| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveInterval analysis pass which is used |
| // by the Linear Scan Register allocator. This pass linearizes the |
| // basic blocks of the function in DFS order and uses the |
| // LiveVariables pass to conservatively compute live intervals for |
| // each virtual and physical register. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "liveintervals" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "VirtRegMap.h" |
| #include "llvm/Value.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| STATISTIC(numIntervals, "Number of original intervals"); |
| STATISTIC(numIntervalsAfter, "Number of intervals after coalescing"); |
| STATISTIC(numJoins , "Number of interval joins performed"); |
| STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); |
| STATISTIC(numFolded , "Number of loads/stores folded into instructions"); |
| STATISTIC(numAborts , "Number of times interval joining aborted"); |
| |
| char LiveIntervals::ID = 0; |
| namespace { |
| RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis"); |
| |
| static cl::opt<bool> |
| EnableJoining("join-liveintervals", |
| cl::desc("Coallesce copies (default=true)"), |
| cl::init(true)); |
| } |
| |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LiveVariables>(); |
| AU.addPreservedID(PHIEliminationID); |
| AU.addRequiredID(PHIEliminationID); |
| AU.addRequiredID(TwoAddressInstructionPassID); |
| AU.addRequired<LoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| void LiveIntervals::releaseMemory() { |
| mi2iMap_.clear(); |
| i2miMap_.clear(); |
| r2iMap_.clear(); |
| r2rMap_.clear(); |
| JoinedLIs.clear(); |
| } |
| |
| |
| static bool isZeroLengthInterval(LiveInterval *li) { |
| for (LiveInterval::Ranges::const_iterator |
| i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) |
| if (i->end - i->start > LiveIntervals::InstrSlots::NUM) |
| return false; |
| return true; |
| } |
| |
| |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { |
| mf_ = &fn; |
| tm_ = &fn.getTarget(); |
| mri_ = tm_->getRegisterInfo(); |
| tii_ = tm_->getInstrInfo(); |
| lv_ = &getAnalysis<LiveVariables>(); |
| r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg()); |
| allocatableRegs_ = mri_->getAllocatableSet(fn); |
| for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(), |
| E = mri_->regclass_end(); I != E; ++I) |
| allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I))); |
| |
| // Number MachineInstrs and MachineBasicBlocks. |
| // Initialize MBB indexes to a sentinal. |
| MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U); |
| |
| unsigned MIIndex = 0; |
| for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end(); |
| MBB != E; ++MBB) { |
| // Set the MBB2IdxMap entry for this MBB. |
| MBB2IdxMap[MBB->getNumber()] = MIIndex; |
| |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second; |
| assert(inserted && "multiple MachineInstr -> index mappings"); |
| i2miMap_.push_back(I); |
| MIIndex += InstrSlots::NUM; |
| } |
| } |
| |
| computeIntervals(); |
| |
| numIntervals += getNumIntervals(); |
| |
| DOUT << "********** INTERVALS **********\n"; |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| I->second.print(DOUT, mri_); |
| DOUT << "\n"; |
| } |
| |
| // Join (coallesce) intervals if requested. |
| if (EnableJoining) { |
| joinIntervals(); |
| DOUT << "********** INTERVALS POST JOINING **********\n"; |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| I->second.print(DOUT, mri_); |
| DOUT << "\n"; |
| } |
| } |
| |
| numIntervalsAfter += getNumIntervals(); |
| |
| // perform a final pass over the instructions and compute spill |
| // weights, coalesce virtual registers and remove identity moves. |
| const LoopInfo &loopInfo = getAnalysis<LoopInfo>(); |
| |
| for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); |
| mbbi != mbbe; ++mbbi) { |
| MachineBasicBlock* mbb = mbbi; |
| unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); |
| |
| for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); |
| mii != mie; ) { |
| // if the move will be an identity move delete it |
| unsigned srcReg, dstReg, RegRep; |
| if (tii_->isMoveInstr(*mii, srcReg, dstReg) && |
| (RegRep = rep(srcReg)) == rep(dstReg)) { |
| // remove from def list |
| LiveInterval &RegInt = getOrCreateInterval(RegRep); |
| MachineOperand *MO = mii->findRegisterDefOperand(dstReg); |
| // If def of this move instruction is dead, remove its live range from |
| // the dstination register's live interval. |
| if (MO->isDead()) { |
| unsigned MoveIdx = getDefIndex(getInstructionIndex(mii)); |
| LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx); |
| RegInt.removeRange(MLR->start, MoveIdx+1); |
| if (RegInt.empty()) |
| removeInterval(RegRep); |
| } |
| RemoveMachineInstrFromMaps(mii); |
| mii = mbbi->erase(mii); |
| ++numPeep; |
| } else { |
| SmallSet<unsigned, 4> UniqueUses; |
| for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) { |
| const MachineOperand &mop = mii->getOperand(i); |
| if (mop.isRegister() && mop.getReg() && |
| MRegisterInfo::isVirtualRegister(mop.getReg())) { |
| // replace register with representative register |
| unsigned reg = rep(mop.getReg()); |
| mii->getOperand(i).setReg(reg); |
| |
| // Multiple uses of reg by the same instruction. It should not |
| // contribute to spill weight again. |
| if (UniqueUses.count(reg) != 0) |
| continue; |
| LiveInterval &RegInt = getInterval(reg); |
| float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth); |
| // If the definition instruction is re-materializable, its spill |
| // weight is half of what it would have been normally unless it's |
| // a load from fixed stack slot. |
| int Dummy; |
| if (RegInt.remat && !tii_->isLoadFromStackSlot(RegInt.remat, Dummy)) |
| w /= 2; |
| RegInt.weight += w; |
| UniqueUses.insert(reg); |
| } |
| } |
| ++mii; |
| } |
| } |
| } |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| LiveInterval &LI = I->second; |
| if (MRegisterInfo::isVirtualRegister(LI.reg)) { |
| // If the live interval length is essentially zero, i.e. in every live |
| // range the use follows def immediately, it doesn't make sense to spill |
| // it and hope it will be easier to allocate for this li. |
| if (isZeroLengthInterval(&LI)) |
| LI.weight = HUGE_VALF; |
| |
| // Slightly prefer live interval that has been assigned a preferred reg. |
| if (LI.preference) |
| LI.weight *= 1.01F; |
| |
| // Divide the weight of the interval by its size. This encourages |
| // spilling of intervals that are large and have few uses, and |
| // discourages spilling of small intervals with many uses. |
| LI.weight /= LI.getSize(); |
| } |
| } |
| |
| DEBUG(dump()); |
| return true; |
| } |
| |
| /// print - Implement the dump method. |
| void LiveIntervals::print(std::ostream &O, const Module* ) const { |
| O << "********** INTERVALS **********\n"; |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| I->second.print(DOUT, mri_); |
| DOUT << "\n"; |
| } |
| |
| O << "********** MACHINEINSTRS **********\n"; |
| for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); |
| mbbi != mbbe; ++mbbi) { |
| O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; |
| for (MachineBasicBlock::iterator mii = mbbi->begin(), |
| mie = mbbi->end(); mii != mie; ++mii) { |
| O << getInstructionIndex(mii) << '\t' << *mii; |
| } |
| } |
| } |
| |
| /// CreateNewLiveInterval - Create a new live interval with the given live |
| /// ranges. The new live interval will have an infinite spill weight. |
| LiveInterval& |
| LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI, |
| const std::vector<LiveRange> &LRs) { |
| const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg); |
| |
| // Create a new virtual register for the spill interval. |
| unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC); |
| |
| // Replace the old virtual registers in the machine operands with the shiny |
| // new one. |
| for (std::vector<LiveRange>::const_iterator |
| I = LRs.begin(), E = LRs.end(); I != E; ++I) { |
| unsigned Index = getBaseIndex(I->start); |
| unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM; |
| |
| for (; Index != End; Index += InstrSlots::NUM) { |
| // Skip deleted instructions |
| while (Index != End && !getInstructionFromIndex(Index)) |
| Index += InstrSlots::NUM; |
| |
| if (Index == End) break; |
| |
| MachineInstr *MI = getInstructionFromIndex(Index); |
| |
| for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) { |
| MachineOperand &MOp = MI->getOperand(J); |
| if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg) |
| MOp.setReg(NewVReg); |
| } |
| } |
| } |
| |
| LiveInterval &NewLI = getOrCreateInterval(NewVReg); |
| |
| // The spill weight is now infinity as it cannot be spilled again |
| NewLI.weight = float(HUGE_VAL); |
| |
| for (std::vector<LiveRange>::const_iterator |
| I = LRs.begin(), E = LRs.end(); I != E; ++I) { |
| DOUT << " Adding live range " << *I << " to new interval\n"; |
| NewLI.addRange(*I); |
| } |
| |
| DOUT << "Created new live interval " << NewLI << "\n"; |
| return NewLI; |
| } |
| |
| std::vector<LiveInterval*> LiveIntervals:: |
| addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) { |
| // since this is called after the analysis is done we don't know if |
| // LiveVariables is available |
| lv_ = getAnalysisToUpdate<LiveVariables>(); |
| |
| std::vector<LiveInterval*> added; |
| |
| assert(li.weight != HUGE_VALF && |
| "attempt to spill already spilled interval!"); |
| |
| DOUT << "\t\t\t\tadding intervals for spills for interval: "; |
| li.print(DOUT, mri_); |
| DOUT << '\n'; |
| |
| const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg); |
| |
| for (LiveInterval::Ranges::const_iterator |
| i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) { |
| unsigned index = getBaseIndex(i->start); |
| unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM; |
| for (; index != end; index += InstrSlots::NUM) { |
| // skip deleted instructions |
| while (index != end && !getInstructionFromIndex(index)) |
| index += InstrSlots::NUM; |
| if (index == end) break; |
| |
| MachineInstr *MI = getInstructionFromIndex(index); |
| |
| RestartInstruction: |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& mop = MI->getOperand(i); |
| if (mop.isRegister() && mop.getReg() == li.reg) { |
| MachineInstr *fmi = li.remat ? NULL |
| : mri_->foldMemoryOperand(MI, i, slot); |
| if (fmi) { |
| // Attempt to fold the memory reference into the instruction. If we |
| // can do this, we don't need to insert spill code. |
| if (lv_) |
| lv_->instructionChanged(MI, fmi); |
| MachineBasicBlock &MBB = *MI->getParent(); |
| vrm.virtFolded(li.reg, MI, i, fmi); |
| mi2iMap_.erase(MI); |
| i2miMap_[index/InstrSlots::NUM] = fmi; |
| mi2iMap_[fmi] = index; |
| MI = MBB.insert(MBB.erase(MI), fmi); |
| ++numFolded; |
| // Folding the load/store can completely change the instruction in |
| // unpredictable ways, rescan it from the beginning. |
| goto RestartInstruction; |
| } else { |
| // Create a new virtual register for the spill interval. |
| unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc); |
| |
| // Scan all of the operands of this instruction rewriting operands |
| // to use NewVReg instead of li.reg as appropriate. We do this for |
| // two reasons: |
| // |
| // 1. If the instr reads the same spilled vreg multiple times, we |
| // want to reuse the NewVReg. |
| // 2. If the instr is a two-addr instruction, we are required to |
| // keep the src/dst regs pinned. |
| // |
| // Keep track of whether we replace a use and/or def so that we can |
| // create the spill interval with the appropriate range. |
| mop.setReg(NewVReg); |
| |
| bool HasUse = mop.isUse(); |
| bool HasDef = mop.isDef(); |
| for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) { |
| if (MI->getOperand(j).isReg() && |
| MI->getOperand(j).getReg() == li.reg) { |
| MI->getOperand(j).setReg(NewVReg); |
| HasUse |= MI->getOperand(j).isUse(); |
| HasDef |= MI->getOperand(j).isDef(); |
| } |
| } |
| |
| // create a new register for this spill |
| vrm.grow(); |
| if (li.remat) |
| vrm.setVirtIsReMaterialized(NewVReg, li.remat); |
| vrm.assignVirt2StackSlot(NewVReg, slot); |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| nI.remat = li.remat; |
| assert(nI.empty()); |
| |
| // the spill weight is now infinity as it |
| // cannot be spilled again |
| nI.weight = HUGE_VALF; |
| |
| if (HasUse) { |
| LiveRange LR(getLoadIndex(index), getUseIndex(index), |
| nI.getNextValue(~0U, 0)); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| } |
| if (HasDef) { |
| LiveRange LR(getDefIndex(index), getStoreIndex(index), |
| nI.getNextValue(~0U, 0)); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| } |
| |
| added.push_back(&nI); |
| |
| // update live variables if it is available |
| if (lv_) |
| lv_->addVirtualRegisterKilled(NewVReg, MI); |
| |
| DOUT << "\t\t\t\tadded new interval: "; |
| nI.print(DOUT, mri_); |
| DOUT << '\n'; |
| } |
| } |
| } |
| } |
| } |
| |
| return added; |
| } |
| |
| void LiveIntervals::printRegName(unsigned reg) const { |
| if (MRegisterInfo::isPhysicalRegister(reg)) |
| cerr << mri_->getName(reg); |
| else |
| cerr << "%reg" << reg; |
| } |
| |
| /// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to |
| /// two addr elimination. |
| static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg, |
| const TargetInstrInfo *TII) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO1 = MI->getOperand(i); |
| if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) { |
| for (unsigned j = i+1; j < e; ++j) { |
| MachineOperand &MO2 = MI->getOperand(j); |
| if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg && |
| MI->getInstrDescriptor()-> |
| getOperandConstraint(j, TOI::TIED_TO) == (int)i) |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, |
| MachineBasicBlock::iterator mi, |
| unsigned MIIdx, |
| LiveInterval &interval) { |
| DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg)); |
| LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); |
| |
| // Virtual registers may be defined multiple times (due to phi |
| // elimination and 2-addr elimination). Much of what we do only has to be |
| // done once for the vreg. We use an empty interval to detect the first |
| // time we see a vreg. |
| if (interval.empty()) { |
| // Remember if the definition can be rematerialized. All load's from fixed |
| // stack slots are re-materializable. |
| int FrameIdx = 0; |
| if (vi.DefInst && |
| (tii_->isReMaterializable(vi.DefInst->getOpcode()) || |
| (tii_->isLoadFromStackSlot(vi.DefInst, FrameIdx) && |
| mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx)))) |
| interval.remat = vi.DefInst; |
| |
| // Get the Idx of the defining instructions. |
| unsigned defIndex = getDefIndex(MIIdx); |
| |
| unsigned ValNum; |
| unsigned SrcReg, DstReg; |
| if (!tii_->isMoveInstr(*mi, SrcReg, DstReg)) |
| ValNum = interval.getNextValue(~0U, 0); |
| else |
| ValNum = interval.getNextValue(defIndex, SrcReg); |
| |
| assert(ValNum == 0 && "First value in interval is not 0?"); |
| ValNum = 0; // Clue in the optimizer. |
| |
| // Loop over all of the blocks that the vreg is defined in. There are |
| // two cases we have to handle here. The most common case is a vreg |
| // whose lifetime is contained within a basic block. In this case there |
| // will be a single kill, in MBB, which comes after the definition. |
| if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { |
| // FIXME: what about dead vars? |
