blob: 8258719a0200b3d090b4057250b714e01ac59b41 [file] [log] [blame]
//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements an idiom recognizer that transforms simple loops into a
// non-loop form. In cases that this kicks in, it can be a significant
// performance win.
//
//===----------------------------------------------------------------------===//
//
// TODO List:
//
// Future loop memory idioms to recognize:
// memcmp, memmove, strlen, etc.
// Future floating point idioms to recognize in -ffast-math mode:
// fpowi
// Future integer operation idioms to recognize:
// ctpop, ctlz, cttz
//
// Beware that isel's default lowering for ctpop is highly inefficient for
// i64 and larger types when i64 is legal and the value has few bits set. It
// would be good to enhance isel to emit a loop for ctpop in this case.
//
// We should enhance the memset/memcpy recognition to handle multiple stores in
// the loop. This would handle things like:
// void foo(_Complex float *P)
// for (i) { __real__(*P) = 0; __imag__(*P) = 0; }
//
// We should enhance this to handle negative strides through memory.
// Alternatively (and perhaps better) we could rely on an earlier pass to force
// forward iteration through memory, which is generally better for cache
// behavior. Negative strides *do* happen for memset/memcpy loops.
//
// This could recognize common matrix multiplies and dot product idioms and
// replace them with calls to BLAS (if linked in??).
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-idiom"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
namespace {
class LoopIdiomRecognize;
/// This class defines some utility functions for loop idiom recognization.
class LIRUtil {
public:
/// Return true iff the block contains nothing but an uncondition branch
/// (aka goto instruction).
static bool isAlmostEmpty(BasicBlock *);
static BranchInst *getBranch(BasicBlock *BB) {
return dyn_cast<BranchInst>(BB->getTerminator());
}
/// Return the condition of the branch terminating the given basic block.
static Value *getBrCondtion(BasicBlock *);
/// Derive the precondition block (i.e the block that guards the loop
/// preheader) from the given preheader.
static BasicBlock *getPrecondBb(BasicBlock *PreHead);
};
/// This class is to recoginize idioms of population-count conducted in
/// a noncountable loop. Currently it only recognizes this pattern:
/// \code
/// while(x) {cnt++; ...; x &= x - 1; ...}
/// \endcode
class NclPopcountRecognize {
LoopIdiomRecognize &LIR;
Loop *CurLoop;
BasicBlock *PreCondBB;
typedef IRBuilder<> IRBuilderTy;
public:
explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
bool recognize();
private:
/// Take a glimpse of the loop to see if we need to go ahead recoginizing
/// the idiom.
bool preliminaryScreen();
/// Check if the given conditional branch is based on the comparison
/// beween a variable and zero, and if the variable is non-zero, the
/// control yeilds to the loop entry. If the branch matches the behavior,
/// the variable involved in the comparion is returned. This function will
/// be called to see if the precondition and postcondition of the loop
/// are in desirable form.
Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
/// Return true iff the idiom is detected in the loop. and 1) \p CntInst
/// is set to the instruction counting the pupulation bit. 2) \p CntPhi
/// is set to the corresponding phi node. 3) \p Var is set to the value
/// whose population bits are being counted.
bool detectIdiom
(Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
/// Insert ctpop intrinsic function and some obviously dead instructions.
void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
/// Create llvm.ctpop.* intrinsic function.
CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
};
class LoopIdiomRecognize : public LoopPass {
Loop *CurLoop;
const DataLayout *TD;
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
const TargetTransformInfo *TTI;
public:
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
SmallVectorImpl<BasicBlock*> &ExitBlocks);
bool processLoopStore(StoreInst *SI, const SCEV *BECount);
bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
unsigned StoreAlignment,
Value *SplatValue, Instruction *TheStore,
const SCEVAddRecExpr *Ev,
const SCEV *BECount);
bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
const SCEVAddRecExpr *StoreEv,
const SCEVAddRecExpr *LoadEv,
const SCEV *BECount);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
AU.addPreserved<DominatorTree>();
AU.addRequired<DominatorTree>();
AU.addRequired<TargetLibraryInfo>();
AU.addRequired<TargetTransformInfo>();
}
const DataLayout *getDataLayout() {
return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
}
DominatorTree *getDominatorTree() {
return DT ? DT : (DT=&getAnalysis<DominatorTree>());
}
ScalarEvolution *getScalarEvolution() {
return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
}
TargetLibraryInfo *getTargetLibraryInfo() {
return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
}
const TargetTransformInfo *getTargetTransformInfo() {
return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
}
Loop *getLoop() const { return CurLoop; }
private:
bool runOnNoncountableLoop();
bool runOnCountableLoop();
};
}
char LoopIdiomRecognize::ID = 0;
INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
/// deleteDeadInstruction - Delete this instruction. Before we do, go through
/// and zero out all the operands of this instruction. If any of them become
/// dead, delete them and the computation tree that feeds them.
///
static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
const TargetLibraryInfo *TLI) {
SmallVector<Instruction*, 32> NowDeadInsts;
NowDeadInsts.push_back(I);
// Before we touch this instruction, remove it from SE!
do {
Instruction *DeadInst = NowDeadInsts.pop_back_val();
// This instruction is dead, zap it, in stages. Start by removing it from
// SCEV.
SE.forgetValue(DeadInst);
for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
Value *Op = DeadInst->getOperand(op);
DeadInst->setOperand(op, 0);
// If this operand just became dead, add it to the NowDeadInsts list.
if (!Op->use_empty()) continue;
if (Instruction *OpI = dyn_cast<Instruction>(Op))
if (isInstructionTriviallyDead(OpI, TLI))
NowDeadInsts.push_back(OpI);
}
DeadInst->eraseFromParent();
} while (!NowDeadInsts.empty());
}
/// deleteIfDeadInstruction - If the specified value is a dead instruction,
/// delete it and any recursively used instructions.
static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
const TargetLibraryInfo *TLI) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (isInstructionTriviallyDead(I, TLI))
deleteDeadInstruction(I, SE, TLI);
}
//===----------------------------------------------------------------------===//
//
// Implementation of LIRUtil
//
//===----------------------------------------------------------------------===//
// This fucntion will return true iff the given block contains nothing but goto.
// A typical usage of this function is to check if the preheader fucntion is
// "almost" empty such that generated intrinsic function can be moved across
// preheader and to be placed at the end of the preconditiona block without
// concerning of breaking data dependence.
bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
if (BranchInst *Br = getBranch(BB)) {
return Br->isUnconditional() && BB->size() == 1;
}
return false;
}
Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
BranchInst *Br = getBranch(BB);
return Br ? Br->getCondition() : 0;
}
BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
BranchInst *Br = getBranch(BB);
return Br && Br->isConditional() ? BB : 0;
}
return 0;
}
//===----------------------------------------------------------------------===//
//
// Implementation of NclPopcountRecognize
//
//===----------------------------------------------------------------------===//
NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
}
bool NclPopcountRecognize::preliminaryScreen() {
const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
return false;
// Counting population are usually conducted by few arithmetic instrutions.
// Such instructions can be easilly "absorbed" by vacant slots in a
// non-compact loop. Therefore, recognizing popcount idiom only makes sense
// in a compact loop.
// Give up if the loop has multiple blocks or multiple backedges.
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
return false;
BasicBlock *LoopBody = *(CurLoop->block_begin());
if (LoopBody->size() >= 20) {
// The loop is too big, bail out.
return false;
}
// It should have a preheader containing nothing but a goto instruction.
BasicBlock *PreHead = CurLoop->getLoopPreheader();
if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
return false;
// It should have a precondition block where the generated popcount instrinsic
// function will be inserted.
