| //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements an idiom recognizer that transforms simple loops into a |
| // non-loop form. In cases that this kicks in, it can be a significant |
| // performance win. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // TODO List: |
| // |
| // Future loop memory idioms to recognize: |
| // memcmp, memmove, strlen, etc. |
| // Future floating point idioms to recognize in -ffast-math mode: |
| // fpowi |
| // Future integer operation idioms to recognize: |
| // ctpop, ctlz, cttz |
| // |
| // Beware that isel's default lowering for ctpop is highly inefficient for |
| // i64 and larger types when i64 is legal and the value has few bits set. It |
| // would be good to enhance isel to emit a loop for ctpop in this case. |
| // |
| // We should enhance the memset/memcpy recognition to handle multiple stores in |
| // the loop. This would handle things like: |
| // void foo(_Complex float *P) |
| // for (i) { __real__(*P) = 0; __imag__(*P) = 0; } |
| // |
| // We should enhance this to handle negative strides through memory. |
| // Alternatively (and perhaps better) we could rely on an earlier pass to force |
| // forward iteration through memory, which is generally better for cache |
| // behavior. Negative strides *do* happen for memset/memcpy loops. |
| // |
| // This could recognize common matrix multiplies and dot product idioms and |
| // replace them with calls to BLAS (if linked in??). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-idiom" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| using namespace llvm; |
| |
| STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); |
| STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); |
| |
| namespace { |
| |
| class LoopIdiomRecognize; |
| |
| /// This class defines some utility functions for loop idiom recognization. |
| class LIRUtil { |
| public: |
| /// Return true iff the block contains nothing but an uncondition branch |
| /// (aka goto instruction). |
| static bool isAlmostEmpty(BasicBlock *); |
| |
| static BranchInst *getBranch(BasicBlock *BB) { |
| return dyn_cast<BranchInst>(BB->getTerminator()); |
| } |
| |
| /// Return the condition of the branch terminating the given basic block. |
| static Value *getBrCondtion(BasicBlock *); |
| |
| /// Derive the precondition block (i.e the block that guards the loop |
| /// preheader) from the given preheader. |
| static BasicBlock *getPrecondBb(BasicBlock *PreHead); |
| }; |
| |
| /// This class is to recoginize idioms of population-count conducted in |
| /// a noncountable loop. Currently it only recognizes this pattern: |
| /// \code |
| /// while(x) {cnt++; ...; x &= x - 1; ...} |
| /// \endcode |
| class NclPopcountRecognize { |
| LoopIdiomRecognize &LIR; |
| Loop *CurLoop; |
| BasicBlock *PreCondBB; |
| |
| typedef IRBuilder<> IRBuilderTy; |
| |
| public: |
| explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR); |
| bool recognize(); |
| |
| private: |
| /// Take a glimpse of the loop to see if we need to go ahead recoginizing |
| /// the idiom. |
| bool preliminaryScreen(); |
| |
| /// Check if the given conditional branch is based on the comparison |
| /// beween a variable and zero, and if the variable is non-zero, the |
| /// control yeilds to the loop entry. If the branch matches the behavior, |
| /// the variable involved in the comparion is returned. This function will |
| /// be called to see if the precondition and postcondition of the loop |
| /// are in desirable form. |
| Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const; |
| |
| /// Return true iff the idiom is detected in the loop. and 1) \p CntInst |
| /// is set to the instruction counting the pupulation bit. 2) \p CntPhi |
| /// is set to the corresponding phi node. 3) \p Var is set to the value |
| /// whose population bits are being counted. |
| bool detectIdiom |
| (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const; |
| |
| /// Insert ctpop intrinsic function and some obviously dead instructions. |
| void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var); |
| |
| /// Create llvm.ctpop.* intrinsic function. |
| CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL); |
| }; |
| |
| class LoopIdiomRecognize : public LoopPass { |
| Loop *CurLoop; |
| const DataLayout *TD; |
| DominatorTree *DT; |
| ScalarEvolution *SE; |
| TargetLibraryInfo *TLI; |
| const TargetTransformInfo *TTI; |
| public: |
| static char ID; |
| explicit LoopIdiomRecognize() : LoopPass(ID) { |
| initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); |
| TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0; |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM); |
| bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, |
| SmallVectorImpl<BasicBlock*> &ExitBlocks); |
