| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveVariable analysis pass. For each machine |
| // instruction in the function, this pass calculates the set of registers that |
| // are immediately dead after the instruction (i.e., the instruction calculates |
| // the value, but it is never used) and the set of registers that are used by |
| // the instruction, but are never used after the instruction (i.e., they are |
| // killed). |
| // |
| // This class computes live variables using are sparse implementation based on |
| // the machine code SSA form. This class computes live variable information for |
| // each virtual and _register allocatable_ physical register in a function. It |
| // uses the dominance properties of SSA form to efficiently compute live |
| // variables for virtual registers, and assumes that physical registers are only |
| // live within a single basic block (allowing it to do a single local analysis |
| // to resolve physical register lifetimes in each basic block). If a physical |
| // register is not register allocatable, it is not tracked. This is useful for |
| // things like the stack pointer and condition codes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| char LiveVariables::ID = 0; |
| static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); |
| |
| |
| void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequiredID(UnreachableMachineBlockElimID); |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| MachineInstr * |
| LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { |
| for (unsigned i = 0, e = Kills.size(); i != e; ++i) |
| if (Kills[i]->getParent() == MBB) |
| return Kills[i]; |
| return NULL; |
| } |
| |
| void LiveVariables::VarInfo::dump() const { |
| dbgs() << " Alive in blocks: "; |
| for (SparseBitVector<>::iterator I = AliveBlocks.begin(), |
| E = AliveBlocks.end(); I != E; ++I) |
| dbgs() << *I << ", "; |
| dbgs() << "\n Killed by:"; |
| if (Kills.empty()) |
| dbgs() << " No instructions.\n"; |
| else { |
| for (unsigned i = 0, e = Kills.size(); i != e; ++i) |
| dbgs() << "\n #" << i << ": " << *Kills[i]; |
| dbgs() << "\n"; |
| } |
| } |
| |
| /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. |
| LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { |
| assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && |
| "getVarInfo: not a virtual register!"); |
| RegIdx -= TargetRegisterInfo::FirstVirtualRegister; |
| if (RegIdx >= VirtRegInfo.size()) { |
| if (RegIdx >= 2*VirtRegInfo.size()) |
| VirtRegInfo.resize(RegIdx*2); |
| else |
| VirtRegInfo.resize(2*VirtRegInfo.size()); |
| } |
| return VirtRegInfo[RegIdx]; |
| } |
| |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, |
| MachineBasicBlock *DefBlock, |
| MachineBasicBlock *MBB, |
| std::vector<MachineBasicBlock*> &WorkList) { |
| unsigned BBNum = MBB->getNumber(); |
| |
| // Check to see if this basic block is one of the killing blocks. If so, |
| // remove it. |
| for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
| if (VRInfo.Kills[i]->getParent() == MBB) { |
| VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry |
| break; |
| } |
| |
| if (MBB == DefBlock) return; // Terminate recursion |
| |
| if (VRInfo.AliveBlocks.test(BBNum)) |
| return; // We already know the block is live |
| |
| // Mark the variable known alive in this bb |
| VRInfo.AliveBlocks.set(BBNum); |
| |
| for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), |
| E = MBB->pred_rend(); PI != E; ++PI) |
| WorkList.push_back(*PI); |
| } |
| |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, |
| MachineBasicBlock *DefBlock, |
| MachineBasicBlock *MBB) { |
| std::vector<MachineBasicBlock*> WorkList; |
| MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); |
| |
| while (!WorkList.empty()) { |
| MachineBasicBlock *Pred = WorkList.back(); |
| WorkList.pop_back(); |
| MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); |
| } |
| } |
| |
| void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, |
| MachineInstr *MI) { |
| assert(MRI->getVRegDef(reg) && "Register use before def!"); |
| |
| unsigned BBNum = MBB->getNumber(); |
| |
| VarInfo& VRInfo = getVarInfo(reg); |
| VRInfo.NumUses++; |
| |
| // Check to see if this basic block is already a kill block. |
