| //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Methods common to all machine instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Type.h" |
| #include "llvm/Value.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetInstrDesc.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LeakDetector.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/Metadata.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // MachineOperand Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// AddRegOperandToRegInfo - Add this register operand to the specified |
| /// MachineRegisterInfo. If it is null, then the next/prev fields should be |
| /// explicitly nulled out. |
| void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { |
| assert(isReg() && "Can only add reg operand to use lists"); |
| |
| // If the reginfo pointer is null, just explicitly null out or next/prev |
| // pointers, to ensure they are not garbage. |
| if (RegInfo == 0) { |
| Contents.Reg.Prev = 0; |
| Contents.Reg.Next = 0; |
| return; |
| } |
| |
| // Otherwise, add this operand to the head of the registers use/def list. |
| MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); |
| |
| // For SSA values, we prefer to keep the definition at the start of the list. |
| // we do this by skipping over the definition if it is at the head of the |
| // list. |
| if (*Head && (*Head)->isDef()) |
| Head = &(*Head)->Contents.Reg.Next; |
| |
| Contents.Reg.Next = *Head; |
| if (Contents.Reg.Next) { |
| assert(getReg() == Contents.Reg.Next->getReg() && |
| "Different regs on the same list!"); |
| Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; |
| } |
| |
| Contents.Reg.Prev = Head; |
| *Head = this; |
| } |
| |
| /// RemoveRegOperandFromRegInfo - Remove this register operand from the |
| /// MachineRegisterInfo it is linked with. |
| void MachineOperand::RemoveRegOperandFromRegInfo() { |
| assert(isOnRegUseList() && "Reg operand is not on a use list"); |
| // Unlink this from the doubly linked list of operands. |
| MachineOperand *NextOp = Contents.Reg.Next; |
| *Contents.Reg.Prev = NextOp; |
| if (NextOp) { |
| assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); |
| NextOp->Contents.Reg.Prev = Contents.Reg.Prev; |
| } |
| Contents.Reg.Prev = 0; |
| Contents.Reg.Next = 0; |
| } |
| |
| void MachineOperand::setReg(unsigned Reg) { |
| if (getReg() == Reg) return; // No change. |
| |
| // Otherwise, we have to change the register. If this operand is embedded |
| // into a machine function, we need to update the old and new register's |
| // use/def lists. |
| if (MachineInstr *MI = getParent()) |
| if (MachineBasicBlock *MBB = MI->getParent()) |
| if (MachineFunction *MF = MBB->getParent()) { |
| RemoveRegOperandFromRegInfo(); |
| Contents.Reg.RegNo = Reg; |
| AddRegOperandToRegInfo(&MF->getRegInfo()); |
| return; |
| } |
| |
| // Otherwise, just change the register, no problem. :) |
| Contents.Reg.RegNo = Reg; |
| } |
| |
| /// ChangeToImmediate - Replace this operand with a new immediate operand of |
| /// the specified value. If an operand is known to be an immediate already, |
| /// the setImm method should be used. |
| void MachineOperand::ChangeToImmediate(int64_t ImmVal) { |
| // If this operand is currently a register operand, and if this is in a |
| // function, deregister the operand from the register's use/def list. |
| if (isReg() && getParent() && getParent()->getParent() && |
| getParent()->getParent()->getParent()) |
| RemoveRegOperandFromRegInfo(); |
| |
| OpKind = MO_Immediate; |
| Contents.ImmVal = ImmVal; |
| } |
| |
| /// ChangeToRegister - Replace this operand with a new register operand of |
| /// the specified value. If an operand is known to be an register already, |
| /// the setReg method should be used. |
| void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, |
| bool isKill, bool isDead, bool isUndef) { |
| // If this operand is already a register operand, use setReg to update the |
| // register's use/def lists. |
| if (isReg()) { |
| assert(!isEarlyClobber()); |
| setReg(Reg); |
| } else { |
| // Otherwise, change this to a register and set the reg#. |
| OpKind = MO_Register; |
| Contents.Reg.RegNo = Reg; |
| |
| // If this operand is embedded in a function, add the operand to the |
| // register's use/def list. |
| if (MachineInstr *MI = getParent()) |
| if (MachineBasicBlock *MBB = MI->getParent()) |
| if (MachineFunction *MF = MBB->getParent()) |
| AddRegOperandToRegInfo(&MF->getRegInfo()); |
| } |
| |
| IsDef = isDef; |
| IsImp = isImp; |
| IsKill = isKill; |
| IsDead = isDead; |
| IsUndef = isUndef; |
| IsEarlyClobber = false; |
| SubReg = 0; |
| } |
| |
| /// isIdenticalTo - Return true if this operand is identical to the specified |
| /// operand. |
| bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { |
| if (getType() != Other.getType() || |
| getTargetFlags() != Other.getTargetFlags()) |
| return false; |
| |
| switch (getType()) { |
| default: llvm_unreachable("Unrecognized operand type"); |
| case MachineOperand::MO_Register: |
| return getReg() == Other.getReg() && isDef() == Other.isDef() && |
| getSubReg() == Other.getSubReg(); |
| case MachineOperand::MO_Immediate: |
| return getImm() == Other.getImm(); |
| case MachineOperand::MO_FPImmediate: |
| return getFPImm() == Other.getFPImm(); |
| case MachineOperand::MO_MachineBasicBlock: |
| return getMBB() == Other.getMBB(); |
| case MachineOperand::MO_FrameIndex: |
| return getIndex() == Other.getIndex(); |
| case MachineOperand::MO_ConstantPoolIndex: |
