| //===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Pass to verify generated machine code. The following is checked: |
| // |
| // Operand counts: All explicit operands must be present. |
| // |
| // Register classes: All physical and virtual register operands must be |
| // compatible with the register class required by the instruction descriptor. |
| // |
| // Register live intervals: Registers must be defined only once, and must be |
| // defined before use. |
| // |
| // The machine code verifier is enabled from LLVMTargetMachine.cpp with the |
| // command-line option -verify-machineinstrs, or by defining the environment |
| // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive |
| // the verifier errors. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| namespace { |
| struct MachineVerifier { |
| |
| MachineVerifier(Pass *pass, bool allowDoubleDefs) : |
| PASS(pass), |
| allowVirtDoubleDefs(allowDoubleDefs), |
| allowPhysDoubleDefs(allowDoubleDefs), |
| OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) |
| {} |
| |
| bool runOnMachineFunction(MachineFunction &MF); |
| |
| Pass *const PASS; |
| const bool allowVirtDoubleDefs; |
| const bool allowPhysDoubleDefs; |
| |
| const char *const OutFileName; |
| raw_ostream *OS; |
| const MachineFunction *MF; |
| const TargetMachine *TM; |
| const TargetRegisterInfo *TRI; |
| const MachineRegisterInfo *MRI; |
| |
| unsigned foundErrors; |
| |
| typedef SmallVector<unsigned, 16> RegVector; |
| typedef DenseSet<unsigned> RegSet; |
| typedef DenseMap<unsigned, const MachineInstr*> RegMap; |
| |
| BitVector regsReserved; |
| RegSet regsLive; |
| RegVector regsDefined, regsDead, regsKilled; |
| RegSet regsLiveInButUnused; |
| |
| // Add Reg and any sub-registers to RV |
| void addRegWithSubRegs(RegVector &RV, unsigned Reg) { |
| RV.push_back(Reg); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) |
| RV.push_back(*R); |
| } |
| |
| struct BBInfo { |
| // Is this MBB reachable from the MF entry point? |
| bool reachable; |
| |
| // Vregs that must be live in because they are used without being |
| // defined. Map value is the user. |
| RegMap vregsLiveIn; |
| |
| // Vregs that must be dead in because they are defined without being |
| // killed first. Map value is the defining instruction. |
| RegMap vregsDeadIn; |
| |
| // Regs killed in MBB. They may be defined again, and will then be in both |
| // regsKilled and regsLiveOut. |
| RegSet regsKilled; |
| |
| // Regs defined in MBB and live out. Note that vregs passing through may |
| // be live out without being mentioned here. |
| RegSet regsLiveOut; |
| |
| // Vregs that pass through MBB untouched. This set is disjoint from |
| // regsKilled and regsLiveOut. |
| RegSet vregsPassed; |
| |
| // Vregs that must pass through MBB because they are needed by a successor |
| // block. This set is disjoint from regsLiveOut. |
| RegSet vregsRequired; |
| |
| BBInfo() : reachable(false) {} |
| |
| // Add register to vregsPassed if it belongs there. Return true if |
| // anything changed. |
| bool addPassed(unsigned Reg) { |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| return false; |
| if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) |
| return false; |
| return vregsPassed.insert(Reg).second; |
| } |
| |
| // Same for a full set. |
| bool addPassed(const RegSet &RS) { |
| bool changed = false; |
| for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) |
| if (addPassed(*I)) |
| changed = true; |
| return changed; |
| } |
| |
| // Add register to vregsRequired if it belongs there. Return true if |
| // anything changed. |
| bool addRequired(unsigned Reg) { |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| return false; |
| if (regsLiveOut.count(Reg)) |
| return false; |
| return vregsRequired.insert(Reg).second; |
| } |
| |
| // Same for a full set. |
| bool addRequired(const RegSet &RS) { |
| bool changed = false; |
| for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) |
| if (addRequired(*I)) |
| changed = true; |
| return changed; |