| if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { |
| // Yes, this register is killed in this basic block already. Increase the |
| // live range by updating the kill instruction. |
| VRInfo.Kills.back() = MI; |
| return; |
| } |
| |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
| assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); |
| #endif |
| |
| // This situation can occur: |
| // |
| // ,------. |
| // | | |
| // | v |
| // | t2 = phi ... t1 ... |
| // | | |
| // | v |
| // | t1 = ... |
| // | ... = ... t1 ... |
| // | | |
| // `------' |
| // |
| // where there is a use in a PHI node that's a predecessor to the defining |
| // block. We don't want to mark all predecessors as having the value "alive" |
| // in this case. |
| if (MBB == MRI->getVRegDef(reg)->getParent()) return; |
| |
| // Add a new kill entry for this basic block. If this virtual register is |
| // already marked as alive in this basic block, that means it is alive in at |
| // least one of the successor blocks, it's not a kill. |
| if (!VRInfo.AliveBlocks.test(BBNum)) |
| VRInfo.Kills.push_back(MI); |
| |
| // Update all dominating blocks to mark them as "known live". |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| E = MBB->pred_end(); PI != E; ++PI) |
| MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); |
| } |
| |
| void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { |
| VarInfo &VRInfo = getVarInfo(Reg); |
| |
| if (VRInfo.AliveBlocks.empty()) |
| // If vr is not alive in any block, then defaults to dead. |
| VRInfo.Kills.push_back(MI); |
| } |
| |
| /// FindLastPartialDef - Return the last partial def of the specified register. |
| /// Also returns the sub-registers that're defined by the instruction. |
| MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, |
| SmallSet<unsigned,4> &PartDefRegs) { |
| unsigned LastDefReg = 0; |
| unsigned LastDefDist = 0; |
| MachineInstr *LastDef = NULL; |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| MachineInstr *Def = PhysRegDef[SubReg]; |
| if (!Def) |
| continue; |
| unsigned Dist = DistanceMap[Def]; |
| if (Dist > LastDefDist) { |
| LastDefReg = SubReg; |
| LastDef = Def; |
| LastDefDist = Dist; |
| } |
| } |
| |
| if (!LastDef) |
| return 0; |
| |
| PartDefRegs.insert(LastDefReg); |
| for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = LastDef->getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) |
| continue; |
| unsigned DefReg = MO.getReg(); |
| if (TRI->isSubRegister(Reg, DefReg)) { |
| PartDefRegs.insert(DefReg); |
| for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); |
| unsigned SubReg = *SubRegs; ++SubRegs) |
| PartDefRegs.insert(SubReg); |
| } |
| } |
| return LastDef; |
| } |
| |
| /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add |
| /// implicit defs to a machine instruction if there was an earlier def of its |
| /// super-register. |
| void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { |
| MachineInstr *LastDef = PhysRegDef[Reg]; |
| // If there was a previous use or a "full" def all is well. |
| if (!LastDef && !PhysRegUse[Reg]) { |
| // Otherwise, the last sub-register def implicitly defines this register. |
| // e.g. |
| // AH = |
| // AL = ... <imp-def EAX>, <imp-kill AH> |
| // = AH |
| // ... |
| // = EAX |
| // All of the sub-registers must have been defined before the use of Reg! |
| SmallSet<unsigned, 4> PartDefRegs; |
| MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); |
| // If LastPartialDef is NULL, it must be using a livein register. |
| if (LastPartialDef) { |
| LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, |
| true/*IsImp*/)); |
| PhysRegDef[Reg] = LastPartialDef; |
| SmallSet<unsigned, 8> Processed; |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| if (Processed.count(SubReg)) |
| continue; |
| if (PartDefRegs.count(SubReg)) |
| continue; |
| // This part of Reg was defined before the last partial def. It's killed |
| // here. |
| LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, |
| false/*IsDef*/, |
| true/*IsImp*/)); |
| PhysRegDef[SubReg] = LastPartialDef; |
| for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) |
| Processed.insert(*SS); |
| } |
| } |
| } |
| else if (LastDef && !PhysRegUse[Reg] && |
| !LastDef->findRegisterDefOperand(Reg)) |
