| //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass eliminates machine instruction PHI nodes by inserting copy |
| // instructions. This destroys SSA information, but is the desired input for |
| // some register allocators. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "phielim" |
| #include "PHIElimination.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Function.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include <algorithm> |
| #include <map> |
| using namespace llvm; |
| |
| STATISTIC(NumAtomic, "Number of atomic phis lowered"); |
| STATISTIC(NumSplits, "Number of critical edges split on demand"); |
| STATISTIC(NumReused, "Number of reused lowered phis"); |
| |
| char PHIElimination::ID = 0; |
| static RegisterPass<PHIElimination> |
| X("phi-node-elimination", "Eliminate PHI nodes for register allocation"); |
| |
| const PassInfo *const llvm::PHIEliminationID = &X; |
| |
| void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreserved<LiveVariables>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| // rdar://7401784 This would be nice: |
| // AU.addPreservedID(MachineLoopInfoID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) { |
| MRI = &Fn.getRegInfo(); |
| |
| PHIDefs.clear(); |
| PHIKills.clear(); |
| bool Changed = false; |
| |
| // Split critical edges to help the coalescer |
| if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) |
| for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| Changed |= SplitPHIEdges(Fn, *I, *LV); |
| |
| // Populate VRegPHIUseCount |
| analyzePHINodes(Fn); |
| |
| // Eliminate PHI instructions by inserting copies into predecessor blocks. |
| for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| Changed |= EliminatePHINodes(Fn, *I); |
| |
| // Remove dead IMPLICIT_DEF instructions. |
| for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), |
| E = ImpDefs.end(); I != E; ++I) { |
| MachineInstr *DefMI = *I; |
| unsigned DefReg = DefMI->getOperand(0).getReg(); |
| if (MRI->use_empty(DefReg)) |
| DefMI->eraseFromParent(); |
| } |
| |
| // Clean up the lowered PHI instructions. |
| for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); |
| I != E; ++I) |
| Fn.DeleteMachineInstr(I->first); |
| |
| LoweredPHIs.clear(); |
| ImpDefs.clear(); |
| VRegPHIUseCount.clear(); |
| return Changed; |
| } |
| |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in |
| /// predecessor basic blocks. |
| /// |
| bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF, |
| MachineBasicBlock &MBB) { |
| if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) |
| return false; // Quick exit for basic blocks without PHIs. |
| |
| // Get an iterator to the first instruction after the last PHI node (this may |
| // also be the end of the basic block). |
| MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin()); |
| |
| while (MBB.front().getOpcode() == TargetInstrInfo::PHI) |
| LowerAtomicPHINode(MBB, AfterPHIsIt); |
| |
| return true; |
| } |
| |
| /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node |
| /// are implicit_def's. |
| static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, |
| const MachineRegisterInfo *MRI) { |
| for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { |
| unsigned SrcReg = MPhi->getOperand(i).getReg(); |
| const MachineInstr *DefMI = MRI->getVRegDef(SrcReg); |
| if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) |
| return false; |
| } |
| return true; |
| } |
| |
| // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg |
| // when following the CFG edge to SuccMBB. This needs to be after any def of |
| // SrcReg, but before any subsequent point where control flow might jump out of |
| // the basic block. |
| MachineBasicBlock::iterator |
| llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB, |
| MachineBasicBlock &SuccMBB, |
| unsigned SrcReg) { |
| // Handle the trivial case trivially. |
| if (MBB.empty()) |
| return MBB.begin(); |
| |
| // Usually, we just want to insert the copy before the first terminator |
| // instruction. However, for the edge going to a landing pad, we must insert |
| // the copy before the call/invoke instruction. |
| if (!SuccMBB.isLandingPad()) |
| return MBB.getFirstTerminator(); |
| |
| // Discover any defs/uses in this basic block. |
| SmallPtrSet<MachineInstr*, 8> DefUsesInMBB; |
| for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), |
| RE = MRI->reg_end(); RI != RE; ++RI) { |
| MachineInstr *DefUseMI = &*RI; |