| } |
| |
| // Same for a full map. |
| bool addRequired(const RegMap &RM) { |
| bool changed = false; |
| for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) |
| if (addRequired(I->first)) |
| changed = true; |
| return changed; |
| } |
| |
| // Live-out registers are either in regsLiveOut or vregsPassed. |
| bool isLiveOut(unsigned Reg) const { |
| return regsLiveOut.count(Reg) || vregsPassed.count(Reg); |
| } |
| }; |
| |
| // Extra register info per MBB. |
| DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; |
| |
| bool isReserved(unsigned Reg) { |
| return Reg < regsReserved.size() && regsReserved.test(Reg); |
| } |
| |
| // Analysis information if available |
| LiveVariables *LiveVars; |
| |
| void visitMachineFunctionBefore(); |
| void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); |
| void visitMachineInstrBefore(const MachineInstr *MI); |
| void visitMachineOperand(const MachineOperand *MO, unsigned MONum); |
| void visitMachineInstrAfter(const MachineInstr *MI); |
| void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); |
| void visitMachineFunctionAfter(); |
| |
| void report(const char *msg, const MachineFunction *MF); |
| void report(const char *msg, const MachineBasicBlock *MBB); |
| void report(const char *msg, const MachineInstr *MI); |
| void report(const char *msg, const MachineOperand *MO, unsigned MONum); |
| |
| void markReachable(const MachineBasicBlock *MBB); |
| void calcRegsPassed(); |
| void checkPHIOps(const MachineBasicBlock *MBB); |
| |
| void calcRegsRequired(); |
| void verifyLiveVariables(); |
| }; |
| |
| struct MachineVerifierPass : public MachineFunctionPass { |
| static char ID; // Pass ID, replacement for typeid |
| bool AllowDoubleDefs; |
| |
| explicit MachineVerifierPass(bool allowDoubleDefs = false) |
| : MachineFunctionPass(&ID), |
| AllowDoubleDefs(allowDoubleDefs) {} |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) { |
| MF.verify(this, AllowDoubleDefs); |
| return false; |
| } |
| }; |
| |
| } |
| |
| char MachineVerifierPass::ID = 0; |
| static RegisterPass<MachineVerifierPass> |
| MachineVer("machineverifier", "Verify generated machine code"); |
| static const PassInfo *const MachineVerifyID = &MachineVer; |
| |
| FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) { |
| return new MachineVerifierPass(allowPhysDoubleDefs); |
| } |
| |
| void MachineFunction::verify(Pass *p, bool allowDoubleDefs) const { |
| MachineVerifier(p, allowDoubleDefs) |
| .runOnMachineFunction(const_cast<MachineFunction&>(*this)); |
| } |
| |
| bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { |
| raw_ostream *OutFile = 0; |
| if (OutFileName) { |
| std::string ErrorInfo; |
| OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, |
| raw_fd_ostream::F_Append); |
| if (!ErrorInfo.empty()) { |
| errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; |
| exit(1); |
| } |
| |
| OS = OutFile; |
| } else { |
| OS = &errs(); |
| } |
| |
| foundErrors = 0; |
| |
| this->MF = &MF; |
| TM = &MF.getTarget(); |
| TRI = TM->getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| |
| if (PASS) { |
| LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); |
| } else { |
| LiveVars = NULL; |
| } |
| |
| visitMachineFunctionBefore(); |
| for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); |
| MFI!=MFE; ++MFI) { |
| visitMachineBasicBlockBefore(MFI); |
| for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), |
| MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { |
| visitMachineInstrBefore(MBBI); |
| for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) |
| visitMachineOperand(&MBBI->getOperand(I), I); |
| visitMachineInstrAfter(MBBI); |
| } |
| visitMachineBasicBlockAfter(MFI); |
| } |
| visitMachineFunctionAfter(); |
| |
| if (OutFile) |
| delete OutFile; |
| else if (foundErrors) |
| llvm_report_error("Found "+Twine(foundErrors)+" machine code errors."); |
| |
| // Clean up. |
| regsLive.clear(); |
| regsDefined.clear(); |
| regsDead.clear(); |
| regsKilled.clear(); |
| regsLiveInButUnused.clear(); |