| // Last def defines the super register, add an implicit def of reg. |
| LastDef->addOperand(MachineOperand::CreateReg(Reg, |
| true/*IsDef*/, true/*IsImp*/)); |
| |
| // Remember this use. |
| PhysRegUse[Reg] = MI; |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) |
| PhysRegUse[SubReg] = MI; |
| } |
| |
| /// FindLastRefOrPartRef - Return the last reference or partial reference of |
| /// the specified register. |
| MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { |
| MachineInstr *LastDef = PhysRegDef[Reg]; |
| MachineInstr *LastUse = PhysRegUse[Reg]; |
| if (!LastDef && !LastUse) |
| return false; |
| |
| MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; |
| unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; |
| unsigned LastPartDefDist = 0; |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| MachineInstr *Def = PhysRegDef[SubReg]; |
| if (Def && Def != LastDef) { |
| // There was a def of this sub-register in between. This is a partial |
| // def, keep track of the last one. |
| unsigned Dist = DistanceMap[Def]; |
| if (Dist > LastPartDefDist) |
| LastPartDefDist = Dist; |
| } else if (MachineInstr *Use = PhysRegUse[SubReg]) { |
| unsigned Dist = DistanceMap[Use]; |
| if (Dist > LastRefOrPartRefDist) { |
| LastRefOrPartRefDist = Dist; |
| LastRefOrPartRef = Use; |
| } |
| } |
| } |
| |
| return LastRefOrPartRef; |
| } |
| |
| bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { |
| MachineInstr *LastDef = PhysRegDef[Reg]; |
| MachineInstr *LastUse = PhysRegUse[Reg]; |
| if (!LastDef && !LastUse) |
| return false; |
| |
| MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; |
| unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; |
| // The whole register is used. |
| // AL = |
| // AH = |
| // |
| // = AX |
| // = AL, AX<imp-use, kill> |
| // AX = |
| // |
| // Or whole register is defined, but not used at all. |
| // AX<dead> = |
| // ... |
| // AX = |
| // |
| // Or whole register is defined, but only partly used. |
| // AX<dead> = AL<imp-def> |
| // = AL<kill> |
| // AX = |
| MachineInstr *LastPartDef = 0; |
| unsigned LastPartDefDist = 0; |
| SmallSet<unsigned, 8> PartUses; |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| MachineInstr *Def = PhysRegDef[SubReg]; |
| if (Def && Def != LastDef) { |
| // There was a def of this sub-register in between. This is a partial |
| // def, keep track of the last one. |
| unsigned Dist = DistanceMap[Def]; |
| if (Dist > LastPartDefDist) { |
| LastPartDefDist = Dist; |
| LastPartDef = Def; |
| } |
| continue; |
| } |
| if (MachineInstr *Use = PhysRegUse[SubReg]) { |
| PartUses.insert(SubReg); |
| for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) |
| PartUses.insert(*SS); |
| unsigned Dist = DistanceMap[Use]; |
| if (Dist > LastRefOrPartRefDist) { |
| LastRefOrPartRefDist = Dist; |
| LastRefOrPartRef = Use; |
| } |
| } |
| } |
| |
| if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { |
| if (LastPartDef) |
| // The last partial def kills the register. |
| LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, |
| true/*IsImp*/, true/*IsKill*/)); |
| else { |
| MachineOperand *MO = |
| LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); |
| bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; |
| // If the last reference is the last def, then it's not used at all. |
| // That is, unless we are currently processing the last reference itself. |
| LastRefOrPartRef->addRegisterDead(Reg, TRI, true); |
| if (NeedEC) { |
| // If we are adding a subreg def and the superreg def is marked early |
| // clobber, add an early clobber marker to the subreg def. |
| MO = LastRefOrPartRef->findRegisterDefOperand(Reg); |
| if (MO) |
| MO->setIsEarlyClobber(); |
| } |
| } |
| } else if (!PhysRegUse[Reg]) { |
| // Partial uses. Mark register def dead and add implicit def of |
| // sub-registers which are used. |
| // EAX<dead> = op AL<imp-def> |
| // That is, EAX def is dead but AL def extends pass it. |
| PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| if (!PartUses.count(SubReg)) |
| continue; |
| bool NeedDef = true; |
| if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { |
| MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); |
| if (MO) { |
| NeedDef = false; |
| assert(!MO->isDead()); |
| } |
| } |
| if (NeedDef) |
| PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, |
| true/*IsDef*/, true/*IsImp*/)); |
| MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); |
| if (LastSubRef) |
| LastSubRef->addRegisterKilled(SubReg, TRI, true); |
| else { |
| LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); |
| PhysRegUse[SubReg] = LastRefOrPartRef; |
| for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg); |
| unsigned SSReg = *SSRegs; ++SSRegs) |
| PhysRegUse[SSReg] = LastRefOrPartRef; |
| } |
| for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) |
| PartUses.erase(*SS); |
| } |
| } else |
| LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); |
| return true; |
| } |
| |
| void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, |
| SmallVector<unsigned, 4> &Defs) { |
| // What parts of the register are previously defined? |
| SmallSet<unsigned, 32> Live; |
| if (PhysRegDef[Reg] || PhysRegUse[Reg]) { |
| Live.insert(Reg); |
| for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) |
| Live.insert(*SS); |
| } else { |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| // If a register isn't itself defined, but all parts that make up of it |
| // are defined, then consider it also defined. |
| // e.g. |
| // AL = |
| // AH = |
| // = AX |
| if (Live.count(SubReg)) |
| continue; |
| if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { |
| Live.insert(SubReg); |
| for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) |
| Live.insert(*SS); |
| } |
| } |
| } |
| |
| // Start from the largest piece, find the last time any part of the register |
| // is referenced. |
| HandlePhysRegKill(Reg, MI); |
| // Only some of the sub-registers are used. |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| if (!Live.count(SubReg)) |
| // Skip if this sub-register isn't defined. |
| continue; |
| HandlePhysRegKill(SubReg, MI); |
| } |
| |
| if (MI) |
| Defs.push_back(Reg); // Remember this def. |
| } |
| |
| void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, |
| SmallVector<unsigned, 4> &Defs) { |
| while (!Defs.empty()) { |
| unsigned Reg = Defs.back(); |
| Defs.pop_back(); |
| PhysRegDef[Reg] = MI; |
| PhysRegUse[Reg] = NULL; |
| for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); |
| unsigned SubReg = *SubRegs; ++SubRegs) { |
| PhysRegDef[SubReg] = MI; |
| PhysRegUse[SubReg] = NULL; |
| } |
| } |
| } |
| |
| namespace { |
| struct RegSorter { |
| const TargetRegisterInfo *TRI; |
| |
| RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { } |
| bool operator()(unsigned A, unsigned B) { |
| if (TRI->isSubRegister(A, B)) |
| return true; |
| else if (TRI->isSubRegister(B, A)) |
| return false; |
| return A < B; |
| } |
| }; |
| } |
| |
| bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { |
| MF = &mf; |
| MRI = &mf.getRegInfo(); |
| TRI = MF->getTarget().getRegisterInfo(); |
| |
| ReservedRegisters = TRI->getReservedRegs(mf); |
| |
| unsigned NumRegs = TRI->getNumRegs(); |
| PhysRegDef = new MachineInstr*[NumRegs]; |
| PhysRegUse = new MachineInstr*[NumRegs]; |
| PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; |
| std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); |
| std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); |
| |
| /// Get some space for a respectable number of registers. |
| VirtRegInfo.resize(64); |
| |
| analyzePHINodes(mf); |
| |
| // Calculate live variable information in depth first order on the CFG of the |
| // function. This guarantees that we will see the definition of a virtual |
| // register before its uses due to dominance properties of SSA (except for PHI |
| // nodes, which are treated as a special case). |
| MachineBasicBlock *Entry = MF->begin(); |
| SmallPtrSet<MachineBasicBlock*,16> Visited; |
| |
| for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > |
| DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); |
| DFI != E; ++DFI) { |
| MachineBasicBlock *MBB = *DFI; |
| |
| // Mark live-in registers as live-in. |
| SmallVector<unsigned, 4> Defs; |
| for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), |
| EE = MBB->livein_end(); II != EE; ++II) { |
| assert(TargetRegisterInfo::isPhysicalRegister(*II) && |
| "Cannot have a live-in virtual register!"); |
| HandlePhysRegDef(*II, 0, Defs); |
| } |
| |
| // Loop over all of the instructions, processing them. |