PreCondBB = LIRUtil::getPrecondBb(PreHead);
if (!PreCondBB)
return false;
return true;
}
Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
BasicBlock *LoopEntry) const {
if (!Br || !Br->isConditional())
return 0;
ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
if (!Cond)
return 0;
ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
if (!CmpZero || !CmpZero->isZero())
return 0;
ICmpInst::Predicate Pred = Cond->getPredicate();
if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
(Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
return Cond->getOperand(0);
return 0;
}
bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
PHINode *&CntPhi,
Value *&Var) const {
// Following code tries to detect this idiom:
//
// if (x0 != 0)
// goto loop-exit // the precondition of the loop
// cnt0 = init-val;
// do {
// x1 = phi (x0, x2);
// cnt1 = phi(cnt0, cnt2);
//
// cnt2 = cnt1 + 1;
// ...
// x2 = x1 & (x1 - 1);
// ...
// } while(x != 0);
//
// loop-exit:
//
// step 1: Check to see if the look-back branch match this pattern:
// "if (a!=0) goto loop-entry".
BasicBlock *LoopEntry;
Instruction *DefX2, *CountInst;
Value *VarX1, *VarX0;
PHINode *PhiX, *CountPhi;
DefX2 = CountInst = 0;
VarX1 = VarX0 = 0;
PhiX = CountPhi = 0;
LoopEntry = *(CurLoop->block_begin());
// step 1: Check if the loop-back branch is in desirable form.
{
if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
DefX2 = dyn_cast<Instruction>(T);
else
return false;
}
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
{
if (!DefX2 || DefX2->getOpcode() != Instruction::And)
return false;
BinaryOperator *SubOneOp;
if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
VarX1 = DefX2->getOperand(1);
else {
VarX1 = DefX2->getOperand(0);
SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
}
if (!SubOneOp)
return false;
Instruction *SubInst = cast<Instruction>(SubOneOp);
ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
if (!Dec ||
!((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
(SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
return false;
}
}
// step 3: Check the recurrence of variable X
{
PhiX = dyn_cast<PHINode>(VarX1);
if (!PhiX ||
(PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
return false;
}
}
// step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
{
CountInst = NULL;
for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
IterE = LoopEntry->end(); Iter != IterE; Iter++) {
Instruction *Inst = Iter;
if (Inst->getOpcode() != Instruction::Add)
continue;
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
if (!Inc || !Inc->isOne())
continue;
PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
if (!Phi || Phi->getParent() != LoopEntry)
continue;
// Check if the result of the instruction is live of the loop.
bool LiveOutLoop = false;
for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
I != E; I++) {
if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
LiveOutLoop = true; break;
}
}
if (LiveOutLoop) {
CountInst = Inst;
CountPhi = Phi;
break;
}
}
if (!CountInst)
return false;
}
// step 5: check if the precondition is in this form:
// "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
{
BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
return false;
CntInst = CountInst;
CntPhi = CountPhi;
Var = T;
}
return true;
}
void NclPopcountRecognize::transform(Instruction *CntInst,
PHINode *CntPhi, Value *Var) {
ScalarEvolution *SE = LIR.getScalarEvolution();
TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
BasicBlock *PreHead = CurLoop->getLoopPreheader();
BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
const DebugLoc DL = CntInst->getDebugLoc();
// Assuming before transformation, the loop is following:
// if (x) // the precondition
// do { cnt++; x &= x - 1; } while(x);
// Step 1: Insert the ctpop instruction at the end of the precondition block
IRBuilderTy Builder(PreCondBr);
Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
{
PopCnt = createPopcntIntrinsic(Builder, Var, DL);
NewCount = PopCntZext =
Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
if (NewCount != PopCnt)
(cast<Instruction>(NewCount))->setDebugLoc(DL);
// TripCnt is exactly the number of iterations the loop has
TripCnt = NewCount;
// If the popoulation counter's initial value is not zero, insert Add Inst.
Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
if (!InitConst || !InitConst->isZero()) {
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
(cast<Instruction>(NewCount))->setDebugLoc(DL);
}
}
// Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
// "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
// function would be partial dead code, and downstream passes will drag
// it back from the precondition block to the preheader.
