| //===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This ModuloScheduling pass is based on the Swing Modulo Scheduling |
| // algorithm. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ModuloSched" |
| |
| #include "ModuloScheduling.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Target/TargetSchedInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include <cmath> |
| #include <fstream> |
| #include <sstream> |
| #include <utility> |
| #include <vector> |
| #include "../../Target/SparcV9/MachineCodeForInstruction.h" |
| #include "../../Target/SparcV9/SparcV9TmpInstr.h" |
| #include "../../Target/SparcV9/SparcV9Internals.h" |
| #include "../../Target/SparcV9/SparcV9RegisterInfo.h" |
| using namespace llvm; |
| |
| /// Create ModuloSchedulingPass |
| /// |
| FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { |
| DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); |
| return new ModuloSchedulingPass(targ); |
| } |
| |
| |
| //Graph Traits for printing out the dependence graph |
| template<typename GraphType> |
| static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, |
| const GraphType >) { |
| std::string Filename = GraphName + ".dot"; |
| O << "Writing '" << Filename << "'..."; |
| std::ofstream F(Filename.c_str()); |
| |
| if (F.good()) |
| WriteGraph(F, GT); |
| else |
| O << " error opening file for writing!"; |
| O << "\n"; |
| }; |
| |
| //Graph Traits for printing out the dependence graph |
| namespace llvm { |
| |
| template<> |
| struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits { |
| static std::string getGraphName(MSchedGraph *F) { |
| return "Dependence Graph"; |
| } |
| |
| static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { |
| if (Node->getInst()) { |
| std::stringstream ss; |
| ss << *(Node->getInst()); |
| return ss.str(); //((MachineInstr*)Node->getInst()); |
| } |
| else |
| return "No Inst"; |
| } |
| static std::string getEdgeSourceLabel(MSchedGraphNode *Node, |
| MSchedGraphNode::succ_iterator I) { |
| //Label each edge with the type of dependence |
| std::string edgelabel = ""; |
| switch (I.getEdge().getDepOrderType()) { |
| |
| case MSchedGraphEdge::TrueDep: |
| edgelabel = "True"; |
| break; |
| |
| case MSchedGraphEdge::AntiDep: |
| edgelabel = "Anti"; |
| break; |
| |
| case MSchedGraphEdge::OutputDep: |
| edgelabel = "Output"; |
| break; |
| |
| default: |
| edgelabel = "Unknown"; |
| break; |
| } |
| |
| //FIXME |
| int iteDiff = I.getEdge().getIteDiff(); |
| std::string intStr = "(IteDiff: "; |
| intStr += itostr(iteDiff); |
| |
| intStr += ")"; |
| edgelabel += intStr; |
| |
| return edgelabel; |
| } |
| }; |
| } |
| |
| /// ModuloScheduling::runOnFunction - main transformation entry point |
| /// The Swing Modulo Schedule algorithm has three basic steps: |
| /// 1) Computation and Analysis of the dependence graph |
| /// 2) Ordering of the nodes |
| /// 3) Scheduling |
| /// |
| bool ModuloSchedulingPass::runOnFunction(Function &F) { |
| |
| bool Changed = false; |
| |
| DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in" + F.getName() + "\n"); |
| |
| //Get MachineFunction |
| MachineFunction &MF = MachineFunction::get(&F); |
| |
| //Print out machine function |
| DEBUG(MF.print(std::cerr)); |
| |
| //Worklist |
| std::vector<MachineBasicBlock*> Worklist; |
| |
| //Iterate over BasicBlocks and put them into our worklist if they are valid |
| for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) |
| if(MachineBBisValid(BI)) |
| Worklist.push_back(&*BI); |
| |
| |
| //Iterate over the worklist and perform scheduling |
| for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(), |
| BE = Worklist.end(); BI != BE; ++BI) { |
| |
| MSchedGraph *MSG = new MSchedGraph(*BI, target); |
| |
| //Write Graph out to file |
| DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); |
| |
| //Print out BB for debugging |
| DEBUG((*BI)->print(std::cerr)); |
| |
| //Calculate Resource II |
| int ResMII = calculateResMII(*BI); |
| |
| //Calculate Recurrence II |
| int RecMII = calculateRecMII(MSG, ResMII); |
| |
| //Our starting initiation interval is the maximum of RecMII and ResMII |
| II = std::max(RecMII, ResMII); |
| |
| //Print out II, RecMII, and ResMII |
| DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n"); |
| |
| //Calculate Node Properties |
| calculateNodeAttributes(MSG, ResMII); |
| |
| //Dump node properties if in debug mode |
| DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), |
| E = nodeToAttributesMap.end(); I !=E; ++I) { |
| std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " |
| << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth |
| << " Height: " << I->second.height << "\n"; |
| }); |
| |
| //Put nodes in order to schedule them |
| computePartialOrder(); |
| |
| //Dump out partial order |
| DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(), |
| E = partialOrder.end(); I !=E; ++I) { |
| std::cerr << "Start set in PO\n"; |
| for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) |
| std::cerr << "PO:" << **J << "\n"; |
| }); |
| |
| //Place nodes in final order |
| orderNodes(); |
| |
| //Dump out order of nodes |
| DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { |
| std::cerr << "FO:" << **I << "\n"; |
| }); |
| |
| //Finally schedule nodes |
| computeSchedule(); |
| |
| //Print out final schedule |
| DEBUG(schedule.print(std::cerr)); |
| |
| |
| //Final scheduling step is to reconstruct the loop |
| reconstructLoop(*BI); |
| |
| //Print out new loop |
| |
| |
| //Clear out our maps for the next basic block that is processed |
| nodeToAttributesMap.clear(); |
| partialOrder.clear(); |
| recurrenceList.clear(); |
| FinalNodeOrder.clear(); |
| schedule.clear(); |
| |
| //Clean up. Nuke old MachineBB and llvmBB |
| //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock(); |
| //Function *parent = (Function*) llvmBB->getParent(); |
| //Should't std::find work?? |
| //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB)); |
| //parent->getBasicBlockList().erase(llvmBB); |
| |
| //delete(llvmBB); |
| //delete(*BI); |
| } |
| |
| |
| return Changed; |
| } |
| |
| |
| /// This function checks if a Machine Basic Block is valid for modulo |
| /// scheduling. This means that it has no control flow (if/else or |
| /// calls) in the block. Currently ModuloScheduling only works on |
| /// single basic block loops. |
| bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { |
| |
| bool isLoop = false; |
| |
| //Check first if its a valid loop |
| for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), |
| E = succ_end(BI->getBasicBlock()); I != E; ++I) { |
| if (*I == BI->getBasicBlock()) // has single block loop |
| isLoop = true; |
| } |
| |
| if(!isLoop) |
| return false; |
| |
| //Get Target machine instruction info |
| const TargetInstrInfo *TMI = target.getInstrInfo(); |
| |