| MBBInfoMap.clear(); |
| |
| return false; // no changes |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineFunction *MF) { |
| assert(MF); |
| *OS << '\n'; |
| if (!foundErrors++) |
| MF->print(*OS); |
| *OS << "*** Bad machine code: " << msg << " ***\n" |
| << "- function: " << MF->getFunction()->getNameStr() << "\n"; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { |
| assert(MBB); |
| report(msg, MBB->getParent()); |
| *OS << "- basic block: " << MBB->getName() |
| << " " << (void*)MBB |
| << " (BB#" << MBB->getNumber() << ")\n"; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineInstr *MI) { |
| assert(MI); |
| report(msg, MI->getParent()); |
| *OS << "- instruction: "; |
| MI->print(*OS, TM); |
| } |
| |
| void MachineVerifier::report(const char *msg, |
| const MachineOperand *MO, unsigned MONum) { |
| assert(MO); |
| report(msg, MO->getParent()); |
| *OS << "- operand " << MONum << ": "; |
| MO->print(*OS, TM); |
| *OS << "\n"; |
| } |
| |
| void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| if (!MInfo.reachable) { |
| MInfo.reachable = true; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), |
| SuE = MBB->succ_end(); SuI != SuE; ++SuI) |
| markReachable(*SuI); |
| } |
| } |
| |
| void MachineVerifier::visitMachineFunctionBefore() { |
| regsReserved = TRI->getReservedRegs(*MF); |
| |
| // A sub-register of a reserved register is also reserved |
| for (int Reg = regsReserved.find_first(); Reg>=0; |
| Reg = regsReserved.find_next(Reg)) { |
| for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { |
| // FIXME: This should probably be: |
| // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); |
| regsReserved.set(*Sub); |
| } |
| } |
| markReachable(&MF->front()); |
| } |
| |
| // Does iterator point to a and b as the first two elements? |
| bool matchPair(MachineBasicBlock::const_succ_iterator i, |
| const MachineBasicBlock *a, const MachineBasicBlock *b) { |
| if (*i == a) |
| return *++i == b; |
| if (*i == b) |
| return *++i == a; |
| return false; |
| } |
| |
| void |
| MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { |
| const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); |
| |
| // Call AnalyzeBranch. If it succeeds, there several more conditions to check. |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), |
| TBB, FBB, Cond)) { |
| // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's |
| // check whether its answers match up with reality. |
| if (!TBB && !FBB) { |
| // Block falls through to its successor. |
| MachineFunction::const_iterator MBBI = MBB; |
| ++MBBI; |
| if (MBBI == MF->end()) { |
| // It's possible that the block legitimately ends with a noreturn |
| // call or an unreachable, in which case it won't actually fall |
| // out the bottom of the function. |
| } else if (MBB->succ_empty()) { |
| // It's possible that the block legitimately ends with a noreturn |
| // call or an unreachable, in which case it won't actuall fall |
| // out of the block. |
| } else if (MBB->succ_size() != 1) { |
| report("MBB exits via unconditional fall-through but doesn't have " |
| "exactly one CFG successor!", MBB); |
| } else if (MBB->succ_begin()[0] != MBBI) { |
| report("MBB exits via unconditional fall-through but its successor " |
| "differs from its CFG successor!", MBB); |
| } |
| if (!MBB->empty() && MBB->back().getDesc().isBarrier()) { |
| report("MBB exits via unconditional fall-through but ends with a " |
| "barrier instruction!", MBB); |
| } |
| if (!Cond.empty()) { |
| report("MBB exits via unconditional fall-through but has a condition!", |
| MBB); |
| } |
| } else if (TBB && !FBB && Cond.empty()) { |
| // Block unconditionally branches somewhere. |
| if (MBB->succ_size() != 1) { |
| report("MBB exits via unconditional branch but doesn't have " |
| "exactly one CFG successor!", MBB); |
| } else if (MBB->succ_begin()[0] != TBB) { |
| report("MBB exits via unconditional branch but the CFG " |
| "successor doesn't match the actual successor!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via unconditional branch but doesn't contain " |