{
ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
Value *Opnd0 = PopCntZext;
Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
if (PreCond->getOperand(0) != Var)
std::swap(Opnd0, Opnd1);
ICmpInst *NewPreCond =
cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
PreCond->replaceAllUsesWith(NewPreCond);
deleteDeadInstruction(PreCond, *SE, TLI);
}
// Step 3: Note that the population count is exactly the trip count of the
// loop in question, which enble us to to convert the loop from noncountable
// loop into a countable one. The benefit is twofold:
//
// - If the loop only counts population, the entire loop become dead after
// the transformation. It is lots easier to prove a countable loop dead
// than to prove a noncountable one. (In some C dialects, a infite loop
// isn't dead even if it computes nothing useful. In general, DCE needs
// to prove a noncountable loop finite before safely delete it.)
//
// - If the loop also performs something else, it remains alive.
// Since it is transformed to countable form, it can be aggressively
// optimized by some optimizations which are in general not applicable
// to a noncountable loop.
//
// After this step, this loop (conceptually) would look like following:
// newcnt = __builtin_ctpop(x);
// t = newcnt;
// if (x)
// do { cnt++; x &= x-1; t--) } while (t > 0);
BasicBlock *Body = *(CurLoop->block_begin());
{
BranchInst *LbBr = LIRUtil::getBranch(Body);
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
Type *Ty = TripCnt->getType();
PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
Builder.SetInsertPoint(LbCond);
Value *Opnd1 = cast<Value>(TcPhi);
Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
Instruction *TcDec =
cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
TcPhi->addIncoming(TripCnt, PreHead);
TcPhi->addIncoming(TcDec, Body);
CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
LbCond->setPredicate(Pred);
LbCond->setOperand(0, TcDec);
LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
}
// Step 4: All the references to the original population counter outside
// the loop are replaced with the NewCount -- the value returned from
// __builtin_ctpop().
{
SmallVector<Value *, 4> CntUses;
for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
I != E; I++) {
if (cast<Instruction>(*I)->getParent() != Body)
CntUses.push_back(*I);
}
for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
(cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
}
}
// step 5: Forget the "non-computable" trip-count SCEV associated with the
// loop. The loop would otherwise not be deleted even if it becomes empty.
SE->forgetLoop(CurLoop);
}
CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
Value *Val, DebugLoc DL) {
Value *Ops[] = { Val };
Type *Tys[] = { Val->getType() };
Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
CallInst *CI = IRBuilder.CreateCall(Func, Ops);
CI->setDebugLoc(DL);
return CI;
}
/// recognize - detect population count idiom in a non-countable loop. If
/// detected, transform the relevant code to popcount intrinsic function
/// call, and return true; otherwise, return false.
bool NclPopcountRecognize::recognize() {
if (!LIR.getTargetTransformInfo())
return false;
LIR.getScalarEvolution();
if (!preliminaryScreen())
return false;
Instruction *CntInst;
PHINode *CntPhi;
Value *Val;
if (!detectIdiom(CntInst, CntPhi, Val))
return false;
transform(CntInst, CntPhi, Val);
return true;
}
//===----------------------------------------------------------------------===//
//
// Implementation of LoopIdiomRecognize
//
//===----------------------------------------------------------------------===//
bool LoopIdiomRecognize::runOnCountableLoop() {
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
if (isa<SCEVCouldNotCompute>(BECount)) return false;
// If this loop executes exactly one time, then it should be peeled, not
// optimized by this pass.
