(gv); |
| } |
| if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) { |
| nl(Out) << "// Global Variable Definitions"; nl(Out); |
| printVariableBody(gv); |
| } |
| } |
| } |
| |
| void CppWriter::printVariableHead(const GlobalVariable *GV) { |
| nl(Out) << "GlobalVariable* " << getCppName(GV); |
| if (is_inline) { |
| Out << " = mod->getGlobalVariable("; |
| printEscapedString(GV->getName()); |
| Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)"; |
| nl(Out) << "if (!" << getCppName(GV) << ") {"; |
| in(); nl(Out) << getCppName(GV); |
| } |
| Out << " = new GlobalVariable("; |
| nl(Out) << "/*Type=*/"; |
| printCppName(GV->getType()->getElementType()); |
| Out << ","; |
| nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false"); |
| Out << ","; |
| nl(Out) << "/*Linkage=*/"; |
| printLinkageType(GV->getLinkage()); |
| Out << ","; |
| nl(Out) << "/*Initializer=*/0, "; |
| if (GV->hasInitializer()) { |
| Out << "// has initializer, specified below"; |
| } |
| nl(Out) << "/*Name=*/\""; |
| printEscapedString(GV->getName()); |
| Out << "\","; |
| nl(Out) << "mod);"; |
| nl(Out); |
| |
| if (GV->hasSection()) { |
| printCppName(GV); |
| Out << "->setSection(\""; |
| printEscapedString(GV->getSection()); |
| Out << "\");"; |
| nl(Out); |
| } |
| if (GV->getAlignment()) { |
| printCppName(GV); |
| Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");"; |
| nl(Out); |
| }; |
| if (is_inline) { |
| out(); Out << "}"; nl(Out); |
| } |
| } |
| |
| void |
| CppWriter::printVariableBody(const GlobalVariable *GV) { |
| if (GV->hasInitializer()) { |
| printCppName(GV); |
| Out << "->setInitializer("; |
| //if (!isa<GlobalValue(GV->getInitializer())) |
| //else |
| Out << getCppName(GV->getInitializer()) << ");"; |
| nl(Out); |
| } |
| } |
| |
| std::string |
| CppWriter::getOpName(Value* V) { |
| if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end()) |
| return getCppName(V); |
| |
| // See if its alread in the map of forward references, if so just return the |
| // name we already set up for it |
| ForwardRefMap::const_iterator I = ForwardRefs.find(V); |
| if (I != ForwardRefs.end()) |
| return I->second; |
| |
| // This is a new forward reference. Generate a unique name for it |
| std::string result(std::string("fwdref_") + utostr(uniqueNum++)); |
| |
| // Yes, this is a hack. An Argument is the smallest instantiable value that |
| // we can make as a placeholder for the real value. We'll replace these |
| // Argument instances later. |
| Out << "Argument* " << result << " = new Argument(" |
| << getCppName(V->getType()) << ");"; |
| nl(Out); |
| ForwardRefs[V] = result; |
| return result; |
| } |
| |
| // printInstruction - This member is called for each Instruction in a function. |
| void |
| CppWriter::printInstruction(const Instruction *I, const std::string& bbname) { |
| std::string iName(getCppName(I)); |
| |
| // Before we emit this instruction, we need to take care of generating any |
| // forward references. So, we get the names of all the operands in advance |
| std::string* opNames = new std::string[I->getNumOperands()]; |
| for (unsigned i = 0; i < I->getNumOperands(); i++) { |
| opNames[i] = getOpName(I->getOperand(i)); |
| } |
| |
| switch (I->getOpcode()) { |
| case Instruction::Ret: { |
| const ReturnInst* ret = cast<ReturnInst>(I); |
| Out << "ReturnInst* " << iName << " = new ReturnInst(" |
| << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");"; |
| break; |
| } |
| case Instruction::Br: { |
| const BranchInst* br = cast<BranchInst>(I); |
| Out << "BranchInst* " << iName << " = new BranchInst(" ; |
| if (br->getNumOperands() == 3 ) { |
| Out << opNames[0] << ", " |
| << opNames[1] << ", " |
| << opNames[2] << ", "; |
| |
| } else if (br->getNumOperands() == 1) { |
| Out << opNames[0] << ", "; |
| } else { |
| error("Branch with 2 operands?"); |
| } |
| Out << bbname << ");"; |
| break; |
| } |
| case Instruction::Switch: { |
| const SwitchInst* sw = cast<SwitchInst>(I); |