| return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); |
| case MachineOperand::MO_JumpTableIndex: |
| return getIndex() == Other.getIndex(); |
| case MachineOperand::MO_GlobalAddress: |
| return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); |
| case MachineOperand::MO_ExternalSymbol: |
| return !strcmp(getSymbolName(), Other.getSymbolName()) && |
| getOffset() == Other.getOffset(); |
| case MachineOperand::MO_BlockAddress: |
| return getBlockAddress() == Other.getBlockAddress(); |
| } |
| } |
| |
| /// print - Print the specified machine operand. |
| /// |
| void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { |
| // If the instruction is embedded into a basic block, we can find the |
| // target info for the instruction. |
| if (!TM) |
| if (const MachineInstr *MI = getParent()) |
| if (const MachineBasicBlock *MBB = MI->getParent()) |
| if (const MachineFunction *MF = MBB->getParent()) |
| TM = &MF->getTarget(); |
| |
| switch (getType()) { |
| case MachineOperand::MO_Register: |
| if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) { |
| OS << "%reg" << getReg(); |
| } else { |
| if (TM) |
| OS << "%" << TM->getRegisterInfo()->get(getReg()).Name; |
| else |
| OS << "%physreg" << getReg(); |
| } |
| |
| if (getSubReg() != 0) |
| OS << ':' << getSubReg(); |
| |
| if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || |
| isEarlyClobber()) { |
| OS << '<'; |
| bool NeedComma = false; |
| if (isDef()) { |
| if (NeedComma) OS << ','; |
| if (isEarlyClobber()) |
| OS << "earlyclobber,"; |
| if (isImplicit()) |
| OS << "imp-"; |
| OS << "def"; |
| NeedComma = true; |
| } else if (isImplicit()) { |
| OS << "imp-use"; |
| NeedComma = true; |
| } |
| |
| if (isKill() || isDead() || isUndef()) { |
| if (NeedComma) OS << ','; |
| if (isKill()) OS << "kill"; |
| if (isDead()) OS << "dead"; |
| if (isUndef()) { |
| if (isKill() || isDead()) |
| OS << ','; |
| OS << "undef"; |
| } |
| } |
| OS << '>'; |
| } |
| break; |
| case MachineOperand::MO_Immediate: |
| OS << getImm(); |
| break; |
| case MachineOperand::MO_FPImmediate: |
| if (getFPImm()->getType()->isFloatTy()) |
| OS << getFPImm()->getValueAPF().convertToFloat(); |
| else |
| OS << getFPImm()->getValueAPF().convertToDouble(); |
| break; |
| case MachineOperand::MO_MachineBasicBlock: |
| OS << "<BB#" << getMBB()->getNumber() << ">"; |
| break; |
| case MachineOperand::MO_FrameIndex: |
| OS << "<fi#" << getIndex() << '>'; |
| break; |
| case MachineOperand::MO_ConstantPoolIndex: |
| OS << "<cp#" << getIndex(); |
| if (getOffset()) OS << "+" << getOffset(); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_JumpTableIndex: |
| OS << "<jt#" << getIndex() << '>'; |
| break; |
| case MachineOperand::MO_GlobalAddress: |
| OS << "<ga:"; |
| WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); |
| if (getOffset()) OS << "+" << getOffset(); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_ExternalSymbol: |
| OS << "<es:" << getSymbolName(); |
| if (getOffset()) OS << "+" << getOffset(); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_BlockAddress: |
| OS << '<'; |
| WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); |
| OS << '>'; |
| break; |
| case MachineOperand::MO_Metadata: |
| OS << '<'; |
| WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); |
| OS << '>'; |
| break; |
| default: |
| llvm_unreachable("Unrecognized operand type"); |
| } |
| |
| if (unsigned TF = getTargetFlags()) |
| OS << "[TF=" << TF << ']'; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineMemOperand Implementation |
| //===----------------------------------------------------------------------===// |
| |
| MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f, |
| int64_t o, uint64_t s, unsigned int a) |
| : Offset(o), Size(s), V(v), |
| Flags((f & 7) | ((Log2_32(a) + 1) << 3)) { |
| assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); |
| assert((isLoad() || isStore()) && "Not a load/store!"); |
| } |
| |
| /// Profile - Gather unique data for the object. |
| /// |
| void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { |
| ID.AddInteger(Offset); |
| ID.AddInteger(Size); |
| ID.AddPointer(V); |
| ID.AddInteger(Flags); |
| } |
| |
| void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { |
| // The Value and Offset may differ due to CSE. But the flags and size |
| // should be the same. |
| assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); |
| assert(MMO->getSize() == getSize() && "Size mismatch!"); |
| |
| if (MMO->getBaseAlignment() >= getBaseAlignment()) { |
| // Update the alignment value. |
| Flags = (Flags & 7) | ((Log2_32(MMO->getBaseAlignment()) + 1) << 3); |
| // Also update the base and offset, because the new alignment may |
| // not be applicable with the old ones. |
| V = MMO->getValue(); |
| Offset = MMO->getOffset(); |
| } |
| } |
| |
| /// getAlignment - Return the minimum known alignment in bytes of the |
| /// actual memory reference. |
| uint64_t MachineMemOperand::getAlignment() const { |
| return MinAlign(getBaseAlignment(), getOffset()); |
| } |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { |
| assert((MMO.isLoad() || MMO.isStore()) && |
| "SV has to be a load, store or both."); |
| |
| if (MMO.isVolatile()) |
| OS << "Volatile "; |
| |
| if (MMO.isLoad()) |
| OS << "LD"; |
| if (MMO.isStore()) |
| OS << "ST"; |
| OS << MMO.getSize(); |
| |
| // Print the address information. |
| OS << "["; |
| if (!MMO.getValue()) |
| OS << "<unknown>"; |
| else |
| WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); |
| |
| // If the alignment of the memory reference itself differs from the alignment |
| // of the base pointer, print the base alignment explicitly, next to the base |
| // pointer. |
| if (MMO.getBaseAlignment() != MMO.getAlignment()) |
| OS << "(align=" << MMO.getBaseAlignment() << ")"; |
| |
| if (MMO.getOffset() != 0) |
| OS << "+" << MMO.getOffset(); |
| OS << "]"; |
| |
| // Print the alignment of the reference. |
| if (MMO.getBaseAlignment() != MMO.getAlignment() || |
| MMO.getBaseAlignment() != MMO.getSize()) |
| OS << "(align=" << MMO.getAlignment() << ")"; |
| |
| return OS; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineInstr Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// MachineInstr ctor - This constructor creates a dummy MachineInstr with |
| /// TID NULL and no operands. |
| MachineInstr::MachineInstr() |
| : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), |
| Parent(0), debugLoc(DebugLoc::getUnknownLoc()) { |
| // Make sure that we get added to a machine basicblock |
| LeakDetector::addGarbageObject(this); |
| } |
| |
| void MachineInstr::addImplicitDefUseOperands() { |
| if (TID->ImplicitDefs) |
| for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) |
| addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); |
| if (TID->ImplicitUses) |
| for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) |
| addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); |
| } |
| |
| /// MachineInstr ctor - This constructor create a MachineInstr and add the |
| /// implicit operands. It reserves space for number of operands specified by |
| /// TargetInstrDesc or the numOperands if it is not zero. (for |
| /// instructions with variable number of operands). |
| MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) |
| : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), |
| MemRefs(0), MemRefsEnd(0), Parent(0), |
| debugLoc(DebugLoc::getUnknownLoc()) { |
| if (!NoImp && TID->getImplicitDefs()) |
| for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) |
| NumImplicitOps++; |
| if (!NoImp && TID->getImplicitUses()) |
| for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) |
| NumImplicitOps++; |
| Operands.reserve(NumImplicitOps + TID->getNumOperands()); |
| if (!NoImp) |
| addImplicitDefUseOperands(); |
| // Make sure that we get added to a machine basicblock |
| LeakDetector::addGarbageObject(this); |
| } |
| |
| /// MachineInstr ctor - As above, but with a DebugLoc. |
| MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl, |
| bool NoImp) |
| : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), |
| Parent(0), debugLoc(dl) { |
| if (!NoImp && TID->getImplicitDefs()) |
| for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) |
| NumImplicitOps++; |
| if (!NoImp && TID->getImplicitUses()) |
| for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) |
| NumImplicitOps++; |
| Operands.reserve(NumImplicitOps + TID->getNumOperands()); |
| if (!NoImp) |
| addImplicitDefUseOperands(); |
| // Make sure that we get added to a machine basicblock |
| LeakDetector::addGarbageObject(this); |
| } |
| |
| /// MachineInstr ctor - Work exactly the same as the ctor two above, except |
| /// that the MachineInstr is created and added to the end of the specified |
| /// basic block. |
| /// |
| MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) |
| : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), |
| MemRefs(0), MemRefsEnd(0), Parent(0), |
| debugLoc(DebugLoc::getUnknownLoc()) { |
| assert(MBB && "Cannot use inserting ctor with null basic block!"); |
| if (TID->ImplicitDefs) |
| for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) |
| NumImplicitOps++; |
| if (TID->ImplicitUses) |
| for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) |
| NumImplicitOps++; |
| Operands.reserve(NumImplicitOps + TID->getNumOperands()); |
| addImplicitDefUseOperands(); |
| // Make sure that we get added to a machine basicblock |
| LeakDetector::addGarbageObject(this); |
| MBB->push_back(this); // Add instruction to end of basic block! |
| } |
| |
| /// MachineInstr ctor - As above, but with a DebugLoc. |
| /// |
| MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, |
| const TargetInstrDesc &tid) |
| : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0), |
| Parent(0), debugLoc(dl) { |
| assert(MBB && "Cannot use inserting ctor with null basic block!"); |
| if (TID->ImplicitDefs) |
| for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) |
| NumImplicitOps++; |
| if (TID->ImplicitUses) |
| for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) |
| NumImplicitOps++; |
| Operands.reserve(NumImplicitOps + TID->getNumOperands()); |
| addImplicitDefUseOperands(); |
| // Make sure that we get added to a machine basicblock |
| LeakDetector::addGarbageObject(this); |
| MBB->push_back(this); // Add instruction to end of basic block! |
| } |
| |
| /// MachineInstr ctor - Copies MachineInstr arg exactly |
| /// |
| MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) |
| : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0), |
| MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), |
| Parent(0), debugLoc(MI.getDebugLoc()) { |
| Operands.reserve(MI.getNumOperands()); |
| |
| // Add operands |
| for (unsigned i = 0; i != MI.getNumOperands(); ++i) |
| addOperand(MI.getOperand(i)); |
| NumImplicitOps = MI.NumImplicitOps; |
| |
| // Set parent to null. |
| Parent = 0; |
| |
| LeakDetector::addGarbageObject(this); |
| } |
| |