| "any instructions!", MBB); |
| } else if (!MBB->back().getDesc().isBarrier()) { |
| report("MBB exits via unconditional branch but doesn't end with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().getDesc().isTerminator()) { |
| report("MBB exits via unconditional branch but the branch isn't a " |
| "terminator instruction!", MBB); |
| } |
| } else if (TBB && !FBB && !Cond.empty()) { |
| // Block conditionally branches somewhere, otherwise falls through. |
| MachineFunction::const_iterator MBBI = MBB; |
| ++MBBI; |
| if (MBBI == MF->end()) { |
| report("MBB conditionally falls through out of function!", MBB); |
| } if (MBB->succ_size() != 2) { |
| report("MBB exits via conditional branch/fall-through but doesn't have " |
| "exactly two CFG successors!", MBB); |
| } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { |
| report("MBB exits via conditional branch/fall-through but the CFG " |
| "successors don't match the actual successors!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via conditional branch/fall-through but doesn't " |
| "contain any instructions!", MBB); |
| } else if (MBB->back().getDesc().isBarrier()) { |
| report("MBB exits via conditional branch/fall-through but ends with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().getDesc().isTerminator()) { |
| report("MBB exits via conditional branch/fall-through but the branch " |
| "isn't a terminator instruction!", MBB); |
| } |
| } else if (TBB && FBB) { |
| // Block conditionally branches somewhere, otherwise branches |
| // somewhere else. |
| if (MBB->succ_size() != 2) { |
| report("MBB exits via conditional branch/branch but doesn't have " |
| "exactly two CFG successors!", MBB); |
| } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { |
| report("MBB exits via conditional branch/branch but the CFG " |
| "successors don't match the actual successors!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via conditional branch/branch but doesn't " |
| "contain any instructions!", MBB); |
| } else if (!MBB->back().getDesc().isBarrier()) { |
| report("MBB exits via conditional branch/branch but doesn't end with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().getDesc().isTerminator()) { |
| report("MBB exits via conditional branch/branch but the branch " |
| "isn't a terminator instruction!", MBB); |
| } |
| if (Cond.empty()) { |
| report("MBB exits via conditinal branch/branch but there's no " |
| "condition!", MBB); |
| } |
| } else { |
| report("AnalyzeBranch returned invalid data!", MBB); |
| } |
| } |
| |
| regsLive.clear(); |
| for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(), |
| E = MBB->livein_end(); I != E; ++I) { |
| if (!TargetRegisterInfo::isPhysicalRegister(*I)) { |
| report("MBB live-in list contains non-physical register", MBB); |
| continue; |
| } |
| regsLive.insert(*I); |
| for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) |
| regsLive.insert(*R); |
| } |
| regsLiveInButUnused = regsLive; |
| |
| const MachineFrameInfo *MFI = MF->getFrameInfo(); |
| assert(MFI && "Function has no frame info"); |
| BitVector PR = MFI->getPristineRegs(MBB); |
| for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { |
| regsLive.insert(I); |
| for (const unsigned *R = TRI->getSubRegisters(I); *R; R++) |
| regsLive.insert(*R); |
| } |
| |
| regsKilled.clear(); |
| regsDefined.clear(); |
| } |
| |
| void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { |
| const TargetInstrDesc &TI = MI->getDesc(); |
| if (MI->getNumOperands() < TI.getNumOperands()) { |
| report("Too few operands", MI); |
| *OS << TI.getNumOperands() << " operands expected, but " |
| << MI->getNumExplicitOperands() << " given.\n"; |
| } |
| |
| // Check the MachineMemOperands for basic consistency. |
| for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), |
| E = MI->memoperands_end(); I != E; ++I) { |
| if ((*I)->isLoad() && !TI.mayLoad()) |
| report("Missing mayLoad flag", MI); |
| if ((*I)->isStore() && !TI.mayStore()) |