| Out << "SwitchInst* " << iName << " = new SwitchInst(" |
| << opNames[0] << ", " |
| << opNames[1] << ", " |
| << sw->getNumCases() << ", " << bbname << ");"; |
| nl(Out); |
| for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) { |
| Out << iName << "->addCase(" |
| << opNames[i] << ", " |
| << opNames[i+1] << ");"; |
| nl(Out); |
| } |
| break; |
| } |
| case Instruction::Invoke: { |
| const InvokeInst* inv = cast<InvokeInst>(I); |
| Out << "std::vector<Value*> " << iName << "_params;"; |
| nl(Out); |
| for (unsigned i = 3; i < inv->getNumOperands(); ++i) { |
| Out << iName << "_params.push_back(" |
| << opNames[i] << ");"; |
| nl(Out); |
| } |
| Out << "InvokeInst* " << iName << " = new InvokeInst(" |
| << opNames[0] << ", " |
| << opNames[1] << ", " |
| << opNames[2] << ", " |
| << iName << "_params, \""; |
| printEscapedString(inv->getName()); |
| Out << "\", " << bbname << ");"; |
| nl(Out) << iName << "->setCallingConv("; |
| printCallingConv(inv->getCallingConv()); |
| Out << ");"; |
| break; |
| } |
| case Instruction::Unwind: { |
| Out << "UnwindInst* " << iName << " = new UnwindInst(" |
| << bbname << ");"; |
| break; |
| } |
| case Instruction::Unreachable:{ |
| Out << "UnreachableInst* " << iName << " = new UnreachableInst(" |
| << bbname << ");"; |
| break; |
| } |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr:{ |
| Out << "BinaryOperator* " << iName << " = BinaryOperator::create("; |
| switch (I->getOpcode()) { |
| case Instruction::Add: Out << "Instruction::Add"; break; |
| case Instruction::Sub: Out << "Instruction::Sub"; break; |
| case Instruction::Mul: Out << "Instruction::Mul"; break; |
| case Instruction::UDiv:Out << "Instruction::UDiv"; break; |
| case Instruction::SDiv:Out << "Instruction::SDiv"; break; |
| case Instruction::FDiv:Out << "Instruction::FDiv"; break; |
| case Instruction::URem:Out << "Instruction::URem"; break; |
| case Instruction::SRem:Out << "Instruction::SRem"; break; |
| case Instruction::FRem:Out << "Instruction::FRem"; break; |
| case Instruction::And: Out << "Instruction::And"; break; |
| case Instruction::Or: Out << "Instruction::Or"; break; |
| case Instruction::Xor: Out << "Instruction::Xor"; break; |
| case Instruction::Shl: Out << "Instruction::Shl"; break; |
| case Instruction::LShr:Out << "Instruction::LShr"; break; |
| case Instruction::AShr:Out << "Instruction::AShr"; break; |
| default: Out << "Instruction::BadOpCode"; break; |
| } |
| Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; |
| printEscapedString(I->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::FCmp: { |
| Out << "FCmpInst* " << iName << " = new FCmpInst("; |
| switch (cast<FCmpInst>(I)->getPredicate()) { |
| case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break; |
| case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break; |
| case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break; |
| case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break; |
| case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break; |
| case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break; |
| case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break; |
| case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break; |
| case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break; |
| case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break; |
| case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break; |
| case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break; |
| case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break; |
| case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break; |
| case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break; |
| case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break; |
| default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break; |
| } |
| Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; |
