| //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the machine instruction level pre-register allocation |
| // live interval splitting pass. It finds live interval barriers, i.e. |
| // instructions which will kill all physical registers in certain register |
| // classes, and split all live intervals which cross the barrier. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "pre-alloc-split" |
| #include "VirtRegMap.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegisterCoalescer.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden); |
| static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), |
| cl::Hidden); |
| static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), |
| cl::Hidden); |
| |
| STATISTIC(NumSplits, "Number of intervals split"); |
| STATISTIC(NumRemats, "Number of intervals split by rematerialization"); |
| STATISTIC(NumFolds, "Number of intervals split with spill folding"); |
| STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding"); |
| STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers"); |
| STATISTIC(NumDeadSpills, "Number of dead spills removed"); |
| |
| namespace { |
| class PreAllocSplitting : public MachineFunctionPass { |
| MachineFunction *CurrMF; |
| const TargetMachine *TM; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo* TRI; |
| MachineFrameInfo *MFI; |
| MachineRegisterInfo *MRI; |
| SlotIndexes *SIs; |
| LiveIntervals *LIs; |
| LiveStacks *LSs; |
| VirtRegMap *VRM; |
| |
| // Barrier - Current barrier being processed. |
| MachineInstr *Barrier; |
| |
| // BarrierMBB - Basic block where the barrier resides in. |
| MachineBasicBlock *BarrierMBB; |
| |
| // Barrier - Current barrier index. |
| SlotIndex BarrierIdx; |
| |
| // CurrLI - Current live interval being split. |
| LiveInterval *CurrLI; |
| |
| // CurrSLI - Current stack slot live interval. |
| LiveInterval *CurrSLI; |
| |
| // CurrSValNo - Current val# for the stack slot live interval. |
| VNInfo *CurrSValNo; |
| |
| // IntervalSSMap - A map from live interval to spill slots. |
| DenseMap<unsigned, int> IntervalSSMap; |
| |
| // Def2SpillMap - A map from a def instruction index to spill index. |
| DenseMap<SlotIndex, SlotIndex> Def2SpillMap; |
| |
| public: |
| static char ID; |
| PreAllocSplitting() |
| : MachineFunctionPass(&ID) {} |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<SlotIndexes>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addRequired<LiveStacks>(); |
| AU.addPreserved<LiveStacks>(); |
| AU.addPreserved<RegisterCoalescer>(); |
| AU.addPreserved<CalculateSpillWeights>(); |
| if (StrongPHIElim) |
| AU.addPreservedID(StrongPHIEliminationID); |
| else |
| AU.addPreservedID(PHIEliminationID); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<VirtRegMap>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addPreserved<VirtRegMap>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| virtual void releaseMemory() { |
| IntervalSSMap.clear(); |
| Def2SpillMap.clear(); |
| } |
| |
| virtual const char *getPassName() const { |
| return "Pre-Register Allocaton Live Interval Splitting"; |
| } |
| |
| /// print - Implement the dump method. |
| virtual void print(raw_ostream &O, const Module* M = 0) const { |
| LIs->print(O, M); |
| } |
| |
| |
| private: |
| |
| MachineBasicBlock::iterator |
| findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*, |
| SmallPtrSet<MachineInstr*, 4>&); |
| |
| MachineBasicBlock::iterator |
| findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex, |
| SmallPtrSet<MachineInstr*, 4>&); |
| |
| int CreateSpillStackSlot(unsigned, const TargetRegisterClass *); |
| |
| bool IsAvailableInStack(MachineBasicBlock*, unsigned, |
| SlotIndex, SlotIndex, |
| SlotIndex&, int&) const; |
| |
| void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex); |
| |
| bool SplitRegLiveInterval(LiveInterval*); |
| |
| bool SplitRegLiveIntervals(const TargetRegisterClass **, |
| SmallPtrSet<LiveInterval*, 8>&); |
| |
| bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB, |
| MachineBasicBlock* BarrierMBB); |
| bool Rematerialize(unsigned vreg, VNInfo* ValNo, |
| MachineInstr* DefMI, |
| MachineBasicBlock::iterator RestorePt, |
| SmallPtrSet<MachineInstr*, 4>& RefsInMBB); |
| MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC, |
| MachineInstr* DefMI, |
| MachineInstr* Barrier, |
| MachineBasicBlock* MBB, |
| int& SS, |
| SmallPtrSet<MachineInstr*, 4>& RefsInMBB); |
| MachineInstr* FoldRestore(unsigned vreg, |
| const TargetRegisterClass* RC, |
| MachineInstr* Barrier, |
| MachineBasicBlock* MBB, |
| int SS, |
| SmallPtrSet<MachineInstr*, 4>& RefsInMBB); |
| void RenumberValno(VNInfo* VN); |
| void ReconstructLiveInterval(LiveInterval* LI); |
| bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split); |
| unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs, |
| unsigned Reg, int FrameIndex, bool& TwoAddr); |
| VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use, |
| MachineBasicBlock* MBB, LiveInterval* LI, |
| SmallPtrSet<MachineInstr*, 4>& Visited, |
| DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, |
| DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, |
| DenseMap<MachineInstr*, VNInfo*>& NewVNs, |
| DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, |
| DenseMap<MachineBasicBlock*, VNInfo*>& Phis, |
| bool IsTopLevel, bool IsIntraBlock); |
| VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use, |
| MachineBasicBlock* MBB, LiveInterval* LI, |
| SmallPtrSet<MachineInstr*, 4>& Visited, |
| DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, |
| DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, |
| DenseMap<MachineInstr*, VNInfo*>& NewVNs, |
| DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, |
| DenseMap<MachineBasicBlock*, VNInfo*>& Phis, |
| bool IsTopLevel, bool IsIntraBlock); |
| }; |
| } // end anonymous namespace |
| |
| char PreAllocSplitting::ID = 0; |
| |
| static RegisterPass<PreAllocSplitting> |
| X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting"); |
| |
| const PassInfo *const llvm::PreAllocSplittingID = &X; |