| unsigned killIdx; |
| if (vi.Kills[0] != mi) |
| killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; |
| else |
| killIdx = defIndex+1; |
| |
| // If the kill happens after the definition, we have an intra-block |
| // live range. |
| if (killIdx > defIndex) { |
| assert(vi.AliveBlocks.none() && |
| "Shouldn't be alive across any blocks!"); |
| LiveRange LR(defIndex, killIdx, ValNum); |
| interval.addRange(LR); |
| DOUT << " +" << LR << "\n"; |
| return; |
| } |
| } |
| |
| // The other case we handle is when a virtual register lives to the end |
| // of the defining block, potentially live across some blocks, then is |
| // live into some number of blocks, but gets killed. Start by adding a |
| // range that goes from this definition to the end of the defining block. |
| LiveRange NewLR(defIndex, |
| getInstructionIndex(&mbb->back()) + InstrSlots::NUM, |
| ValNum); |
| DOUT << " +" << NewLR; |
| interval.addRange(NewLR); |
| |
| // Iterate over all of the blocks that the variable is completely |
| // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the |
| // live interval. |
| for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { |
| if (vi.AliveBlocks[i]) { |
| MachineBasicBlock *MBB = mf_->getBlockNumbered(i); |
| if (!MBB->empty()) { |
| LiveRange LR(getMBBStartIdx(i), |
| getInstructionIndex(&MBB->back()) + InstrSlots::NUM, |
| ValNum); |
| interval.addRange(LR); |
| DOUT << " +" << LR; |
| } |
| } |
| } |
| |
| // Finally, this virtual register is live from the start of any killing |
| // block to the 'use' slot of the killing instruction. |
| for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { |
| MachineInstr *Kill = vi.Kills[i]; |
| LiveRange LR(getMBBStartIdx(Kill->getParent()), |
| getUseIndex(getInstructionIndex(Kill))+1, |
| ValNum); |
| interval.addRange(LR); |
| DOUT << " +" << LR; |
| } |
| |
| } else { |
| // Can no longer safely assume definition is rematerializable. |
| interval.remat = NULL; |
| |
| // If this is the second time we see a virtual register definition, it |
| // must be due to phi elimination or two addr elimination. If this is |
| // the result of two address elimination, then the vreg is one of the |
| // def-and-use register operand. |
| if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) { |
| // If this is a two-address definition, then we have already processed |
| // the live range. The only problem is that we didn't realize there |
| // are actually two values in the live interval. Because of this we |
| // need to take the LiveRegion that defines this register and split it |
| // into two values. |
| unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst)); |
| unsigned RedefIndex = getDefIndex(MIIdx); |
| |
| // Delete the initial value, which should be short and continuous, |
| // because the 2-addr copy must be in the same MBB as the redef. |
| interval.removeRange(DefIndex, RedefIndex); |
| |
| // Two-address vregs should always only be redefined once. This means |
| // that at this point, there should be exactly one value number in it. |
| assert(interval.containsOneValue() && "Unexpected 2-addr liveint!"); |
| |
| // The new value number (#1) is defined by the instruction we claimed |
| // defined value #0. |
| unsigned ValNo = interval.getNextValue(0, 0); |
| interval.setValueNumberInfo(1, interval.getValNumInfo(0)); |
| |
| // Value#0 is now defined by the 2-addr instruction. |
| interval.setValueNumberInfo(0, std::make_pair(~0U, 0U)); |
| |
| // Add the new live interval which replaces the range for the input copy. |
| LiveRange LR(DefIndex, RedefIndex, ValNo); |
| DOUT << " replace range with " << LR; |
| interval.addRange(LR); |
| |
| // If this redefinition is dead, we need to add a dummy unit live |
| // range covering the def slot. |
| if (lv_->RegisterDefIsDead(mi, interval.reg)) |
| interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0)); |
| |
| DOUT << " RESULT: "; |
| interval.print(DOUT, mri_); |
| |
| } else { |
| // Otherwise, this must be because of phi elimination. If this is the |
| // first redefinition of the vreg that we have seen, go back and change |
| // the live range in the PHI block to be a different value number. |
| if (interval.containsOneValue()) { |
| assert(vi.Kills.size() == 1 && |
| "PHI elimination vreg should have one kill, the PHI itself!"); |
| |
| // Remove the old range that we now know has an incorrect number. |
| MachineInstr *Killer = vi.Kills[0]; |
| unsigned Start = getMBBStartIdx(Killer->getParent()); |
| unsigned End = getUseIndex(getInstructionIndex(Killer))+1; |
| DOUT << " Removing [" << Start << "," << End << "] from: "; |
| interval.print(DOUT, mri_); DOUT << "\n"; |
| interval.removeRange(Start, End); |
| DOUT << " RESULT: "; interval.print(DOUT, mri_); |
| |
| // Replace the interval with one of a NEW value number. Note that this |
| // value number isn't actually defined by an instruction, weird huh? :) |
| LiveRange LR(Start, End, interval.getNextValue(~0U, 0)); |
| DOUT << " replace range with " << LR; |
| interval.addRange(LR); |
| DOUT << " RESULT: "; interval.print(DOUT, mri_); |
| } |
| |
| // In the case of PHI elimination, each variable definition is only |
| // live until the end of the block. We've already taken care of the |
| // rest of the live range. |
| unsigned defIndex = getDefIndex(MIIdx); |
| |
| unsigned ValNum; |
| unsigned SrcReg, DstReg; |
| if (!tii_->isMoveInstr(*mi, SrcReg, DstReg)) |
| ValNum = interval.getNextValue(~0U, 0); |
| else |
| ValNum = interval.getNextValue(defIndex, SrcReg); |
| |
| LiveRange LR(defIndex, |
| getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum); |
| interval.addRange(LR); |
| DOUT << " +" << LR; |
| } |
| } |
| |
| DOUT << '\n'; |
| } |
| |
| void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator mi, |
| unsigned MIIdx, |
| LiveInterval &interval, |
| unsigned SrcReg) { |
| // A physical register cannot be live across basic block, so its |
| // lifetime must end somewhere in its defining basic block. |
| DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg)); |
| |
| unsigned baseIndex = MIIdx; |
| unsigned start = getDefIndex(baseIndex); |
| unsigned end = start; |
| |
| // If it is not used after definition, it is considered dead at |
| // the instruction defining it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| if (lv_->RegisterDefIsDead(mi, interval.reg)) { |
| DOUT << " dead"; |
| end = getDefIndex(start) + 1; |
| goto exit; |
| } |
| |
| // If it is not dead on definition, it must be killed by a |
| // subsequent instruction. Hence its interval is: |
| // [defSlot(def), useSlot(kill)+1) |
| while (++mi != MBB->end()) { |
| baseIndex += InstrSlots::NUM; |
| if (lv_->KillsRegister(mi, interval.reg)) { |
| DOUT << " killed"; |
| end = getUseIndex(baseIndex) + 1; |
| goto exit; |
| } else if (lv_->ModifiesRegister(mi, interval.reg)) { |
| // Another instruction redefines the register before it is ever read. |
| // Then the register is essentially dead at the instruction that defines |
| // it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| DOUT << " dead"; |
| end = getDefIndex(start) + 1; |
| goto exit; |
| } |
| } |
| |
| // The only case we should have a dead physreg here without a killing or |
| // instruction where we know it's dead is if it is live-in to the function |
| // and never used. |
| assert(!SrcReg && "physreg was not killed in defining block!"); |
| end = getDefIndex(start) + 1; // It's dead. |
| |
| exit: |
| assert(start < end && "did not find end of interval?"); |
| |
| // Already exists? Extend old live interval. |
| LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start); |
| unsigned Id = (OldLR != interval.end()) |
| ? OldLR->ValId |