| if (DefUseMI->getParent() == &MBB) |
| DefUsesInMBB.insert(DefUseMI); |
| } |
| |
| MachineBasicBlock::iterator InsertPoint; |
| if (DefUsesInMBB.empty()) { |
| // No defs. Insert the copy at the start of the basic block. |
| InsertPoint = MBB.begin(); |
| } else if (DefUsesInMBB.size() == 1) { |
| // Insert the copy immediately after the def/use. |
| InsertPoint = *DefUsesInMBB.begin(); |
| ++InsertPoint; |
| } else { |
| // Insert the copy immediately after the last def/use. |
| InsertPoint = MBB.end(); |
| while (!DefUsesInMBB.count(&*--InsertPoint)) {} |
| ++InsertPoint; |
| } |
| |
| // Make sure the copy goes after any phi nodes however. |
| return SkipPHIsAndLabels(MBB, InsertPoint); |
| } |
| |
| /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, |
| /// under the assuption that it needs to be lowered in a way that supports |
| /// atomic execution of PHIs. This lowering method is always correct all of the |
| /// time. |
| /// |
| void llvm::PHIElimination::LowerAtomicPHINode( |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator AfterPHIsIt) { |
| ++NumAtomic; |
| // Unlink the PHI node from the basic block, but don't delete the PHI yet. |
| MachineInstr *MPhi = MBB.remove(MBB.begin()); |
| |
| unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; |
| unsigned DestReg = MPhi->getOperand(0).getReg(); |
| bool isDead = MPhi->getOperand(0).isDead(); |
| |
| // Create a new register for the incoming PHI arguments. |
| MachineFunction &MF = *MBB.getParent(); |
| const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); |
| unsigned IncomingReg = 0; |
| bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? |
| |
| // Insert a register to register copy at the top of the current block (but |
| // after any remaining phi nodes) which copies the new incoming register |
| // into the phi node destination. |
| const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); |
| if (isSourceDefinedByImplicitDef(MPhi, MRI)) |
| // If all sources of a PHI node are implicit_def, just emit an |
| // implicit_def instead of a copy. |
| BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), |
| TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg); |
| else { |
| // Can we reuse an earlier PHI node? This only happens for critical edges, |
| // typically those created by tail duplication. |
| unsigned &entry = LoweredPHIs[MPhi]; |
| if (entry) { |
| // An identical PHI node was already lowered. Reuse the incoming register. |
| IncomingReg = entry; |
| reusedIncoming = true; |
| ++NumReused; |
| DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi); |
| } else { |
| entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); |
| } |
| TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC); |
| } |
| |
| // Record PHI def. |
| assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?"); |
| PHIDefs[DestReg] = &MBB; |
| |
| // Update live variable information if there is any. |
| LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>(); |
| if (LV) { |
| MachineInstr *PHICopy = prior(AfterPHIsIt); |
| |
| if (IncomingReg) { |
| LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); |
| |
| // Increment use count of the newly created virtual register. |
| VI.NumUses++; |
| |
| // When we are reusing the incoming register, it may already have been |
| // killed in this block. The old kill will also have been inserted at |
| // AfterPHIsIt, so it appears before the current PHICopy. |
| if (reusedIncoming) |
| if (MachineInstr *OldKill = VI.findKill(&MBB)) { |
| DEBUG(dbgs() << "Remove old kill from " << *OldKill); |
| LV->removeVirtualRegisterKilled(IncomingReg, OldKill); |
| DEBUG(MBB.dump()); |
| } |
| |
| // Add information to LiveVariables to know that the incoming value is |
| // killed. Note that because the value is defined in several places (once |
| // each for each incoming block), the "def" block and instruction fields |
| // for the VarInfo is not filled in. |
| LV->addVirtualRegisterKilled(IncomingReg, PHICopy); |
| } |
| |
| // Since we are going to be deleting the PHI node, if it is the last use of |
| // any registers, or if the value itself is dead, we need to move this |
| // information over to the new copy we just inserted. |
| LV->removeVirtualRegistersKilled(MPhi); |
| |
| // If the result is dead, update LV. |
| if (isDead) { |
| LV->addVirtualRegisterDead(DestReg, PHICopy); |
| LV->removeVirtualRegisterDead(DestReg, MPhi); |
| } |
| } |
