| //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass moves instructions into successor blocks, when possible, so that |
| // they aren't executed on paths where their results aren't needed. |
| // |
| // This pass is not intended to be a replacement or a complete alternative |
| // for an LLVM-IR-level sinking pass. It is only designed to sink simple |
| // constructs that are not exposed before lowering and instruction selection. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "machine-sink" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| STATISTIC(NumSunk, "Number of machine instructions sunk"); |
| |
| namespace { |
| class MachineSinking : public MachineFunctionPass { |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| MachineRegisterInfo *RegInfo; // Machine register information |
| MachineDominatorTree *DT; // Machine dominator tree |
| AliasAnalysis *AA; |
| BitVector AllocatableSet; // Which physregs are allocatable? |
| |
| public: |
| static char ID; // Pass identification |
| MachineSinking() : MachineFunctionPass(&ID) {} |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| } |
| private: |
| bool ProcessBlock(MachineBasicBlock &MBB); |
| bool SinkInstruction(MachineInstr *MI, bool &SawStore); |
| bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const; |
| }; |
| } // end anonymous namespace |
| |
| char MachineSinking::ID = 0; |
| static RegisterPass<MachineSinking> |
| X("machine-sink", "Machine code sinking"); |
| |
| FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); } |
| |
| /// AllUsesDominatedByBlock - Return true if all uses of the specified register |
| /// occur in blocks dominated by the specified block. |
| bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, |
| MachineBasicBlock *MBB) const { |
| assert(TargetRegisterInfo::isVirtualRegister(Reg) && |
| "Only makes sense for vregs"); |
| for (MachineRegisterInfo::use_iterator I = RegInfo->use_begin(Reg), |
| E = RegInfo->use_end(); I != E; ++I) { |
| // Determine the block of the use. |
| MachineInstr *UseInst = &*I; |
| MachineBasicBlock *UseBlock = UseInst->getParent(); |
| if (UseInst->getOpcode() == TargetInstrInfo::PHI) { |
| // PHI nodes use the operand in the predecessor block, not the block with |
| // the PHI. |
| UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB(); |
| } |
| // Check that it dominates. |
| if (!DT->dominates(MBB, UseBlock)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { |
| DEBUG(dbgs() << "******** Machine Sinking ********\n"); |
| |
| const TargetMachine &TM = MF.getTarget(); |
| TII = TM.getInstrInfo(); |
| TRI = TM.getRegisterInfo(); |
| RegInfo = &MF.getRegInfo(); |
| DT = &getAnalysis<MachineDominatorTree>(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| AllocatableSet = TRI->getAllocatableSet(MF); |
| |
| bool EverMadeChange = false; |
| |
| while (1) { |
| bool MadeChange = false; |
| |
| // Process all basic blocks. |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) |
| MadeChange |= ProcessBlock(*I); |
| |
| // If this iteration over the code changed anything, keep iterating. |
| if (!MadeChange) break; |
| EverMadeChange = true; |
| } |
| return EverMadeChange; |
| } |
| |
| bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { |
| // Can't sink anything out of a block that has less than two successors. |
| if (MBB.succ_size() <= 1 || MBB.empty()) return false; |
| |
| bool MadeChange = false; |
| |
| // Walk the basic block bottom-up. Remember if we saw a store. |
| MachineBasicBlock::iterator I = MBB.end(); |
| --I; |
| bool ProcessedBegin, SawStore = false; |
| do { |
| MachineInstr *MI = I; // The instruction to sink. |
| |
| // Predecrement I (if it's not begin) so that it isn't invalidated by |
| // sinking. |
| ProcessedBegin = I == MBB.begin(); |
| if (!ProcessedBegin) |
| --I; |
| |
| if (SinkInstruction(MI, SawStore)) |
| ++NumSunk, MadeChange = true; |
| |
| // If we just processed the first instruction in the block, we're done. |
| } while (!ProcessedBegin); |
| |
| return MadeChange; |
| } |
| |
| /// SinkInstruction - Determine whether it is safe to sink the specified machine |
| /// instruction out of its current block into a successor. |
| bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { |
| // Check if it's safe to move the instruction. |
| if (!MI->isSafeToMove(TII, SawStore, AA)) |
| return false; |
| |
| // FIXME: This should include support for sinking instructions within the |