| : interval.getNextValue(SrcReg != 0 ? start : ~0U, SrcReg); |
| LiveRange LR(start, end, Id); |
| interval.addRange(LR); |
| DOUT << " +" << LR << '\n'; |
| } |
| |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned MIIdx, |
| unsigned reg) { |
| if (MRegisterInfo::isVirtualRegister(reg)) |
| handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg)); |
| else if (allocatableRegs_[reg]) { |
| unsigned SrcReg, DstReg; |
| if (!tii_->isMoveInstr(*MI, SrcReg, DstReg)) |
| SrcReg = 0; |
| handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg); |
| // Def of a register also defines its sub-registers. |
| for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS) |
| // Avoid processing some defs more than once. |
| if (!MI->findRegisterDefOperand(*AS)) |
| handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0); |
| } |
| } |
| |
| void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, |
| unsigned MIIdx, |
| LiveInterval &interval, bool isAlias) { |
| DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg)); |
| |
| // Look for kills, if it reaches a def before it's killed, then it shouldn't |
| // be considered a livein. |
| MachineBasicBlock::iterator mi = MBB->begin(); |
| unsigned baseIndex = MIIdx; |
| unsigned start = baseIndex; |
| unsigned end = start; |
| while (mi != MBB->end()) { |
| if (lv_->KillsRegister(mi, interval.reg)) { |
| DOUT << " killed"; |
| end = getUseIndex(baseIndex) + 1; |
| goto exit; |
| } else if (lv_->ModifiesRegister(mi, interval.reg)) { |
| // Another instruction redefines the register before it is ever read. |
| // Then the register is essentially dead at the instruction that defines |
| // it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| DOUT << " dead"; |
| end = getDefIndex(start) + 1; |
| goto exit; |
| } |
| |
| baseIndex += InstrSlots::NUM; |
| ++mi; |
| } |
| |
| exit: |
| // Alias of a live-in register might not be used at all. |
| if (isAlias && end == 0) { |
| DOUT << " dead"; |
| end = getDefIndex(start) + 1; |
| } |
| |
| assert(start < end && "did not find end of interval?"); |
| |
| LiveRange LR(start, end, interval.getNextValue(~0U, 0)); |
| DOUT << " +" << LR << '\n'; |
| interval.addRange(LR); |
| } |
| |
| /// computeIntervals - computes the live intervals for virtual |
| /// registers. for some ordering of the machine instructions [1,N] a |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for |
| /// which a variable is live |
| void LiveIntervals::computeIntervals() { |
| DOUT << "********** COMPUTING LIVE INTERVALS **********\n" |
| << "********** Function: " |
| << ((Value*)mf_->getFunction())->getName() << '\n'; |
| // Track the index of the current machine instr. |
| unsigned MIIndex = 0; |
| for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock *MBB = MBBI; |
| DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; |
| |
| MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); |
| |
| if (MBB->livein_begin() != MBB->livein_end()) { |
| // Create intervals for live-ins to this BB first. |
| for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(), |
| LE = MBB->livein_end(); LI != LE; ++LI) { |
| handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI)); |
| // Multiple live-ins can alias the same register. |
| for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS) |
| if (!hasInterval(*AS)) |
| handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS), true); |
| } |
| } |
| |
| for (; MI != miEnd; ++MI) { |
| DOUT << MIIndex << "\t" << *MI; |
| |
| // Handle defs. |
| for (int i = MI->getNumOperands() - 1; i >= 0; --i) { |
| MachineOperand &MO = MI->getOperand(i); |
| // handle register defs - build intervals |
| if (MO.isRegister() && MO.getReg() && MO.isDef()) |
| handleRegisterDef(MBB, MI, MIIndex, MO.getReg()); |
| } |
| |
| MIIndex += InstrSlots::NUM; |
| } |
| } |
| } |
| |
| /// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA |
| /// being the source and IntB being the dest, thus this defines a value number |
| /// in IntB. If the source value number (in IntA) is defined by a copy from B, |
| /// see if we can merge these two pieces of B into a single value number, |
| /// eliminating a copy. For example: |
| /// |
| /// A3 = B0 |
| /// ... |
| /// B1 = A3 <- this copy |
| /// |
| /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 |
| /// value number to be replaced with B0 (which simplifies the B liveinterval). |
| /// |
| /// This returns true if an interval was modified. |
| /// |
| bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB, |
| MachineInstr *CopyMI) { |
| unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI)); |
| |
| // BValNo is a value number in B that is defined by a copy from A. 'B3' in |
| // the example above. |
| LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); |
| unsigned BValNo = BLR->ValId; |
| |
| // Get the location that B is defined at. Two options: either this value has |
| // an unknown definition point or it is defined at CopyIdx. If unknown, we |
| // can't process it. |
| unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo); |
| if (BValNoDefIdx == ~0U) return false; |
| assert(BValNoDefIdx == CopyIdx && |
| "Copy doesn't define the value?"); |
| |
| // AValNo is the value number in A that defines the copy, A0 in the example. |
| LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1); |
| unsigned AValNo = AValLR->ValId; |
| |
| // If AValNo is defined as a copy from IntB, we can potentially process this. |
| |
| // Get the instruction that defines this value number. |
| unsigned SrcReg = IntA.getSrcRegForValNum(AValNo); |
| if (!SrcReg) return false; // Not defined by a copy. |
| |
| // If the value number is not defined by a copy instruction, ignore it. |
| |
| // If the source register comes from an interval other than IntB, we can't |
| // handle this. |
| if (rep(SrcReg) != IntB.reg) return false; |
| |
| // Get the LiveRange in IntB that this value number starts with. |
| unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo); |
| LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1); |
| |
| // Make sure that the end of the live range is inside the same block as |
| // CopyMI. |
| MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1); |
| if (!ValLREndInst || |
| ValLREndInst->getParent() != CopyMI->getParent()) return false; |
| |
| // Okay, we now know that ValLR ends in the same block that the CopyMI |
| // live-range starts. If there are no intervening live ranges between them in |
| // IntB, we can merge them. |
| if (ValLR+1 != BLR) return false; |
| |
| DOUT << "\nExtending: "; IntB.print(DOUT, mri_); |
| |
| // We are about to delete CopyMI, so need to remove it as the 'instruction |
| // that defines this value #'. |
| IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0)); |
| |
| // Okay, we can merge them. We need to insert a new liverange: |
| // [ValLR.end, BLR.begin) of either value number, then we merge the |
| // two value numbers. |
| unsigned FillerStart = ValLR->end, FillerEnd = BLR->start; |
| IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); |
| |
| // If the IntB live range is assigned to a physical register, and if that |
| // physreg has aliases, |
| if (MRegisterInfo::isPhysicalRegister(IntB.reg)) { |
| // Update the liveintervals of sub-registers. |
| for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) { |
| LiveInterval &AliasLI = getInterval(*AS); |
| AliasLI.addRange(LiveRange(FillerStart, FillerEnd, |
| AliasLI.getNextValue(~0U, 0))); |
| } |
| } |
| |
| // Okay, merge "B1" into the same value number as "B0". |
| if (BValNo != ValLR->ValId) |
| IntB.MergeValueNumberInto(BValNo, ValLR->ValId); |
| DOUT << " result = "; IntB.print(DOUT, mri_); |
| DOUT << "\n"; |
| |