| |
| // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. |
| for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) |
| --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), |
| MPhi->getOperand(i).getReg())]; |
| |
| // Now loop over all of the incoming arguments, changing them to copy into the |
| // IncomingReg register in the corresponding predecessor basic block. |
| SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; |
| for (int i = NumSrcs - 1; i >= 0; --i) { |
| unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); |
| assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && |
| "Machine PHI Operands must all be virtual registers!"); |
| |
| // Get the MachineBasicBlock equivalent of the BasicBlock that is the source |
| // path the PHI. |
| MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); |
| |
| // Record the kill. |
| PHIKills[SrcReg].insert(&opBlock); |
| |
| // If source is defined by an implicit def, there is no need to insert a |
| // copy. |
| MachineInstr *DefMI = MRI->getVRegDef(SrcReg); |
| if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) { |
| ImpDefs.insert(DefMI); |
| continue; |
| } |
| |
| // Check to make sure we haven't already emitted the copy for this block. |
| // This can happen because PHI nodes may have multiple entries for the same |
| // basic block. |
| if (!MBBsInsertedInto.insert(&opBlock)) |
| continue; // If the copy has already been emitted, we're done. |
| |
| // Find a safe location to insert the copy, this may be the first terminator |
| // in the block (or end()). |
| MachineBasicBlock::iterator InsertPos = |
| FindCopyInsertPoint(opBlock, MBB, SrcReg); |
| |
| // Insert the copy. |
| if (!reusedIncoming && IncomingReg) |
| TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC); |
| |
| // Now update live variable information if we have it. Otherwise we're done |
| if (!LV) continue; |
| |
| // We want to be able to insert a kill of the register if this PHI (aka, the |
| // copy we just inserted) is the last use of the source value. Live |
| // variable analysis conservatively handles this by saying that the value is |
| // live until the end of the block the PHI entry lives in. If the value |
| // really is dead at the PHI copy, there will be no successor blocks which |
| // have the value live-in. |
| |
| // Also check to see if this register is in use by another PHI node which |
| // has not yet been eliminated. If so, it will be killed at an appropriate |
| // point later. |
| |
| // Is it used by any PHI instructions in this block? |
| bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]; |
| |
| // Okay, if we now know that the value is not live out of the block, we can |
| // add a kill marker in this block saying that it kills the incoming value! |
| if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) { |
| // In our final twist, we have to decide which instruction kills the |
| // register. In most cases this is the copy, however, the first |
| // terminator instruction at the end of the block may also use the value. |
| // In this case, we should mark *it* as being the killing block, not the |
| // copy. |
| MachineBasicBlock::iterator KillInst; |
| MachineBasicBlock::iterator Term = opBlock.getFirstTerminator(); |
| if (Term != opBlock.end() && Term->readsRegister(SrcReg)) { |
| KillInst = Term; |
| |
| // Check that no other terminators use values. |
| #ifndef NDEBUG |
| for (MachineBasicBlock::iterator TI = llvm::next(Term); |
| TI != opBlock.end(); ++TI) { |
| assert(!TI->readsRegister(SrcReg) && |
| "Terminator instructions cannot use virtual registers unless" |
| "they are the first terminator in a block!"); |
| } |
| #endif |
| } else if (reusedIncoming || !IncomingReg) { |
| // We may have to rewind a bit if we didn't insert a copy this time. |
| KillInst = Term; |
| while (KillInst != opBlock.begin()) |
| if ((--KillInst)->readsRegister(SrcReg)) |
| break; |
| } else { |
| // We just inserted this copy. |
| KillInst = prior(InsertPos); |
| } |
| assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); |
| |
| // Finally, mark it killed. |
| LV->addVirtualRegisterKilled(SrcReg, KillInst); |
| |
| // This vreg no longer lives all of the way through opBlock. |
| unsigned opBlockNum = opBlock.getNumber(); |
| LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); |
| } |
| } |
| |
| // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. |
| if (reusedIncoming || !IncomingReg) |