| //Check each instruction and look for calls |
| for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { |
| //Get opcode to check instruction type |
| MachineOpCode OC = I->getOpcode(); |
| if(TMI->isCall(OC)) |
| return false; |
| |
| } |
| return true; |
| |
| } |
| |
| //ResMII is calculated by determining the usage count for each resource |
| //and using the maximum. |
| //FIXME: In future there should be a way to get alternative resources |
| //for each instruction |
| int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { |
| |
| const TargetInstrInfo *mii = target.getInstrInfo(); |
| const TargetSchedInfo *msi = target.getSchedInfo(); |
| |
| int ResMII = 0; |
| |
| //Map to keep track of usage count of each resource |
| std::map<unsigned, unsigned> resourceUsageCount; |
| |
| for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { |
| |
| //Get resource usage for this instruction |
| InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); |
| std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; |
| |
| //Loop over resources in each cycle and increments their usage count |
| for(unsigned i=0; i < resources.size(); ++i) |
| for(unsigned j=0; j < resources[i].size(); ++j) { |
| if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) { |
| resourceUsageCount[resources[i][j]] = 1; |
| } |
| else { |
| resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; |
| } |
| } |
| } |
| |
| //Find maximum usage count |
| |
| //Get max number of instructions that can be issued at once. (FIXME) |
| int issueSlots = msi->maxNumIssueTotal; |
| |
| for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { |
| |
| //Get the total number of the resources in our cpu |
| int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; |
| |
| //Get total usage count for this resources |
| unsigned usageCount = RB->second; |
| |
| //Divide the usage count by either the max number we can issue or the number of |
| //resources (whichever is its upper bound) |
| double finalUsageCount; |
| if( resourceNum <= issueSlots) |
| finalUsageCount = ceil(1.0 * usageCount / resourceNum); |
| else |
| finalUsageCount = ceil(1.0 * usageCount / issueSlots); |
| |
| |
| //Only keep track of the max |
| ResMII = std::max( (int) finalUsageCount, ResMII); |
| |
| } |
| |
| return ResMII; |
| |
| } |
| |
| /// calculateRecMII - Calculates the value of the highest recurrence |
| /// By value we mean the total latency |
| int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { |
| std::vector<MSchedGraphNode*> vNodes; |
| //Loop over all nodes in the graph |
| for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { |
| findAllReccurrences(I->second, vNodes, MII); |
| vNodes.clear(); |
| } |
| |
| int RecMII = 0; |
| |
| for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { |
| DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { |
| std::cerr << **N << "\n"; |
| }); |
| RecMII = std::max(RecMII, I->first); |
| } |
| |
| return MII; |
| } |
| |
| /// calculateNodeAttributes - The following properties are calculated for |
| /// each node in the dependence graph: ASAP, ALAP, Depth, Height, and |
| /// MOB. |
| void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { |
| |
| //Loop over the nodes and add them to the map |
| for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { |
| //Assert if its already in the map |
| assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map"); |
| |
| //Put into the map with default attribute values |
| nodeToAttributesMap[I->second] = MSNodeAttributes(); |
| } |
| |
| //Create set to deal with reccurrences |
| std::set<MSchedGraphNode*> visitedNodes; |
| |
| //Now Loop over map and calculate the node attributes |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| calculateASAP(I->first, MII, (MSchedGraphNode*) 0); |
| visitedNodes.clear(); |
| } |
| |
| int maxASAP = findMaxASAP(); |
| //Calculate ALAP which depends on ASAP being totally calculated |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0); |
| visitedNodes.clear(); |
| } |
| |
| //Calculate MOB which depends on ASAP being totally calculated, also do depth and height |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); |
| |
| DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); |
| calculateDepth(I->first, (MSchedGraphNode*) 0); |
| calculateHeight(I->first, (MSchedGraphNode*) 0); |
| } |
| |
| |
| } |
| |
| /// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not |
| bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { |
| if(destNode == 0 || srcNode ==0) |
| return false; |
| |
| bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); |
| |
| return findEdge; |
| } |
| |
| |
| /// calculateASAP - Calculates the |
| int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { |
| |
| DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); |
| |
| //Get current node attributes |
| MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.ASAP != -1) |
| return attributes.ASAP; |
| |
| int maxPredValue = 0; |
| |
| //Iterate over all of the predecessors and find max |
| for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { |
| |
| //Only process if we are not ignoring the edge |
| if(!ignoreEdge(*P, node)) { |
| int predASAP = -1; |
| predASAP = calculateASAP(*P, MII, node); |
| |
| assert(predASAP != -1 && "ASAP has not been calculated"); |
| int iteDiff = node->getInEdge(*P).getIteDiff(); |
| |
| int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); |
| DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); |
| maxPredValue = std::max(maxPredValue, currentPredValue); |
| } |
| } |
| |
| attributes.ASAP = maxPredValue; |
| |
| DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); |
| |
| return maxPredValue; |
| } |
| |
| |
| int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, |
| int maxASAP, MSchedGraphNode *srcNode) { |
| |
| DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); |
| |
| MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.ALAP != -1) |
| return attributes.ALAP; |
| |
| if(node->hasSuccessors()) { |
| |
| //Trying to deal with the issue where the node has successors, but |
| //we are ignoring all of the edges to them. So this is my hack for |
| //now.. there is probably a more elegant way of doing this (FIXME) |
| bool processedOneEdge = false; |
| |
| //FIXME, set to something high to start |
| int minSuccValue = 9999999; |
| |
| //Iterate over all of the predecessors and fine max |
| for(MSchedGraphNode::succ_iterator P = node->succ_begin(), |
| E = node->succ_end(); P != E; ++P) { |
| |
| //Only process if we are not ignoring the edge |
| if(!ignoreEdge(node, *P)) { |
| processedOneEdge = true; |
| int succALAP = -1; |
| succALAP = calculateALAP(*P, MII, maxASAP, node); |
| |
| assert(succALAP != -1 && "Successors ALAP should have been caclulated"); |
| |
| int iteDiff = P.getEdge().getIteDiff(); |