| printEscapedString(I->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::ICmp: { |
| Out << "ICmpInst* " << iName << " = new ICmpInst("; |
| switch (cast<ICmpInst>(I)->getPredicate()) { |
| case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break; |
| case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break; |
| case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break; |
| case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break; |
| case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break; |
| case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break; |
| case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break; |
| case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break; |
| case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break; |
| case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break; |
| default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break; |
| } |
| Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; |
| printEscapedString(I->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::Malloc: { |
| const MallocInst* mallocI = cast<MallocInst>(I); |
| Out << "MallocInst* " << iName << " = new MallocInst(" |
| << getCppName(mallocI->getAllocatedType()) << ", "; |
| if (mallocI->isArrayAllocation()) |
| Out << opNames[0] << ", " ; |
| Out << "\""; |
| printEscapedString(mallocI->getName()); |
| Out << "\", " << bbname << ");"; |
| if (mallocI->getAlignment()) |
| nl(Out) << iName << "->setAlignment(" |
| << mallocI->getAlignment() << ");"; |
| break; |
| } |
| case Instruction::Free: { |
| Out << "FreeInst* " << iName << " = new FreeInst(" |
| << getCppName(I->getOperand(0)) << ", " << bbname << ");"; |
| break; |
| } |
| case Instruction::Alloca: { |
| const AllocaInst* allocaI = cast<AllocaInst>(I); |
| Out << "AllocaInst* " << iName << " = new AllocaInst(" |
| << getCppName(allocaI->getAllocatedType()) << ", "; |
| if (allocaI->isArrayAllocation()) |
| Out << opNames[0] << ", "; |
| Out << "\""; |
| printEscapedString(allocaI->getName()); |
| Out << "\", " << bbname << ");"; |
| if (allocaI->getAlignment()) |
| nl(Out) << iName << "->setAlignment(" |
| << allocaI->getAlignment() << ");"; |
| break; |
| } |
| case Instruction::Load:{ |
| const LoadInst* load = cast<LoadInst>(I); |
| Out << "LoadInst* " << iName << " = new LoadInst(" |
| << opNames[0] << ", \""; |
| printEscapedString(load->getName()); |
| Out << "\", " << (load->isVolatile() ? "true" : "false" ) |
| << ", " << bbname << ");"; |
| break; |
| } |
| case Instruction::Store: { |
| const StoreInst* store = cast<StoreInst>(I); |
| Out << "StoreInst* " << iName << " = new StoreInst(" |
| << opNames[0] << ", " |
| << opNames[1] << ", " |
| << (store->isVolatile() ? "true" : "false") |
| << ", " << bbname << ");"; |
| break; |
| } |
| case Instruction::GetElementPtr: { |
| const GetElementPtrInst* gep = cast<GetElementPtrInst>(I); |
| if (gep->getNumOperands() <= 2) { |
| Out << "GetElementPtrInst* " << iName << " = new GetElementPtrInst(" |
| << opNames[0]; |
| if (gep->getNumOperands() == 2) |
| Out << ", " << opNames[1]; |
| } else { |
| Out << "std::vector<Value*> " << iName << "_indices;"; |
| nl(Out); |
| for (unsigned i = 1; i < gep->getNumOperands(); ++i ) { |
| Out << iName << "_indices.push_back(" |
| << opNames[i] << ");"; |
| nl(Out); |
| } |
| Out << "Instruction* " << iName << " = new GetElementPtrInst(" |
| << opNames[0] << ", " << iName << "_indices"; |
| } |
| Out << ", \""; |
| printEscapedString(gep->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::PHI: { |
| const PHINode* phi = cast<PHINode>(I); |
| |
| Out << "PHINode* " << iName << " = new PHINode(" |
| << getCppName(phi->getType()) << ", \""; |
| printEscapedString(phi->getName()); |
| Out << "\", " << bbname << ");"; |
| nl(Out) << iName << "->reserveOperandSpace(" |
| << phi->getNumIncomingValues() |
| << ");"; |
| nl(Out); |
| for (unsigned i = 0; i < phi->getNumOperands(); i+=2) { |