| MachineInstr::~MachineInstr() { |
| LeakDetector::removeGarbageObject(this); |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); |
| assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && |
| "Reg operand def/use list corrupted"); |
| } |
| #endif |
| } |
| |
| /// getRegInfo - If this instruction is embedded into a MachineFunction, |
| /// return the MachineRegisterInfo object for the current function, otherwise |
| /// return null. |
| MachineRegisterInfo *MachineInstr::getRegInfo() { |
| if (MachineBasicBlock *MBB = getParent()) |
| return &MBB->getParent()->getRegInfo(); |
| return 0; |
| } |
| |
| /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in |
| /// this instruction from their respective use lists. This requires that the |
| /// operands already be on their use lists. |
| void MachineInstr::RemoveRegOperandsFromUseLists() { |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| if (Operands[i].isReg()) |
| Operands[i].RemoveRegOperandFromRegInfo(); |
| } |
| } |
| |
| /// AddRegOperandsToUseLists - Add all of the register operands in |
| /// this instruction from their respective use lists. This requires that the |
| /// operands not be on their use lists yet. |
| void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| if (Operands[i].isReg()) |
| Operands[i].AddRegOperandToRegInfo(&RegInfo); |
| } |
| } |
| |
| |
| /// addOperand - Add the specified operand to the instruction. If it is an |
| /// implicit operand, it is added to the end of the operand list. If it is |
| /// an explicit operand it is added at the end of the explicit operand list |
| /// (before the first implicit operand). |
| void MachineInstr::addOperand(const MachineOperand &Op) { |
| bool isImpReg = Op.isReg() && Op.isImplicit(); |
| assert((isImpReg || !OperandsComplete()) && |
| "Trying to add an operand to a machine instr that is already done!"); |
| |
| MachineRegisterInfo *RegInfo = getRegInfo(); |
| |
| // If we are adding the operand to the end of the list, our job is simpler. |
| // This is true most of the time, so this is a reasonable optimization. |
| if (isImpReg || NumImplicitOps == 0) { |
| // We can only do this optimization if we know that the operand list won't |
| // reallocate. |
| if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { |
| Operands.push_back(Op); |
| |
| // Set the parent of the operand. |
| Operands.back().ParentMI = this; |
| |
| // If the operand is a register, update the operand's use list. |
| if (Op.isReg()) { |
| Operands.back().AddRegOperandToRegInfo(RegInfo); |
| // If the register operand is flagged as early, mark the operand as such |
| unsigned OpNo = Operands.size() - 1; |
| if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) |
| Operands[OpNo].setIsEarlyClobber(true); |
| } |
| return; |
| } |
| } |
| |
| // Otherwise, we have to insert a real operand before any implicit ones. |
| unsigned OpNo = Operands.size()-NumImplicitOps; |
| |
| // If this instruction isn't embedded into a function, then we don't need to |
| // update any operand lists. |
| if (RegInfo == 0) { |
| // Simple insertion, no reginfo update needed for other register operands. |
| Operands.insert(Operands.begin()+OpNo, Op); |
| Operands[OpNo].ParentMI = this; |
| |
| // Do explicitly set the reginfo for this operand though, to ensure the |
| // next/prev fields are properly nulled out. |
| if (Operands[OpNo].isReg()) { |
| Operands[OpNo].AddRegOperandToRegInfo(0); |
| // If the register operand is flagged as early, mark the operand as such |
| if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) |
| Operands[OpNo].setIsEarlyClobber(true); |
| } |
| |
| } else if (Operands.size()+1 <= Operands.capacity()) { |
| // Otherwise, we have to remove register operands from their register use |
| // list, add the operand, then add the register operands back to their use |
| // list. This also must handle the case when the operand list reallocates |
| // to somewhere else. |
| |
| // If insertion of this operand won't cause reallocation of the operand |
| // list, just remove the implicit operands, add the operand, then re-add all |
| // the rest of the operands. |
| for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { |
| assert(Operands[i].isReg() && "Should only be an implicit reg!"); |
| Operands[i].RemoveRegOperandFromRegInfo(); |
| } |
| |
| // Add the operand. If it is a register, add it to the reg list. |
| Operands.insert(Operands.begin()+OpNo, Op); |
| Operands[OpNo].ParentMI = this; |
| |
| if (Operands[OpNo].isReg()) { |
| Operands[OpNo].AddRegOperandToRegInfo(RegInfo); |
| // If the register operand is flagged as early, mark the operand as such |
| if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) |
| Operands[OpNo].setIsEarlyClobber(true); |
| } |
| |
| // Re-add all the implicit ops. |
| for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { |
| assert(Operands[i].isReg() && "Should only be an implicit reg!"); |
| Operands[i].AddRegOperandToRegInfo(RegInfo); |
| } |
| } else { |
| // Otherwise, we will be reallocating the operand list. Remove all reg |
| // operands from their list, then readd them after the operand list is |
| // reallocated. |
| RemoveRegOperandsFromUseLists(); |
| |
| Operands.insert(Operands.begin()+OpNo, Op); |
| Operands[OpNo].ParentMI = this; |
| |
| // Re-add all the operands. |
| AddRegOperandsToUseLists(*RegInfo); |
| |
| // If the register operand is flagged as early, mark the operand as such |
| if (Operands[OpNo].isReg() |
| && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1) |
| Operands[OpNo].setIsEarlyClobber(true); |
| } |
| } |
| |
| /// RemoveOperand - Erase an operand from an instruction, leaving it with one |
| /// fewer operand than it started with. |
| /// |
| void MachineInstr::RemoveOperand(unsigned OpNo) { |
| assert(OpNo < Operands.size() && "Invalid operand number"); |
| |
| // Special case removing the last one. |
| if (OpNo == Operands.size()-1) { |
| // If needed, remove from the reg def/use list. |
| if (Operands.back().isReg() && Operands.back().isOnRegUseList()) |
| Operands.back().RemoveRegOperandFromRegInfo(); |
| |
| Operands.pop_back(); |
| return; |
| } |
| |
| // Otherwise, we are removing an interior operand. If we have reginfo to |
| // update, remove all operands that will be shifted down from their reg lists, |
| // move everything down, then re-add them. |
| MachineRegisterInfo *RegInfo = getRegInfo(); |
| if (RegInfo) { |
| for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { |
| if (Operands[i].isReg()) |
| Operands[i].RemoveRegOperandFromRegInfo(); |
| } |
| } |
| |
| Operands.erase(Operands.begin()+OpNo); |
| |
| if (RegInfo) { |
| for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { |
| if (Operands[i].isReg()) |
| Operands[i].AddRegOperandToRegInfo(RegInfo); |
| } |
| } |
| } |
| |
| /// addMemOperand - Add a MachineMemOperand to the machine instruction. |
| /// This function should be used only occasionally. The setMemRefs function |
| /// is the primary method for setting up a MachineInstr's MemRefs list. |
| void MachineInstr::addMemOperand(MachineFunction &MF, |
| MachineMemOperand *MO) { |
| mmo_iterator OldMemRefs = MemRefs; |
| mmo_iterator OldMemRefsEnd = MemRefsEnd; |
| |
| size_t NewNum = (MemRefsEnd - MemRefs) + 1; |
| mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); |
| mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; |
| |
| std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); |
| NewMemRefs[NewNum - 1] = MO; |
| |
| MemRefs = NewMemRefs; |
| MemRefsEnd = NewMemRefsEnd; |
| } |
| |
| /// removeFromParent - This method unlinks 'this' from the containing basic |
| /// block, and returns it, but does not delete it. |
| MachineInstr *MachineInstr::removeFromParent() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| getParent()->remove(this); |
| return this; |
| } |
| |
| |
| /// eraseFromParent - This method unlinks 'this' from the containing basic |
| /// block, and deletes it. |
| void MachineInstr::eraseFromParent() { |
| assert(getParent() && "Not embedded in a basic block!"); |
| getParent()->erase(this); |
| } |
| |
| |
| /// OperandComplete - Return true if it's illegal to add a new operand |
| /// |
| bool MachineInstr::OperandsComplete() const { |
| unsigned short NumOperands = TID->getNumOperands(); |
| if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) |
| return true; // Broken: we have all the operands of this instruction! |
| return false; |
| } |
| |
| /// getNumExplicitOperands - Returns the number of non-implicit operands. |
| /// |
| unsigned MachineInstr::getNumExplicitOperands() const { |
| unsigned NumOperands = TID->getNumOperands(); |
| if (!TID->isVariadic()) |
| return NumOperands; |
| |
| for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isImplicit()) |
| NumOperands++; |
| } |
| return NumOperands; |
| } |
| |
| |
| /// isLabel - Returns true if the MachineInstr represents a label. |
| /// |
| bool MachineInstr::isLabel() const { |
| return getOpcode() == TargetInstrInfo::DBG_LABEL || |
| getOpcode() == TargetInstrInfo::EH_LABEL || |
| getOpcode() == TargetInstrInfo::GC_LABEL; |
| } |
| |
| /// isDebugLabel - Returns true if the MachineInstr represents a debug label. |
| /// |
| bool MachineInstr::isDebugLabel() const { |
| return getOpcode() == TargetInstrInfo::DBG_LABEL; |
| } |
| |
| /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of |
| /// the specific register or -1 if it is not found. It further tightens |
| /// the search criteria to a use that kills the register if isKill is true. |
| int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, |
| const TargetRegisterInfo *TRI) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (!MOReg) |
| continue; |
| if (MOReg == Reg || |
| (TRI && |
| TargetRegisterInfo::isPhysicalRegister(MOReg) && |
| TargetRegisterInfo::isPhysicalRegister(Reg) && |
| TRI->isSubRegister(MOReg, Reg))) |
| if (!isKill || MO.isKill()) |
| return i; |
| } |
| return -1; |
| } |
| |
| /// findRegisterDefOperandIdx() - Returns the operand index that is a def of |
| /// the specified register or -1 if it is not found. If isDead is true, defs |
| /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it |
| /// also checks if there is a def of a super-register. |
| int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, |
| const TargetRegisterInfo *TRI) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (MOReg == Reg || |
| (TRI && |
| TargetRegisterInfo::isPhysicalRegister(MOReg) && |
| TargetRegisterInfo::isPhysicalRegister(Reg) && |
| TRI->isSubRegister(MOReg, Reg))) |
| if (!isDead || MO.isDead()) |
| return i; |
| } |
| return -1; |
| } |
| |
| /// findFirstPredOperandIdx() - Find the index of the first operand in the |
| /// operand list that is used to represent the predicate. It returns -1 if |
| /// none is found. |
| int MachineInstr::findFirstPredOperandIdx() const { |
| const TargetInstrDesc &TID = getDesc(); |