| |
| /// findSpillPoint - Find a gap as far away from the given MI that's suitable |
| /// for spilling the current live interval. The index must be before any |
| /// defs and uses of the live interval register in the mbb. Return begin() if |
| /// none is found. |
| MachineBasicBlock::iterator |
| PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI, |
| MachineInstr *DefMI, |
| SmallPtrSet<MachineInstr*, 4> &RefsInMBB) { |
| MachineBasicBlock::iterator Pt = MBB->begin(); |
| |
| MachineBasicBlock::iterator MII = MI; |
| MachineBasicBlock::iterator EndPt = DefMI |
| ? MachineBasicBlock::iterator(DefMI) : MBB->begin(); |
| |
| while (MII != EndPt && !RefsInMBB.count(MII) && |
| MII->getOpcode() != TRI->getCallFrameSetupOpcode()) |
| --MII; |
| if (MII == EndPt || RefsInMBB.count(MII)) return Pt; |
| |
| while (MII != EndPt && !RefsInMBB.count(MII)) { |
| // We can't insert the spill between the barrier (a call), and its |
| // corresponding call frame setup. |
| if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) { |
| while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) { |
| --MII; |
| if (MII == EndPt) { |
| return Pt; |
| } |
| } |
| continue; |
| } else { |
| Pt = MII; |
| } |
| |
| if (RefsInMBB.count(MII)) |
| return Pt; |
| |
| |
| --MII; |
| } |
| |
| return Pt; |
| } |
| |
| /// findRestorePoint - Find a gap in the instruction index map that's suitable |
| /// for restoring the current live interval value. The index must be before any |
| /// uses of the live interval register in the mbb. Return end() if none is |
| /// found. |
| MachineBasicBlock::iterator |
| PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI, |
| SlotIndex LastIdx, |
| SmallPtrSet<MachineInstr*, 4> &RefsInMBB) { |
| // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb |
| // begin index accordingly. |
| MachineBasicBlock::iterator Pt = MBB->end(); |
| MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator(); |
| |
| // We start at the call, so walk forward until we find the call frame teardown |
| // since we can't insert restores before that. Bail if we encounter a use |
| // during this time. |
| MachineBasicBlock::iterator MII = MI; |
| if (MII == EndPt) return Pt; |
| |
| while (MII != EndPt && !RefsInMBB.count(MII) && |
| MII->getOpcode() != TRI->getCallFrameDestroyOpcode()) |
| ++MII; |
| if (MII == EndPt || RefsInMBB.count(MII)) return Pt; |
| ++MII; |
| |
| // FIXME: Limit the number of instructions to examine to reduce |
| // compile time? |
| while (MII != EndPt) { |
| SlotIndex Index = LIs->getInstructionIndex(MII); |
| if (Index > LastIdx) |
| break; |
| |
| // We can't insert a restore between the barrier (a call) and its |
| // corresponding call frame teardown. |
| if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) { |
| do { |
| if (MII == EndPt || RefsInMBB.count(MII)) return Pt; |
| ++MII; |
| } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode()); |
| } else { |
| Pt = MII; |
| } |
| |
| if (RefsInMBB.count(MII)) |
| return Pt; |
| |
| ++MII; |
| } |
| |
| return Pt; |
| } |
| |
| /// CreateSpillStackSlot - Create a stack slot for the live interval being |
| /// split. If the live interval was previously split, just reuse the same |
| /// slot. |
| int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg, |
| const TargetRegisterClass *RC) { |
| int SS; |
| DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg); |
| if (I != IntervalSSMap.end()) { |
| SS = I->second; |
| } else { |
| SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); |
| IntervalSSMap[Reg] = SS; |
| } |
| |
| // Create live interval for stack slot. |
| CurrSLI = &LSs->getOrCreateInterval(SS, RC); |
| if (CurrSLI->hasAtLeastOneValue()) |
| CurrSValNo = CurrSLI->getValNumInfo(0); |
| else |
| CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false, |
| LSs->getVNInfoAllocator()); |
| return SS; |
| } |
| |
| /// IsAvailableInStack - Return true if register is available in a split stack |
| /// slot at the specified index. |
| bool |
| PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB, |
| unsigned Reg, SlotIndex DefIndex, |
| SlotIndex RestoreIndex, |
| SlotIndex &SpillIndex, |
| int& SS) const { |
| if (!DefMBB) |
| return false; |
| |
| DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg); |
| if (I == IntervalSSMap.end()) |
| return false; |
| DenseMap<SlotIndex, SlotIndex>::const_iterator |
| II = Def2SpillMap.find(DefIndex); |
| if (II == Def2SpillMap.end()) |
| return false; |
| |
| // If last spill of def is in the same mbb as barrier mbb (where restore will |
| // be), make sure it's not below the intended restore index. |
| // FIXME: Undo the previous spill? |
| assert(LIs->getMBBFromIndex(II->second) == DefMBB); |
| if (DefMBB == BarrierMBB && II->second >= RestoreIndex) |
| return false; |
| |
| SS = I->second; |
| SpillIndex = II->second; |
| return true; |
| } |
| |
| /// UpdateSpillSlotInterval - Given the specified val# of the register live |
| /// interval being split, and the spill and restore indicies, update the live |
| /// interval of the spill stack slot. |
| void |
| PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex, |
| SlotIndex RestoreIndex) { |
| assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB && |
| "Expect restore in the barrier mbb"); |
| |
| MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex); |
| if (MBB == BarrierMBB) { |
| // Intra-block spill + restore. We are done. |
| LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo); |
| CurrSLI->addRange(SLR); |
| return; |
| } |
| |
| SmallPtrSet<MachineBasicBlock*, 4> Processed; |
| SlotIndex EndIdx = LIs->getMBBEndIdx(MBB); |
| LiveRange SLR(SpillIndex, EndIdx, CurrSValNo); |
| CurrSLI->addRange(SLR); |
| Processed.insert(MBB); |
| |
| // Start from the spill mbb, figure out the extend of the spill slot's |
| // live interval. |
| SmallVector<MachineBasicBlock*, 4> WorkList; |
| const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex); |
| if (LR->end > EndIdx) |