| Out << iName << "->addIncoming(" |
| << opNames[i] << ", " << opNames[i+1] << ");"; |
| nl(Out); |
| } |
| break; |
| } |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: { |
| const CastInst* cst = cast<CastInst>(I); |
| Out << "CastInst* " << iName << " = new "; |
| switch (I->getOpcode()) { |
| case Instruction::Trunc: Out << "TruncInst"; |
| case Instruction::ZExt: Out << "ZExtInst"; |
| case Instruction::SExt: Out << "SExtInst"; |
| case Instruction::FPTrunc: Out << "FPTruncInst"; |
| case Instruction::FPExt: Out << "FPExtInst"; |
| case Instruction::FPToUI: Out << "FPToUIInst"; |
| case Instruction::FPToSI: Out << "FPToSIInst"; |
| case Instruction::UIToFP: Out << "UIToFPInst"; |
| case Instruction::SIToFP: Out << "SIToFPInst"; |
| case Instruction::PtrToInt: Out << "PtrToInst"; |
| case Instruction::IntToPtr: Out << "IntToPtrInst"; |
| case Instruction::BitCast: Out << "BitCastInst"; |
| default: assert(!"Unreachable"); break; |
| } |
| Out << "(" << opNames[0] << ", " |
| << getCppName(cst->getType()) << ", \""; |
| printEscapedString(cst->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::Call:{ |
| const CallInst* call = cast<CallInst>(I); |
| if (InlineAsm* ila = dyn_cast<InlineAsm>(call->getOperand(0))) { |
| Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get(" |
| << getCppName(ila->getFunctionType()) << ", \"" |
| << ila->getAsmString() << "\", \"" |
| << ila->getConstraintString() << "\"," |
| << (ila->hasSideEffects() ? "true" : "false") << ");"; |
| nl(Out); |
| } |
| if (call->getNumOperands() > 3) { |
| Out << "std::vector<Value*> " << iName << "_params;"; |
| nl(Out); |
| for (unsigned i = 1; i < call->getNumOperands(); ++i) { |
| Out << iName << "_params.push_back(" << opNames[i] << ");"; |
| nl(Out); |
| } |
| Out << "CallInst* " << iName << " = new CallInst(" |
| << opNames[0] << ", " << iName << "_params, \""; |
| } else if (call->getNumOperands() == 3) { |
| Out << "CallInst* " << iName << " = new CallInst(" |
| << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; |
| } else if (call->getNumOperands() == 2) { |
| Out << "CallInst* " << iName << " = new CallInst(" |
| << opNames[0] << ", " << opNames[1] << ", \""; |
| } else { |
| Out << "CallInst* " << iName << " = new CallInst(" << opNames[0] |
| << ", \""; |
| } |
| printEscapedString(call->getName()); |
| Out << "\", " << bbname << ");"; |
| nl(Out) << iName << "->setCallingConv("; |
| printCallingConv(call->getCallingConv()); |
| Out << ");"; |
| nl(Out) << iName << "->setTailCall(" |
| << (call->isTailCall() ? "true":"false"); |
| Out << ");"; |
| break; |
| } |
| case Instruction::Select: { |
| const SelectInst* sel = cast<SelectInst>(I); |
| Out << "SelectInst* " << getCppName(sel) << " = new SelectInst("; |
| Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; |
| printEscapedString(sel->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::UserOp1: |
| /// FALL THROUGH |
| case Instruction::UserOp2: { |
| /// FIXME: What should be done here? |
| break; |
| } |
| case Instruction::VAArg: { |
| const VAArgInst* va = cast<VAArgInst>(I); |
| Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst(" |
| << opNames[0] << ", " << getCppName(va->getType()) << ", \""; |
| printEscapedString(va->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::ExtractElement: { |
| const ExtractElementInst* eei = cast<ExtractElementInst>(I); |
| Out << "ExtractElementInst* " << getCppName(eei) |
| << " = new ExtractElementInst(" << opNames[0] |
| << ", " << opNames[1] << ", \""; |
| printEscapedString(eei->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::InsertElement: { |
| const InsertElementInst* iei = cast<InsertElementInst>(I); |
| Out << "InsertElementInst* " << getCppName(iei) |
| << " = new InsertElementInst(" << opNames[0] |
| << ", " << opNames[1] << ", " << opNames[2] << ", \""; |
| printEscapedString(iei->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| case Instruction::ShuffleVector: { |