| MF.DeleteMachineInstr(MPhi); |
| } |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In |
| /// particular, we want to map the number of uses of a virtual register which is |
| /// used in a PHI node. We map that to the BB the vreg is coming from. This is |
| /// used later to determine when the vreg is killed in the BB. |
| /// |
| void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) { |
| for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); |
| I != E; ++I) |
| for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); |
| BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
| ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), |
| BBI->getOperand(i).getReg())]; |
| } |
| |
| bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF, |
| MachineBasicBlock &MBB, |
| LiveVariables &LV) { |
| if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI || |
| MBB.isLandingPad()) |
| return false; // Quick exit for basic blocks without PHIs. |
| |
| for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end(); |
| BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) { |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { |
| unsigned Reg = BBI->getOperand(i).getReg(); |
| MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); |
| // We break edges when registers are live out from the predecessor block |
| // (not considering PHI nodes). If the register is live in to this block |
| // anyway, we would gain nothing from splitting. |
| if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) |
| SplitCriticalEdge(PreMBB, &MBB); |
| } |
| } |
| return true; |
| } |
| |
| MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A, |
| MachineBasicBlock *B) { |
| assert(A && B && "Missing MBB end point"); |
| |
| MachineFunction *MF = A->getParent(); |
| |
| // We may need to update A's terminator, but we can't do that if AnalyzeBranch |
| // fails. If A uses a jump table, we won't touch it. |
| const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| if (TII->AnalyzeBranch(*A, TBB, FBB, Cond)) |
| return NULL; |
| |
| ++NumSplits; |
| |
| MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); |
| MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB); |
| DEBUG(dbgs() << "PHIElimination splitting critical edge:" |
| " BB#" << A->getNumber() |
| << " -- BB#" << NMBB->getNumber() |
| << " -- BB#" << B->getNumber() << '\n'); |
| |
| A->ReplaceUsesOfBlockWith(B, NMBB); |
| A->updateTerminator(); |
| |
| // Insert unconditional "jump B" instruction in NMBB if necessary. |
| NMBB->addSuccessor(B); |
| if (!NMBB->isLayoutSuccessor(B)) { |
| Cond.clear(); |
| MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond); |
| } |
| |
| // Fix PHI nodes in B so they refer to NMBB instead of A |
| for (MachineBasicBlock::iterator i = B->begin(), e = B->end(); |
| i != e && i->getOpcode() == TargetInstrInfo::PHI; ++i) |
| for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) |
| if (i->getOperand(ni+1).getMBB() == A) |
| i->getOperand(ni+1).setMBB(NMBB); |
| |
| if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>()) |
| LV->addNewBlock(NMBB, A, B); |
| |
| if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>()) |
| MDT->addNewBlock(NMBB, A); |
| |
| return NMBB; |
| } |
| |
| unsigned |
| PHIElimination::PHINodeTraits::getHashValue(const MachineInstr *MI) { |
| if (!MI || MI==getEmptyKey() || MI==getTombstoneKey()) |
| return DenseMapInfo<MachineInstr*>::getHashValue(MI); |
| unsigned hash = 0; |
| for (unsigned ni = 1, ne = MI->getNumOperands(); ni != ne; ni += 2) |
| hash = hash*37 + DenseMapInfo<BBVRegPair>:: |
| getHashValue(BBVRegPair(MI->getOperand(ni+1).getMBB()->getNumber(), |
| MI->getOperand(ni).getReg())); |
| return hash; |
| } |
| |
| bool PHIElimination::PHINodeTraits::isEqual(const MachineInstr *LHS, |
| const MachineInstr *RHS) { |
| const MachineInstr *EmptyKey = getEmptyKey(); |
| const MachineInstr *TombstoneKey = getTombstoneKey(); |
| if (!LHS || !RHS || LHS==EmptyKey || RHS==EmptyKey || |
| LHS==TombstoneKey || RHS==TombstoneKey) |
| return LHS==RHS; |
| |
| unsigned ne = LHS->getNumOperands(); |
| if (ne != RHS->getNumOperands()) |
| return false; |
| // Ignore operand 0, the defined register. |
| for (unsigned ni = 1; ni != ne; ni += 2) |
| if (LHS->getOperand(ni).getReg() != RHS->getOperand(ni).getReg() || |
| LHS->getOperand(ni+1).getMBB() != RHS->getOperand(ni+1).getMBB()) |
| return false; |
| return true; |
| } |