| report("Missing mayStore flag", MI); |
| } |
| } |
| |
| void |
| MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { |
| const MachineInstr *MI = MO->getParent(); |
| const TargetInstrDesc &TI = MI->getDesc(); |
| |
| // The first TI.NumDefs operands must be explicit register defines |
| if (MONum < TI.getNumDefs()) { |
| if (!MO->isReg()) |
| report("Explicit definition must be a register", MO, MONum); |
| else if (!MO->isDef()) |
| report("Explicit definition marked as use", MO, MONum); |
| else if (MO->isImplicit()) |
| report("Explicit definition marked as implicit", MO, MONum); |
| } else if (MONum < TI.getNumOperands()) { |
| if (MO->isReg()) { |
| if (MO->isDef()) |
| report("Explicit operand marked as def", MO, MONum); |
| if (MO->isImplicit()) |
| report("Explicit operand marked as implicit", MO, MONum); |
| } |
| } else { |
| // ARM adds %reg0 operands to indicate predicates. We'll allow that. |
| if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg()) |
| report("Extra explicit operand on non-variadic instruction", MO, MONum); |
| } |
| |
| switch (MO->getType()) { |
| case MachineOperand::MO_Register: { |
| const unsigned Reg = MO->getReg(); |
| if (!Reg) |
| return; |
| |
| // Check Live Variables. |
| if (MO->isUndef()) { |
| // An <undef> doesn't refer to any register, so just skip it. |
| } else if (MO->isUse()) { |
| regsLiveInButUnused.erase(Reg); |
| |
| bool isKill = false; |
| if (MO->isKill()) { |
| isKill = true; |
| // Tied operands on two-address instuctions MUST NOT have a <kill> flag. |
| if (MI->isRegTiedToDefOperand(MONum)) |
| report("Illegal kill flag on two-address instruction operand", |
| MO, MONum); |
| } else { |
| // TwoAddress instr modifying a reg is treated as kill+def. |
| unsigned defIdx; |
| if (MI->isRegTiedToDefOperand(MONum, &defIdx) && |
| MI->getOperand(defIdx).getReg() == Reg) |
| isKill = true; |
| } |
| if (isKill) { |
| addRegWithSubRegs(regsKilled, Reg); |
| |
| // Check that LiveVars knows this kill |
| if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg)) { |
| LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| if (std::find(VI.Kills.begin(), |
| VI.Kills.end(), MI) == VI.Kills.end()) |
| report("Kill missing from LiveVariables", MO, MONum); |
| } |
| } |
| |
| // Use of a dead register. |
| if (!regsLive.count(Reg)) { |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| // Reserved registers may be used even when 'dead'. |
| if (!isReserved(Reg)) |
| report("Using an undefined physical register", MO, MONum); |
| } else { |
| BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| // We don't know which virtual registers are live in, so only complain |
| // if vreg was killed in this MBB. Otherwise keep track of vregs that |
| // must be live in. PHI instructions are handled separately. |
| if (MInfo.regsKilled.count(Reg)) |
| report("Using a killed virtual register", MO, MONum); |
| else if (MI->getOpcode() != TargetInstrInfo::PHI) |
| MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); |
| } |
| } |
| } else { |
| assert(MO->isDef()); |
| // Register defined. |
| // TODO: verify that earlyclobber ops are not used. |
| if (MO->isDead()) |
| addRegWithSubRegs(regsDead, Reg); |
| else |
| addRegWithSubRegs(regsDefined, Reg); |
| } |
| |
| // Check register classes. |
| if (MONum < TI.getNumOperands() && !MO->isImplicit()) { |
| const TargetOperandInfo &TOI = TI.OpInfo[MONum]; |
| unsigned SubIdx = MO->getSubReg(); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| unsigned sr = Reg; |
| if (SubIdx) { |
| unsigned s = TRI->getSubReg(Reg, SubIdx); |
| if (!s) { |
| report("Invalid subregister index for physical register", |
| MO, MONum); |
| return; |
| } |
| sr = s; |
| } |
| if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { |
| if (!DRC->contains(sr)) { |
| report("Illegal physical register for instruction", MO, MONum); |
| *OS << TRI->getName(sr) << " is not a " |
| << DRC->getName() << " register.\n"; |
| } |
| } |
| } else { |
| // Virtual register. |