| const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I); |
| Out << "ShuffleVectorInst* " << getCppName(svi) |
| << " = new ShuffleVectorInst(" << opNames[0] |
| << ", " << opNames[1] << ", " << opNames[2] << ", \""; |
| printEscapedString(svi->getName()); |
| Out << "\", " << bbname << ");"; |
| break; |
| } |
| } |
| DefinedValues.insert(I); |
| nl(Out); |
| delete [] opNames; |
| } |
| |
| // Print out the types, constants and declarations needed by one function |
| void CppWriter::printFunctionUses(const Function* F) { |
| |
| nl(Out) << "// Type Definitions"; nl(Out); |
| if (!is_inline) { |
| // Print the function's return type |
| printType(F->getReturnType()); |
| |
| // Print the function's function type |
| printType(F->getFunctionType()); |
| |
| // Print the types of each of the function's arguments |
| for(Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
| AI != AE; ++AI) { |
| printType(AI->getType()); |
| } |
| } |
| |
| // Print type definitions for every type referenced by an instruction and |
| // make a note of any global values or constants that are referenced |
| std::vector<GlobalValue*> gvs; |
| std::vector<Constant*> consts; |
| for (Function::const_iterator BB = F->begin(), BE = F->end(); BB != BE; ++BB){ |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); |
| I != E; ++I) { |
| // Print the type of the instruction itself |
| printType(I->getType()); |
| |
| // Print the type of each of the instruction's operands |
| for (unsigned i = 0; i < I->getNumOperands(); ++i) { |
| Value* operand = I->getOperand(i); |
| printType(operand->getType()); |
| if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) |
| gvs.push_back(GV); |
| else if (Constant* C = dyn_cast<Constant>(operand)) |
| consts.push_back(C); |
| } |
| } |
| } |
| |
| // Print the function declarations for any functions encountered |
| nl(Out) << "// Function Declarations"; nl(Out); |
| for (std::vector<GlobalValue*>::iterator I = gvs.begin(), E = gvs.end(); |
| I != E; ++I) { |
| if (Function* Fun = dyn_cast<Function>(*I)) { |
| if (!is_inline || Fun != F) |
| printFunctionHead(Fun); |
| } |
| } |
| |
| // Print the global variable declarations for any variables encountered |
| nl(Out) << "// Global Variable Declarations"; nl(Out); |
| for (std::vector<GlobalValue*>::iterator I = gvs.begin(), E = gvs.end(); |
| I != E; ++I) { |
| if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I)) |
| printVariableHead(F); |
| } |
| |
| // Print the constants found |
| nl(Out) << "// Constant Definitions"; nl(Out); |
| for (std::vector<Constant*>::iterator I = consts.begin(), E = consts.end(); |
| I != E; ++I) { |
| printConstant(*I); |
| } |
| |
| // Process the global variables definitions now that all the constants have |
| // been emitted. These definitions just couple the gvars with their constant |
| // initializers. |
| nl(Out) << "// Global Variable Definitions"; nl(Out); |
| for (std::vector<GlobalValue*>::iterator I = gvs.begin(), E = gvs.end(); |
| I != E; ++I) { |
| if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I)) |
| printVariableBody(GV); |
| } |
| } |
| |
| void CppWriter::printFunctionHead(const Function* F) { |
| nl(Out) << "Function* " << getCppName(F); |
| if (is_inline) { |
| Out << " = mod->getFunction(\""; |
| printEscapedString(F->getName()); |
| Out << "\", " << getCppName(F->getFunctionType()) << ");"; |
| nl(Out) << "if (!" << getCppName(F) << ") {"; |
| nl(Out) << getCppName(F); |
| } |
| Out<< " = new Function("; |
| nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ","; |
| nl(Out) << "/*Linkage=*/"; |
| printLinkageType(F->getLinkage()); |
| Out << ","; |
| nl(Out) << "/*Name=*/\""; |
| printEscapedString(F->getName()); |
| Out << "\", mod); " << (F->isExternal()? "// (external, no body)" : ""); |
| nl(Out,-1); |
| printCppName(F); |
| Out << "->setCallingConv("; |
| printCallingConv(F->getCallingConv()); |
| Out << ");"; |
| nl(Out); |
| if (F->hasSection()) { |