| |
| int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; |
| |
| DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); |
| |
| minSuccValue = std::min(minSuccValue, currentSuccValue); |
| } |
| } |
| |
| if(processedOneEdge) |
| attributes.ALAP = minSuccValue; |
| |
| else |
| attributes.ALAP = maxASAP; |
| } |
| else |
| attributes.ALAP = maxASAP; |
| |
| DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); |
| |
| if(attributes.ALAP < 0) |
| attributes.ALAP = 0; |
| |
| return attributes.ALAP; |
| } |
| |
| int ModuloSchedulingPass::findMaxASAP() { |
| int maxASAP = 0; |
| |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), |
| E = nodeToAttributesMap.end(); I != E; ++I) |
| maxASAP = std::max(maxASAP, I->second.ASAP); |
| return maxASAP; |
| } |
| |
| |
| int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { |
| |
| MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.height != -1) |
| return attributes.height; |
| |
| int maxHeight = 0; |
| |
| //Iterate over all of the predecessors and find max |
| for(MSchedGraphNode::succ_iterator P = node->succ_begin(), |
| E = node->succ_end(); P != E; ++P) { |
| |
| |
| if(!ignoreEdge(node, *P)) { |
| int succHeight = calculateHeight(*P, node); |
| |
| assert(succHeight != -1 && "Successors Height should have been caclulated"); |
| |
| int currentHeight = succHeight + node->getLatency(); |
| maxHeight = std::max(maxHeight, currentHeight); |
| } |
| } |
| attributes.height = maxHeight; |
| DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); |
| return maxHeight; |
| } |
| |
| |
| int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, |
| MSchedGraphNode *destNode) { |
| |
| MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.depth != -1) |
| return attributes.depth; |
| |
| int maxDepth = 0; |
| |
| //Iterate over all of the predecessors and fine max |
| for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { |
| |
| if(!ignoreEdge(*P, node)) { |
| int predDepth = -1; |
| predDepth = calculateDepth(*P, node); |
| |
| assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); |
| |
| int currentDepth = predDepth + (*P)->getLatency(); |
| maxDepth = std::max(maxDepth, currentDepth); |
| } |
| } |
| attributes.depth = maxDepth; |
| |
| DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); |
| return maxDepth; |
| } |
| |
| |
| |
| void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) { |
| //Check to make sure that this recurrence is unique |
| bool same = false; |
| |
| |
| //Loop over all recurrences already in our list |
| for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { |
| |
| bool all_same = true; |
| //First compare size |
| if(R->second.size() == recurrence.size()) { |
| |
| for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { |
| if(find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { |
| all_same = all_same && false; |
| break; |
| } |
| else |
| all_same = all_same && true; |
| } |
| if(all_same) { |
| same = true; |
| break; |
| } |
| } |
| } |
| |
| if(!same) { |
| srcBENode = recurrence.back(); |
| destBENode = recurrence.front(); |
| |
| //FIXME |
| if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) { |
| //DEBUG(std::cerr << "NOT A BACKEDGE\n"); |
| //find actual backedge HACK HACK |
| for(unsigned i=0; i< recurrence.size()-1; ++i) { |
| if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) { |
| srcBENode = recurrence[i]; |
| destBENode = recurrence[i+1]; |
| break; |
| } |
| |
| } |
| |
| } |
| DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); |
| edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); |
| recurrenceList.insert(std::make_pair(II, recurrence)); |
| } |
| |
| } |
| |
| void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, |
| std::vector<MSchedGraphNode*> &visitedNodes, |
| int II) { |
| |
| if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { |
| std::vector<MSchedGraphNode*> recurrence; |
| bool first = true; |
| int delay = 0; |
| int distance = 0; |
| int RecMII = II; //Starting value |
| MSchedGraphNode *last = node; |
| MSchedGraphNode *srcBackEdge = 0; |
| MSchedGraphNode *destBackEdge = 0; |
| |
| |
| |
| for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end(); |
| I !=E; ++I) { |
| |
| if(*I == node) |
| first = false; |
| if(first) |
| continue; |
| |
| delay = delay + (*I)->getLatency(); |
| |
| if(*I != node) { |
| int diff = (*I)->getInEdge(last).getIteDiff(); |
| distance += diff; |
| if(diff > 0) { |
| srcBackEdge = last; |
| destBackEdge = *I; |
| } |
| } |
| |
| recurrence.push_back(*I); |
| last = *I; |
| } |
| |
| |
| |
| //Get final distance calc |
| distance += node->getInEdge(last).getIteDiff(); |
| |
| |
| //Adjust II until we get close to the inequality delay - II*distance <= 0 |
| |
| int value = delay-(RecMII * distance); |
| int lastII = II; |
| while(value <= 0) { |
| |
| lastII = RecMII; |
| RecMII--; |
| value = delay-(RecMII * distance); |
| } |
| |
| |
| DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); |
| addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); |
| assert(distance != 0 && "Recurrence distance should not be zero"); |
| return; |
| } |
| |
| for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { |
| visitedNodes.push_back(node); |
| findAllReccurrences(*I, visitedNodes, II); |
| visitedNodes.pop_back(); |
| } |
| } |
| |
| |
| |
| |
| |
| void ModuloSchedulingPass::computePartialOrder() { |
| |
| |
| //Loop over all recurrences and add to our partial order |
| //be sure to remove nodes that are already in the partial order in |
| //a different recurrence and don't add empty recurrences. |
| for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { |
| |
| //Add nodes that connect this recurrence to the previous recurrence |
| |
| //If this is the first recurrence in the partial order, add all predecessors |
| for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { |
| |
| } |
| |
| |
| std::vector<MSchedGraphNode*> new_recurrence; |
| //Loop through recurrence and remove any nodes already in the partial order |
| for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { |
| bool found = false; |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { |
| if(find(PO->begin(), PO->end(), *N) != PO->end()) |
| found = true; |
| } |
| if(!found) { |
| new_recurrence.push_back(*N); |
| |
| if(partialOrder.size() == 0) |
| //For each predecessors, add it to this recurrence ONLY if it is not already in it |
| for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), |
| PE = (*N)->pred_end(); P != PE; ++P) { |
| |
| //Check if we are supposed to ignore this edge or not |
| if(!ignoreEdge(*P, *N)) |
| //Check if already in this recurrence |
| if(find(I->second.begin(), I->second.end(), *P) == I->second.end()) { |
| //Also need to check if in partial order |
| bool predFound = false; |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) { |