| |
| bool processLoopStore(StoreInst *SI, const SCEV *BECount); |
| bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); |
| |
| bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, |
| unsigned StoreAlignment, |
| Value *SplatValue, Instruction *TheStore, |
| const SCEVAddRecExpr *Ev, |
| const SCEV *BECount); |
| bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, |
| const SCEVAddRecExpr *StoreEv, |
| const SCEVAddRecExpr *LoadEv, |
| const SCEV *BECount); |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<LoopInfo>(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequiredID(LCSSAID); |
| AU.addPreservedID(LCSSAID); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addPreserved<DominatorTree>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<TargetLibraryInfo>(); |
| AU.addRequired<TargetTransformInfo>(); |
| } |
| |
| const DataLayout *getDataLayout() { |
| return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>(); |
| } |
| |
| DominatorTree *getDominatorTree() { |
| return DT ? DT : (DT=&getAnalysis<DominatorTree>()); |
| } |
| |
| ScalarEvolution *getScalarEvolution() { |
| return SE ? SE : (SE = &getAnalysis<ScalarEvolution>()); |
| } |
| |
| TargetLibraryInfo *getTargetLibraryInfo() { |
| return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>()); |
| } |
| |
| const TargetTransformInfo *getTargetTransformInfo() { |
| return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>()); |
| } |
| |
| Loop *getLoop() const { return CurLoop; } |
| |
| private: |
| bool runOnNoncountableLoop(); |
| bool runOnCountableLoop(); |
| }; |
| } |
| |
| char LoopIdiomRecognize::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_DEPENDENCY(LCSSA) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) |
| INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", |
| false, false) |
| |
| Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } |
| |
| /// deleteDeadInstruction - Delete this instruction. Before we do, go through |
| /// and zero out all the operands of this instruction. If any of them become |
| /// dead, delete them and the computation tree that feeds them. |
| /// |
| static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE, |
| const TargetLibraryInfo *TLI) { |
| SmallVector<Instruction*, 32> NowDeadInsts; |
| |
| NowDeadInsts.push_back(I); |
| |
| // Before we touch this instruction, remove it from SE! |
| do { |
| Instruction *DeadInst = NowDeadInsts.pop_back_val(); |
| |
| // This instruction is dead, zap it, in stages. Start by removing it from |
| // SCEV. |
| SE.forgetValue(DeadInst); |
| |
| for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { |
| Value *Op = DeadInst->getOperand(op); |
| DeadInst->setOperand(op, 0); |
| |
| // If this operand just became dead, add it to the NowDeadInsts list. |
| if (!Op->use_empty()) continue; |
| |
| if (Instruction *OpI = dyn_cast<Instruction>(Op)) |
| if (isInstructionTriviallyDead(OpI, TLI)) |
| NowDeadInsts.push_back(OpI); |
| } |
| |
| DeadInst->eraseFromParent(); |
| |
| } while (!NowDeadInsts.empty()); |
| } |
| |
| /// deleteIfDeadInstruction - If the specified value is a dead instruction, |
| /// delete it and any recursively used instructions. |
| static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE, |
| const TargetLibraryInfo *TLI) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (isInstructionTriviallyDead(I, TLI)) |
| deleteDeadInstruction(I, SE, TLI); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of LIRUtil |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // This fucntion will return true iff the given block contains nothing but goto. |
| // A typical usage of this function is to check if the preheader fucntion is |
| // "almost" empty such that generated intrinsic function can be moved across |
| // preheader and to be placed at the end of the preconditiona block without |
| // concerning of breaking data dependence. |
| bool LIRUtil::isAlmostEmpty(BasicBlock *BB) { |
| if (BranchInst *Br = getBranch(BB)) { |
| return Br->isUnconditional() && BB->size() == 1; |
| } |
| return false; |
| } |
| |
| Value *LIRUtil::getBrCondtion(BasicBlock *BB) { |
| BranchInst *Br = getBranch(BB); |
| return Br ? Br->getCondition() : 0; |
| } |
| |
| BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) { |
| if (BasicBlock *BB = PreHead->getSinglePredecessor()) { |
| BranchInst *Br = getBranch(BB); |
| return Br && Br->isConditional() ? BB : 0; |
| } |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of NclPopcountRecognize |
| // |
| //===----------------------------------------------------------------------===// |
| |
| NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR): |
| LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) { |
| } |
| |