| printCppName(F); |
| Out << "->setSection(\"" << F->getSection() << "\");"; |
| nl(Out); |
| } |
| if (F->getAlignment()) { |
| printCppName(F); |
| Out << "->setAlignment(" << F->getAlignment() << ");"; |
| nl(Out); |
| } |
| if (is_inline) { |
| Out << "}"; |
| nl(Out); |
| } |
| } |
| |
| void CppWriter::printFunctionBody(const Function *F) { |
| if (F->isExternal()) |
| return; // external functions have no bodies. |
| |
| // Clear the DefinedValues and ForwardRefs maps because we can't have |
| // cross-function forward refs |
| ForwardRefs.clear(); |
| DefinedValues.clear(); |
| |
| // Create all the argument values |
| if (!is_inline) { |
| if (!F->arg_empty()) { |
| Out << "Function::arg_iterator args = " << getCppName(F) |
| << "->arg_begin();"; |
| nl(Out); |
| } |
| for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
| AI != AE; ++AI) { |
| Out << "Value* " << getCppName(AI) << " = args++;"; |
| nl(Out); |
| if (AI->hasName()) { |
| Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");"; |
| nl(Out); |
| } |
| } |
| } |
| |
| // Create all the basic blocks |
| nl(Out); |
| for (Function::const_iterator BI = F->begin(), BE = F->end(); |
| BI != BE; ++BI) { |
| std::string bbname(getCppName(BI)); |
| Out << "BasicBlock* " << bbname << " = new BasicBlock(\""; |
| if (BI->hasName()) |
| printEscapedString(BI->getName()); |
| Out << "\"," << getCppName(BI->getParent()) << ",0);"; |
| nl(Out); |
| } |
| |
| // Output all of its basic blocks... for the function |
| for (Function::const_iterator BI = F->begin(), BE = F->end(); |
| BI != BE; ++BI) { |
| std::string bbname(getCppName(BI)); |
| nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")"; |
| nl(Out); |
| |
| // Output all of the instructions in the basic block... |
| for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); |
| I != E; ++I) { |
| printInstruction(I,bbname); |
| } |
| } |
| |
| // Loop over the ForwardRefs and resolve them now that all instructions |
| // are generated. |
| if (!ForwardRefs.empty()) { |
| nl(Out) << "// Resolve Forward References"; |
| nl(Out); |
| } |
| |
| while (!ForwardRefs.empty()) { |
| ForwardRefMap::iterator I = ForwardRefs.begin(); |
| Out << I->second << "->replaceAllUsesWith(" |
| << getCppName(I->first) << "); delete " << I->second << ";"; |
| nl(Out); |
| ForwardRefs.erase(I); |
| } |
| } |
| |
| void CppWriter::printInline(const std::string& fname, const std::string& func) { |
| const Function* F = TheModule->getNamedFunction(func); |
| if (!F) { |
| error(std::string("Function '") + func + "' not found in input module"); |
| return; |
| } |
| if (F->isExternal()) { |
| error(std::string("Function '") + func + "' is external!"); |
| return; |
| } |
| nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *" |
| << getCppName(F); |
| unsigned arg_count = 1; |
| for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
| AI != AE; ++AI) { |
| Out << ", Value* arg_" << arg_count; |
| } |
| Out << ") {"; |
| nl(Out); |
| is_inline = true; |
| printFunctionUses(F); |
| printFunctionBody(F); |
| is_inline = false; |
| Out << "return " << getCppName(F->begin()) << ";"; |
| nl(Out) << "}"; |
| nl(Out); |
| } |
| |
| void CppWriter::printModuleBody() { |
| // Print out all the type definitions |
| nl(Out) << "// Type Definitions"; nl(Out); |
| printTypes(TheModule); |
| |
| // Functions can call each other and global variables can reference them so |
| // define all the functions first before emitting their function bodies. |
| nl(Out) << "// Function Declarations"; nl(Out); |
| for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); |
| I != E; ++I) |
| printFunctionHead(I); |
| |
| // Process the global variables declarations. We can't initialze them until |
| // after the constants are printed so just print a header for each global |
| nl(Out) << "// Global Variable Declarations\n"; nl(Out); |
| for (Module::const_global_iterator I = TheModule->global_begin(), |