| if (TID.isPredicable()) { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (TID.OpInfo[i].isPredicate()) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| /// isRegTiedToUseOperand - Given the index of a register def operand, |
| /// check if the register def is tied to a source operand, due to either |
| /// two-address elimination or inline assembly constraints. Returns the |
| /// first tied use operand index by reference is UseOpIdx is not null. |
| bool MachineInstr:: |
| isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { |
| if (getOpcode() == TargetInstrInfo::INLINEASM) { |
| assert(DefOpIdx >= 2); |
| const MachineOperand &MO = getOperand(DefOpIdx); |
| if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) |
| return false; |
| // Determine the actual operand index that corresponds to this index. |
| unsigned DefNo = 0; |
| unsigned DefPart = 0; |
| for (unsigned i = 1, e = getNumOperands(); i < e; ) { |
| const MachineOperand &FMO = getOperand(i); |
| // After the normal asm operands there may be additional imp-def regs. |
| if (!FMO.isImm()) |
| return false; |
| // Skip over this def. |
| unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm()); |
| unsigned PrevDef = i + 1; |
| i = PrevDef + NumOps; |
| if (i > DefOpIdx) { |
| DefPart = DefOpIdx - PrevDef; |
| break; |
| } |
| ++DefNo; |
| } |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &FMO = getOperand(i); |
| if (!FMO.isImm()) |
| continue; |
| if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) |
| continue; |
| unsigned Idx; |
| if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && |
| Idx == DefNo) { |
| if (UseOpIdx) |
| *UseOpIdx = (unsigned)i + 1 + DefPart; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); |
| const TargetInstrDesc &TID = getDesc(); |
| for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (MO.isReg() && MO.isUse() && |
| TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) { |
| if (UseOpIdx) |
| *UseOpIdx = (unsigned)i; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// isRegTiedToDefOperand - Return true if the operand of the specified index |
| /// is a register use and it is tied to an def operand. It also returns the def |
| /// operand index by reference. |
| bool MachineInstr:: |
| isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { |
| if (getOpcode() == TargetInstrInfo::INLINEASM) { |
| const MachineOperand &MO = getOperand(UseOpIdx); |
| if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) |
| return false; |
| |
| // Find the flag operand corresponding to UseOpIdx |
| unsigned FlagIdx, NumOps=0; |
| for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) { |
| const MachineOperand &UFMO = getOperand(FlagIdx); |
| // After the normal asm operands there may be additional imp-def regs. |
| if (!UFMO.isImm()) |
| return false; |
| NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm()); |
| assert(NumOps < getNumOperands() && "Invalid inline asm flag"); |
| if (UseOpIdx < FlagIdx+NumOps+1) |
| break; |
| } |
| if (FlagIdx >= UseOpIdx) |
| return false; |
| const MachineOperand &UFMO = getOperand(FlagIdx); |
| unsigned DefNo; |
| if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { |
| if (!DefOpIdx) |
| return true; |
| |
| unsigned DefIdx = 1; |
| // Remember to adjust the index. First operand is asm string, then there |
| // is a flag for each. |
| while (DefNo) { |
| const MachineOperand &FMO = getOperand(DefIdx); |
| assert(FMO.isImm()); |
| // Skip over this def. |
| DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; |
| --DefNo; |
| } |
| *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; |
| return true; |
| } |
| return false; |
| } |
| |
| const TargetInstrDesc &TID = getDesc(); |
| if (UseOpIdx >= TID.getNumOperands()) |
| return false; |
| const MachineOperand &MO = getOperand(UseOpIdx); |
| if (!MO.isReg() || !MO.isUse()) |
| return false; |
| int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO); |
| if (DefIdx == -1) |
| return false; |
| if (DefOpIdx) |
| *DefOpIdx = (unsigned)DefIdx; |
| return true; |
| } |
| |
| /// copyKillDeadInfo - Copies kill / dead operand properties from MI. |
| /// |
| void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) |
| continue; |
| for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { |
| MachineOperand &MOp = getOperand(j); |
| if (!MOp.isIdenticalTo(MO)) |
| continue; |
| if (MO.isKill()) |
| MOp.setIsKill(); |
| else |
| MOp.setIsDead(); |
| break; |
| } |
| } |
| } |
| |
| /// copyPredicates - Copies predicate operand(s) from MI. |
| void MachineInstr::copyPredicates(const MachineInstr *MI) { |
| const TargetInstrDesc &TID = MI->getDesc(); |
| if (!TID.isPredicable()) |
| return; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| if (TID.OpInfo[i].isPredicate()) { |
| // Predicated operands must be last operands. |
| addOperand(MI->getOperand(i)); |
| } |
| } |
| } |
| |
| /// isSafeToMove - Return true if it is safe to move this instruction. If |
| /// SawStore is set to true, it means that there is a store (or call) between |
| /// the instruction's location and its intended destination. |
| bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, |
| bool &SawStore, |
| AliasAnalysis *AA) const { |
| // Ignore stuff that we obviously can't move. |
| if (TID->mayStore() || TID->isCall()) { |
| SawStore = true; |
| return false; |
| } |
| if (TID->isTerminator() || TID->hasUnmodeledSideEffects()) |
| return false; |
| |
| // See if this instruction does a load. If so, we have to guarantee that the |
| // loaded value doesn't change between the load and the its intended |