| // If the source instruction was killing the source register before the |
| // merge, unset the isKill marker given the live range has been extended. |
| int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); |
| if (UIdx != -1) |
| ValLREndInst->getOperand(UIdx).unsetIsKill(); |
| |
| // Finally, delete the copy instruction. |
| RemoveMachineInstrFromMaps(CopyMI); |
| CopyMI->eraseFromParent(); |
| ++numPeep; |
| return true; |
| } |
| |
| |
| /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, |
| /// which are the src/dst of the copy instruction CopyMI. This returns true |
| /// if the copy was successfully coallesced away, or if it is never possible |
| /// to coallesce this copy, due to register constraints. It returns |
| /// false if it is not currently possible to coallesce this interval, but |
| /// it may be possible if other things get coallesced. |
| bool LiveIntervals::JoinCopy(MachineInstr *CopyMI, |
| unsigned SrcReg, unsigned DstReg, bool PhysOnly) { |
| DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI; |
| |
| // Get representative registers. |
| unsigned repSrcReg = rep(SrcReg); |
| unsigned repDstReg = rep(DstReg); |
| |
| // If they are already joined we continue. |
| if (repSrcReg == repDstReg) { |
| DOUT << "\tCopy already coallesced.\n"; |
| return true; // Not coallescable. |
| } |
| |
| bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg); |
| bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg); |
| if (PhysOnly && !SrcIsPhys && !DstIsPhys) |
| // Only joining physical registers with virtual registers in this round. |
| return true; |
| |
| // If they are both physical registers, we cannot join them. |
| if (SrcIsPhys && DstIsPhys) { |
| DOUT << "\tCan not coallesce physregs.\n"; |
| return true; // Not coallescable. |
| } |
| |
| // We only join virtual registers with allocatable physical registers. |
| if (SrcIsPhys && !allocatableRegs_[repSrcReg]) { |
| DOUT << "\tSrc reg is unallocatable physreg.\n"; |
| return true; // Not coallescable. |
| } |
| if (DstIsPhys && !allocatableRegs_[repDstReg]) { |
| DOUT << "\tDst reg is unallocatable physreg.\n"; |
| return true; // Not coallescable. |
| } |
| |
| // If they are not of the same register class, we cannot join them. |
| if (differingRegisterClasses(repSrcReg, repDstReg)) { |
| DOUT << "\tSrc/Dest are different register classes.\n"; |
| return true; // Not coallescable. |
| } |
| |
| LiveInterval &SrcInt = getInterval(repSrcReg); |
| LiveInterval &DstInt = getInterval(repDstReg); |
| assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg && |
| "Register mapping is horribly broken!"); |
| |
| DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_); |
| DOUT << " and "; DstInt.print(DOUT, mri_); |
| DOUT << ": "; |
| |
| // Check if it is necessary to propagate "isDead" property before intervals |
| // are joined. |
| MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg); |
| bool isDead = mopd->isDead(); |
| bool isShorten = false; |
| unsigned SrcStart = 0, RemoveStart = 0; |
| unsigned SrcEnd = 0, RemoveEnd = 0; |
| if (isDead) { |
| unsigned CopyIdx = getInstructionIndex(CopyMI); |
| LiveInterval::iterator SrcLR = |
| SrcInt.FindLiveRangeContaining(getUseIndex(CopyIdx)); |
| RemoveStart = SrcStart = SrcLR->start; |
| RemoveEnd = SrcEnd = SrcLR->end; |
| // The instruction which defines the src is only truly dead if there are |
| // no intermediate uses and there isn't a use beyond the copy. |
| // FIXME: find the last use, mark is kill and shorten the live range. |
| if (SrcEnd > getDefIndex(CopyIdx)) { |
| isDead = false; |
| } else { |
| MachineOperand *MOU; |
| MachineInstr *LastUse= lastRegisterUse(repSrcReg, SrcStart, CopyIdx, MOU); |
| if (LastUse) { |
| // Shorten the liveinterval to the end of last use. |
| MOU->setIsKill(); |
| isDead = false; |
| isShorten = true; |
| RemoveStart = getDefIndex(getInstructionIndex(LastUse)); |
| RemoveEnd = SrcEnd; |
| } else { |
| MachineInstr *SrcMI = getInstructionFromIndex(SrcStart); |
| if (SrcMI) { |
| MachineOperand *mops = findDefOperand(SrcMI, repSrcReg); |
| if (mops) |
| // A dead def should have a single cycle interval. |
| ++RemoveStart; |
| } |
| } |
| } |
| } |
| |
| // We need to be careful about coalescing a source physical register with a |
| // virtual register. Once the coalescing is done, it cannot be broken and |
| // these are not spillable! If the destination interval uses are far away, |
| // think twice about coalescing them! |
| if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) { |
| LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt; |
| unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg; |
| unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg; |
| const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg); |
| unsigned Threshold = allocatableRCRegs_[RC].count(); |
| |
| // If the virtual register live interval is long has it has low use desity, |
| // do not join them, instead mark the physical register as its allocation |
| // preference. |
| unsigned Length = JoinVInt.getSize() / InstrSlots::NUM; |
| LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg); |
| if (Length > Threshold && |
| (((float)vi.NumUses / Length) < (1.0 / Threshold))) { |
| JoinVInt.preference = JoinPReg; |
| ++numAborts; |
| DOUT << "\tMay tie down a physical register, abort!\n"; |
| return false; |
| } |
| } |
| |
| // Okay, attempt to join these two intervals. On failure, this returns false. |
| // Otherwise, if one of the intervals being joined is a physreg, this method |
| // always canonicalizes DstInt to be it. The output "SrcInt" will not have |
| // been modified, so we can use this information below to update aliases. |
| if (JoinIntervals(DstInt, SrcInt)) { |
| if (isDead) { |
| // Result of the copy is dead. Propagate this property. |
| if (SrcStart == 0) { |
| assert(MRegisterInfo::isPhysicalRegister(repSrcReg) && |
| "Live-in must be a physical register!"); |
| // Live-in to the function but dead. Remove it from entry live-in set. |
| // JoinIntervals may end up swapping the two intervals. |
| mf_->begin()->removeLiveIn(repSrcReg); |
| } else { |
| MachineInstr *SrcMI = getInstructionFromIndex(SrcStart); |
| if (SrcMI) { |
| MachineOperand *mops = findDefOperand(SrcMI, repSrcReg); |
| if (mops) |
| mops->setIsDead(); |
| } |
| } |
| } |
| |
| if (isShorten || isDead) { |
| // Shorten the live interval. |
| LiveInterval &LiveInInt = (repSrcReg == DstInt.reg) ? DstInt : SrcInt; |
| LiveInInt.removeRange(RemoveStart, RemoveEnd); |
| } |
| } else { |
| // Coallescing failed. |
| |
| // If we can eliminate the copy without merging the live ranges, do so now. |
| if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI)) |
| return true; |
| |
| // Otherwise, we are unable to join the intervals. |
| DOUT << "Interference!\n"; |
| return false; |
| } |
| |
| bool Swapped = repSrcReg == DstInt.reg; |
| if (Swapped) |
| std::swap(repSrcReg, repDstReg); |
| assert(MRegisterInfo::isVirtualRegister(repSrcReg) && |
| "LiveInterval::join didn't work right!"); |
| |
| // If we're about to merge live ranges into a physical register live range, |
| // we have to update any aliased register's live ranges to indicate that they |
| // have clobbered values for this range. |
| if (MRegisterInfo::isPhysicalRegister(repDstReg)) { |
| // Update the liveintervals of sub-registers. |
| for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS) |
| getInterval(*AS).MergeInClobberRanges(SrcInt); |
| } else { |
| // Merge use info if the destination is a virtual register. |
| LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg); |
| LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg); |
| dVI.NumUses += sVI.NumUses; |
| } |
| |