| // If live range extend beyond end of mbb, add successors to work list. |
| for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), |
| SE = MBB->succ_end(); SI != SE; ++SI) |
| WorkList.push_back(*SI); |
| |
| while (!WorkList.empty()) { |
| MachineBasicBlock *MBB = WorkList.back(); |
| WorkList.pop_back(); |
| if (Processed.count(MBB)) |
| continue; |
| SlotIndex Idx = LIs->getMBBStartIdx(MBB); |
| LR = CurrLI->getLiveRangeContaining(Idx); |
| if (LR && LR->valno == ValNo) { |
| EndIdx = LIs->getMBBEndIdx(MBB); |
| if (Idx <= RestoreIndex && RestoreIndex < EndIdx) { |
| // Spill slot live interval stops at the restore. |
| LiveRange SLR(Idx, RestoreIndex, CurrSValNo); |
| CurrSLI->addRange(SLR); |
| } else if (LR->end > EndIdx) { |
| // Live range extends beyond end of mbb, process successors. |
| LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo); |
| CurrSLI->addRange(SLR); |
| for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), |
| SE = MBB->succ_end(); SI != SE; ++SI) |
| WorkList.push_back(*SI); |
| } else { |
| LiveRange SLR(Idx, LR->end, CurrSValNo); |
| CurrSLI->addRange(SLR); |
| } |
| Processed.insert(MBB); |
| } |
| } |
| } |
| |
| /// PerformPHIConstruction - From properly set up use and def lists, use a PHI |
| /// construction algorithm to compute the ranges and valnos for an interval. |
| VNInfo* |
| PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI, |
| MachineBasicBlock* MBB, LiveInterval* LI, |
| SmallPtrSet<MachineInstr*, 4>& Visited, |
| DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, |
| DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, |
| DenseMap<MachineInstr*, VNInfo*>& NewVNs, |
| DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, |
| DenseMap<MachineBasicBlock*, VNInfo*>& Phis, |
| bool IsTopLevel, bool IsIntraBlock) { |
| // Return memoized result if it's available. |
| if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI)) |
| return NewVNs[UseI]; |
| else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI)) |
| return NewVNs[UseI]; |
| else if (!IsIntraBlock && LiveOut.count(MBB)) |
| return LiveOut[MBB]; |
| |
| // Check if our block contains any uses or defs. |
| bool ContainsDefs = Defs.count(MBB); |
| bool ContainsUses = Uses.count(MBB); |
| |
| VNInfo* RetVNI = 0; |
| |
| // Enumerate the cases of use/def contaning blocks. |
| if (!ContainsDefs && !ContainsUses) { |
| return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses, |
| NewVNs, LiveOut, Phis, |
| IsTopLevel, IsIntraBlock); |
| } else if (ContainsDefs && !ContainsUses) { |
| SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; |
| |
| // Search for the def in this block. If we don't find it before the |
| // instruction we care about, go to the fallback case. Note that that |
| // should never happen: this cannot be intrablock, so use should |
| // always be an end() iterator. |
| assert(UseI == MBB->end() && "No use marked in intrablock"); |
| |
| MachineBasicBlock::iterator Walker = UseI; |
| --Walker; |
| while (Walker != MBB->begin()) { |
| if (BlockDefs.count(Walker)) |
| break; |
| --Walker; |
| } |
| |
| // Once we've found it, extend its VNInfo to our instruction. |
| SlotIndex DefIndex = LIs->getInstructionIndex(Walker); |
| DefIndex = DefIndex.getDefIndex(); |
| SlotIndex EndIndex = LIs->getMBBEndIdx(MBB); |
| |
| RetVNI = NewVNs[Walker]; |
| LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI)); |
| } else if (!ContainsDefs && ContainsUses) { |
| SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; |
| |
| // Search for the use in this block that precedes the instruction we care |
| // about, going to the fallback case if we don't find it. |
| MachineBasicBlock::iterator Walker = UseI; |
| bool found = false; |
| while (Walker != MBB->begin()) { |
| --Walker; |
| if (BlockUses.count(Walker)) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) |
| return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, |
| Uses, NewVNs, LiveOut, Phis, |
| IsTopLevel, IsIntraBlock); |
| |
| SlotIndex UseIndex = LIs->getInstructionIndex(Walker); |
| UseIndex = UseIndex.getUseIndex(); |
| SlotIndex EndIndex; |
| if (IsIntraBlock) { |
| EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); |
| } else |
| EndIndex = LIs->getMBBEndIdx(MBB); |
| |
| // Now, recursively phi construct the VNInfo for the use we found, |
| // and then extend it to include the instruction we care about |
| RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, |
| NewVNs, LiveOut, Phis, false, true); |
| |
| LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI)); |
| |
| // FIXME: Need to set kills properly for inter-block stuff. |
| if (RetVNI->isKill(UseIndex)) RetVNI->removeKill(UseIndex); |
| if (IsIntraBlock) |
| RetVNI->addKill(EndIndex); |
| } else if (ContainsDefs && ContainsUses) { |
| SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; |
| SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; |
| |
| // This case is basically a merging of the two preceding case, with the |
| // special note that checking for defs must take precedence over checking |
| // for uses, because of two-address instructions. |
| MachineBasicBlock::iterator Walker = UseI; |
| bool foundDef = false; |
| bool foundUse = false; |
| while (Walker != MBB->begin()) { |
| --Walker; |
| if (BlockDefs.count(Walker)) { |
| foundDef = true; |
| break; |
| } else if (BlockUses.count(Walker)) { |
| foundUse = true; |
| break; |
| } |
| } |
| |
| if (!foundDef && !foundUse) |
| return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, |
| Uses, NewVNs, LiveOut, Phis, |
| IsTopLevel, IsIntraBlock); |
| |
| SlotIndex StartIndex = LIs->getInstructionIndex(Walker); |
| StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex(); |
| SlotIndex EndIndex; |
| if (IsIntraBlock) { |
| EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); |
| } else |
| EndIndex = LIs->getMBBEndIdx(MBB); |
| |
| if (foundDef) |
| RetVNI = NewVNs[Walker]; |
| else |
| RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, |
| NewVNs, LiveOut, Phis, false, true); |
| |
| LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI)); |
| |
| if (foundUse && RetVNI->isKill(StartIndex)) |
| RetVNI->removeKill(StartIndex); |
| if (IsIntraBlock) { |
| RetVNI->addKill(EndIndex); |
| } |
| } |
| |
| // Memoize results so we don't have to recompute them. |
| if (!IsIntraBlock) LiveOut[MBB] = RetVNI; |
| else { |
| if (!NewVNs.count(UseI)) |
| NewVNs[UseI] = RetVNI; |
| Visited.insert(UseI); |
| } |
| |
| return RetVNI; |
| } |
| |
| /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path. |
| /// |
| VNInfo* |
| PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI, |
| MachineBasicBlock* MBB, LiveInterval* LI, |
| SmallPtrSet<MachineInstr*, 4>& Visited, |
| DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, |
| DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, |
| DenseMap<MachineInstr*, VNInfo*>& NewVNs, |
| DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, |
| DenseMap<MachineBasicBlock*, VNInfo*>& Phis, |
| bool IsTopLevel, bool IsIntraBlock) { |
| // NOTE: Because this is the fallback case from other cases, we do NOT |
| // assume that we are not intrablock here. |
| if (Phis.count(MBB)) return Phis[MBB]; |
| |
| SlotIndex StartIndex = LIs->getMBBStartIdx(MBB); |
| VNInfo *RetVNI = Phis[MBB] = |
| LI->getNextValue(SlotIndex(), /*FIXME*/ 0, false, |
| LIs->getVNInfoAllocator()); |
| |
| if (!IsIntraBlock) LiveOut[MBB] = RetVNI; |
| |
| // If there are no uses or defs between our starting point and the |
| // beginning of the block, then recursive perform phi construction |
| // on our predecessors. |
| DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs; |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, |
| Visited, Defs, Uses, NewVNs, |
| LiveOut, Phis, false, false); |
| if (Incoming != 0) |
| IncomingVNs[*PI] = Incoming; |
| } |
| |
| if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) { |
| VNInfo* OldVN = RetVNI; |
| VNInfo* NewVN = IncomingVNs.begin()->second; |
| VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN); |
| if (MergedVN == OldVN) std::swap(OldVN, NewVN); |
| |
| for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(), |
| LOE = LiveOut.end(); LOI != LOE; ++LOI) |
| if (LOI->second == OldVN) |
| LOI->second = MergedVN; |
| for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(), |
| NVE = NewVNs.end(); NVI != NVE; ++NVI) |
| if (NVI->second == OldVN) |
| NVI->second = MergedVN; |
| for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(), |
| PE = Phis.end(); PI != PE; ++PI) |
| if (PI->second == OldVN) |
| PI->second = MergedVN; |
| RetVNI = MergedVN; |
| } else { |
| // Otherwise, merge the incoming VNInfos with a phi join. Create a new |
| // VNInfo to represent the joined value. |
| for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I = |
| IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) { |
| I->second->setHasPHIKill(true); |
| SlotIndex KillIndex(LIs->getMBBEndIdx(I->first), true); |
| if (!I->second->isKill(KillIndex)) |
| I->second->addKill(KillIndex); |
| } |
| } |
| |
| SlotIndex EndIndex; |
| if (IsIntraBlock) { |
| EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); |
| } else |
| EndIndex = LIs->getMBBEndIdx(MBB); |
| LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI)); |
| if (IsIntraBlock) |
| RetVNI->addKill(EndIndex); |
| |
| // Memoize results so we don't have to recompute them. |
| if (!IsIntraBlock) |
| LiveOut[MBB] = RetVNI; |
| else { |
| if (!NewVNs.count(UseI)) |
| NewVNs[UseI] = RetVNI; |
| Visited.insert(UseI); |
| } |
| |
| return RetVNI; |
| } |
| |
| /// ReconstructLiveInterval - Recompute a live interval from scratch. |
| void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) { |
| BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator(); |
| |
| // Clear the old ranges and valnos; |
| LI->clear(); |
| |
| // Cache the uses and defs of the register |
| typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap; |
| RegMap Defs, Uses; |
| |
| // Keep track of the new VNs we're creating. |
| DenseMap<MachineInstr*, VNInfo*> NewVNs; |
| SmallPtrSet<VNInfo*, 2> PhiVNs; |
| |
| // Cache defs, and create a new VNInfo for each def. |
| for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), |
| DE = MRI->def_end(); DI != DE; ++DI) { |
| Defs[(*DI).getParent()].insert(&*DI); |
| |
| SlotIndex DefIdx = LIs->getInstructionIndex(&*DI); |
| DefIdx = DefIdx.getDefIndex(); |
| |
| assert(DI->getOpcode() != TargetInstrInfo::PHI && |
| "PHI instr in code during pre-alloc splitting."); |
| VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc); |
| |
| // If the def is a move, set the copy field. |
| unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; |
| if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) |
| if (DstReg == LI->reg) |
| NewVN->setCopy(&*DI); |
| |
| NewVNs[&*DI] = NewVN; |
| } |
| |
| // Cache uses as a separate pass from actually processing them. |
| for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), |
| UE = MRI->use_end(); UI != UE; ++UI) |
| Uses[(*UI).getParent()].insert(&*UI); |
| |
| // Now, actually process every use and use a phi construction algorithm |
| // to walk from it to its reaching definitions, building VNInfos along |
| // the way. |
| DenseMap<MachineBasicBlock*, VNInfo*> LiveOut; |
| DenseMap<MachineBasicBlock*, VNInfo*> Phis; |
| SmallPtrSet<MachineInstr*, 4> Visited; |
| for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), |
| UE = MRI->use_end(); UI != UE; ++UI) { |
| PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs, |
| Uses, NewVNs, LiveOut, Phis, true, true); |
| } |
| |
| // Add ranges for dead defs |
| for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), |
| DE = MRI->def_end(); DI != DE; ++DI) { |
| SlotIndex DefIdx = LIs->getInstructionIndex(&*DI); |
| DefIdx = DefIdx.getDefIndex(); |
| |
| if (LI->liveAt(DefIdx)) continue; |
| |
| VNInfo* DeadVN = NewVNs[&*DI]; |
| LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN)); |
| DeadVN->addKill(DefIdx); |
| } |
| |
| // Update kill markers. |
| for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); |