| if(find(PO->begin(), PO->end(), *P) != PO->end()) |
| predFound = true; |
| } |
| |
| if(!predFound) |
| if(find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end()) |
| new_recurrence.push_back(*P); |
| |
| } |
| } |
| } |
| } |
| |
| |
| if(new_recurrence.size() > 0) |
| partialOrder.push_back(new_recurrence); |
| } |
| |
| //Add any nodes that are not already in the partial order |
| std::vector<MSchedGraphNode*> lastNodes; |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| bool found = false; |
| //Check if its already in our partial order, if not add it to the final vector |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { |
| if(find(PO->begin(), PO->end(), I->first) != PO->end()) |
| found = true; |
| } |
| if(!found) |
| lastNodes.push_back(I->first); |
| } |
| |
| if(lastNodes.size() > 0) |
| partialOrder.push_back(lastNodes); |
| |
| } |
| |
| |
| void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) { |
| |
| //Sort CurrentSet so we can use lowerbound |
| sort(CurrentSet.begin(), CurrentSet.end()); |
| |
| for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { |
| for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), |
| E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { |
| |
| //Check if we are supposed to ignore this edge or not |
| if(ignoreEdge(*P,FinalNodeOrder[j])) |
| continue; |
| |
| if(find(CurrentSet.begin(), |
| CurrentSet.end(), *P) != CurrentSet.end()) |
| if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) |
| IntersectResult.push_back(*P); |
| } |
| } |
| } |
| |
| void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) { |
| |
| //Sort CurrentSet so we can use lowerbound |
| sort(CurrentSet.begin(), CurrentSet.end()); |
| |
| for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { |
| for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), |
| E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { |
| |
| //Check if we are supposed to ignore this edge or not |
| if(ignoreEdge(FinalNodeOrder[j],*P)) |
| continue; |
| |
| if(find(CurrentSet.begin(), |
| CurrentSet.end(), *P) != CurrentSet.end()) |
| if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) |
| IntersectResult.push_back(*P); |
| } |
| } |
| } |
| |
| void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) { |
| std::cerr << "Intersection ("; |
| for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) |
| std::cerr << **I << ", "; |
| std::cerr << ")\n"; |
| } |
| |
| |
| |
| void ModuloSchedulingPass::orderNodes() { |
| |
| int BOTTOM_UP = 0; |
| int TOP_DOWN = 1; |
| |
| //Set default order |
| int order = BOTTOM_UP; |
| |
| |
| //Loop over all the sets and place them in the final node order |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { |
| |
| DEBUG(std::cerr << "Processing set in S\n"); |
| DEBUG(dumpIntersection(*CurrentSet)); |
| |
| //Result of intersection |
| std::vector<MSchedGraphNode*> IntersectCurrent; |
| |
| predIntersect(*CurrentSet, IntersectCurrent); |
| |
| //If the intersection of predecessor and current set is not empty |
| //sort nodes bottom up |
| if(IntersectCurrent.size() != 0) { |
| DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); |
| order = BOTTOM_UP; |
| } |
| //If empty, use successors |
| else { |
| DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); |
| |
| succIntersect(*CurrentSet, IntersectCurrent); |
| |
| //sort top-down |
| if(IntersectCurrent.size() != 0) { |
| DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); |
| order = TOP_DOWN; |
| } |
| else { |
| DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); |
| //Find node with max ASAP in current Set |
| MSchedGraphNode *node; |
| int maxASAP = 0; |
| DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); |
| for(unsigned j=0; j < CurrentSet->size(); ++j) { |
| //Get node attributes |
| MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second; |
| //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); |
| DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n"); |
| if(maxASAP < nodeAttr.ASAP) { |
| maxASAP = nodeAttr.ASAP; |
| node = (*CurrentSet)[j]; |
| } |
| } |
| assert(node != 0 && "In node ordering node should not be null"); |
| IntersectCurrent.push_back(node); |
| order = BOTTOM_UP; |
| } |
| } |
| |
| //Repeat until all nodes are put into the final order from current set |
| while(IntersectCurrent.size() > 0) { |
| |
| if(order == TOP_DOWN) { |
| DEBUG(std::cerr << "Order is TOP DOWN\n"); |
| |
| while(IntersectCurrent.size() > 0) { |
| DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); |
| |
| int MOB = 0; |
| int height = 0; |
| MSchedGraphNode *highestHeightNode = IntersectCurrent[0]; |
| |
| //Find node in intersection with highest heigh and lowest MOB |
| for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), |
| E = IntersectCurrent.end(); I != E; ++I) { |
| |
| //Get current nodes properties |
| MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; |
| |
| if(height < nodeAttr.height) { |
| highestHeightNode = *I; |
| height = nodeAttr.height; |
| MOB = nodeAttr.MOB; |
| } |
| else if(height == nodeAttr.height) { |
| if(MOB > nodeAttr.height) { |
| highestHeightNode = *I; |
| height = nodeAttr.height; |
| MOB = nodeAttr.MOB; |
| } |
| } |
| } |
| |
| //Append our node with greatest height to the NodeOrder |
| if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { |
| DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); |
| FinalNodeOrder.push_back(highestHeightNode); |
| } |
| |
| //Remove V from IntersectOrder |
| IntersectCurrent.erase(find(IntersectCurrent.begin(), |
| IntersectCurrent.end(), highestHeightNode)); |
| |
| |
| //Intersect V's successors with CurrentSet |
| for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), |
| E = highestHeightNode->succ_end(); P != E; ++P) { |
| //if(lower_bound(CurrentSet->begin(), |
| // CurrentSet->end(), *P) != CurrentSet->end()) { |
| if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { |
| if(ignoreEdge(highestHeightNode, *P)) |
| continue; |
| //If not already in Intersect, add |
| if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) |
| IntersectCurrent.push_back(*P); |
| } |
| } |
| } //End while loop over Intersect Size |
| |
| //Change direction |
| order = BOTTOM_UP; |
| |
| //Reset Intersect to reflect changes in OrderNodes |
| IntersectCurrent.clear(); |
| predIntersect(*CurrentSet, IntersectCurrent); |
| |
| } //End If TOP_DOWN |
| |
| //Begin if BOTTOM_UP |
| else { |
| DEBUG(std::cerr << "Order is BOTTOM UP\n"); |
| while(IntersectCurrent.size() > 0) { |
| DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); |
| |
| //dump intersection |
| DEBUG(dumpIntersection(IntersectCurrent)); |
| //Get node with highest depth, if a tie, use one with lowest |
| //MOB |
| int MOB = 0; |
| int depth = 0; |
| MSchedGraphNode *highestDepthNode = IntersectCurrent[0]; |