| DOUT << "\n\t\tJoined. Result = "; DstInt.print(DOUT, mri_); |
| DOUT << "\n"; |
| |
| // Remember these liveintervals have been joined. |
| JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister); |
| if (MRegisterInfo::isVirtualRegister(repDstReg)) |
| JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister); |
| |
| // If the intervals were swapped by Join, swap them back so that the register |
| // mapping (in the r2i map) is correct. |
| if (Swapped) SrcInt.swap(DstInt); |
| removeInterval(repSrcReg); |
| r2rMap_[repSrcReg] = repDstReg; |
| |
| // Finally, delete the copy instruction. |
| RemoveMachineInstrFromMaps(CopyMI); |
| CopyMI->eraseFromParent(); |
| ++numPeep; |
| ++numJoins; |
| return true; |
| } |
| |
| /// ComputeUltimateVN - Assuming we are going to join two live intervals, |
| /// compute what the resultant value numbers for each value in the input two |
| /// ranges will be. This is complicated by copies between the two which can |
| /// and will commonly cause multiple value numbers to be merged into one. |
| /// |
| /// VN is the value number that we're trying to resolve. InstDefiningValue |
| /// keeps track of the new InstDefiningValue assignment for the result |
| /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of |
| /// whether a value in this or other is a copy from the opposite set. |
| /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have |
| /// already been assigned. |
| /// |
| /// ThisFromOther[x] - If x is defined as a copy from the other interval, this |
| /// contains the value number the copy is from. |
| /// |
| static unsigned ComputeUltimateVN(unsigned VN, |
| SmallVector<std::pair<unsigned, |
| unsigned>, 16> &ValueNumberInfo, |
| SmallVector<int, 16> &ThisFromOther, |
| SmallVector<int, 16> &OtherFromThis, |
| SmallVector<int, 16> &ThisValNoAssignments, |
| SmallVector<int, 16> &OtherValNoAssignments, |
| LiveInterval &ThisLI, LiveInterval &OtherLI) { |
| // If the VN has already been computed, just return it. |
| if (ThisValNoAssignments[VN] >= 0) |
| return ThisValNoAssignments[VN]; |
| // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?"); |
| |
| // If this val is not a copy from the other val, then it must be a new value |
| // number in the destination. |
| int OtherValNo = ThisFromOther[VN]; |
| if (OtherValNo == -1) { |
| ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN)); |
| return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1; |
| } |
| |
| // Otherwise, this *is* a copy from the RHS. If the other side has already |
| // been computed, return it. |
| if (OtherValNoAssignments[OtherValNo] >= 0) |
| return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo]; |
| |
| // Mark this value number as currently being computed, then ask what the |
| // ultimate value # of the other value is. |
| ThisValNoAssignments[VN] = -2; |
| unsigned UltimateVN = |
| ComputeUltimateVN(OtherValNo, ValueNumberInfo, |
| OtherFromThis, ThisFromOther, |
| OtherValNoAssignments, ThisValNoAssignments, |
| OtherLI, ThisLI); |
| return ThisValNoAssignments[VN] = UltimateVN; |
| } |
| |
| static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) { |
| return std::find(V.begin(), V.end(), Val) != V.end(); |
| } |
| |
| /// SimpleJoin - Attempt to joint the specified interval into this one. The |
| /// caller of this method must guarantee that the RHS only contains a single |
| /// value number and that the RHS is not defined by a copy from this |
| /// interval. This returns false if the intervals are not joinable, or it |
| /// joins them and returns true. |
| bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) { |
| assert(RHS.containsOneValue()); |
| |
| // Some number (potentially more than one) value numbers in the current |
| // interval may be defined as copies from the RHS. Scan the overlapping |
| // portions of the LHS and RHS, keeping track of this and looking for |
| // overlapping live ranges that are NOT defined as copies. If these exist, we |
| // cannot coallesce. |
| |
| LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end(); |
| LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end(); |
| |
| if (LHSIt->start < RHSIt->start) { |
| LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start); |
| if (LHSIt != LHS.begin()) --LHSIt; |
| } else if (RHSIt->start < LHSIt->start) { |
| RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start); |
| if (RHSIt != RHS.begin()) --RHSIt; |
| } |
| |
| SmallVector<unsigned, 8> EliminatedLHSVals; |
| |
| while (1) { |
| // Determine if these live intervals overlap. |
| bool Overlaps = false; |
| if (LHSIt->start <= RHSIt->start) |
| Overlaps = LHSIt->end > RHSIt->start; |
| else |
| Overlaps = RHSIt->end > LHSIt->start; |
| |
| // If the live intervals overlap, there are two interesting cases: if the |
| // LHS interval is defined by a copy from the RHS, it's ok and we record |
| // that the LHS value # is the same as the RHS. If it's not, then we cannot |
| // coallesce these live ranges and we bail out. |
| if (Overlaps) { |
| // If we haven't already recorded that this value # is safe, check it. |
| if (!InVector(LHSIt->ValId, EliminatedLHSVals)) { |
| // Copy from the RHS? |
| unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId); |
| if (rep(SrcReg) != RHS.reg) |
| return false; // Nope, bail out. |
| |
| EliminatedLHSVals.push_back(LHSIt->ValId); |
| } |
| |
| // We know this entire LHS live range is okay, so skip it now. |
| if (++LHSIt == LHSEnd) break; |
| continue; |
| } |
| |
| if (LHSIt->end < RHSIt->end) { |
| if (++LHSIt == LHSEnd) break; |
| } else { |
| // One interesting case to check here. It's possible that we have |
| // something like "X3 = Y" which defines a new value number in the LHS, |
| // and is the last use of this liverange of the RHS. In this case, we |
| // want to notice this copy (so that it gets coallesced away) even though |
| // the live ranges don't actually overlap. |
| if (LHSIt->start == RHSIt->end) { |
| if (InVector(LHSIt->ValId, EliminatedLHSVals)) { |
| // We already know that this value number is going to be merged in |
| // if coallescing succeeds. Just skip the liverange. |
| if (++LHSIt == LHSEnd) break; |
| } else { |
| // Otherwise, if this is a copy from the RHS, mark it as being merged |
| // in. |
| if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) { |
| EliminatedLHSVals.push_back(LHSIt->ValId); |
| |
| // We know this entire LHS live range is okay, so skip it now. |
| if (++LHSIt == LHSEnd) break; |
| } |
| } |
| } |
| |
| if (++RHSIt == RHSEnd) break; |
| } |
| } |
| |
| // If we got here, we know that the coallescing will be successful and that |
| // the value numbers in EliminatedLHSVals will all be merged together. Since |
| // the most common case is that EliminatedLHSVals has a single number, we |
| // optimize for it: if there is more than one value, we merge them all into |
| // the lowest numbered one, then handle the interval as if we were merging |
| // with one value number. |
| unsigned LHSValNo; |
| if (EliminatedLHSVals.size() > 1) { |
| // Loop through all the equal value numbers merging them into the smallest |
| // one. |
| unsigned Smallest = EliminatedLHSVals[0]; |
| for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) { |
| if (EliminatedLHSVals[i] < Smallest) { |
| // Merge the current notion of the smallest into the smaller one. |
| LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]); |
| Smallest = EliminatedLHSVals[i]; |
| } else { |
| // Merge into the smallest. |
| LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest); |
| } |
| } |
| LHSValNo = Smallest; |
| } else { |
| assert(!EliminatedLHSVals.empty() && "No copies from the RHS?"); |
| LHSValNo = EliminatedLHSVals[0]; |