| // destination. The check for isInvariantLoad gives the targe the chance to |
| // classify the load as always returning a constant, e.g. a constant pool |
| // load. |
| if (TID->mayLoad() && !isInvariantLoad(AA)) |
| // Otherwise, this is a real load. If there is a store between the load and |
| // end of block, or if the load is volatile, we can't move it. |
| return !SawStore && !hasVolatileMemoryRef(); |
| |
| return true; |
| } |
| |
| /// isSafeToReMat - Return true if it's safe to rematerialize the specified |
| /// instruction which defined the specified register instead of copying it. |
| bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, |
| unsigned DstReg, |
| AliasAnalysis *AA) const { |
| bool SawStore = false; |
| if (!TII->isTriviallyReMaterializable(this, AA) || |
| !isSafeToMove(TII, SawStore, AA)) |
| return false; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| // FIXME: For now, do not remat any instruction with register operands. |
| // Later on, we can loosen the restriction is the register operands have |
| // not been modified between the def and use. Note, this is different from |
| // MachineSink because the code is no longer in two-address form (at least |
| // partially). |
| if (MO.isUse()) |
| return false; |
| else if (!MO.isDead() && MO.getReg() != DstReg) |
| return false; |
| } |
| return true; |
| } |
| |
| /// hasVolatileMemoryRef - Return true if this instruction may have a |
| /// volatile memory reference, or if the information describing the |
| /// memory reference is not available. Return false if it is known to |
| /// have no volatile memory references. |
| bool MachineInstr::hasVolatileMemoryRef() const { |
| // An instruction known never to access memory won't have a volatile access. |
| if (!TID->mayStore() && |
| !TID->mayLoad() && |
| !TID->isCall() && |
| !TID->hasUnmodeledSideEffects()) |
| return false; |
| |
| // Otherwise, if the instruction has no memory reference information, |
| // conservatively assume it wasn't preserved. |
| if (memoperands_empty()) |
| return true; |
| |
| // Check the memory reference information for volatile references. |
| for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) |
| if ((*I)->isVolatile()) |
| return true; |
| |
| return false; |
| } |
| |
| /// isInvariantLoad - Return true if this instruction is loading from a |
| /// location whose value is invariant across the function. For example, |
| /// loading a value from the constant pool or from from the argument area |
| /// of a function if it does not change. This should only return true of |
| /// *all* loads the instruction does are invariant (if it does multiple loads). |
| bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { |
| // If the instruction doesn't load at all, it isn't an invariant load. |
| if (!TID->mayLoad()) |
| return false; |
| |
| // If the instruction has lost its memoperands, conservatively assume that |
| // it may not be an invariant load. |
| if (memoperands_empty()) |
| return false; |
| |
| const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); |
| |
| for (mmo_iterator I = memoperands_begin(), |
| E = memoperands_end(); I != E; ++I) { |
| if ((*I)->isVolatile()) return false; |
| if ((*I)->isStore()) return false; |
| |
| if (const Value *V = (*I)->getValue()) { |
| // A load from a constant PseudoSourceValue is invariant. |
| if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) |
| if (PSV->isConstant(MFI)) |
| continue; |
| // If we have an AliasAnalysis, ask it whether the memory is constant. |
| if (AA && AA->pointsToConstantMemory(V)) |
| continue; |
| } |
| |
| // Otherwise assume conservatively. |
| return false; |
| } |
| |
| // Everything checks out. |
| return true; |
| } |
| |
| /// isConstantValuePHI - If the specified instruction is a PHI that always |
| /// merges together the same virtual register, return the register, otherwise |
| /// return 0. |
| unsigned MachineInstr::isConstantValuePHI() const { |
| if (getOpcode() != TargetInstrInfo::PHI) |
| return 0; |
| assert(getNumOperands() >= 3 && |
| "It's illegal to have a PHI without source operands"); |
| |
| unsigned Reg = getOperand(1).getReg(); |
| for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) |
| if (getOperand(i).getReg() != Reg) |
| return 0; |
| return Reg; |
| } |
| |
| void MachineInstr::dump() const { |
| dbgs() << " " << *this; |
| } |
| |
| void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { |
| // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. |
| const MachineFunction *MF = 0; |
| if (const MachineBasicBlock *MBB = getParent()) { |
| MF = MBB->getParent(); |
| if (!TM && MF) |
| TM = &MF->getTarget(); |
| } |
| |
| // Print explicitly defined operands on the left of an assignment syntax. |
| unsigned StartOp = 0, e = getNumOperands(); |
| for (; StartOp < e && getOperand(StartOp).isReg() && |
| getOperand(StartOp).isDef() && |
| !getOperand(StartOp).isImplicit(); |
| ++StartOp) { |
| if (StartOp != 0) OS << ", "; |
| getOperand(StartOp).print(OS, TM); |
| } |
| |
| if (StartOp != 0) |
| OS << " = "; |
| |
| // Print the opcode name. |
| OS << getDesc().getName(); |
| |
| // Print the rest of the operands. |
| bool OmittedAnyCallClobbers = false; |
| bool FirstOp = true; |
| for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = getOperand(i); |
| |
| // Omit call-clobbered registers which aren't used anywhere. This makes |
| // call instructions much less noisy on targets where calls clobber lots |