| // block they are currently in to shorten the live ranges. We often get |
| // instructions sunk into the top of a large block, but it would be better to |
| // also sink them down before their first use in the block. This xform has to |
| // be careful not to *increase* register pressure though, e.g. sinking |
| // "x = y + z" down if it kills y and z would increase the live ranges of y |
| // and z and only shrink the live range of x. |
| |
| // Loop over all the operands of the specified instruction. If there is |
| // anything we can't handle, bail out. |
| MachineBasicBlock *ParentBlock = MI->getParent(); |
| |
| // SuccToSinkTo - This is the successor to sink this instruction to, once we |
| // decide. |
| MachineBasicBlock *SuccToSinkTo = 0; |
| |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) continue; // Ignore non-register operands. |
| |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (MO.isUse()) { |
| // If the physreg has no defs anywhere, it's just an ambient register |
| // and we can freely move its uses. Alternatively, if it's allocatable, |
| // it could get allocated to something with a def during allocation. |
| if (!RegInfo->def_empty(Reg)) |
| return false; |
| if (AllocatableSet.test(Reg)) |
| return false; |
| // Check for a def among the register's aliases too. |
| for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { |
| unsigned AliasReg = *Alias; |
| if (!RegInfo->def_empty(AliasReg)) |
| return false; |
| if (AllocatableSet.test(AliasReg)) |
| return false; |
| } |
| } else if (!MO.isDead()) { |
| // A def that isn't dead. We can't move it. |
| return false; |
| } |
| } else { |
| // Virtual register uses are always safe to sink. |
| if (MO.isUse()) continue; |
| |
| // If it's not safe to move defs of the register class, then abort. |
| if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg))) |
| return false; |
| |
| // FIXME: This picks a successor to sink into based on having one |
| // successor that dominates all the uses. However, there are cases where |
| // sinking can happen but where the sink point isn't a successor. For |
| // example: |
| // x = computation |
| // if () {} else {} |
| // use x |
| // the instruction could be sunk over the whole diamond for the |
| // if/then/else (or loop, etc), allowing it to be sunk into other blocks |
| // after that. |
| |
| // Virtual register defs can only be sunk if all their uses are in blocks |
| // dominated by one of the successors. |
| if (SuccToSinkTo) { |
| // If a previous operand picked a block to sink to, then this operand |
| // must be sinkable to the same block. |
| if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo)) |
| return false; |
| continue; |
| } |
| |
| // Otherwise, we should look at all the successors and decide which one |
| // we should sink to. |
| for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(), |
| E = ParentBlock->succ_end(); SI != E; ++SI) { |
| if (AllUsesDominatedByBlock(Reg, *SI)) { |
| SuccToSinkTo = *SI; |
| break; |
| } |
| } |
| |
| // If we couldn't find a block to sink to, ignore this instruction. |
| if (SuccToSinkTo == 0) |
| return false; |
| } |
| } |
| |
| // If there are no outputs, it must have side-effects. |
| if (SuccToSinkTo == 0) |
| return false; |
| |
| // It's not safe to sink instructions to EH landing pad. Control flow into |
| // landing pad is implicitly defined. |
| if (SuccToSinkTo->isLandingPad()) |
| return false; |
| |
| // It is not possible to sink an instruction into its own block. This can |
| // happen with loops. |
| if (MI->getParent() == SuccToSinkTo) |
| return false; |
| |
| DEBUG(dbgs() << "Sink instr " << *MI); |
| DEBUG(dbgs() << "to block " << *SuccToSinkTo); |
| |
| // If the block has multiple predecessors, this would introduce computation on |
| // a path that it doesn't already exist. We could split the critical edge, |
| // but for now we just punt. |
| // FIXME: Split critical edges if not backedges. |
| if (SuccToSinkTo->pred_size() > 1) { |
| DEBUG(dbgs() << " *** PUNTING: Critical edge found\n"); |
| return false; |
| } |
| |
| // Determine where to insert into. Skip phi nodes. |
| MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); |
| while (InsertPos != SuccToSinkTo->end() && |
| InsertPos->getOpcode() == TargetInstrInfo::PHI) |
| ++InsertPos; |
| |
| // Move the instruction. |
| SuccToSinkTo->splice(InsertPos, ParentBlock, MI, |
| ++MachineBasicBlock::iterator(MI)); |
| return true; |
| } |