| DistanceMap.clear(); |
| unsigned Dist = 0; |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| MachineInstr *MI = I; |
| DistanceMap.insert(std::make_pair(MI, Dist++)); |
| |
| // Process all of the operands of the instruction... |
| unsigned NumOperandsToProcess = MI->getNumOperands(); |
| |
| // Unless it is a PHI node. In this case, ONLY process the DEF, not any |
| // of the uses. They will be handled in other basic blocks. |
| if (MI->getOpcode() == TargetInstrInfo::PHI) |
| NumOperandsToProcess = 1; |
| |
| SmallVector<unsigned, 4> UseRegs; |
| SmallVector<unsigned, 4> DefRegs; |
| for (unsigned i = 0; i != NumOperandsToProcess; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || MO.getReg() == 0) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (MO.isUse()) |
| UseRegs.push_back(MOReg); |
| if (MO.isDef()) |
| DefRegs.push_back(MOReg); |
| } |
| |
| // Process all uses. |
| for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { |
| unsigned MOReg = UseRegs[i]; |
| if (TargetRegisterInfo::isVirtualRegister(MOReg)) |
| HandleVirtRegUse(MOReg, MBB, MI); |
| else if (!ReservedRegisters[MOReg]) |
| HandlePhysRegUse(MOReg, MI); |
| } |
| |
| // Process all defs. |
| for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { |
| unsigned MOReg = DefRegs[i]; |
| if (TargetRegisterInfo::isVirtualRegister(MOReg)) |
| HandleVirtRegDef(MOReg, MI); |
| else if (!ReservedRegisters[MOReg]) |
| HandlePhysRegDef(MOReg, MI, Defs); |
| } |
| UpdatePhysRegDefs(MI, Defs); |
| } |
| |
| // Handle any virtual assignments from PHI nodes which might be at the |
| // bottom of this basic block. We check all of our successor blocks to see |
| // if they have PHI nodes, and if so, we simulate an assignment at the end |
| // of the current block. |
| if (!PHIVarInfo[MBB->getNumber()].empty()) { |
| SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; |
| |
| for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), |
| E = VarInfoVec.end(); I != E; ++I) |
| // Mark it alive only in the block we are representing. |
| MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), |
| MBB); |
| } |
| |
| // Finally, if the last instruction in the block is a return, make sure to |
| // mark it as using all of the live-out values in the function. |
| if (!MBB->empty() && MBB->back().getDesc().isReturn()) { |
| MachineInstr *Ret = &MBB->back(); |
| |
| for (MachineRegisterInfo::liveout_iterator |
| I = MF->getRegInfo().liveout_begin(), |
| E = MF->getRegInfo().liveout_end(); I != E; ++I) { |
| assert(TargetRegisterInfo::isPhysicalRegister(*I) && |
| "Cannot have a live-out virtual register!"); |
| HandlePhysRegUse(*I, Ret); |
| |
| // Add live-out registers as implicit uses. |
| if (!Ret->readsRegister(*I)) |
| Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); |
| } |
| } |
| |
| // Loop over PhysRegDef / PhysRegUse, killing any registers that are |
| // available at the end of the basic block. |
| for (unsigned i = 0; i != NumRegs; ++i) |
| if (PhysRegDef[i] || PhysRegUse[i]) |
| HandlePhysRegDef(i, 0, Defs); |
| |
| std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); |
| std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); |
| } |
| |
| // Convert and transfer the dead / killed information we have gathered into |
| // VirtRegInfo onto MI's. |
| for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) |
| for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) |
| if (VirtRegInfo[i].Kills[j] == |
| MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) |
| VirtRegInfo[i] |
| .Kills[j]->addRegisterDead(i + |
| TargetRegisterInfo::FirstVirtualRegister, |
| TRI); |
| else |
| VirtRegInfo[i] |
| .Kills[j]->addRegisterKilled(i + |
| TargetRegisterInfo::FirstVirtualRegister, |
| TRI); |
| |
| // Check to make sure there are no unreachable blocks in the MC CFG for the |
| // function. If so, it is due to a bug in the instruction selector or some |
| // other part of the code generator if this happens. |
| #ifndef NDEBUG |
| for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) |
| assert(Visited.count(&*i) != 0 && "unreachable basic block found"); |
| #endif |
| |
| delete[] PhysRegDef; |
| delete[] PhysRegUse; |
| delete[] PHIVarInfo; |
| |
| return false; |
| } |
| |