| } |
| |
| // Okay, now that there is a single LHS value number that we're merging the |
| // RHS into, update the value number info for the LHS to indicate that the |
| // value number is defined where the RHS value number was. |
| LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0)); |
| |
| // Okay, the final step is to loop over the RHS live intervals, adding them to |
| // the LHS. |
| LHS.MergeRangesInAsValue(RHS, LHSValNo); |
| LHS.weight += RHS.weight; |
| if (RHS.preference && !LHS.preference) |
| LHS.preference = RHS.preference; |
| |
| return true; |
| } |
| |
| /// JoinIntervals - Attempt to join these two intervals. On failure, this |
| /// returns false. Otherwise, if one of the intervals being joined is a |
| /// physreg, this method always canonicalizes LHS to be it. The output |
| /// "RHS" will not have been modified, so we can use this information |
| /// below to update aliases. |
| bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) { |
| // Compute the final value assignment, assuming that the live ranges can be |
| // coallesced. |
| SmallVector<int, 16> LHSValNoAssignments; |
| SmallVector<int, 16> RHSValNoAssignments; |
| SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo; |
| |
| // If a live interval is a physical register, conservatively check if any |
| // of its sub-registers is overlapping the live interval of the virtual |
| // register. If so, do not coalesce. |
| if (MRegisterInfo::isPhysicalRegister(LHS.reg) && |
| *mri_->getSubRegisters(LHS.reg)) { |
| for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR) |
| if (hasInterval(*SR) && RHS.overlaps(getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(getInterval(*SR).print(DOUT, mri_)); |
| return false; |
| } |
| } else if (MRegisterInfo::isPhysicalRegister(RHS.reg) && |
| *mri_->getSubRegisters(RHS.reg)) { |
| for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR) |
| if (hasInterval(*SR) && LHS.overlaps(getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(getInterval(*SR).print(DOUT, mri_)); |
| return false; |
| } |
| } |
| |
| // Compute ultimate value numbers for the LHS and RHS values. |
| if (RHS.containsOneValue()) { |
| // Copies from a liveinterval with a single value are simple to handle and |
| // very common, handle the special case here. This is important, because |
| // often RHS is small and LHS is large (e.g. a physreg). |
| |
| // Find out if the RHS is defined as a copy from some value in the LHS. |
| int RHSValID = -1; |
| std::pair<unsigned,unsigned> RHSValNoInfo; |
| unsigned RHSSrcReg = RHS.getSrcRegForValNum(0); |
| if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) { |
| // If RHS is not defined as a copy from the LHS, we can use simpler and |
| // faster checks to see if the live ranges are coallescable. This joiner |
| // can't swap the LHS/RHS intervals though. |
| if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) { |
| return SimpleJoin(LHS, RHS); |
| } else { |
| RHSValNoInfo = RHS.getValNumInfo(0); |
| } |
| } else { |
| // It was defined as a copy from the LHS, find out what value # it is. |
| unsigned ValInst = RHS.getInstForValNum(0); |
| RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId; |
| RHSValNoInfo = LHS.getValNumInfo(RHSValID); |
| } |
| |
| LHSValNoAssignments.resize(LHS.getNumValNums(), -1); |
| RHSValNoAssignments.resize(RHS.getNumValNums(), -1); |
| ValueNumberInfo.resize(LHS.getNumValNums()); |
| |
| // Okay, *all* of the values in LHS that are defined as a copy from RHS |
| // should now get updated. |
| for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { |
| if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) { |
| if (rep(LHSSrcReg) != RHS.reg) { |
| // If this is not a copy from the RHS, its value number will be |
| // unmodified by the coallescing. |
| ValueNumberInfo[VN] = LHS.getValNumInfo(VN); |
| LHSValNoAssignments[VN] = VN; |
| } else if (RHSValID == -1) { |
| // Otherwise, it is a copy from the RHS, and we don't already have a |
| // value# for it. Keep the current value number, but remember it. |
| LHSValNoAssignments[VN] = RHSValID = VN; |
| ValueNumberInfo[VN] = RHSValNoInfo; |
| } else { |
| // Otherwise, use the specified value #. |
| LHSValNoAssignments[VN] = RHSValID; |
| if (VN != (unsigned)RHSValID) |
| ValueNumberInfo[VN].first = ~1U; |
| else |
| ValueNumberInfo[VN] = RHSValNoInfo; |
| } |
| } else { |
| ValueNumberInfo[VN] = LHS.getValNumInfo(VN); |
| LHSValNoAssignments[VN] = VN; |
| } |
| } |
| |
| assert(RHSValID != -1 && "Didn't find value #?"); |
| RHSValNoAssignments[0] = RHSValID; |
| |
| } else { |
| // Loop over the value numbers of the LHS, seeing if any are defined from |
| // the RHS. |
| SmallVector<int, 16> LHSValsDefinedFromRHS; |
| LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1); |
| for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { |
| unsigned ValSrcReg = LHS.getSrcRegForValNum(VN); |
| if (ValSrcReg == 0) // Src not defined by a copy? |
| continue; |
| |
| // DstReg is known to be a register in the LHS interval. If the src is |
| // from the RHS interval, we can use its value #. |
| if (rep(ValSrcReg) != RHS.reg) |
| continue; |
| |
| // Figure out the value # from the RHS. |
| unsigned ValInst = LHS.getInstForValNum(VN); |
| LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId; |
| } |
| |
| // Loop over the value numbers of the RHS, seeing if any are defined from |
| // the LHS. |
| SmallVector<int, 16> RHSValsDefinedFromLHS; |
| RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1); |
| for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) { |
| unsigned ValSrcReg = RHS.getSrcRegForValNum(VN); |
| if (ValSrcReg == 0) // Src not defined by a copy? |
| continue; |
| |
| // DstReg is known to be a register in the RHS interval. If the src is |
| // from the LHS interval, we can use its value #. |
| if (rep(ValSrcReg) != LHS.reg) |
| continue; |
| |
| // Figure out the value # from the LHS. |
| unsigned ValInst = RHS.getInstForValNum(VN); |
| RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId; |
| } |
| |
| LHSValNoAssignments.resize(LHS.getNumValNums(), -1); |
| RHSValNoAssignments.resize(RHS.getNumValNums(), -1); |
| ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); |
| |
| for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { |
| if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U) |
| continue; |
| ComputeUltimateVN(VN, ValueNumberInfo, |
| LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, |
| LHSValNoAssignments, RHSValNoAssignments, LHS, RHS); |
| } |
| for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) { |
| if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U) |
| continue; |
| // If this value number isn't a copy from the LHS, it's a new number. |
| if (RHSValsDefinedFromLHS[VN] == -1) { |
| ValueNumberInfo.push_back(RHS.getValNumInfo(VN)); |
| RHSValNoAssignments[VN] = ValueNumberInfo.size()-1; |
| continue; |
| } |
| |
| ComputeUltimateVN(VN, ValueNumberInfo, |
| RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, |
| RHSValNoAssignments, LHSValNoAssignments, RHS, LHS); |
| } |
| } |
| |
| // Armed with the mappings of LHS/RHS values to ultimate values, walk the |
| // interval lists to see if these intervals are coallescable. |
| LiveInterval::const_iterator I = LHS.begin(); |
| LiveInterval::const_iterator IE = LHS.end(); |
| LiveInterval::const_iterator J = RHS.begin(); |
| LiveInterval::const_iterator JE = RHS.end(); |
| |
| // Skip ahead until the first place of potential sharing. |
| if (I->start < J->start) { |
| I = std::upper_bound(I, IE, J->start); |
| if (I != LHS.begin()) --I; |
| } else if (J->start < I->start) { |
| J = std::upper_bound(J, JE, I->start); |