| bool NclPopcountRecognize::preliminaryScreen() { |
| const TargetTransformInfo *TTI = LIR.getTargetTransformInfo(); |
| if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) |
| return false; |
| |
| // Counting population are usually conducted by few arithmetic instrutions. |
| // Such instructions can be easilly "absorbed" by vacant slots in a |
| // non-compact loop. Therefore, recognizing popcount idiom only makes sense |
| // in a compact loop. |
| |
| // Give up if the loop has multiple blocks or multiple backedges. |
| if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
| return false; |
| |
| BasicBlock *LoopBody = *(CurLoop->block_begin()); |
| if (LoopBody->size() >= 20) { |
| // The loop is too big, bail out. |
| return false; |
| } |
| |
| // It should have a preheader containing nothing but a goto instruction. |
| BasicBlock *PreHead = CurLoop->getLoopPreheader(); |
| if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead)) |
| return false; |
| |
| // It should have a precondition block where the generated popcount instrinsic |
| // function will be inserted. |
| PreCondBB = LIRUtil::getPrecondBb(PreHead); |
| if (!PreCondBB) |
| return false; |
| |
| return true; |
| } |
| |
| Value *NclPopcountRecognize::matchCondition (BranchInst *Br, |
| BasicBlock *LoopEntry) const { |
| if (!Br || !Br->isConditional()) |
| return 0; |
| |
| ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition()); |
| if (!Cond) |
| return 0; |
| |
| ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); |
| if (!CmpZero || !CmpZero->isZero()) |
| return 0; |
| |
| ICmpInst::Predicate Pred = Cond->getPredicate(); |
| if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) || |
| (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry)) |
| return Cond->getOperand(0); |
| |
| return 0; |
| } |
| |
| bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst, |
| PHINode *&CntPhi, |
| Value *&Var) const { |
| // Following code tries to detect this idiom: |
| // |
| // if (x0 != 0) |
| // goto loop-exit // the precondition of the loop |
| // cnt0 = init-val; |
| // do { |
| // x1 = phi (x0, x2); |
| // cnt1 = phi(cnt0, cnt2); |
| // |
| // cnt2 = cnt1 + 1; |
| // ... |
| // x2 = x1 & (x1 - 1); |
| // ... |
| // } while(x != 0); |
| // |
| // loop-exit: |
| // |
| |
| // step 1: Check to see if the look-back branch match this pattern: |
| // "if (a!=0) goto loop-entry". |
| BasicBlock *LoopEntry; |
| Instruction *DefX2, *CountInst; |
| Value *VarX1, *VarX0; |
| PHINode *PhiX, *CountPhi; |
| |
| DefX2 = CountInst = 0; |
| VarX1 = VarX0 = 0; |
| PhiX = CountPhi = 0; |
| LoopEntry = *(CurLoop->block_begin()); |
| |
| // step 1: Check if the loop-back branch is in desirable form. |
| { |
| if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry)) |
| DefX2 = dyn_cast<Instruction>(T); |
| else |
| return false; |
| } |
| |
| // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" |
| { |
| if (!DefX2 || DefX2->getOpcode() != Instruction::And) |
| return false; |
| |
| BinaryOperator *SubOneOp; |
| |
| if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) |
| VarX1 = DefX2->getOperand(1); |
| else { |
| VarX1 = DefX2->getOperand(0); |
| SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); |
| } |
| if (!SubOneOp) |
| return false; |
| |
| Instruction *SubInst = cast<Instruction>(SubOneOp); |
| ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); |
| if (!Dec || |
| !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || |
| (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) { |
| return false; |
| } |
| } |
| |
| // step 3: Check the recurrence of variable X |
| { |
| PhiX = dyn_cast<PHINode>(VarX1); |
| if (!PhiX || |
| (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) { |
| return false; |
| } |
| } |
| |
| // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 |
| { |
| CountInst = NULL; |
| for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(), |
| IterE = LoopEntry->end(); Iter != IterE; Iter++) { |
| Instruction *Inst = Iter; |
| if (Inst->getOpcode() != Instruction::Add) |
| continue; |
| |
| ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); |
| if (!Inc || !Inc->isOne()) |
| continue; |
| |
| PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0)); |
| if (!Phi || Phi->getParent() != LoopEntry) |
| continue; |
| |
| // Check if the result of the instruction is live of the loop. |
| bool LiveOutLoop = false; |
| for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); |
| I != E; I++) { |
| if ((cast<Instruction>(*I))->getParent() != LoopEntry) { |
| LiveOutLoop = true; break; |
| } |
| } |
| |
| if (LiveOutLoop) { |
| CountInst = Inst; |
| CountPhi = Phi; |
| break; |
| } |
| } |
| |
| if (!CountInst) |
| return false; |
| } |
| |
| // step 5: check if the precondition is in this form: |
| // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" |
| { |
| BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB); |
| Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader()); |
| if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) |
| return false; |
| |
| CntInst = CountInst; |
| CntPhi = CountPhi; |
| Var = T; |
| } |
| |
| return true; |
| } |
| |
| void NclPopcountRecognize::transform(Instruction *CntInst, |
| PHINode *CntPhi, Value *Var) { |
| |
| ScalarEvolution *SE = LIR.getScalarEvolution(); |
| TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo(); |
| BasicBlock *PreHead = CurLoop->getLoopPreheader(); |
| BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB); |
| const DebugLoc DL = CntInst->getDebugLoc(); |
| |
| // Assuming before transformation, the loop is following: |
| // if (x) // the precondition |
| // do { cnt++; x &= x - 1; } while(x); |
| |
| // Step 1: Insert the ctpop instruction at the end of the precondition block |
| IRBuilderTy Builder(PreCondBr); |
| Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; |
| { |
| PopCnt = createPopcntIntrinsic(Builder, Var, DL); |
| NewCount = PopCntZext = |
| Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); |
| |
| if (NewCount != PopCnt) |
| (cast<Instruction>(NewCount))->setDebugLoc(DL); |
| |
| // TripCnt is exactly the number of iterations the loop has |
| TripCnt = NewCount; |
| |
| // If the popoulation counter's initial value is not zero, insert Add Inst. |
| Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); |
| ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); |
| if (!InitConst || !InitConst->isZero()) { |
| NewCount = Builder.CreateAdd(NewCount, CntInitVal); |
| (cast<Instruction>(NewCount))->setDebugLoc(DL); |
| } |
| } |
| |
| // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to |
| // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic |
| // function would be partial dead code, and downstream passes will drag |
| // it back from the precondition block to the preheader. |
| { |
| ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); |
| |
| Value *Opnd0 = PopCntZext; |
| Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); |
| if (PreCond->getOperand(0) != Var) |
| std::swap(Opnd0, Opnd1); |
| |
| ICmpInst *NewPreCond = |
| cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); |
| PreCond->replaceAllUsesWith(NewPreCond); |
| |
| deleteDeadInstruction(PreCond, *SE, TLI); |
| } |
| |
| // Step 3: Note that the population count is exactly the trip count of the |
| // loop in question, which enble us to to convert the loop from noncountable |
| // loop into a countable one. The benefit is twofold: |
| // |
| // - If the loop only counts population, the entire loop become dead after |
| // the transformation. It is lots easier to prove a countable loop dead |
| // than to prove a noncountable one. (In some C dialects, a infite loop |
| // isn't dead even if it computes nothing useful. In general, DCE needs |
| // to prove a noncountable loop finite before safely delete it.) |
| // |
| // - If the loop also performs something else, it remains alive. |
| // Since it is transformed to countable form, it can be aggressively |
| // optimized by some optimizations which are in general not applicable |
| // to a noncountable loop. |
| // |
| // After this step, this loop (conceptually) would look like following: |
| // newcnt = __builtin_ctpop(x); |
| // t = newcnt; |
| // if (x) |
| // do { cnt++; x &= x-1; t--) } while (t > 0); |
| BasicBlock *Body = *(CurLoop->block_begin()); |
| { |
| BranchInst *LbBr = LIRUtil::getBranch(Body); |
| ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); |
| Type *Ty = TripCnt->getType(); |
| |
| PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin()); |
| |
| Builder.SetInsertPoint(LbCond); |
| Value *Opnd1 = cast<Value>(TcPhi); |
| Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1)); |
| Instruction *TcDec = |
| cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true)); |
| |
| TcPhi->addIncoming(TripCnt, PreHead); |
| TcPhi->addIncoming(TcDec, Body); |
| |
| CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ? |
| CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; |
| LbCond->setPredicate(Pred); |
| LbCond->setOperand(0, TcDec); |
| LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0))); |
| } |
| |
| // Step 4: All the references to the original population counter outside |
| // the loop are replaced with the NewCount -- the value returned from |
| // __builtin_ctpop(). |
| { |
| SmallVector<Value *, 4> CntUses; |
| for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end(); |
| I != E; I++) { |
| if (cast<Instruction>(*I)->getParent() != Body) |
| CntUses.push_back(*I); |
| } |