| /// replaceKillInstruction - Update register kill info by replacing a kill |
| /// instruction with a new one. |
| void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, |
| MachineInstr *NewMI) { |
| VarInfo &VI = getVarInfo(Reg); |
| std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); |
| } |
| |
| /// removeVirtualRegistersKilled - Remove all killed info for the specified |
| /// instruction. |
| void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isKill()) { |
| MO.setIsKill(false); |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| bool removed = getVarInfo(Reg).removeKill(MI); |
| assert(removed && "kill not in register's VarInfo?"); |
| removed = true; |
| } |
| } |
| } |
| } |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In |
| /// particular, we want to map the variable information of a virtual register |
| /// which is used in a PHI node. We map that to the BB the vreg is coming from. |
| /// |
| void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { |
| for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); |
| I != E; ++I) |
| for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); |
| BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
| PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] |
| .push_back(BBI->getOperand(i).getReg()); |
| } |
| |
| bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, |
| unsigned Reg, |
| MachineRegisterInfo &MRI) { |
| unsigned Num = MBB.getNumber(); |
| |
| // Reg is live-through. |
| if (AliveBlocks.test(Num)) |
| return true; |
| |
| // Registers defined in MBB cannot be live in. |
| const MachineInstr *Def = MRI.getVRegDef(Reg); |
| if (Def && Def->getParent() == &MBB) |
| return false; |
| |
| // Reg was not defined in MBB, was it killed here? |
| return findKill(&MBB); |
| } |
| |
| bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { |
| LiveVariables::VarInfo &VI = getVarInfo(Reg); |
| |
| // Loop over all of the successors of the basic block, checking to see if |
| // the value is either live in the block, or if it is killed in the block. |
| std::vector<MachineBasicBlock*> OpSuccBlocks; |
| for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), |
| E = MBB.succ_end(); SI != E; ++SI) { |
| MachineBasicBlock *SuccMBB = *SI; |
| |
| // Is it alive in this successor? |
| unsigned SuccIdx = SuccMBB->getNumber(); |
| if (VI.AliveBlocks.test(SuccIdx)) |
| return true; |
| OpSuccBlocks.push_back(SuccMBB); |
| } |
| |
| // Check to see if this value is live because there is a use in a successor |
| // that kills it. |
| switch (OpSuccBlocks.size()) { |
| case 1: { |
| MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; |
| for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) |
| if (VI.Kills[i]->getParent() == SuccMBB) |
| return true; |
| break; |
| } |
| case 2: { |
| MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; |
| for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) |
| if (VI.Kills[i]->getParent() == SuccMBB1 || |
| VI.Kills[i]->getParent() == SuccMBB2) |
| return true; |
| break; |
| } |
| default: |
| std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); |
| for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) |
| if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), |
| VI.Kills[i]->getParent())) |
| return true; |
| } |
| return false; |
| } |
| |
| /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All |
| /// variables that are live out of DomBB will be marked as passing live through |
| /// BB. |
| void LiveVariables::addNewBlock(MachineBasicBlock *BB, |
| MachineBasicBlock *DomBB, |
| MachineBasicBlock *SuccBB) { |
| const unsigned NumNew = BB->getNumber(); |
| |
| // All registers used by PHI nodes in SuccBB must be live through BB. |
| for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(), |
| BBE = SuccBB->end(); |
| BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
| if (BBI->getOperand(i+1).getMBB() == BB) |
| getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); |
| |
| // Update info for all live variables |
| for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister, |
| E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) { |
| VarInfo &VI = getVarInfo(Reg); |
| if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) |
| VI.AliveBlocks.set(NumNew); |
| } |
| } |