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
if (BECst->getValue()->getValue() == 0)
return false;
// We require target data for now.
if (!getDataLayout())
return false;
// set DT
(void)getDominatorTree();
LoopInfo &LI = getAnalysis<LoopInfo>();
TLI = &getAnalysis<TargetLibraryInfo>();
// set TLI
(void)getTargetLibraryInfo();
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
DEBUG(dbgs() << "loop-idiom Scanning: F["
<< CurLoop->getHeader()->getParent()->getName()
<< "] Loop %" << CurLoop->getHeader()->getName() << "\n");
bool MadeChange = false;
// Scan all the blocks in the loop that are not in subloops.
for (Loop::block_iterator BI = CurLoop->block_begin(),
E = CurLoop->block_end(); BI != E; ++BI) {
// Ignore blocks in subloops.
if (LI.getLoopFor(*BI) != CurLoop)
continue;
MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
}
return MadeChange;
}
bool LoopIdiomRecognize::runOnNoncountableLoop() {
NclPopcountRecognize Popcount(*this);
if (Popcount.recognize())
return true;
return false;
}
bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
CurLoop = L;
// If the loop could not be converted to canonical form, it must have an
// indirectbr in it, just give up.
if (!L->getLoopPreheader())
return false;
// Disable loop idiom recognition if the function's name is a common idiom.
StringRef Name = L->getHeader()->getParent()->getName();
if (Name == "memset" || Name == "memcpy")
return false;
SE = &getAnalysis<ScalarEvolution>();
if (SE->hasLoopInvariantBackedgeTakenCount(L))
return runOnCountableLoop();
return runOnNoncountableLoop();
}
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count. This block is known to be in the current
/// loop and not in any subloops.
bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
SmallVectorImpl<BasicBlock*> &ExitBlocks) {
// We can only promote stores in this block if they are unconditionally
// executed in the loop. For a block to be unconditionally executed, it has
// to dominate all the exit blocks of the loop. Verify this now.
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (!DT->dominates(BB, ExitBlocks[i]))
return false;
bool MadeChange = false;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
// Look for store instructions, which may be optimized to memset/memcpy.
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
WeakVH InstPtr(I);
if (!processLoopStore(SI, BECount)) continue;
MadeChange = true;
// If processing the store invalidated our iterator, start over from the
// top of the block.
if (InstPtr == 0)
I = BB->begin();
continue;
}
// Look for memset instructions, which may be optimized to a larger memset.
if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
WeakVH InstPtr(I);
if (!processLoopMemSet(MSI, BECount)) continue;
MadeChange = true;
// If processing the memset invalidated our iterator, start over from the
// top of the block.
if (InstPtr == 0)
I = BB->begin();
continue;
}
}
return MadeChange;
}
/// processLoopStore - See if this store can be promoted to a memset or memcpy.
bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
if (!SI->isSimple()) return false;
Value *StoredVal = SI->getValueOperand();
Value *StorePtr = SI->getPointerOperand();
// Reject stores that are so large that they overflow an unsigned.
uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
return false;
// See if the pointer expression is an AddRec like {base,+,1} on the current
// loop, which indicates a strided store. If we have something else, it's a
// random store we can't handle.
const SCEVAddRecExpr *StoreEv =
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
return false;
// Check to see if the stride matches the size of the store. If so, then we
// know that every byte is touched in the loop.
unsigned StoreSize = (unsigned)SizeInBits >> 3;
const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
// TODO: Could also handle negative stride here someday, that will require
// the validity check in mayLoopAccessLocation to be updated though.
// Enable this to print exact negative strides.
if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
dbgs() << "BB: " << *SI->getParent();
}
return false;
}
// See if we can optimize just this store in isolation.
if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
StoredVal, SI, StoreEv, BECount))
return true;
// If the stored value is a strided load in the same loop with the same stride
// this this may be transformable into a memcpy. This kicks in for stuff like
// for (i) A[i] = B[i];
if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
const SCEVAddRecExpr *LoadEv =
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
return true;
}
//errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
return false;
}
/// processLoopMemSet - See if this memset can be promoted to a large memset.
bool LoopIdiomRecognize::
processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
// We can only handle non-volatile memsets with a constant size.
if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
// If we're not allowed to hack on memset, we fail.
if (!TLI->has(LibFunc::memset))
return false;
Value *Pointer = MSI->getDest();
// See if the pointer expression is an AddRec like {base,+,1} on the current
// loop, which indicates a strided store. If we have something else, it's a
// random store we can't handle.