| VI != VE; ++VI) { |
| VNInfo* VNI = *VI; |
| for (unsigned i = 0, e = VNI->kills.size(); i != e; ++i) { |
| SlotIndex KillIdx = VNI->kills[i]; |
| if (KillIdx.isPHI()) |
| continue; |
| MachineInstr *KillMI = LIs->getInstructionFromIndex(KillIdx); |
| if (KillMI) { |
| MachineOperand *KillMO = KillMI->findRegisterUseOperand(CurrLI->reg); |
| if (KillMO) |
| // It could be a dead def. |
| KillMO->setIsKill(); |
| } |
| } |
| } |
| } |
| |
| /// RenumberValno - Split the given valno out into a new vreg, allowing it to |
| /// be allocated to a different register. This function creates a new vreg, |
| /// copies the valno and its live ranges over to the new vreg's interval, |
| /// removes them from the old interval, and rewrites all uses and defs of |
| /// the original reg to the new vreg within those ranges. |
| void PreAllocSplitting::RenumberValno(VNInfo* VN) { |
| SmallVector<VNInfo*, 4> Stack; |
| SmallVector<VNInfo*, 4> VNsToCopy; |
| Stack.push_back(VN); |
| |
| // Walk through and copy the valno we care about, and any other valnos |
| // that are two-address redefinitions of the one we care about. These |
| // will need to be rewritten as well. We also check for safety of the |
| // renumbering here, by making sure that none of the valno involved has |
| // phi kills. |
| while (!Stack.empty()) { |
| VNInfo* OldVN = Stack.back(); |
| Stack.pop_back(); |
| |
| // Bail out if we ever encounter a valno that has a PHI kill. We can't |
| // renumber these. |
| if (OldVN->hasPHIKill()) return; |
| |
| VNsToCopy.push_back(OldVN); |
| |
| // Locate two-address redefinitions |
| for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(), |
| KE = OldVN->kills.end(); KI != KE; ++KI) { |
| assert(!KI->isPHI() && |
| "VN previously reported having no PHI kills."); |
| MachineInstr* MI = LIs->getInstructionFromIndex(*KI); |
| unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg); |
| if (DefIdx == ~0U) continue; |
| if (MI->isRegTiedToUseOperand(DefIdx)) { |
| VNInfo* NextVN = |
| CurrLI->findDefinedVNInfoForRegInt(KI->getDefIndex()); |
| if (NextVN == OldVN) continue; |
| Stack.push_back(NextVN); |
| } |
| } |
| } |
| |
| // Create the new vreg |
| unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg)); |
| |
| // Create the new live interval |
| LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg); |
| |
| for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = |
| VNsToCopy.end(); OI != OE; ++OI) { |
| VNInfo* OldVN = *OI; |
| |
| // Copy the valno over |
| VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator()); |
| NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN); |
| |
| // Remove the valno from the old interval |
| CurrLI->removeValNo(OldVN); |
| } |
| |
| // Rewrite defs and uses. This is done in two stages to avoid invalidating |
| // the reg_iterator. |
| SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange; |
| |
| for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), |
| E = MRI->reg_end(); I != E; ++I) { |
| MachineOperand& MO = I.getOperand(); |
| SlotIndex InstrIdx = LIs->getInstructionIndex(&*I); |
| |
| if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) || |
| (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex()))) |
| OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo())); |
| } |
| |
| for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I = |
| OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) { |
| MachineInstr* Inst = I->first; |
| unsigned OpIdx = I->second; |
| MachineOperand& MO = Inst->getOperand(OpIdx); |
| MO.setReg(NewVReg); |
| } |
| |
| // Grow the VirtRegMap, since we've created a new vreg. |
| VRM->grow(); |
| |
| // The renumbered vreg shares a stack slot with the old register. |
| if (IntervalSSMap.count(CurrLI->reg)) |
| IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg]; |
| |
| NumRenumbers++; |
| } |
| |
| bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo, |
| MachineInstr* DefMI, |
| MachineBasicBlock::iterator RestorePt, |
| SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { |
| MachineBasicBlock& MBB = *RestorePt->getParent(); |
| |
| MachineBasicBlock::iterator KillPt = BarrierMBB->end(); |
| if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB) |
| KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB); |
| else |
| KillPt = llvm::next(MachineBasicBlock::iterator(DefMI)); |
| |
| if (KillPt == DefMI->getParent()->end()) |
| return false; |
| |
| TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, TRI); |
| SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt)); |
| |
| ReconstructLiveInterval(CurrLI); |
| RematIdx = RematIdx.getDefIndex(); |
| RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx)); |
| |
| ++NumSplits; |
| ++NumRemats; |
| return true; |
| } |
| |
| MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, |
| const TargetRegisterClass* RC, |
| MachineInstr* DefMI, |
| MachineInstr* Barrier, |
| MachineBasicBlock* MBB, |
| int& SS, |
| SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { |
| // Go top down if RefsInMBB is empty. |
| if (RefsInMBB.empty()) |
| return 0; |
| |
| MachineBasicBlock::iterator FoldPt = Barrier; |
| while (&*FoldPt != DefMI && FoldPt != MBB->begin() && |
| !RefsInMBB.count(FoldPt)) |
| --FoldPt; |
| |
| int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false); |
| if (OpIdx == -1) |
| return 0; |
| |
| SmallVector<unsigned, 1> Ops; |
| Ops.push_back(OpIdx); |
| |
| if (!TII->canFoldMemoryOperand(FoldPt, Ops)) |
| return 0; |
| |
| DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg); |
| if (I != IntervalSSMap.end()) { |
| SS = I->second; |
| } else { |
| SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); |
| } |
| |
| MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(), |
| FoldPt, Ops, SS); |
| |
| if (FMI) { |
| LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); |
| FMI = MBB->insert(MBB->erase(FoldPt), FMI); |
| ++NumFolds; |
| |
| IntervalSSMap[vreg] = SS; |
| CurrSLI = &LSs->getOrCreateInterval(SS, RC); |
| if (CurrSLI->hasAtLeastOneValue()) |