| for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) { |
| (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount); |
| } |
| } |
| |
| // step 5: Forget the "non-computable" trip-count SCEV associated with the |
| // loop. The loop would otherwise not be deleted even if it becomes empty. |
| SE->forgetLoop(CurLoop); |
| } |
| |
| CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder, |
| Value *Val, DebugLoc DL) { |
| Value *Ops[] = { Val }; |
| Type *Tys[] = { Val->getType() }; |
| |
| Module *M = (*(CurLoop->block_begin()))->getParent()->getParent(); |
| Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); |
| CallInst *CI = IRBuilder.CreateCall(Func, Ops); |
| CI->setDebugLoc(DL); |
| |
| return CI; |
| } |
| |
| /// recognize - detect population count idiom in a non-countable loop. If |
| /// detected, transform the relevant code to popcount intrinsic function |
| /// call, and return true; otherwise, return false. |
| bool NclPopcountRecognize::recognize() { |
| |
| if (!LIR.getTargetTransformInfo()) |
| return false; |
| |
| LIR.getScalarEvolution(); |
| |
| if (!preliminaryScreen()) |
| return false; |
| |
| Instruction *CntInst; |
| PHINode *CntPhi; |
| Value *Val; |
| if (!detectIdiom(CntInst, CntPhi, Val)) |
| return false; |
| |
| transform(CntInst, CntPhi, Val); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of LoopIdiomRecognize |
| // |
| //===----------------------------------------------------------------------===// |
| |
| bool LoopIdiomRecognize::runOnCountableLoop() { |
| const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); |
| if (isa<SCEVCouldNotCompute>(BECount)) return false; |
| |
| // If this loop executes exactly one time, then it should be peeled, not |
| // optimized by this pass. |
| if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| if (BECst->getValue()->getValue() == 0) |
| return false; |
| |
| // We require target data for now. |
| if (!getDataLayout()) |
| return false; |
| |
| // set DT |
| (void)getDominatorTree(); |
| |
| LoopInfo &LI = getAnalysis<LoopInfo>(); |
| TLI = &getAnalysis<TargetLibraryInfo>(); |
| |
| // set TLI |
| (void)getTargetLibraryInfo(); |
| |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| CurLoop->getUniqueExitBlocks(ExitBlocks); |
| |
| DEBUG(dbgs() << "loop-idiom Scanning: F[" |
| << CurLoop->getHeader()->getParent()->getName() |
| << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); |
| |
| bool MadeChange = false; |
| // Scan all the blocks in the loop that are not in subloops. |
| for (Loop::block_iterator BI = CurLoop->block_begin(), |
| E = CurLoop->block_end(); BI != E; ++BI) { |
| // Ignore blocks in subloops. |
| if (LI.getLoopFor(*BI) != CurLoop) |
| continue; |
| |
| MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks); |
| } |
| return MadeChange; |
| } |
| |
| bool LoopIdiomRecognize::runOnNoncountableLoop() { |
| NclPopcountRecognize Popcount(*this); |
| if (Popcount.recognize()) |
| return true; |
| |
| return false; |
| } |
| |
| bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { |
| CurLoop = L; |
| |
| // If the loop could not be converted to canonical form, it must have an |
| // indirectbr in it, just give up. |
| if (!L->getLoopPreheader()) |
| return false; |
| |
| // Disable loop idiom recognition if the function's name is a common idiom. |
| StringRef Name = L->getHeader()->getParent()->getName(); |
| if (Name == "memset" || Name == "memcpy") |
| return false; |
| |
| SE = &getAnalysis<ScalarEvolution>(); |
| if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
| return runOnCountableLoop(); |
| return runOnNoncountableLoop(); |
| } |
| |
| /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
| /// with the specified backedge count. This block is known to be in the current |
| /// loop and not in any subloops. |
| bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, |
| SmallVectorImpl<BasicBlock*> &ExitBlocks) { |
| // We can only promote stores in this block if they are unconditionally |
| // executed in the loop. For a block to be unconditionally executed, it has |
| // to dominate all the exit blocks of the loop. Verify this now. |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) |
| if (!DT->dominates(BB, ExitBlocks[i])) |
| return false; |
| |
| bool MadeChange = false; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { |
| Instruction *Inst = I++; |
| // Look for store instructions, which may be optimized to memset/memcpy. |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| WeakVH InstPtr(I); |
| if (!processLoopStore(SI, BECount)) continue; |
| MadeChange = true; |
| |
| // If processing the store invalidated our iterator, start over from the |
| // top of the block. |
| if (InstPtr == 0) |
| I = BB->begin(); |
| continue; |
| } |
| |