const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
return false;
// Reject memsets that are so large that they overflow an unsigned.
uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
if ((SizeInBytes >> 32) != 0)
return false;
// Check to see if the stride matches the size of the memset. If so, then we
// know that every byte is touched in the loop.
const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
// TODO: Could also handle negative stride here someday, that will require the
// validity check in mayLoopAccessLocation to be updated though.
if (Stride == 0 || MSI->getLength() != Stride->getValue())
return false;
return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
MSI->getAlignment(), MSI->getValue(),
MSI, Ev, BECount);
}
/// mayLoopAccessLocation - Return true if the specified loop might access the
/// specified pointer location, which is a loop-strided access. The 'Access'
/// argument specifies what the verboten forms of access are (read or write).
static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
Loop *L, const SCEV *BECount,
unsigned StoreSize, AliasAnalysis &AA,
Instruction *IgnoredStore) {
// Get the location that may be stored across the loop. Since the access is
// strided positively through memory, we say that the modified location starts
// at the pointer and has infinite size.
uint64_t AccessSize = AliasAnalysis::UnknownSize;
// If the loop iterates a fixed number of times, we can refine the access size
// to be exactly the size of the memset, which is (BECount+1)*StoreSize
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
// TODO: For this to be really effective, we have to dive into the pointer
// operand in the store. Store to &A[i] of 100 will always return may alias
// with store of &A[100], we need to StoreLoc to be "A" with size of 100,
// which will then no-alias a store to &A[100].
AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
++BI)
for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
if (&*I != IgnoredStore &&
(AA.getModRefInfo(I, StoreLoc) & Access))
return true;
return false;
}
/// getMemSetPatternValue - If a strided store of the specified value is safe to
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
/// be passed in. Otherwise, return null.
///
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
/// just replicate their input array and then pass on to memset_pattern16.
static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
// If the value isn't a constant, we can't promote it to being in a constant
// array. We could theoretically do a store to an alloca or something, but
// that doesn't seem worthwhile.
Constant *C = dyn_cast<Constant>(V);
if (C == 0) return 0;
// Only handle simple values that are a power of two bytes in size.
uint64_t Size = TD.getTypeSizeInBits(V->getType());
if (Size == 0 || (Size & 7) || (Size & (Size-1)))
return 0;
// Don't care enough about darwin/ppc to implement this.
if (TD.isBigEndian())
return 0;
// Convert to size in bytes.
Size /= 8;
// TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
// if the top and bottom are the same (e.g. for vectors and large integers).
if (Size > 16) return 0;
// If the constant is exactly 16 bytes, just use it.
if (Size == 16) return C;
// Otherwise, we'll use an array of the constants.
unsigned ArraySize = 16/Size;
ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
}
/// processLoopStridedStore - We see a strided store of some value. If we can
/// transform this into a memset or memset_pattern in the loop preheader, do so.
bool LoopIdiomRecognize::
processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
unsigned StoreAlignment, Value *StoredVal,
Instruction *TheStore, const SCEVAddRecExpr *Ev,
const SCEV *BECount) {
// If the stored value is a byte-wise value (like i32 -1), then it may be
// turned into a memset of i8 -1, assuming that all the consecutive bytes
// are stored. A store of i32 0x01020304 can never be turned into a memset,
// but it can be turned into memset_pattern if the target supports it.
Value *SplatValue = isBytewiseValue(StoredVal);
Constant *PatternValue = 0;
// If we're allowed to form a memset, and the stored value would be acceptable
// for memset, use it.
if (SplatValue && TLI->has(LibFunc::memset) &&
// Verify that the stored value is loop invariant. If not, we can't
// promote the memset.
CurLoop->isLoopInvariant(SplatValue)) {
// Keep and use SplatValue.
PatternValue = 0;
} else if (TLI->has(LibFunc::memset_pattern16) &&
(PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
// It looks like we can use PatternValue!