| CurrSValNo = CurrSLI->getValNumInfo(0); |
| else |
| CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false, |
| LSs->getVNInfoAllocator()); |
| } |
| |
| return FMI; |
| } |
| |
| MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg, |
| const TargetRegisterClass* RC, |
| MachineInstr* Barrier, |
| MachineBasicBlock* MBB, |
| int SS, |
| SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { |
| if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds) |
| return 0; |
| |
| // Go top down if RefsInMBB is empty. |
| if (RefsInMBB.empty()) |
| return 0; |
| |
| // Can't fold a restore between a call stack setup and teardown. |
| MachineBasicBlock::iterator FoldPt = Barrier; |
| |
| // Advance from barrier to call frame teardown. |
| while (FoldPt != MBB->getFirstTerminator() && |
| FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { |
| if (RefsInMBB.count(FoldPt)) |
| return 0; |
| |
| ++FoldPt; |
| } |
| |
| if (FoldPt == MBB->getFirstTerminator()) |
| return 0; |
| else |
| ++FoldPt; |
| |
| // Now find the restore point. |
| while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) { |
| if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) { |
| while (FoldPt != MBB->getFirstTerminator() && |
| FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { |
| if (RefsInMBB.count(FoldPt)) |
| return 0; |
| |
| ++FoldPt; |
| } |
| |
| if (FoldPt == MBB->getFirstTerminator()) |
| return 0; |
| } |
| |
| ++FoldPt; |
| } |
| |
| if (FoldPt == MBB->getFirstTerminator()) |
| return 0; |
| |
| int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true); |
| if (OpIdx == -1) |
| return 0; |
| |
| SmallVector<unsigned, 1> Ops; |
| Ops.push_back(OpIdx); |
| |
| if (!TII->canFoldMemoryOperand(FoldPt, Ops)) |
| return 0; |
| |
| MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(), |
| FoldPt, Ops, SS); |
| |
| if (FMI) { |
| LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); |
| FMI = MBB->insert(MBB->erase(FoldPt), FMI); |
| ++NumRestoreFolds; |
| } |
| |
| return FMI; |
| } |
| |
| /// SplitRegLiveInterval - Split (spill and restore) the given live interval |
| /// so it would not cross the barrier that's being processed. Shrink wrap |
| /// (minimize) the live interval to the last uses. |
| bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) { |
| DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier |
| << " result: "); |
| |
| CurrLI = LI; |
| |
| // Find live range where current interval cross the barrier. |
| LiveInterval::iterator LR = |
| CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex()); |
| VNInfo *ValNo = LR->valno; |
| |
| assert(!ValNo->isUnused() && "Val# is defined by a dead def?"); |
| |
| MachineInstr *DefMI = ValNo->isDefAccurate() |
| ? LIs->getInstructionFromIndex(ValNo->def) : NULL; |
| |
| // If this would create a new join point, do not split. |
| if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) { |
| DEBUG(dbgs() << "FAILED (would create a new join point).\n"); |
| return false; |
| } |
| |
| // Find all references in the barrier mbb. |
| SmallPtrSet<MachineInstr*, 4> RefsInMBB; |
| for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), |
| E = MRI->reg_end(); I != E; ++I) { |
| MachineInstr *RefMI = &*I; |
| if (RefMI->getParent() == BarrierMBB) |
| RefsInMBB.insert(RefMI); |
| } |
| |
| // Find a point to restore the value after the barrier. |
| MachineBasicBlock::iterator RestorePt = |
| findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB); |
| if (RestorePt == BarrierMBB->end()) { |
| DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n"); |
| return false; |
| } |
| |
| if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI)) |
| if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) { |
| DEBUG(dbgs() << "success (remat).\n"); |
| return true; |
| } |
| |
| // Add a spill either before the barrier or after the definition. |
| MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL; |
| const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg); |
| SlotIndex SpillIndex; |
| MachineInstr *SpillMI = NULL; |
| int SS = -1; |
| if (!ValNo->isDefAccurate()) { |
| // If we don't know where the def is we must split just before the barrier. |
| if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier, |
| BarrierMBB, SS, RefsInMBB))) { |
| SpillIndex = LIs->getInstructionIndex(SpillMI); |
| } else { |
| MachineBasicBlock::iterator SpillPt = |
| findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB); |
| if (SpillPt == BarrierMBB->begin()) { |
| DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); |
| return false; // No gap to insert spill. |
| } |
| // Add spill. |
| |
| SS = CreateSpillStackSlot(CurrLI->reg, RC); |
| TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC); |
| SpillMI = prior(SpillPt); |
| SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI); |
| } |
| } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def, |
| LIs->getZeroIndex(), SpillIndex, SS)) { |
| // If it's already split, just restore the value. There is no need to spill |
| // the def again. |
| if (!DefMI) { |
| DEBUG(dbgs() << "FAILED (def is dead).\n"); |
| return false; // Def is dead. Do nothing. |
| } |
| |
| if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier, |
| BarrierMBB, SS, RefsInMBB))) { |
| SpillIndex = LIs->getInstructionIndex(SpillMI); |
| } else { |
| // Check if it's possible to insert a spill after the def MI. |
| MachineBasicBlock::iterator SpillPt; |
| if (DefMBB == BarrierMBB) { |
| // Add spill after the def and the last use before the barrier. |
| SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI, |
| RefsInMBB); |
| if (SpillPt == DefMBB->begin()) { |
| DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); |
| return false; // No gap to insert spill. |
| } |
| } else { |
| SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI)); |
| if (SpillPt == DefMBB->end()) { |
| DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); |
| return false; // No gap to insert spill. |
| } |
| } |
| // Add spill. |