| // Look for memset instructions, which may be optimized to a larger memset. |
| if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { |
| WeakVH InstPtr(I); |
| if (!processLoopMemSet(MSI, BECount)) continue; |
| MadeChange = true; |
| |
| // If processing the memset invalidated our iterator, start over from the |
| // top of the block. |
| if (InstPtr == 0) |
| I = BB->begin(); |
| continue; |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| |
| /// processLoopStore - See if this store can be promoted to a memset or memcpy. |
| bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) { |
| if (!SI->isSimple()) return false; |
| |
| Value *StoredVal = SI->getValueOperand(); |
| Value *StorePtr = SI->getPointerOperand(); |
| |
| // Reject stores that are so large that they overflow an unsigned. |
| uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType()); |
| if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) |
| return false; |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *StoreEv = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) |
| return false; |
| |
| // Check to see if the stride matches the size of the store. If so, then we |
| // know that every byte is touched in the loop. |
| unsigned StoreSize = (unsigned)SizeInBits >> 3; |
| const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); |
| |
| if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) { |
| // TODO: Could also handle negative stride here someday, that will require |
| // the validity check in mayLoopAccessLocation to be updated though. |
| // Enable this to print exact negative strides. |
| if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) { |
| dbgs() << "NEGATIVE STRIDE: " << *SI << "\n"; |
| dbgs() << "BB: " << *SI->getParent(); |
| } |
| |
| return false; |
| } |
| |
| // See if we can optimize just this store in isolation. |
| if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(), |
| StoredVal, SI, StoreEv, BECount)) |
| return true; |
| |
| // If the stored value is a strided load in the same loop with the same stride |
| // this this may be transformable into a memcpy. This kicks in for stuff like |
| // for (i) A[i] = B[i]; |
| if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { |
| const SCEVAddRecExpr *LoadEv = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0))); |
| if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() && |
| StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple()) |
| if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount)) |
| return true; |
| } |
| //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n"; |
| |
| return false; |
| } |
| |
| /// processLoopMemSet - See if this memset can be promoted to a large memset. |
| bool LoopIdiomRecognize:: |
| processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) { |
| // We can only handle non-volatile memsets with a constant size. |
| if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false; |
| |
| // If we're not allowed to hack on memset, we fail. |
| if (!TLI->has(LibFunc::memset)) |
| return false; |
| |
| Value *Pointer = MSI->getDest(); |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); |
| if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine()) |
| return false; |
| |
| // Reject memsets that are so large that they overflow an unsigned. |
| uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); |
| if ((SizeInBytes >> 32) != 0) |
| return false; |
| |
| // Check to see if the stride matches the size of the memset. If so, then we |
| // know that every byte is touched in the loop. |
| const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); |
| |
| // TODO: Could also handle negative stride here someday, that will require the |
| // validity check in mayLoopAccessLocation to be updated though. |
| if (Stride == 0 || MSI->getLength() != Stride->getValue()) |
| return false; |
| |
| return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, |
| MSI->getAlignment(), MSI->getValue(), |
| MSI, Ev, BECount); |
| } |
| |
| |
| /// mayLoopAccessLocation - Return true if the specified loop might access the |
| /// specified pointer location, which is a loop-strided access. The 'Access' |
| /// argument specifies what the verboten forms of access are (read or write). |
| static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access, |
| Loop *L, const SCEV *BECount, |
| unsigned StoreSize, AliasAnalysis &AA, |
| Instruction *IgnoredStore) { |
| // Get the location that may be stored across the loop. Since the access is |
| // strided positively through memory, we say that the modified location starts |
| // at the pointer and has infinite size. |
| uint64_t AccessSize = AliasAnalysis::UnknownSize; |
| |
| // If the loop iterates a fixed number of times, we can refine the access size |