| E = TheModule->global_end(); I != E; ++I) { |
| printVariableHead(I); |
| } |
| |
| // Print out all the constants definitions. Constants don't recurse except |
| // through GlobalValues. All GlobalValues have been declared at this point |
| // so we can proceed to generate the constants. |
| nl(Out) << "// Constant Definitions"; nl(Out); |
| printConstants(TheModule); |
| |
| // Process the global variables definitions now that all the constants have |
| // been emitted. These definitions just couple the gvars with their constant |
| // initializers. |
| nl(Out) << "// Global Variable Definitions"; nl(Out); |
| for (Module::const_global_iterator I = TheModule->global_begin(), |
| E = TheModule->global_end(); I != E; ++I) { |
| printVariableBody(I); |
| } |
| |
| // Finally, we can safely put out all of the function bodies. |
| nl(Out) << "// Function Definitions"; nl(Out); |
| for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); |
| I != E; ++I) { |
| if (!I->isExternal()) { |
| nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I) |
| << ")"; |
| nl(Out) << "{"; |
| nl(Out,1); |
| printFunctionBody(I); |
| nl(Out,-1) << "}"; |
| nl(Out); |
| } |
| } |
| } |
| |
| void CppWriter::printProgram( |
| const std::string& fname, |
| const std::string& mName |
| ) { |
| Out << "#include <llvm/Module.h>\n"; |
| Out << "#include <llvm/DerivedTypes.h>\n"; |
| Out << "#include <llvm/Constants.h>\n"; |
| Out << "#include <llvm/GlobalVariable.h>\n"; |
| Out << "#include <llvm/Function.h>\n"; |
| Out << "#include <llvm/CallingConv.h>\n"; |
| Out << "#include <llvm/BasicBlock.h>\n"; |
| Out << "#include <llvm/Instructions.h>\n"; |
| Out << "#include <llvm/InlineAsm.h>\n"; |
| Out << "#include <llvm/Support/MathExtras.h>\n"; |
| Out << "#include <llvm/Pass.h>\n"; |
| Out << "#include <llvm/PassManager.h>\n"; |
| Out << "#include <llvm/Analysis/Verifier.h>\n"; |
| Out << "#include <llvm/Assembly/PrintModulePass.h>\n"; |
| Out << "#include <algorithm>\n"; |
| Out << "#include <iostream>\n\n"; |
| Out << "using namespace llvm;\n\n"; |
| Out << "Module* " << fname << "();\n\n"; |
| Out << "int main(int argc, char**argv) {\n"; |
| Out << " Module* Mod = makeLLVMModule();\n"; |
| Out << " verifyModule(*Mod, PrintMessageAction);\n"; |
| Out << " std::cerr.flush();\n"; |
| Out << " std::cout.flush();\n"; |
| Out << " PassManager PM;\n"; |
| Out << " PM.add(new PrintModulePass(&std::cout));\n"; |
| Out << " PM.run(*Mod);\n"; |
| Out << " return 0;\n"; |
| Out << "}\n\n"; |
| printModule(fname,mName); |
| } |
| |
| void CppWriter::printModule( |
| const std::string& fname, |
| const std::string& mName |
| ) { |
| nl(Out) << "Module* " << fname << "() {"; |
| nl(Out,1) << "// Module Construction"; |
| nl(Out) << "Module* mod = new Module(\"" << mName << "\");"; |
| nl(Out) << "mod->setEndianness("; |
| switch (TheModule->getEndianness()) { |
| case Module::LittleEndian: Out << "Module::LittleEndian);"; break; |
| case Module::BigEndian: Out << "Module::BigEndian);"; break; |
| case Module::AnyEndianness:Out << "Module::AnyEndianness);"; break; |
| } |
| nl(Out) << "mod->setPointerSize("; |
| switch (TheModule->getPointerSize()) { |
| case Module::Pointer32: Out << "Module::Pointer32);"; break; |
| case Module::Pointer64: Out << "Module::Pointer64);"; break; |
| case Module::AnyPointerSize: Out << "Module::AnyPointerSize);"; break; |
| } |
| nl(Out); |
| if (!TheModule->getTargetTriple().empty()) { |
| Out << "mod->setTargetTriple(\"" << TheModule->getTargetTriple() |
| << "\");"; |
| nl(Out); |
| } |
| |
| if (!TheModule->getModuleInlineAsm().empty()) { |
| Out << "mod->setModuleInlineAsm(\""; |
| printEscapedString(TheModule->getModuleInlineAsm()); |
| Out << "\");"; |
| nl(Out); |
| } |
| |
| // Loop over the dependent libraries and emit them. |
| Module::lib_iterator LI = TheModule->lib_begin(); |
| Module::lib_iterator LE = TheModule->lib_end(); |
| while (LI != LE) { |
| Out << "mod->addLibrary(\"" << *LI << "\");"; |