| |
| for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), |
| E = IntersectCurrent.end(); I != E; ++I) { |
| //Find node attribute in graph |
| MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; |
| |
| if(depth < nodeAttr.depth) { |
| highestDepthNode = *I; |
| depth = nodeAttr.depth; |
| MOB = nodeAttr.MOB; |
| } |
| else if(depth == nodeAttr.depth) { |
| if(MOB > nodeAttr.MOB) { |
| highestDepthNode = *I; |
| depth = nodeAttr.depth; |
| MOB = nodeAttr.MOB; |
| } |
| } |
| } |
| |
| |
| |
| //Append highest depth node to the NodeOrder |
| if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { |
| DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); |
| FinalNodeOrder.push_back(highestDepthNode); |
| } |
| //Remove heightestDepthNode from IntersectOrder |
| IntersectCurrent.erase(find(IntersectCurrent.begin(), |
| IntersectCurrent.end(),highestDepthNode)); |
| |
| |
| //Intersect heightDepthNode's pred with CurrentSet |
| for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), |
| E = highestDepthNode->pred_end(); P != E; ++P) { |
| //if(lower_bound(CurrentSet->begin(), |
| // CurrentSet->end(), *P) != CurrentSet->end()) { |
| if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { |
| |
| if(ignoreEdge(*P, highestDepthNode)) |
| continue; |
| |
| //If not already in Intersect, add |
| if(find(IntersectCurrent.begin(), |
| IntersectCurrent.end(), *P) == IntersectCurrent.end()) |
| IntersectCurrent.push_back(*P); |
| } |
| } |
| |
| } //End while loop over Intersect Size |
| |
| //Change order |
| order = TOP_DOWN; |
| |
| //Reset IntersectCurrent to reflect changes in OrderNodes |
| IntersectCurrent.clear(); |
| succIntersect(*CurrentSet, IntersectCurrent); |
| } //End if BOTTOM_DOWN |
| |
| } |
| //End Wrapping while loop |
| |
| }//End for over all sets of nodes |
| |
| //Return final Order |
| //return FinalNodeOrder; |
| } |
| |
| void ModuloSchedulingPass::computeSchedule() { |
| |
| bool success = false; |
| |
| while(!success) { |
| |
| //Loop over the final node order and process each node |
| for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), |
| E = FinalNodeOrder.end(); I != E; ++I) { |
| |
| //CalculateEarly and Late start |
| int EarlyStart = -1; |
| int LateStart = 99999; //Set to something higher then we would ever expect (FIXME) |
| bool hasSucc = false; |
| bool hasPred = false; |
| |
| if(!(*I)->isBranch()) { |
| //Loop over nodes in the schedule and determine if they are predecessors |
| //or successors of the node we are trying to schedule |
| for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); |
| nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { |
| |
| //For this cycle, get the vector of nodes schedule and loop over it |
| for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { |
| |
| if((*I)->isPredecessor(*schedNode)) { |
| if(!ignoreEdge(*schedNode, *I)) { |
| int diff = (*I)->getInEdge(*schedNode).getIteDiff(); |
| int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; |
| DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); |
| DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); |
| EarlyStart = std::max(EarlyStart, ES_Temp); |
| hasPred = true; |
| } |
| } |
| if((*I)->isSuccessor(*schedNode)) { |
| if(!ignoreEdge(*I,*schedNode)) { |
| int diff = (*schedNode)->getInEdge(*I).getIteDiff(); |
| int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; |
| DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); |
| DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); |
| LateStart = std::min(LateStart, LS_Temp); |
| hasSucc = true; |
| } |
| } |
| } |
| } |
| } |
| else { |
| //WARNING: HACK! FIXME!!!! |
| EarlyStart = II-1; |
| LateStart = II-1; |
| hasPred = 1; |
| hasSucc = 1; |
| } |
| |
| |
| DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); |
| DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); |
| |
| //Check if the node has no pred or successors and set Early Start to its ASAP |
| if(!hasSucc && !hasPred) |
| EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; |
| |
| //Now, try to schedule this node depending upon its pred and successor in the schedule |
| //already |
| if(!hasSucc && hasPred) |
| success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); |
| else if(!hasPred && hasSucc) |
| success = scheduleNode(*I, LateStart, (LateStart - II +1)); |
| else if(hasPred && hasSucc) |
| success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); |
| else |
| success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); |
| |
| if(!success) { |
| ++II; |
| schedule.clear(); |
| break; |
| } |
| |
| } |
| |
| DEBUG(std::cerr << "Constructing Kernel\n"); |
| success = schedule.constructKernel(II); |
| if(!success) { |
| ++II; |
| schedule.clear(); |
| } |
| } |
| } |
| |
| |
| bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, |
| int start, int end) { |
| bool success = false; |
| |
| DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); |
| |
| //Make sure start and end are not negative |
| if(start < 0) |
| start = 0; |
| if(end < 0) |
| end = 0; |
| |
| bool forward = true; |
| if(start > end) |
| forward = false; |
| |
| bool increaseSC = true; |
| int cycle = start ; |
| |
| |
| while(increaseSC) { |
| |
| increaseSC = false; |
| |
| increaseSC = schedule.insert(node, cycle); |
| |
| if(!increaseSC) |
| return true; |
| |
| //Increment cycle to try again |
| if(forward) { |
| ++cycle; |
| DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); |
| if(cycle > end) |
| return false; |
| } |
| else { |
| --cycle; |
| DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); |
| if(cycle < end) |
| return false; |
| } |
| } |
| |
| return success; |
| } |
| |
| void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) { |
| |
| //Keep a map to easily know whats in the kernel |
| std::map<int, std::set<const MachineInstr*> > inKernel; |
| int maxStageCount = 0; |
| |
| MSchedGraphNode *branch = 0; |
| |
| for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| maxStageCount = std::max(maxStageCount, I->second); |
| |
| //Ignore the branch, we will handle this separately |
| if(I->first->isBranch()) { |
| branch = I->first; |
| continue; |
| } |
| |
| //Put int the map so we know what instructions in each stage are in the kernel |
| DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n"); |
| inKernel[I->second].insert(I->first->getInst()); |
| } |
| |
| //Get target information to look at machine operands |
| const TargetInstrInfo *mii = target.getInstrInfo(); |
| |
| //Now write the prologues |
| for(int i = 0; i < maxStageCount; ++i) { |
| BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent())); |
| MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); |
| |
| DEBUG(std::cerr << "i=" << i << "\n"); |
| for(int j = 0; j <= i; ++j) { |
| for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { |
| if(inKernel[j].count(&*MI)) { |
| machineBB->push_back(MI->clone()); |
| |
| Instruction *tmp; |
| |
| //After cloning, we may need to save the value that this instruction defines |
| for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { |
| //get machine operand |
| const MachineOperand &mOp = MI->getOperand(opNum); |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { |
| |
| |
| //Check if this is a value we should save |
| if(valuesToSave.count(mOp.getVRegValue())) { |
| //Save copy in tmpInstruction |
| tmp = new TmpInstruction(mOp.getVRegValue()); |
| |
| DEBUG(std::cerr << "Value: " << mOp.getVRegValue() << " New Value: " << tmp << " Stage: " << i << "\n"); |
| newValues[mOp.getVRegValue()][i].push_back(tmp); |
| newValLocation[tmp] = machineBB; |
| |
| DEBUG(std::cerr << "Machine Instr Operands: " << mOp.getVRegValue() << ", 0, " << tmp << "\n"); |
| |
| //Create machine instruction and put int machineBB |
| MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); |
| |
| DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| //Stick in branch at the end |
| machineBB->push_back(branch->getInst()->clone()); |
| |
| (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); |
| prologues.push_back(machineBB); |
| llvm_prologues.push_back(llvmBB); |
| } |
| } |
| |
| void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation ) { |
| |
| std::map<int, std::set<const MachineInstr*> > inKernel; |
| int maxStageCount = 0; |
| for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| maxStageCount = std::max(maxStageCount, I->second); |
| |
| //Ignore the branch, we will handle this separately |
| if(I->first->isBranch()) |
| continue; |
| |
| //Put int the map so we know what instructions in each stage are in the kernel |
| inKernel[I->second].insert(I->first->getInst()); |
| } |
| |
| std::map<Value*, Value*> valPHIs; |
| |
| //Now write the epilogues |
| for(int i = maxStageCount-1; i >= 0; --i) { |
| BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent())); |
| MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); |
| |
| DEBUG(std::cerr << " i: " << i << "\n"); |
| |
| //Spit out phi nodes |
| for(std::map<Value*, std::map<int, std::vector<Value*> > >::iterator V = newValues.begin(), E = newValues.end(); |
| V != E; ++V) { |
| |
| DEBUG(std::cerr << "Writing phi for" << *(V->first)); |
| for(std::map<int, std::vector<Value*> >::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) { |
| if(I->first == i) { |
| DEBUG(std::cerr << "BLAH " << i << "\n"); |
| |
| //Vector must have two elements in it: |
| assert(I->second.size() == 2 && "Vector size should be two\n"); |
| |
| Instruction *tmp = new TmpInstruction(I->second[0]); |
| MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(I->second[0]).addReg(I->second[1]).addRegDef(tmp); |
| valPHIs[V->first] = tmp; |
| } |
| } |
| |
| } |
| |
| for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { |
| for(int j=maxStageCount; j > i; --j) { |
| if(inKernel[j].count(&*MI)) { |
| DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); |
| MachineInstr *clone = MI->clone(); |
| |
| //Update operands that need to use the result from the phi |
| for(unsigned i=0; i < clone->getNumOperands(); ++i) { |
| //get machine operand |
| const MachineOperand &mOp = clone->getOperand(i); |
| if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { |
| if(valPHIs.count(mOp.getVRegValue())) { |
| //Update the operand in the cloned instruction |
| clone->getOperand(i).setValueReg(valPHIs[mOp.getVRegValue()]); |
| } |
| } |
| } |
| machineBB->push_back(clone); |
| } |
| } |
| } |
| |
| (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); |
| epilogues.push_back(machineBB); |
| llvm_epilogues.push_back(llvmBB); |
| } |
| } |
| |
| void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, std::vector<Value*> > > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) { |
| |
| //Keep track of operands that are read and saved from a previous iteration. The new clone |
| //instruction will use the result of the phi instead. |
| std::map<Value*, Value*> finalPHIValue; |
| std::map<Value*, Value*> kernelValue; |
| |
| //Create TmpInstructions for the final phis |
| for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| |
| //Clone instruction |
| const MachineInstr *inst = I->first->getInst(); |
| MachineInstr *instClone = inst->clone(); |
| |
| //If this instruction is from a previous iteration, update its operands |
| if(I->second > 0) { |
| //Loop over Machine Operands |
| const MachineInstr *inst = I->first->getInst(); |
| for(unsigned i=0; i < inst->getNumOperands(); ++i) { |
| //get machine operand |
| const MachineOperand &mOp = inst->getOperand(i); |
| |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| //If its in the value saved, we need to create a temp instruction and use that instead |
| if(valuesToSave.count(mOp.getVRegValue())) { |
| TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); |
| |
| //Update the operand in the cloned instruction |
| instClone->getOperand(i).setValueReg(tmp); |
| |
| //save this as our final phi |
| finalPHIValue[mOp.getVRegValue()] = tmp; |
| newValLocation[tmp] = machineBB; |
| } |
| } |
| |
| } |
| //Insert into machine basic block |
| machineBB->push_back(instClone); |
| |
| } |
| //Otherwise we just check if we need to save a value or not |
| else { |
| //Insert into machine basic block |
| machineBB->push_back(instClone); |
| |
| //Loop over Machine Operands |
| const MachineInstr *inst = I->first->getInst(); |
| for(unsigned i=0; i < inst->getNumOperands(); ++i) { |
| //get machine operand |
| const MachineOperand &mOp = inst->getOperand(i); |
| |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { |
| if(valuesToSave.count(mOp.getVRegValue())) { |
| |
| TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); |
| |
| //Create new machine instr and put in MBB |
| MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); |
| |
| //Save for future cleanup |
| kernelValue[mOp.getVRegValue()] = tmp; |
| newValLocation[tmp] = machineBB; |
| } |
| } |
| } |
| } |
| } |
| |
| //Clean up by writing phis |
| for(std::map<Value*, std::map<int, std::vector<Value*> > >::iterator V = newValues.begin(), E = newValues.end(); |
| V != E; ++V) { |
| |
| DEBUG(std::cerr << "Writing phi for" << *(V->first)); |
| |
| //FIXME |
| int maxStage = 1; |
| |
| //Last phi |
| Instruction *lastPHI = 0; |
| |
| for(std::map<int, std::vector<Value*> >::iterator I = V->second.begin(), IE = V->second.end(); |
| I != IE; ++I) { |
| |
| int stage = I->first; |
| |
| DEBUG(std::cerr << "Stage: " << I->first << " vector size: " << I->second.size() << "\n"); |
| |
| //Assert if this vector is ever greater then 1. This should not happen |
| //FIXME: Get rid of vector if we convince ourselves this won't happn |