| const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
| if (SubIdx) { |
| if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) { |
| report("Invalid subregister index for virtual register", MO, MONum); |
| return; |
| } |
| RC = *(RC->subregclasses_begin()+SubIdx); |
| } |
| if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { |
| if (RC != DRC && !RC->hasSuperClass(DRC)) { |
| report("Illegal virtual register for instruction", MO, MONum); |
| *OS << "Expected a " << DRC->getName() << " register, but got a " |
| << RC->getName() << " register\n"; |
| } |
| } |
| } |
| } |
| break; |
| } |
| |
| case MachineOperand::MO_MachineBasicBlock: |
| if (MI->getOpcode() == TargetInstrInfo::PHI) { |
| if (!MO->getMBB()->isSuccessor(MI->getParent())) |
| report("PHI operand is not in the CFG", MO, MONum); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { |
| BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| set_union(MInfo.regsKilled, regsKilled); |
| set_subtract(regsLive, regsKilled); |
| regsKilled.clear(); |
| |
| // Verify that both <def> and <def,dead> operands refer to dead registers. |
| RegVector defs(regsDefined); |
| defs.append(regsDead.begin(), regsDead.end()); |
| |
| for (RegVector::const_iterator I = defs.begin(), E = defs.end(); |
| I != E; ++I) { |
| if (regsLive.count(*I)) { |
| if (TargetRegisterInfo::isPhysicalRegister(*I)) { |
| if (!allowPhysDoubleDefs && !isReserved(*I) && |
| !regsLiveInButUnused.count(*I)) { |
| report("Redefining a live physical register", MI); |
| *OS << "Register " << TRI->getName(*I) |
| << " was defined but already live.\n"; |
| } |
| } else { |
| if (!allowVirtDoubleDefs) { |
| report("Redefining a live virtual register", MI); |
| *OS << "Virtual register %reg" << *I |
| << " was defined but already live.\n"; |
| } |
| } |
| } else if (TargetRegisterInfo::isVirtualRegister(*I) && |
| !MInfo.regsKilled.count(*I)) { |
| // Virtual register defined without being killed first must be dead on |
| // entry. |
| MInfo.vregsDeadIn.insert(std::make_pair(*I, MI)); |
| } |
| } |
| |
| set_subtract(regsLive, regsDead); regsDead.clear(); |
| set_union(regsLive, regsDefined); regsDefined.clear(); |
| } |
| |
| void |
| MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { |
| MBBInfoMap[MBB].regsLiveOut = regsLive; |
| regsLive.clear(); |
| } |
| |
| // Calculate the largest possible vregsPassed sets. These are the registers that |
| // can pass through an MBB live, but may not be live every time. It is assumed |
| // that all vregsPassed sets are empty before the call. |
| void MachineVerifier::calcRegsPassed() { |
| // First push live-out regs to successors' vregsPassed. Remember the MBBs that |
| // have any vregsPassed. |
| DenseSet<const MachineBasicBlock*> todo; |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| const MachineBasicBlock &MBB(*MFI); |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| if (!MInfo.reachable) |
| continue; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), |
| SuE = MBB.succ_end(); SuI != SuE; ++SuI) { |
| BBInfo &SInfo = MBBInfoMap[*SuI]; |
| if (SInfo.addPassed(MInfo.regsLiveOut)) |
| todo.insert(*SuI); |
| } |
| } |
| |
| // Iteratively push vregsPassed to successors. This will converge to the same |
| // final state regardless of DenseSet iteration order. |
| while (!todo.empty()) { |
| const MachineBasicBlock *MBB = *todo.begin(); |
| todo.erase(MBB); |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), |
| SuE = MBB->succ_end(); SuI != SuE; ++SuI) { |
| if (*SuI == MBB) |
| continue; |
| BBInfo &SInfo = MBBInfoMap[*SuI]; |
| if (SInfo.addPassed(MInfo.vregsPassed)) |
| todo.insert(*SuI); |
| } |
| } |
| } |
| |
| // Calculate the set of virtual registers that must be passed through each basic |
| // block in order to satisfy the requirements of successor blocks. This is very |
| // similar to calcRegsPassed, only backwards. |
| void MachineVerifier::calcRegsRequired() { |
| // First push live-in regs to predecessors' vregsRequired. |
