| //===-- Local.cpp - Functions to perform local transformations ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This family of functions perform various local transformations to the |
| // program. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include <cerrno> |
| #include <cmath> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Local constant propagation... |
| // |
| |
| /// doConstantPropagation - If an instruction references constants, try to fold |
| /// them together... |
| /// |
| bool llvm::doConstantPropagation(BasicBlock::iterator &II) { |
| if (Constant *C = ConstantFoldInstruction(II)) { |
| // Replaces all of the uses of a variable with uses of the constant. |
| II->replaceAllUsesWith(C); |
| |
| // Remove the instruction from the basic block... |
| II = II->getParent()->getInstList().erase(II); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// ConstantFoldInstruction - Attempt to constant fold the specified |
| /// instruction. If successful, the constant result is returned, if not, null |
| /// is returned. Note that this function can only fail when attempting to fold |
| /// instructions like loads and stores, which have no constant expression form. |
| /// |
| Constant *llvm::ConstantFoldInstruction(Instruction *I) { |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| if (PN->getNumIncomingValues() == 0) |
| return Constant::getNullValue(PN->getType()); |
| |
| Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0)); |
| if (Result == 0) return 0; |
| |
| // Handle PHI nodes specially here... |
| for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN) |
| return 0; // Not all the same incoming constants... |
| |
| // If we reach here, all incoming values are the same constant. |
| return Result; |
| } else if (CallInst *CI = dyn_cast<CallInst>(I)) { |
| if (Function *F = CI->getCalledFunction()) |
| if (canConstantFoldCallTo(F)) { |
| std::vector<Constant*> Args; |
| for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) |
| if (Constant *Op = dyn_cast<Constant>(CI->getOperand(i))) |
| Args.push_back(Op); |
| else |
| return 0; |
| return ConstantFoldCall(F, Args); |
| } |
| return 0; |
| } |
| |
| Constant *Op0 = 0, *Op1 = 0; |
| switch (I->getNumOperands()) { |
| default: |
| case 2: |
| Op1 = dyn_cast<Constant>(I->getOperand(1)); |
| if (Op1 == 0) return 0; // Not a constant?, can't fold |
| case 1: |
| Op0 = dyn_cast<Constant>(I->getOperand(0)); |
| if (Op0 == 0) return 0; // Not a constant?, can't fold |
| break; |
| case 0: return 0; |
| } |
| |
| if (isa<BinaryOperator>(I) || isa<ShiftInst>(I)) |
| return ConstantExpr::get(I->getOpcode(), Op0, Op1); |
| |
| switch (I->getOpcode()) { |
| default: return 0; |
| case Instruction::Cast: |
| return ConstantExpr::getCast(Op0, I->getType()); |
| case Instruction::Select: |
| if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2))) |
| return ConstantExpr::getSelect(Op0, Op1, Op2); |
| return 0; |
| case Instruction::GetElementPtr: |
| std::vector<Constant*> IdxList; |
| IdxList.reserve(I->getNumOperands()-1); |
| if (Op1) IdxList.push_back(Op1); |
| for (unsigned i = 2, e = I->getNumOperands(); i != e; ++i) |
| if (Constant *C = dyn_cast<Constant>(I->getOperand(i))) |
| IdxList.push_back(C); |
| else |
| return 0; // Non-constant operand |
| return ConstantExpr::getGetElementPtr(Op0, IdxList); |
| } |
| } |
| |
| // ConstantFoldTerminator - If a terminator instruction is predicated on a |
| // constant value, convert it into an unconditional branch to the constant |
| // destination. |
| // |
| bool llvm::ConstantFoldTerminator(BasicBlock *BB) { |
| TerminatorInst *T = BB->getTerminator(); |
| |
| // Branch - See if we are conditional jumping on constant |
| if (BranchInst *BI = dyn_cast<BranchInst>(T)) { |
| if (BI->isUnconditional()) return false; // Can't optimize uncond branch |
| BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0)); |
| BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1)); |
| |
| if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) { |
| // Are we branching on constant? |
| // YES. Change to unconditional branch... |
| BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2; |
| BasicBlock *OldDest = Cond->getValue() ? Dest2 : Dest1; |
| |
| //cerr << "Function: " << T->getParent()->getParent() |
| // << "\nRemoving branch from " << T->getParent() |
| // << "\n\nTo: " << OldDest << endl; |
| |
| // Let the basic block know that we are letting go of it. Based on this, |
| // it will adjust it's PHI nodes. |
| assert(BI->getParent() && "Terminator not inserted in block!"); |
| OldDest->removePredecessor(BI->getParent()); |
| |
| // Set the unconditional destination, and change the insn to be an |
| // unconditional branch. |
| BI->setUnconditionalDest(Destination); |
| return true; |
| } else if (Dest2 == Dest1) { // Conditional branch to same location? |
| // This branch matches something like this: |
| // br bool %cond, label %Dest, label %Dest |
| // and changes it into: br label %Dest |
| |
| // Let the basic block know that we are letting go of one copy of it. |
| assert(BI->getParent() && "Terminator not inserted in block!"); |
| Dest1->removePredecessor(BI->getParent()); |
| |
| // Change a conditional branch to unconditional. |
| BI->setUnconditionalDest(Dest1); |
| return true; |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { |
| // If we are switching on a constant, we can convert the switch into a |
| // single branch instruction! |
| ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); |
| BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest |
| BasicBlock *DefaultDest = TheOnlyDest; |
| assert(TheOnlyDest == SI->getDefaultDest() && |
| "Default destination is not successor #0?"); |
| |
| // Figure out which case it goes to... |
| for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { |
| // Found case matching a constant operand? |
| if (SI->getSuccessorValue(i) == CI) { |
| TheOnlyDest = SI->getSuccessor(i); |
| break; |
| } |
| |
| // Check to see if this branch is going to the same place as the default |
| // dest. If so, eliminate it as an explicit compare. |
| if (SI->getSuccessor(i) == DefaultDest) { |
| // Remove this entry... |
| DefaultDest->removePredecessor(SI->getParent()); |
| SI->removeCase(i); |
| --i; --e; // Don't skip an entry... |
| continue; |
| } |
| |
| // Otherwise, check to see if the switch only branches to one destination. |
| // We do this by reseting "TheOnlyDest" to null when we find two non-equal |
| // destinations. |
| if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0; |
| } |
| |
| if (CI && !TheOnlyDest) { |
| // Branching on a constant, but not any of the cases, go to the default |
| // successor. |
| TheOnlyDest = SI->getDefaultDest(); |
| } |
| |
| // If we found a single destination that we can fold the switch into, do so |
| // now. |
| if (TheOnlyDest) { |
| // Insert the new branch.. |
| new BranchInst(TheOnlyDest, SI); |
| BasicBlock *BB = SI->getParent(); |
| |
| // Remove entries from PHI nodes which we no longer branch to... |
| for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { |
| // Found case matching a constant operand? |
| BasicBlock *Succ = SI->getSuccessor(i); |
| if (Succ == TheOnlyDest) |
| TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest |
| else |
| Succ->removePredecessor(BB); |
| } |
| |
| // Delete the old switch... |
| BB->getInstList().erase(SI); |
| return true; |
| } else if (SI->getNumSuccessors() == 2) { |
| // Otherwise, we can fold this switch into a conditional branch |
| // instruction if it has only one non-default destination. |
| Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(), |
| SI->getSuccessorValue(1), "cond", SI); |
| // Insert the new branch... |
| new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI); |
| |
| // Delete the old switch... |
| SI->getParent()->getInstList().erase(SI); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// canConstantFoldCallTo - Return true if its even possible to fold a call to |
| /// the specified function. |
| bool llvm::canConstantFoldCallTo(Function *F) { |
| const std::string &Name = F->getName(); |
| |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::isunordered: return true; |
| default: break; |
| } |