| // to be exactly the size of the memset, which is (BECount+1)*StoreSize |
| if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize; |
| |
| // TODO: For this to be really effective, we have to dive into the pointer |
| // operand in the store. Store to &A[i] of 100 will always return may alias |
| // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
| // which will then no-alias a store to &A[100]. |
| AliasAnalysis::Location StoreLoc(Ptr, AccessSize); |
| |
| for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; |
| ++BI) |
| for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) |
| if (&*I != IgnoredStore && |
| (AA.getModRefInfo(I, StoreLoc) & Access)) |
| return true; |
| |
| return false; |
| } |
| |
| /// getMemSetPatternValue - If a strided store of the specified value is safe to |
| /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should |
| /// be passed in. Otherwise, return null. |
| /// |
| /// Note that we don't ever attempt to use memset_pattern8 or 4, because these |
| /// just replicate their input array and then pass on to memset_pattern16. |
| static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) { |
| // If the value isn't a constant, we can't promote it to being in a constant |
| // array. We could theoretically do a store to an alloca or something, but |
| // that doesn't seem worthwhile. |
| Constant *C = dyn_cast<Constant>(V); |
| if (C == 0) return 0; |
| |
| // Only handle simple values that are a power of two bytes in size. |
| uint64_t Size = TD.getTypeSizeInBits(V->getType()); |
| if (Size == 0 || (Size & 7) || (Size & (Size-1))) |
| return 0; |
| |
| // Don't care enough about darwin/ppc to implement this. |
| if (TD.isBigEndian()) |
| return 0; |
| |
| // Convert to size in bytes. |
| Size /= 8; |
| |
| // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see |
| // if the top and bottom are the same (e.g. for vectors and large integers). |
| if (Size > 16) return 0; |
| |
| // If the constant is exactly 16 bytes, just use it. |
| if (Size == 16) return C; |
| |
| // Otherwise, we'll use an array of the constants. |
| unsigned ArraySize = 16/Size; |
| ArrayType *AT = ArrayType::get(V->getType(), ArraySize); |
| return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C)); |
| } |
| |
| |
| /// processLoopStridedStore - We see a strided store of some value. If we can |
| /// transform this into a memset or memset_pattern in the loop preheader, do so. |
| bool LoopIdiomRecognize:: |
| processLoopStridedStore(Value *DestPtr, unsigned StoreSize, |
| unsigned StoreAlignment, Value *StoredVal, |
| Instruction *TheStore, const SCEVAddRecExpr *Ev, |
| const SCEV *BECount) { |
| |
| // If the stored value is a byte-wise value (like i32 -1), then it may be |
| // turned into a memset of i8 -1, assuming that all the consecutive bytes |
| // are stored. A store of i32 0x01020304 can never be turned into a memset, |
| // but it can be turned into memset_pattern if the target supports it. |
| Value *SplatValue = isBytewiseValue(StoredVal); |
| Constant *PatternValue = 0; |
| |
| // If we're allowed to form a memset, and the stored value would be acceptable |
| // for memset, use it. |
| if (SplatValue && TLI->has(LibFunc::memset) && |
| // Verify that the stored value is loop invariant. If not, we can't |
| // promote the memset. |
| CurLoop->isLoopInvariant(SplatValue)) { |
| // Keep and use SplatValue. |
| PatternValue = 0; |
| } else if (TLI->has(LibFunc::memset_pattern16) && |
| (PatternValue = getMemSetPatternValue(StoredVal, *TD))) { |
| // It looks like we can use PatternValue! |
| SplatValue = 0; |
| } else { |
| // Otherwise, this isn't an idiom we can transform. For example, we can't |
| // do anything with a 3-byte store. |
| return false; |
| } |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. This allows us to insert code for it in the preheader. |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| SCEVExpander Expander(*SE, "loop-idiom"); |
| |
| // Okay, we have a strided store "p[i]" of a splattable value. We can turn |
| // this into a memset in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write to the aliased location. Check for any overlap by generating the |
| // base pointer and checking the region. |
| unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace(); |
| Value *BasePtr = |
| Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace), |
| Preheader->getTerminator()); |
| |
| |
| if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef, |
| CurLoop, BECount, |
| StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){ |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| deleteIfDeadInstruction(BasePtr, *SE, TLI); |
| return false; |
| } |
| |
| // Okay, everything looks good, insert the memset. |