| DenseSet<const MachineBasicBlock*> todo; |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| const MachineBasicBlock &MBB(*MFI); |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), |
| PrE = MBB.pred_end(); PrI != PrE; ++PrI) { |
| BBInfo &PInfo = MBBInfoMap[*PrI]; |
| if (PInfo.addRequired(MInfo.vregsLiveIn)) |
| todo.insert(*PrI); |
| } |
| } |
| |
| // Iteratively push vregsRequired to predecessors. This will converge to the |
| // same final state regardless of DenseSet iteration order. |
| while (!todo.empty()) { |
| const MachineBasicBlock *MBB = *todo.begin(); |
| todo.erase(MBB); |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), |
| PrE = MBB->pred_end(); PrI != PrE; ++PrI) { |
| if (*PrI == MBB) |
| continue; |
| BBInfo &SInfo = MBBInfoMap[*PrI]; |
| if (SInfo.addRequired(MInfo.vregsRequired)) |
| todo.insert(*PrI); |
| } |
| } |
| } |
| |
| // Check PHI instructions at the beginning of MBB. It is assumed that |
| // calcRegsPassed has been run so BBInfo::isLiveOut is valid. |
| void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { |
| for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); |
| BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) { |
| DenseSet<const MachineBasicBlock*> seen; |
| |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { |
| unsigned Reg = BBI->getOperand(i).getReg(); |
| const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); |
| if (!Pre->isSuccessor(MBB)) |
| continue; |
| seen.insert(Pre); |
| BBInfo &PrInfo = MBBInfoMap[Pre]; |
| if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) |
| report("PHI operand is not live-out from predecessor", |
| &BBI->getOperand(i), i); |
| } |
| |
| // Did we see all predecessors? |
| for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), |
| PrE = MBB->pred_end(); PrI != PrE; ++PrI) { |
| if (!seen.count(*PrI)) { |
| report("Missing PHI operand", BBI); |
| *OS << "BB#" << (*PrI)->getNumber() |
| << " is a predecessor according to the CFG.\n"; |
| } |
| } |
| } |
| } |
| |
| void MachineVerifier::visitMachineFunctionAfter() { |
| calcRegsPassed(); |
| |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| BBInfo &MInfo = MBBInfoMap[MFI]; |
| |
| // Skip unreachable MBBs. |
| if (!MInfo.reachable) |
| continue; |
| |
| checkPHIOps(MFI); |
| |
| // Verify dead-in virtual registers. |
| if (!allowVirtDoubleDefs) { |
| for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(), |
| PrE = MFI->pred_end(); PrI != PrE; ++PrI) { |
| BBInfo &PrInfo = MBBInfoMap[*PrI]; |
| if (!PrInfo.reachable) |
| continue; |
| |
| for (RegMap::iterator I = MInfo.vregsDeadIn.begin(), |
| E = MInfo.vregsDeadIn.end(); I != E; ++I) { |
| // DeadIn register must be in neither regsLiveOut or vregsPassed of |
| // any predecessor. |
| if (PrInfo.isLiveOut(I->first)) { |
| report("Live-in virtual register redefined", I->second); |
| *OS << "Register %reg" << I->first |
| << " was live-out from predecessor MBB #" |
| << (*PrI)->getNumber() << ".\n"; |
| } |
| } |
| } |
| } |
| } |
| |
| // Now check LiveVariables info if available |
| if (LiveVars) { |
| calcRegsRequired(); |
| verifyLiveVariables(); |
| } |
| } |
| |
| void MachineVerifier::verifyLiveVariables() { |
| assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); |
| for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister, |
| RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) { |
| LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| BBInfo &MInfo = MBBInfoMap[MFI]; |
| |
| // Our vregsRequired should be identical to LiveVariables' AliveBlocks |
| if (MInfo.vregsRequired.count(Reg)) { |
| if (!VI.AliveBlocks.test(MFI->getNumber())) { |
| report("LiveVariables: Block missing from AliveBlocks", MFI); |
| *OS << "Virtual register %reg" << Reg |
| << " must be live through the block.\n"; |
| } |
| } else { |
| if (VI.AliveBlocks.test(MFI->getNumber())) { |
| report("LiveVariables: Block should not be in AliveBlocks", MFI); |
| *OS << "Virtual register %reg" << Reg |
| << " is not needed live through the block.\n"; |
| } |
| } |
| } |
| } |
| } |
| |
| |