| nl(Out); |
| ++LI; |
| } |
| printModuleBody(); |
| nl(Out) << "return mod;"; |
| nl(Out,-1) << "}"; |
| nl(Out); |
| } |
| |
| void CppWriter::printContents( |
| const std::string& fname, // Name of generated function |
| const std::string& mName // Name of module generated module |
| ) { |
| Out << "\nModule* " << fname << "(Module *mod) {\n"; |
| Out << "\nmod->setModuleIdentifier(\"" << mName << "\");\n"; |
| printModuleBody(); |
| Out << "\nreturn mod;\n"; |
| Out << "\n}\n"; |
| } |
| |
| void CppWriter::printFunction( |
| const std::string& fname, // Name of generated function |
| const std::string& funcName // Name of function to generate |
| ) { |
| const Function* F = TheModule->getNamedFunction(funcName); |
| if (!F) { |
| error(std::string("Function '") + funcName + "' not found in input module"); |
| return; |
| } |
| Out << "\nFunction* " << fname << "(Module *mod) {\n"; |
| printFunctionUses(F); |
| printFunctionHead(F); |
| printFunctionBody(F); |
| Out << "return " << getCppName(F) << ";\n"; |
| Out << "}\n"; |
| } |
| |
| void CppWriter::printVariable( |
| const std::string& fname, /// Name of generated function |
| const std::string& varName // Name of variable to generate |
| ) { |
| const GlobalVariable* GV = TheModule->getNamedGlobal(varName); |
| |
| if (!GV) { |
| error(std::string("Variable '") + varName + "' not found in input module"); |
| return; |
| } |
| Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n"; |
| printVariableUses(GV); |
| printVariableHead(GV); |
| printVariableBody(GV); |
| Out << "return " << getCppName(GV) << ";\n"; |
| Out << "}\n"; |
| } |
| |
| void CppWriter::printType( |
| const std::string& fname, /// Name of generated function |
| const std::string& typeName // Name of type to generate |
| ) { |
| const Type* Ty = TheModule->getTypeByName(typeName); |
| if (!Ty) { |
| error(std::string("Type '") + typeName + "' not found in input module"); |
| return; |
| } |
| Out << "\nType* " << fname << "(Module *mod) {\n"; |
| printType(Ty); |
| Out << "return " << getCppName(Ty) << ";\n"; |
| Out << "}\n"; |
| } |
| |
| } // end anonymous llvm |
| |
| namespace llvm { |
| |
| void WriteModuleToCppFile(Module* mod, std::ostream& o) { |
| // Initialize a CppWriter for us to use |
| CppWriter W(o, mod); |
| |
| // Emit a header |
| o << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n"; |
| |
| // Get the name of the function we're supposed to generate |
| std::string fname = FuncName.getValue(); |
| |
| // Get the name of the thing we are to generate |
| std::string tgtname = NameToGenerate.getValue(); |
| if (GenerationType == GenModule || |
| GenerationType == GenContents || |
| GenerationType == GenProgram) { |
| if (tgtname == "!bad!") { |
| if (mod->getModuleIdentifier() == "-") |
| tgtname = "<stdin>"; |
| else |
| tgtname = mod->getModuleIdentifier(); |
| } |
| } else if (tgtname == "!bad!") { |
| W.error("You must use the -for option with -gen-{function,variable,type}"); |
| } |
| |
| switch (WhatToGenerate(GenerationType)) { |
| case GenProgram: |
| if (fname.empty()) |
| fname = "makeLLVMModule"; |
| W.printProgram(fname,tgtname); |
| break; |
| case GenModule: |
| if (fname.empty()) |
| fname = "makeLLVMModule"; |
| W.printModule(fname,tgtname); |
| break; |
| case GenContents: |
| if (fname.empty()) |
| fname = "makeLLVMModuleContents"; |
| W.printContents(fname,tgtname); |
| break; |
| case GenFunction: |
| if (fname.empty()) |
| fname = "makeLLVMFunction"; |
| W.printFunction(fname,tgtname); |
| break; |
| case GenInline: |
| if (fname.empty()) |
| fname = "makeLLVMInline"; |
| W.printInline(fname,tgtname); |
| break; |
| case GenVariable: |
| if (fname.empty()) |
| fname = "makeLLVMVariable"; |
| W.printVariable(fname,tgtname); |
| break; |
| case GenType: |
| if (fname.empty()) |
| fname = "makeLLVMType"; |
| W.printType(fname,tgtname); |
| break; |
| default: |
| W.error("Invalid generation option"); |
| } |
| } |
| |
| } |