| |
| // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| // pointer size if it isn't already. |
| Type *IntPtr = TD->getIntPtrType(DestPtr->getContext()); |
| BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); |
| |
| const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), |
| SCEV::FlagNUW); |
| if (StoreSize != 1) |
| NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), |
| SCEV::FlagNUW); |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); |
| |
| CallInst *NewCall; |
| if (SplatValue) |
| NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment); |
| else { |
| Module *M = TheStore->getParent()->getParent()->getParent(); |
| Value *MSP = M->getOrInsertFunction("memset_pattern16", |
| Builder.getVoidTy(), |
| Builder.getInt8PtrTy(), |
| Builder.getInt8PtrTy(), IntPtr, |
| (void*)0); |
| |
| // Otherwise we should form a memset_pattern16. PatternValue is known to be |
| // an constant array of 16-bytes. Plop the value into a mergable global. |
| GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, |
| GlobalValue::InternalLinkage, |
| PatternValue, ".memset_pattern"); |
| GV->setUnnamedAddr(true); // Ok to merge these. |
| GV->setAlignment(16); |
| Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy()); |
| NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes); |
| } |
| |
| DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" |
| << " from store to: " << *Ev << " at: " << *TheStore << "\n"); |
| NewCall->setDebugLoc(TheStore->getDebugLoc()); |
| |
| // Okay, the memset has been formed. Zap the original store and anything that |
| // feeds into it. |
| deleteDeadInstruction(TheStore, *SE, TLI); |
| ++NumMemSet; |
| return true; |
| } |
| |
| /// processLoopStoreOfLoopLoad - We see a strided store whose value is a |
| /// same-strided load. |
| bool LoopIdiomRecognize:: |
| processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, |
| const SCEVAddRecExpr *StoreEv, |
| const SCEVAddRecExpr *LoadEv, |
| const SCEV *BECount) { |
| // If we're not allowed to form memcpy, we fail. |
| if (!TLI->has(LibFunc::memcpy)) |
| return false; |
| |
| LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. This allows us to insert code for it in the preheader. |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| SCEVExpander Expander(*SE, "loop-idiom"); |
| |
| // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
| // this into a memcpy in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write the memory region we're storing to. This includes the load that |
| // feeds the stores. Check for an alias by generating the base address and |
| // checking everything. |
| Value *StoreBasePtr = |
| Expander.expandCodeFor(StoreEv->getStart(), |
| Builder.getInt8PtrTy(SI->getPointerAddressSpace()), |
| Preheader->getTerminator()); |
| |
| if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef, |
| CurLoop, BECount, StoreSize, |
| getAnalysis<AliasAnalysis>(), SI)) { |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| deleteIfDeadInstruction(StoreBasePtr, *SE, TLI); |
| return false; |
| } |
| |
| // For a memcpy, we have to make sure that the input array is not being |
| // mutated by the loop. |
| Value *LoadBasePtr = |
| Expander.expandCodeFor(LoadEv->getStart(), |
| Builder.getInt8PtrTy(LI->getPointerAddressSpace()), |
| Preheader->getTerminator()); |
| |
| if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount, |
| StoreSize, getAnalysis<AliasAnalysis>(), SI)) { |
| Expander.clear(); |
| // If we generated new code for the base pointer, clean up. |
| deleteIfDeadInstruction(LoadBasePtr, *SE, TLI); |
| deleteIfDeadInstruction(StoreBasePtr, *SE, TLI); |
| return false; |
| } |
| |
| // Okay, everything is safe, we can transform this! |
| |
| |
| // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| // pointer size if it isn't already. |
| Type *IntPtr = TD->getIntPtrType(SI->getContext()); |
| BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); |
| |
| const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), |
| SCEV::FlagNUW); |
| if (StoreSize != 1) |
| NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), |
| SCEV::FlagNUW); |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); |
| |
| CallInst *NewCall = |
| Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, |
| std::min(SI->getAlignment(), LI->getAlignment())); |
| NewCall->setDebugLoc(SI->getDebugLoc()); |
| |
| DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" |
| << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" |
| << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); |
| |
| |
| // Okay, the memset has been formed. Zap the original store and anything that |
| // feeds into it. |
| deleteDeadInstruction(SI, *SE, TLI); |
| ++NumMemCpy; |
| return true; |
| } |