| // of registers. Don't rely on MO.isDead() because we may be called before |
| // LiveVariables is run, or we may be looking at a non-allocatable reg. |
| if (MF && getDesc().isCall() && |
| MO.isReg() && MO.isImplicit() && MO.isDef()) { |
| unsigned Reg = MO.getReg(); |
| if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| const MachineRegisterInfo &MRI = MF->getRegInfo(); |
| if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { |
| bool HasAliasLive = false; |
| for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); |
| unsigned AliasReg = *Alias; ++Alias) |
| if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { |
| HasAliasLive = true; |
| break; |
| } |
| if (!HasAliasLive) { |
| OmittedAnyCallClobbers = true; |
| continue; |
| } |
| } |
| } |
| } |
| |
| if (FirstOp) FirstOp = false; else OS << ","; |
| OS << " "; |
| if (i < getDesc().NumOperands) { |
| const TargetOperandInfo &TOI = getDesc().OpInfo[i]; |
| if (TOI.isPredicate()) |
| OS << "pred:"; |
| if (TOI.isOptionalDef()) |
| OS << "opt:"; |
| } |
| MO.print(OS, TM); |
| } |
| |
| // Briefly indicate whether any call clobbers were omitted. |
| if (OmittedAnyCallClobbers) { |
| if (!FirstOp) OS << ","; |
| OS << " ..."; |
| } |
| |
| bool HaveSemi = false; |
| if (!memoperands_empty()) { |
| if (!HaveSemi) OS << ";"; HaveSemi = true; |
| |
| OS << " mem:"; |
| for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); |
| i != e; ++i) { |
| OS << **i; |
| if (next(i) != e) |
| OS << " "; |
| } |
| } |
| |
| if (!debugLoc.isUnknown() && MF) { |
| if (!HaveSemi) OS << ";"; |
| |
| // TODO: print InlinedAtLoc information |
| |
| DILocation DLT = MF->getDILocation(debugLoc); |
| DIScope Scope = DLT.getScope(); |
| OS << " dbg:"; |
| // Omit the directory, since it's usually long and uninteresting. |
| if (!Scope.isNull()) |
| OS << Scope.getFilename(); |
| else |
| OS << "<unknown>"; |
| OS << ':' << DLT.getLineNumber(); |
| if (DLT.getColumnNumber() != 0) |
| OS << ':' << DLT.getColumnNumber(); |
| } |
| |
| OS << "\n"; |
| } |
| |
| bool MachineInstr::addRegisterKilled(unsigned IncomingReg, |
| const TargetRegisterInfo *RegInfo, |
| bool AddIfNotFound) { |
| bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); |
| bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); |
| bool Found = false; |
| SmallVector<unsigned,4> DeadOps; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isUse() || MO.isUndef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| |
| if (Reg == IncomingReg) { |
| if (!Found) { |
| if (MO.isKill()) |
| // The register is already marked kill. |
| return true; |
| if (isPhysReg && isRegTiedToDefOperand(i)) |
| // Two-address uses of physregs must not be marked kill. |
| return true; |
| MO.setIsKill(); |
| Found = true; |
| } |
| } else if (hasAliases && MO.isKill() && |
| TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| // A super-register kill already exists. |
| if (RegInfo->isSuperRegister(IncomingReg, Reg)) |
| return true; |
| if (RegInfo->isSubRegister(IncomingReg, Reg)) |
| DeadOps.push_back(i); |
| } |
| } |
| |
| // Trim unneeded kill operands. |
| while (!DeadOps.empty()) { |
| unsigned OpIdx = DeadOps.back(); |
| if (getOperand(OpIdx).isImplicit()) |
| RemoveOperand(OpIdx); |
| else |
| getOperand(OpIdx).setIsKill(false); |
| DeadOps.pop_back(); |
| } |
| |
| // If not found, this means an alias of one of the operands is killed. Add a |
| // new implicit operand if required. |
| if (!Found && AddIfNotFound) { |
| addOperand(MachineOperand::CreateReg(IncomingReg, |
| false /*IsDef*/, |
| true /*IsImp*/, |
| true /*IsKill*/)); |
| return true; |
| } |
| return Found; |
| } |
| |
| bool MachineInstr::addRegisterDead(unsigned IncomingReg, |
| const TargetRegisterInfo *RegInfo, |
| bool AddIfNotFound) { |
| bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); |
| bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); |
| bool Found = false; |
| SmallVector<unsigned,4> DeadOps; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| |
| if (Reg == IncomingReg) { |
| if (!Found) { |
| if (MO.isDead()) |
| // The register is already marked dead. |
| return true; |
| MO.setIsDead(); |
| Found = true; |
| } |
| } else if (hasAliases && MO.isDead() && |
| TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| // There exists a super-register that's marked dead. |
| if (RegInfo->isSuperRegister(IncomingReg, Reg)) |
| return true; |
| if (RegInfo->getSubRegisters(IncomingReg) && |
| RegInfo->getSuperRegisters(Reg) && |
| RegInfo->isSubRegister(IncomingReg, Reg)) |
| DeadOps.push_back(i); |
| } |
| } |
| |
| // Trim unneeded dead operands. |
| while (!DeadOps.empty()) { |
| unsigned OpIdx = DeadOps.back(); |
| if (getOperand(OpIdx).isImplicit()) |
| RemoveOperand(OpIdx); |
| else |
| getOperand(OpIdx).setIsDead(false); |
| DeadOps.pop_back(); |
| } |
| |
| // If not found, this means an alias of one of the operands is dead. Add a |
| // new implicit operand if required. |
| if (Found || !AddIfNotFound) |
| return Found; |
| |
| addOperand(MachineOperand::CreateReg(IncomingReg, |
| true /*IsDef*/, |
| true /*IsImp*/, |
| false /*IsKill*/, |
| true /*IsDead*/)); |
| return true; |
| } |
| |
| void MachineInstr::addRegisterDefined(unsigned IncomingReg, |
| const TargetRegisterInfo *RegInfo) { |
| MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); |
| if (!MO || MO->getSubReg()) |
| addOperand(MachineOperand::CreateReg(IncomingReg, |
| true /*IsDef*/, |
| true /*IsImp*/)); |
| } |