| SS = CreateSpillStackSlot(CurrLI->reg, RC); |
| TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC); |
| SpillMI = prior(SpillPt); |
| SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI); |
| } |
| } |
| |
| // Remember def instruction index to spill index mapping. |
| if (DefMI && SpillMI) |
| Def2SpillMap[ValNo->def] = SpillIndex; |
| |
| // Add restore. |
| bool FoldedRestore = false; |
| SlotIndex RestoreIndex; |
| if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier, |
| BarrierMBB, SS, RefsInMBB)) { |
| RestorePt = LMI; |
| RestoreIndex = LIs->getInstructionIndex(RestorePt); |
| FoldedRestore = true; |
| } else { |
| TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC); |
| MachineInstr *LoadMI = prior(RestorePt); |
| RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI); |
| } |
| |
| // Update spill stack slot live interval. |
| UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(), |
| RestoreIndex.getDefIndex()); |
| |
| ReconstructLiveInterval(CurrLI); |
| |
| if (!FoldedRestore) { |
| SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt)); |
| RestoreIdx = RestoreIdx.getDefIndex(); |
| RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx)); |
| } |
| |
| ++NumSplits; |
| DEBUG(dbgs() << "success.\n"); |
| return true; |
| } |
| |
| /// SplitRegLiveIntervals - Split all register live intervals that cross the |
| /// barrier that's being processed. |
| bool |
| PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs, |
| SmallPtrSet<LiveInterval*, 8>& Split) { |
| // First find all the virtual registers whose live intervals are intercepted |
| // by the current barrier. |
| SmallVector<LiveInterval*, 8> Intervals; |
| for (const TargetRegisterClass **RC = RCs; *RC; ++RC) { |
| // FIXME: If it's not safe to move any instruction that defines the barrier |
| // register class, then it means there are some special dependencies which |
| // codegen is not modelling. Ignore these barriers for now. |
| if (!TII->isSafeToMoveRegClassDefs(*RC)) |
| continue; |
| std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC); |
| for (unsigned i = 0, e = VRs.size(); i != e; ++i) { |
| unsigned Reg = VRs[i]; |
| if (!LIs->hasInterval(Reg)) |
| continue; |
| LiveInterval *LI = &LIs->getInterval(Reg); |
| if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg)) |
| // Virtual register live interval is intercepted by the barrier. We |
| // should split and shrink wrap its interval if possible. |
| Intervals.push_back(LI); |
| } |
| } |
| |
| // Process the affected live intervals. |
| bool Change = false; |
| while (!Intervals.empty()) { |
| if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit) |
| break; |
| LiveInterval *LI = Intervals.back(); |
| Intervals.pop_back(); |
| bool result = SplitRegLiveInterval(LI); |
| if (result) Split.insert(LI); |
| Change |= result; |
| } |
| |
| return Change; |
| } |
| |
| unsigned PreAllocSplitting::getNumberOfNonSpills( |
| SmallPtrSet<MachineInstr*, 4>& MIs, |
| unsigned Reg, int FrameIndex, |
| bool& FeedsTwoAddr) { |
| unsigned NonSpills = 0; |
| for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end(); |
| UI != UE; ++UI) { |
| int StoreFrameIndex; |
| unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); |
| if (StoreVReg != Reg || StoreFrameIndex != FrameIndex) |
| NonSpills++; |
| |
| int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg); |
| if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx)) |
| FeedsTwoAddr = true; |
| } |
| |
| return NonSpills; |
| } |
| |
| /// removeDeadSpills - After doing splitting, filter through all intervals we've |
| /// split, and see if any of the spills are unnecessary. If so, remove them. |
| bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) { |
| bool changed = false; |
| |
| // Walk over all of the live intervals that were touched by the splitter, |
| // and see if we can do any DCE and/or folding. |
| for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(), |
| LE = split.end(); LI != LE; ++LI) { |
| DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount; |
| |
| // First, collect all the uses of the vreg, and sort them by their |
| // reaching definition (VNInfo). |
| for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg), |
| UE = MRI->use_end(); UI != UE; ++UI) { |
| SlotIndex index = LIs->getInstructionIndex(&*UI); |
| index = index.getUseIndex(); |
| |
| const LiveRange* LR = (*LI)->getLiveRangeContaining(index); |
| VNUseCount[LR->valno].insert(&*UI); |
| } |
| |
| // Now, take the definitions (VNInfo's) one at a time and try to DCE |
| // and/or fold them away. |
| for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(), |
| VE = (*LI)->vni_end(); VI != VE; ++VI) { |
| |
| if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit) |
| return changed; |
| |
| VNInfo* CurrVN = *VI; |
| |
| // We don't currently try to handle definitions with PHI kills, because |
| // it would involve processing more than one VNInfo at once. |
| if (CurrVN->hasPHIKill()) continue; |
| |
| // We also don't try to handle the results of PHI joins, since there's |
| // no defining instruction to analyze. |
| if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue; |
| |
| // We're only interested in eliminating cruft introduced by the splitter, |
| // is of the form load-use or load-use-store. First, check that the |
| // definition is a load, and remember what stack slot we loaded it from. |
| MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def); |
| int FrameIndex; |
| if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue; |
| |
| // If the definition has no uses at all, just DCE it. |
| if (VNUseCount[CurrVN].size() == 0) { |
| LIs->RemoveMachineInstrFromMaps(DefMI); |
| (*LI)->removeValNo(CurrVN); |
| DefMI->eraseFromParent(); |
| VNUseCount.erase(CurrVN); |
| NumDeadSpills++; |
| changed = true; |
| continue; |
| } |
| |
| // Second, get the number of non-store uses of the definition, as well as |
| // a flag indicating whether it feeds into a later two-address definition. |
| bool FeedsTwoAddr = false; |
| unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN], |
| (*LI)->reg, FrameIndex, |
| FeedsTwoAddr); |
| |
| // If there's one non-store use and it doesn't feed a two-addr, then |
| // this is a load-use-store case that we can try to fold. |
| if (NonSpillCount == 1 && !FeedsTwoAddr) { |
| // Start by finding the non-store use MachineInstr. |
| SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin(); |
| int StoreFrameIndex; |
| unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); |
| while (UI != VNUseCount[CurrVN].end() && |
| (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) { |
| ++UI; |
| if (UI != VNUseCount[CurrVN].end()) |
| StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); |
| } |
| if (UI == VNUseCount[CurrVN].end()) continue; |
| |
| MachineInstr* use = *UI; |
| |
| // Attempt to fold it away! |
| int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false); |
| if (OpIdx == -1) continue; |
| SmallVector<unsigned, 1> Ops; |
| Ops.push_back(OpIdx); |
| if (!TII->canFoldMemoryOperand(use, Ops)) continue; |
| |
| MachineInstr* NewMI = |
| TII->foldMemoryOperand(*use->getParent()->getParent(), |
| use, Ops, FrameIndex); |
| |
| if (!NewMI) continue; |
| |
| // Update relevant analyses. |
| LIs->RemoveMachineInstrFromMaps(DefMI); |
| LIs->ReplaceMachineInstrInMaps(use, NewMI); |
| (*LI)->removeValNo(CurrVN); |
| |
| DefMI->eraseFromParent(); |
| MachineBasicBlock* MBB = use->getParent(); |
| NewMI = MBB->insert(MBB->erase(use), NewMI); |
| VNUseCount[CurrVN].erase(use); |
| |
| // Remove deleted instructions. Note that we need to remove them from |
| // the VNInfo->use map as well, just to be safe. |
| for (SmallPtrSet<MachineInstr*, 4>::iterator II = |
| VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end(); |
| II != IE; ++II) { |
| for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator |
| VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE; |
| ++VNI) |
| if (VNI->first != CurrVN) |
| VNI->second.erase(*II); |
| LIs->RemoveMachineInstrFromMaps(*II); |
| (*II)->eraseFromParent(); |
| } |
| |
| VNUseCount.erase(CurrVN); |
| |
| for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator |
| VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI) |
| if (VI->second.erase(use)) |
| VI->second.insert(NewMI); |
| |
| NumDeadSpills++; |
| changed = true; |
| continue; |
| } |
| |
| // If there's more than one non-store instruction, we can't profitably |
| // fold it, so bail. |
| if (NonSpillCount) continue; |
| |
| // Otherwise, this is a load-store case, so DCE them. |
| for (SmallPtrSet<MachineInstr*, 4>::iterator UI = |
| VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end(); |
| UI != UE; ++UI) { |
| LIs->RemoveMachineInstrFromMaps(*UI); |
| (*UI)->eraseFromParent(); |
| } |
| |
| VNUseCount.erase(CurrVN); |
| |
| LIs->RemoveMachineInstrFromMaps(DefMI); |
| (*LI)->removeValNo(CurrVN); |
| DefMI->eraseFromParent(); |
| NumDeadSpills++; |
| changed = true; |
| } |
| } |
| |
| return changed; |
| } |
| |
| bool PreAllocSplitting::createsNewJoin(LiveRange* LR, |
| MachineBasicBlock* DefMBB, |
| MachineBasicBlock* BarrierMBB) { |
| if (DefMBB == BarrierMBB) |
| return false; |
| |
| if (LR->valno->hasPHIKill()) |
| return false; |
| |
| SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB); |
| if (LR->end < MBBEnd) |
| return false; |
| |
| MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>(); |
| if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB)) |
| return true; |
| |
| MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); |
| SmallPtrSet<MachineBasicBlock*, 4> Visited; |
| typedef std::pair<MachineBasicBlock*, |
| MachineBasicBlock::succ_iterator> ItPair; |
| SmallVector<ItPair, 4> Stack; |
| Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin())); |
| |
| while (!Stack.empty()) { |
| ItPair P = Stack.back(); |
| Stack.pop_back(); |
| |
| MachineBasicBlock* PredMBB = P.first; |
| MachineBasicBlock::succ_iterator S = P.second; |
| |
| if (S == PredMBB->succ_end()) |
| continue; |
| else if (Visited.count(*S)) { |
| Stack.push_back(std::make_pair(PredMBB, ++S)); |
| continue; |
| } else |
| Stack.push_back(std::make_pair(PredMBB, S+1)); |
| |
| MachineBasicBlock* MBB = *S; |
| Visited.insert(MBB); |
| |
| if (MBB == BarrierMBB) |
| return true; |
| |
| MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB); |
| MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB); |
| MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom(); |
| while (MDTN) { |
| if (MDTN == DefMDTN) |
| return true; |
| else if (MDTN == BarrierMDTN) |
| break; |
| MDTN = MDTN->getIDom(); |
| } |
| |
| MBBEnd = LIs->getMBBEndIdx(MBB); |
| if (LR->end > MBBEnd) |
| Stack.push_back(std::make_pair(MBB, MBB->succ_begin())); |
| } |
| |
| return false; |
| } |
| |
| |
| bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) { |
| CurrMF = &MF; |
| TM = &MF.getTarget(); |
| TRI = TM->getRegisterInfo(); |
| TII = TM->getInstrInfo(); |
| MFI = MF.getFrameInfo(); |
| MRI = &MF.getRegInfo(); |
| SIs = &getAnalysis<SlotIndexes>(); |
| LIs = &getAnalysis<LiveIntervals>(); |
| LSs = &getAnalysis<LiveStacks>(); |
| VRM = &getAnalysis<VirtRegMap>(); |
| |
| bool MadeChange = false; |
| |
| // Make sure blocks are numbered in order. |
| MF.RenumberBlocks(); |
| |
| MachineBasicBlock *Entry = MF.begin(); |
| SmallPtrSet<MachineBasicBlock*,16> Visited; |
| |
| SmallPtrSet<LiveInterval*, 8> Split; |
| |
| for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > |
| DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); |
| DFI != E; ++DFI) { |
| BarrierMBB = *DFI; |
| for (MachineBasicBlock::iterator I = BarrierMBB->begin(), |
| E = BarrierMBB->end(); I != E; ++I) { |
| Barrier = &*I; |
| const TargetRegisterClass **BarrierRCs = |
| Barrier->getDesc().getRegClassBarriers(); |
| if (!BarrierRCs) |
| continue; |
| BarrierIdx = LIs->getInstructionIndex(Barrier); |
| MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split); |
| } |
| } |
| |
| MadeChange |= removeDeadSpills(Split); |
| |
| return MadeChange; |
| } |