| assert(I->second.size() == 1 && "Vector of values should be of size \n"); |
| |
| //We must handle the first and last phi specially |
| if(stage == maxStage) { |
| //The resulting value must be the Value* we created earlier |
| assert(lastPHI != 0 && "Last phi is NULL!\n"); |
| MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPHI).addReg(I->second[0]).addRegDef(finalPHIValue[V->first]); |
| I->second.push_back(finalPHIValue[V->first]); |
| } |
| else if(stage == 0) { |
| lastPHI = new TmpInstruction(I->second[0]); |
| MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second[0]).addRegDef(lastPHI); |
| I->second.push_back(lastPHI); |
| newValLocation[lastPHI] = machineBB; |
| } |
| else { |
| Instruction *tmp = new TmpInstruction(I->second[0]); |
| MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPHI).addReg(I->second[0]).addRegDef(tmp); |
| lastPHI = tmp; |
| I->second.push_back(lastPHI); |
| newValLocation[tmp] = machineBB; |
| } |
| } |
| } |
| } |
| |
| void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) { |
| |
| //Worklist to delete things |
| std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist; |
| |
| const TargetInstrInfo *TMI = target.getInstrInfo(); |
| |
| //Start with the kernel and for each phi insert a copy for the phi def and for each arg |
| for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) { |
| //Get op code and check if its a phi |
| if(I->getOpcode() == V9::PHI) { |
| Instruction *tmp = 0; |
| for(unsigned i = 0; i < I->getNumOperands(); ++i) { |
| //Get Operand |
| const MachineOperand &mOp = I->getOperand(i); |
| assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); |
| |
| if(!tmp) { |
| tmp = new TmpInstruction(mOp.getVRegValue()); |
| } |
| |
| //Now for all our arguments we read, OR to the new TmpInstruction that we created |
| if(mOp.isUse()) { |
| DEBUG(std::cerr << "Use: " << mOp << "\n"); |
| //Place a copy at the end of its BB but before the branches |
| assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); |
| //Reverse iterate to find the branches, we can safely assume no instructions have been |
| //put in the nop positions |
| for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { |
| MachineOpCode opc = inst->getOpcode(); |
| if(TMI->isBranch(opc) || TMI->isNop(opc)) |
| continue; |
| else { |
| BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); |
| break; |
| } |
| |
| } |
| |
| } |
| else { |
| //Remove the phi and replace it with an OR |
| DEBUG(std::cerr << "Def: " << mOp << "\n"); |
| BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); |
| worklist.push_back(std::make_pair(kernelBB, I)); |
| } |
| |
| } |
| } |
| |
| } |
| |
| //Remove phis from epilogue |
| for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) { |
| for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) { |
| //Get op code and check if its a phi |
| if(I->getOpcode() == V9::PHI) { |
| Instruction *tmp = 0; |
| for(unsigned i = 0; i < I->getNumOperands(); ++i) { |
| //Get Operand |
| const MachineOperand &mOp = I->getOperand(i); |
| assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); |
| |
| if(!tmp) { |
| tmp = new TmpInstruction(mOp.getVRegValue()); |
| } |
| |
| //Now for all our arguments we read, OR to the new TmpInstruction that we created |
| if(mOp.isUse()) { |
| DEBUG(std::cerr << "Use: " << mOp << "\n"); |
| //Place a copy at the end of its BB but before the branches |
| assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); |
| //Reverse iterate to find the branches, we can safely assume no instructions have been |
| //put in the nop positions |
| for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { |
| MachineOpCode opc = inst->getOpcode(); |
| if(TMI->isBranch(opc) || TMI->isNop(opc)) |
| continue; |
| else { |
| BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); |
| break; |
| } |
| |
| } |
| |
| } |
| else { |
| //Remove the phi and replace it with an OR |
| DEBUG(std::cerr << "Def: " << mOp << "\n"); |
| BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); |
| worklist.push_back(std::make_pair(*MB,I)); |
| } |
| |
| } |
| } |
| } |
| } |
| |
| //Delete the phis |
| for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { |
| I->first->erase(I->second); |
| |
| } |
| |
| } |
| |
| |
| void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { |
| |
| //First find the value *'s that we need to "save" |
| std::map<const Value*, std::pair<const MSchedGraphNode*, int> > valuesToSave; |
| |
| //Loop over kernel and only look at instructions from a stage > 0 |
| //Look at its operands and save values *'s that are read |
| for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| |
| if(I->second > 0) { |
| //For this instruction, get the Value*'s that it reads and put them into the set. |
| //Assert if there is an operand of another type that we need to save |
| const MachineInstr *inst = I->first->getInst(); |
| for(unsigned i=0; i < inst->getNumOperands(); ++i) { |
| //get machine operand |
| const MachineOperand &mOp = inst->getOperand(i); |
| |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| //find the value in the map |
| if (const Value* srcI = mOp.getVRegValue()) |
| valuesToSave[srcI] = std::make_pair(I->first, i); |
| |
| } |
| |
| if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); |
| } |
| } |
| } |
| } |
| |
| //The new loop will consist of one or more prologues, the kernel, and one or more epilogues. |
| |
| //Map to keep track of old to new values |
| std::map<Value*, std::map<int, std::vector<Value*> > > newValues; |
| |
| //Another map to keep track of what machine basic blocks these new value*s are in since |
| //they have no llvm instruction equivalent |
| std::map<Value*, MachineBasicBlock*> newValLocation; |
| |
| std::vector<MachineBasicBlock*> prologues; |
| std::vector<BasicBlock*> llvm_prologues; |
| |
| |
| //Write prologue |
| writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation); |
| |
| BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent())); |
| MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB); |
| |
| writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation); |
| (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB); |
| |
| std::vector<MachineBasicBlock*> epilogues; |
| std::vector<BasicBlock*> llvm_epilogues; |
| |
| //Write epilogues |
| writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation); |
| |
| |
| const TargetInstrInfo *TMI = target.getInstrInfo(); |
| |
| //Fix up machineBB and llvmBB branches |
| for(unsigned I = 0; I < prologues.size(); ++I) { |
| |
| MachineInstr *branch = 0; |
| |
| //Find terminator since getFirstTerminator does not work! |
| for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) { |
| MachineOpCode OC = mInst->getOpcode(); |
| if(TMI->isBranch(OC)) { |
| branch = &*mInst; |
| DEBUG(std::cerr << *mInst << "\n"); |
| break; |
| } |