| |
| return Name == "sin" || Name == "cos" || Name == "tan" || Name == "sqrt" || |
| Name == "log" || Name == "log10" || Name == "exp" || Name == "pow" || |
| Name == "acos" || Name == "asin" || Name == "atan" || Name == "fmod"; |
| } |
| |
| static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, |
| const Type *Ty) { |
| errno = 0; |
| V = NativeFP(V); |
| if (errno == 0) |
| return ConstantFP::get(Ty, V); |
| return 0; |
| } |
| |
| /// ConstantFoldCall - Attempt to constant fold a call to the specified function |
| /// with the specified arguments, returning null if unsuccessful. |
| Constant *llvm::ConstantFoldCall(Function *F, |
| const std::vector<Constant*> &Operands) { |
| const std::string &Name = F->getName(); |
| const Type *Ty = F->getReturnType(); |
| |
| if (Operands.size() == 1) { |
| if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) { |
| double V = Op->getValue(); |
| if (Name == "sin") |
| return ConstantFP::get(Ty, sin(V)); |
| else if (Name == "cos") |
| return ConstantFP::get(Ty, cos(V)); |
| else if (Name == "tan") |
| return ConstantFP::get(Ty, tan(V)); |
| else if (Name == "sqrt" && V >= 0) |
| return ConstantFP::get(Ty, sqrt(V)); |
| else if (Name == "exp") |
| return ConstantFP::get(Ty, exp(V)); |
| else if (Name == "log" && V > 0) |
| return ConstantFP::get(Ty, log(V)); |
| else if (Name == "log10") |
| return ConstantFoldFP(log10, V, Ty); |
| else if (Name == "acos") |
| return ConstantFoldFP(acos, V, Ty); |
| else if (Name == "asin") |
| return ConstantFoldFP(asin, V, Ty); |
| else if (Name == "atan") |
| return ConstantFP::get(Ty, atan(V)); |
| } |
| } else if (Operands.size() == 2) { |
| if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) |
| if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) { |
| double Op1V = Op1->getValue(), Op2V = Op2->getValue(); |
| |
| if (Name == "llvm.isunordered") |
| return ConstantBool::get(IsNAN(Op1V) || IsNAN(Op2V)); |
| else |
| if (Name == "pow") { |
| errno = 0; |
| double V = pow(Op1V, Op2V); |
| if (errno == 0) |
| return ConstantFP::get(Ty, V); |
| } else if (Name == "fmod") { |
| errno = 0; |
| double V = fmod(Op1V, Op2V); |
| if (errno == 0) |
| return ConstantFP::get(Ty, V); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Local dead code elimination... |
| // |
| |
| bool llvm::isInstructionTriviallyDead(Instruction *I) { |
| return I->use_empty() && !I->mayWriteToMemory() && !isa<TerminatorInst>(I); |
| } |
| |
| // dceInstruction - Inspect the instruction at *BBI and figure out if it's |
| // [trivially] dead. If so, remove the instruction and update the iterator |
| // to point to the instruction that immediately succeeded the original |
| // instruction. |
| // |
| bool llvm::dceInstruction(BasicBlock::iterator &BBI) { |
| // Look for un"used" definitions... |
| if (isInstructionTriviallyDead(BBI)) { |
| BBI = BBI->getParent()->getInstList().erase(BBI); // Bye bye |
| return true; |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PHI Instruction Simplification |
| // |
| |
| /// hasConstantValue - If the specified PHI node always merges together the same |
| /// value, return the value, otherwise return null. |
| /// |
| Value *llvm::hasConstantValue(PHINode *PN) { |
| // If the PHI node only has one incoming value, eliminate the PHI node... |
| if (PN->getNumIncomingValues() == 1) |
| return PN->getIncomingValue(0); |
| |
| // Otherwise if all of the incoming values are the same for the PHI, replace |
| // the PHI node with the incoming value. |
| // |
| Value *InVal = 0; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) != PN) // Not the PHI node itself... |
| if (InVal && PN->getIncomingValue(i) != InVal) |
| return 0; // Not the same, bail out. |
| else |
| InVal = PN->getIncomingValue(i); |
| |
| // The only case that could cause InVal to be null is if we have a PHI node |
| // that only has entries for itself. In this case, there is no entry into the |
| // loop, so kill the PHI. |
| // |
| if (InVal == 0) InVal = Constant::getNullValue(PN->getType()); |
| |
| // All of the incoming values are the same, return the value now. |
| return InVal; |
| } |