SplatValue = 0;
} else {
// Otherwise, this isn't an idiom we can transform. For example, we can't
// do anything with a 3-byte store.
return false;
}
// The trip count of the loop and the base pointer of the addrec SCEV is
// guaranteed to be loop invariant, which means that it should dominate the
// header. This allows us to insert code for it in the preheader.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
SCEVExpander Expander(*SE, "loop-idiom");
// Okay, we have a strided store "p[i]" of a splattable value. We can turn
// this into a memset in the loop preheader now if we want. However, this
// would be unsafe to do if there is anything else in the loop that may read
// or write to the aliased location. Check for any overlap by generating the
// base pointer and checking the region.
unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
Value *BasePtr =
Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
Preheader->getTerminator());
if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
CurLoop, BECount,
StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
Expander.clear();
// If we generated new code for the base pointer, clean up.
deleteIfDeadInstruction(BasePtr, *SE, TLI);
return false;
}
// Okay, everything looks good, insert the memset.
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
SCEV::FlagNUW);
if (StoreSize != 1)
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
SCEV::FlagNUW);
Value *NumBytes =
Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
CallInst *NewCall;
if (SplatValue)
NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
else {
Module *M = TheStore->getParent()->getParent()->getParent();
Value *MSP = M->getOrInsertFunction("memset_pattern16",
Builder.getVoidTy(),
Builder.getInt8PtrTy(),
Builder.getInt8PtrTy(), IntPtr,
(void*)0);
// Otherwise we should form a memset_pattern16. PatternValue is known to be
// an constant array of 16-bytes. Plop the value into a mergable global.
GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
GlobalValue::InternalLinkage,
PatternValue, ".memset_pattern");
GV->setUnnamedAddr(true); // Ok to merge these.
GV->setAlignment(16);
Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
}
DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
<< " from store to: " << *Ev << " at: " << *TheStore << "\n");
NewCall->setDebugLoc(TheStore->getDebugLoc());
// Okay, the memset has been formed. Zap the original store and anything that
// feeds into it.
deleteDeadInstruction(TheStore, *SE, TLI);
++NumMemSet;
return true;
}
/// processLoopStoreOfLoopLoad - We see a strided store whose value is a
/// same-strided load.
bool LoopIdiomRecognize::
processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
const SCEVAddRecExpr *StoreEv,
const SCEVAddRecExpr *LoadEv,
const SCEV *BECount) {
// If we're not allowed to form memcpy, we fail.
if (!TLI->has(LibFunc::memcpy))
return false;
LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
// The trip count of the loop and the base pointer of the addrec SCEV is
// guaranteed to be loop invariant, which means that it should dominate the
// header. This allows us to insert code for it in the preheader.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
SCEVExpander Expander(*SE, "loop-idiom");
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
// this into a memcpy in the loop preheader now if we want. However, this
// would be unsafe to do if there is anything else in the loop that may read
// or write the memory region we're storing to. This includes the load that
// feeds the stores. Check for an alias by generating the base address and
// checking everything.
Value *StoreBasePtr =
Expander.expandCodeFor(StoreEv->getStart(),
Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
Preheader->getTerminator());
if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
CurLoop, BECount, StoreSize,
getAnalysis<AliasAnalysis>(), SI)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
return false;
}
// For a memcpy, we have to make sure that the input array is not being
// mutated by the loop.
Value *LoadBasePtr =
Expander.expandCodeFor(LoadEv->getStart(),
Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
Preheader->getTerminator());
if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
return false;
}
// Okay, everything is safe, we can transform this!
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
Type *IntPtr = TD->getIntPtrType(SI->getContext());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
SCEV::FlagNUW);
if (StoreSize != 1)
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
SCEV::FlagNUW);
Value *NumBytes =
Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
CallInst *NewCall =
Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
std::min(SI->getAlignment(), LI->getAlignment()));
NewCall->setDebugLoc(SI->getDebugLoc());
DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
<< " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
<< " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
// Okay, the memset has been formed. Zap the original store and anything that
// feeds into it.
deleteDeadInstruction(SI, *SE, TLI);
++NumMemCpy;
return true;
}