| } |
| |
| |
| |
| //Update branch |
| for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = branch->getOperand(opNum); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]); |
| } |
| } |
| |
| //Update llvm basic block with our new branch instr |
| DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n"); |
| const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); |
| TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition()); |
| if(I == prologues.size()-1) { |
| TerminatorInst *newBranch = new BranchInst(llvmKernelBB, |
| llvm_epilogues[(llvm_epilogues.size()-1-I)], |
| tmp, |
| llvm_prologues[I]); |
| } |
| else |
| TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1], |
| llvm_epilogues[(llvm_epilogues.size()-1-I)], |
| tmp, |
| llvm_prologues[I]); |
| |
| assert(branch != 0 && "There must be a terminator for this machine basic block!\n"); |
| |
| //Push nop onto end of machine basic block |
| BuildMI(prologues[I], V9::NOP, 0); |
| |
| //Now since I don't trust fall throughs, add a unconditional branch to the next prologue |
| if(I != prologues.size()-1) |
| BuildMI(prologues[I], V9::BA, 1).addReg(llvm_prologues[I+1]); |
| else |
| BuildMI(prologues[I], V9::BA, 1).addReg(llvmKernelBB); |
| |
| //Add one more nop! |
| BuildMI(prologues[I], V9::NOP, 0); |
| } |
| |
| //Fix up kernel machine branches |
| MachineInstr *branch = 0; |
| for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) { |
| MachineOpCode OC = mInst->getOpcode(); |
| if(TMI->isBranch(OC)) { |
| branch = &*mInst; |
| DEBUG(std::cerr << *mInst << "\n"); |
| break; |
| } |
| } |
| |
| assert(branch != 0 && "There must be a terminator for the kernel machine basic block!\n"); |
| |
| //Update kernel self loop branch |
| for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = branch->getOperand(opNum); |
| |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| mOp.setValueReg(llvmKernelBB); |
| } |
| } |
| |
| //Update kernelLLVM branches |
| const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); |
| TerminatorInst *newBranch = new BranchInst(llvmKernelBB, |
| llvm_epilogues[0], |
| new TmpInstruction(branchVal->getCondition()), |
| llvmKernelBB); |
| |
| //Add kernel noop |
| BuildMI(machineKernelBB, V9::NOP, 0); |
| |
| //Add unconditional branch to first epilogue |
| BuildMI(machineKernelBB, V9::BA, 1).addReg(llvm_epilogues[0]); |
| |
| //Add kernel noop |
| BuildMI(machineKernelBB, V9::NOP, 0); |
| |
| //Lastly add unconditional branches for the epilogues |
| for(unsigned I = 0; I < epilogues.size(); ++I) { |
| |
| //Now since I don't trust fall throughs, add a unconditional branch to the next prologue |
| if(I != epilogues.size()-1) { |
| BuildMI(epilogues[I], V9::BA, 1).addReg(llvm_epilogues[I+1]); |
| //Add unconditional branch to end of epilogue |
| TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1], |
| llvm_epilogues[I]); |
| |
| } |
| else { |
| MachineBasicBlock *origBlock = (MachineBasicBlock*) BB; |
| for(MachineBasicBlock::reverse_iterator inst = origBlock->rbegin(), instEnd = origBlock->rend(); inst != instEnd; ++inst) { |
| MachineOpCode OC = inst->getOpcode(); |
| if(TMI->isBranch(OC)) { |
| branch = &*inst; |
| DEBUG(std::cerr << *inst << "\n"); |
| break; |
| |
| } |
| |
| for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = branch->getOperand(opNum); |
| |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| BuildMI(epilogues[I], V9::BA, 1).addReg(mOp.getVRegValue()); |
| break; |
| } |
| } |
| |
| } |
| |
| //Update last epilogue exit branch |
| BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); |
| //Find where we are supposed to branch to |
| BasicBlock *nextBlock = 0; |
| for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) { |
| if(branchVal->getSuccessor(j) != BB->getBasicBlock()) |
| nextBlock = branchVal->getSuccessor(j); |
| } |
| TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]); |
| } |
| //Add one more nop! |
| BuildMI(epilogues[I], V9::NOP, 0); |
| |
| } |
| |
| //FIX UP Machine BB entry!! |
| //We are looking at the predecesor of our loop basic block and we want to change its ba instruction |
| |
| |
| //Find all llvm basic blocks that branch to the loop entry and change to our first prologue. |
| const BasicBlock *llvmBB = BB->getBasicBlock(); |
| |
| for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) { |
| if(*P == llvmBB) |
| continue; |
| else { |
| DEBUG(std::cerr << "Found our entry BB\n"); |
| //Get the Terminator instruction for this basic block and print it out |
| DEBUG(std::cerr << *((*P)->getTerminator()) << "\n"); |
| //Update the terminator |
| TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); |
| for(unsigned i=0; i < term->getNumSuccessors(); ++i) { |
| if(term->getSuccessor(i) == llvmBB) { |
| DEBUG(std::cerr << "Replacing successor bb\n"); |
| if(llvm_prologues.size() > 0) { |
| term->setSuccessor(i, llvm_prologues[0]); |
| //Also update its corresponding machine instruction |
| MachineCodeForInstruction & tempMvec = |
| MachineCodeForInstruction::get(term); |
| for (unsigned j = 0; j < tempMvec.size(); j++) { |
| MachineInstr *temp = tempMvec[j]; |
| MachineOpCode opc = temp->getOpcode(); |
| if(TMI->isBranch(opc)) { |
| DEBUG(std::cerr << *temp << "\n"); |
| //Update branch |
| for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = temp->getOperand(opNum); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| mOp.setValueReg(llvm_prologues[0]); |
| } |
| } |
| } |
| } |
| } |
| else { |
| term->setSuccessor(i, llvmKernelBB); |
| //Also update its corresponding machine instruction |
| MachineCodeForInstruction & tempMvec = |
| MachineCodeForInstruction::get(term); |
| for (unsigned j = 0; j < tempMvec.size(); j++) { |
| MachineInstr *temp = tempMvec[j]; |
| MachineOpCode opc = temp->getOpcode(); |
| if(TMI->isBranch(opc)) { |
| DEBUG(std::cerr << *temp << "\n"); |
| //Update branch |
| for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { |
| MachineOperand &mOp = temp->getOperand(opNum); |
| if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { |
| mOp.setValueReg(llvmKernelBB); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| break; |
| } |
| } |
| |
| removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation); |
| |
| |
| |
| //Print out epilogues and prologue |
| DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); |
| I != E; ++I) { |
| std::cerr << "PROLOGUE\n"; |
| (*I)->print(std::cerr); |
| }); |
| |
| DEBUG(std::cerr << "KERNEL\n"); |
| DEBUG(machineKernelBB->print(std::cerr)); |
| |
| DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); |
| I != E; ++I) { |
| std::cerr << "EPILOGUE\n"; |
| (*I)->print(std::cerr); |
| }); |
| |
| |
| DEBUG(std::cerr << "New Machine Function" << "\n"); |
| DEBUG(std::cerr << BB->getParent() << "\n"); |
| |
| BB->getParent()->getBasicBlockList().erase(BB); |
| |
| } |
| |