| if (J != RHS.begin()) --J; |
| } |
| |
| while (1) { |
| // Determine if these two live ranges overlap. |
| bool Overlaps; |
| if (I->start < J->start) { |
| Overlaps = I->end > J->start; |
| } else { |
| Overlaps = J->end > I->start; |
| } |
| |
| // If so, check value # info to determine if they are really different. |
| if (Overlaps) { |
| // If the live range overlap will map to the same value number in the |
| // result liverange, we can still coallesce them. If not, we can't. |
| if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId]) |
| return false; |
| } |
| |
| if (I->end < J->end) { |
| ++I; |
| if (I == IE) break; |
| } else { |
| ++J; |
| if (J == JE) break; |
| } |
| } |
| |
| // If we get here, we know that we can coallesce the live ranges. Ask the |
| // intervals to coallesce themselves now. |
| LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], |
| ValueNumberInfo); |
| return true; |
| } |
| |
| |
| namespace { |
| // DepthMBBCompare - Comparison predicate that sort first based on the loop |
| // depth of the basic block (the unsigned), and then on the MBB number. |
| struct DepthMBBCompare { |
| typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair; |
| bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { |
| if (LHS.first > RHS.first) return true; // Deeper loops first |
| return LHS.first == RHS.first && |
| LHS.second->getNumber() < RHS.second->getNumber(); |
| } |
| }; |
| } |
| |
| |
| void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB, |
| std::vector<CopyRec> *TryAgain, bool PhysOnly) { |
| DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; |
| |
| for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); |
| MII != E;) { |
| MachineInstr *Inst = MII++; |
| |
| // If this isn't a copy, we can't join intervals. |
| unsigned SrcReg, DstReg; |
| if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue; |
| |
| if (TryAgain && !JoinCopy(Inst, SrcReg, DstReg, PhysOnly)) |
| TryAgain->push_back(getCopyRec(Inst, SrcReg, DstReg)); |
| } |
| } |
| |
| |
| void LiveIntervals::joinIntervals() { |
| DOUT << "********** JOINING INTERVALS ***********\n"; |
| |
| JoinedLIs.resize(getNumIntervals()); |
| JoinedLIs.reset(); |
| |
| std::vector<CopyRec> TryAgainList; |
| const LoopInfo &LI = getAnalysis<LoopInfo>(); |
| if (LI.begin() == LI.end()) { |
| // If there are no loops in the function, join intervals in function order. |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); |
| I != E; ++I) |
| CopyCoallesceInMBB(I, &TryAgainList); |
| } else { |
| // Otherwise, join intervals in inner loops before other intervals. |
| // Unfortunately we can't just iterate over loop hierarchy here because |
| // there may be more MBB's than BB's. Collect MBB's for sorting. |
| |
| // Join intervals in the function prolog first. We want to join physical |
| // registers with virtual registers before the intervals got too long. |
| std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs; |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E;++I) |
| MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I)); |
| |
| // Sort by loop depth. |
| std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); |
| |
| // Finally, join intervals in loop nest order. |
| for (unsigned i = 0, e = MBBs.size(); i != e; ++i) |
| CopyCoallesceInMBB(MBBs[i].second, NULL, true); |
| for (unsigned i = 0, e = MBBs.size(); i != e; ++i) |
| CopyCoallesceInMBB(MBBs[i].second, &TryAgainList, false); |
| } |
| |
| // Joining intervals can allow other intervals to be joined. Iteratively join |
| // until we make no progress. |
| bool ProgressMade = true; |
| while (ProgressMade) { |
| ProgressMade = false; |
| |
| for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { |
| CopyRec &TheCopy = TryAgainList[i]; |
| if (TheCopy.MI && |
| JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) { |
| TheCopy.MI = 0; // Mark this one as done. |
| ProgressMade = true; |
| } |
| } |
| } |
| |
| // Some live range has been lengthened due to colaescing, eliminate the |
| // unnecessary kills. |
| int RegNum = JoinedLIs.find_first(); |
| while (RegNum != -1) { |
| unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister; |
| unsigned repReg = rep(Reg); |
| LiveInterval &LI = getInterval(repReg); |
| LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg); |
| for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) { |
| MachineInstr *Kill = svi.Kills[i]; |
| // Suppose vr1 = op vr2, x |
| // and vr1 and vr2 are coalesced. vr2 should still be marked kill |
| // unless it is a two-address operand. |
| if (isRemoved(Kill) || hasRegisterDef(Kill, repReg)) |
| continue; |
| if (LI.liveAt(getInstructionIndex(Kill) + InstrSlots::NUM)) |
| unsetRegisterKill(Kill, repReg); |
| } |
| RegNum = JoinedLIs.find_next(RegNum); |
| } |
| |
| DOUT << "*** Register mapping ***\n"; |
| for (int i = 0, e = r2rMap_.size(); i != e; ++i) |
| if (r2rMap_[i]) { |
| DOUT << " reg " << i << " -> "; |
| DEBUG(printRegName(r2rMap_[i])); |
| DOUT << "\n"; |
| } |
| } |
| |
| /// Return true if the two specified registers belong to different register |
| /// classes. The registers may be either phys or virt regs. |
| bool LiveIntervals::differingRegisterClasses(unsigned RegA, |
| unsigned RegB) const { |
| |
| // Get the register classes for the first reg. |
| if (MRegisterInfo::isPhysicalRegister(RegA)) { |
| assert(MRegisterInfo::isVirtualRegister(RegB) && |
| "Shouldn't consider two physregs!"); |
| return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA); |
| } |
| |
| // Compare against the regclass for the second reg. |
| const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA); |
| if (MRegisterInfo::isVirtualRegister(RegB)) |
| return RegClass != mf_->getSSARegMap()->getRegClass(RegB); |
| else |
| return !RegClass->contains(RegB); |
| } |
| |
| /// lastRegisterUse - Returns the last use of the specific register between |
| /// cycles Start and End. It also returns the use operand by reference. It |
| /// returns NULL if there are no uses. |
| MachineInstr * |
| LiveIntervals::lastRegisterUse(unsigned Reg, unsigned Start, unsigned End, |
| MachineOperand *&MOU) { |
| int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; |
| int s = Start; |
| while (e >= s) { |
| // Skip deleted instructions |
| MachineInstr *MI = getInstructionFromIndex(e); |
| while ((e - InstrSlots::NUM) >= s && !MI) { |
| e -= InstrSlots::NUM; |
| MI = getInstructionFromIndex(e); |
| } |
| if (e < s || MI == NULL) |
| return NULL; |
| |
| for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isUse() && MO.getReg() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) { |
| MOU = &MO; |
| return MI; |
| } |
| } |
| |
| e -= InstrSlots::NUM; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /// findDefOperand - Returns the MachineOperand that is a def of the specific |
| /// register. It returns NULL if the def is not found. |
| MachineOperand *LiveIntervals::findDefOperand(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) |
| return &MO; |
| } |
| return NULL; |
| } |
| |
| /// unsetRegisterKill - Unset IsKill property of all uses of specific register |
| /// of the specific instruction. |
| void LiveIntervals::unsetRegisterKill(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) |
| MO.unsetIsKill(); |
| } |
| } |
| |
| /// hasRegisterDef - True if the instruction defines the specific register. |
| /// |
| bool LiveIntervals::hasRegisterDef(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) |
| return true; |
| } |
| return false; |
| } |
| |
| LiveInterval LiveIntervals::createInterval(unsigned reg) { |
| float Weight = MRegisterInfo::isPhysicalRegister(reg) ? |
| HUGE_VALF : 0.0F; |
| return LiveInterval(reg, Weight); |
| } |