| //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This transformation implements the well known scalar replacement of |
| /// aggregates transformation. It tries to identify promotable elements of an |
| /// aggregate alloca, and promote them to registers. It will also try to |
| /// convert uses of an element (or set of elements) of an alloca into a vector |
| /// or bitfield-style integer scalar if appropriate. |
| /// |
| /// It works to do this with minimal slicing of the alloca so that regions |
| /// which are merely transferred in and out of external memory remain unchanged |
| /// and are not decomposed to scalar code. |
| /// |
| /// Because this also performs alloca promotion, it can be thought of as also |
| /// serving the purpose of SSA formation. The algorithm iterates on the |
| /// function until all opportunities for promotion have been realized. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sroa" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/PtrUseVisitor.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/DIBuilder.h" |
| #include "llvm/DebugInfo.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/InstVisitor.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| using namespace llvm; |
| |
| STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); |
| STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); |
| STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); |
| STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); |
| STATISTIC(NumDeleted, "Number of instructions deleted"); |
| STATISTIC(NumVectorized, "Number of vectorized aggregates"); |
| |
| /// Hidden option to force the pass to not use DomTree and mem2reg, instead |
| /// forming SSA values through the SSAUpdater infrastructure. |
| static cl::opt<bool> |
| ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); |
| |
| namespace { |
| /// \brief A common base class for representing a half-open byte range. |
| struct ByteRange { |
| /// \brief The beginning offset of the range. |
| uint64_t BeginOffset; |
| |
| /// \brief The ending offset, not included in the range. |
| uint64_t EndOffset; |
| |
| ByteRange() : BeginOffset(), EndOffset() {} |
| ByteRange(uint64_t BeginOffset, uint64_t EndOffset) |
| : BeginOffset(BeginOffset), EndOffset(EndOffset) {} |
| |
| /// \brief Support for ordering ranges. |
| /// |
| /// This provides an ordering over ranges such that start offsets are |
| /// always increasing, and within equal start offsets, the end offsets are |
| /// decreasing. Thus the spanning range comes first in a cluster with the |
| /// same start position. |
| bool operator<(const ByteRange &RHS) const { |
| if (BeginOffset < RHS.BeginOffset) return true; |
| if (BeginOffset > RHS.BeginOffset) return false; |
| if (EndOffset > RHS.EndOffset) return true; |
| return false; |
| } |
| |
| /// \brief Support comparison with a single offset to allow binary searches. |
| friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) { |
| return LHS.BeginOffset < RHSOffset; |
| } |
| |
| friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, |
| const ByteRange &RHS) { |
| return LHSOffset < RHS.BeginOffset; |
| } |
| |
| bool operator==(const ByteRange &RHS) const { |
| return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset; |
| } |
| bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); } |
| }; |
| |
| /// \brief A partition of an alloca. |
| /// |
| /// This structure represents a contiguous partition of the alloca. These are |
| /// formed by examining the uses of the alloca. During formation, they may |
| /// overlap but once an AllocaPartitioning is built, the Partitions within it |
| /// are all disjoint. |
| struct Partition : public ByteRange { |
| /// \brief Whether this partition is splittable into smaller partitions. |
| /// |
| /// We flag partitions as splittable when they are formed entirely due to |
| /// accesses by trivially splittable operations such as memset and memcpy. |
| bool IsSplittable; |
| |
| /// \brief Test whether a partition has been marked as dead. |
| bool isDead() const { |
| if (BeginOffset == UINT64_MAX) { |
| assert(EndOffset == UINT64_MAX); |
| return true; |
| } |
| return false; |
| } |
| |
| /// \brief Kill a partition. |
| /// This is accomplished by setting both its beginning and end offset to |
| /// the maximum possible value. |
| void kill() { |
| assert(!isDead() && "He's Dead, Jim!"); |
| BeginOffset = EndOffset = UINT64_MAX; |
| } |
| |
| Partition() : ByteRange(), IsSplittable() {} |
| Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable) |
| : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {} |
| }; |
| |
| /// \brief A particular use of a partition of the alloca. |
| /// |
| /// This structure is used to associate uses of a partition with it. They |
| /// mark the range of bytes which are referenced by a particular instruction, |
| /// and includes a handle to the user itself and the pointer value in use. |
| /// The bounds of these uses are determined by intersecting the bounds of the |
| /// memory use itself with a particular partition. As a consequence there is |
| /// intentionally overlap between various uses of the same partition. |
| class PartitionUse : public ByteRange { |
| /// \brief Combined storage for both the Use* and split state. |
| PointerIntPair<Use*, 1, bool> UsePtrAndIsSplit; |
| |
| public: |
| PartitionUse() : ByteRange(), UsePtrAndIsSplit() {} |
| PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U, |
| bool IsSplit) |
| : ByteRange(BeginOffset, EndOffset), UsePtrAndIsSplit(U, IsSplit) {} |
| |
| /// \brief The use in question. Provides access to both user and used value. |
| /// |
| /// Note that this may be null if the partition use is *dead*, that is, it |
| /// should be ignored. |
| Use *getUse() const { return UsePtrAndIsSplit.getPointer(); } |
| |
| /// \brief Set the use for this partition use range. |
| void setUse(Use *U) { UsePtrAndIsSplit.setPointer(U); } |
| |
| /// \brief Whether this use is split across multiple partitions. |
| bool isSplit() const { return UsePtrAndIsSplit.getInt(); } |
| }; |
| } |
| |
| namespace llvm { |
| template <> struct isPodLike<Partition> : llvm::true_type {}; |
| template <> struct isPodLike<PartitionUse> : llvm::true_type {}; |
| } |
| |
| namespace { |
| /// \brief Alloca partitioning representation. |
| /// |
| /// This class represents a partitioning of an alloca into slices, and |
| /// information about the nature of uses of each slice of the alloca. The goal |
| /// is that this information is sufficient to decide if and how to split the |
| /// alloca apart and replace slices with scalars. It is also intended that this |
| /// structure can capture the relevant information needed both to decide about |
| /// and to enact these transformations. |
| class AllocaPartitioning { |
| public: |
| /// \brief Construct a partitioning of a particular alloca. |
| /// |
| /// Construction does most of the work for partitioning the alloca. This |
| /// performs the necessary walks of users and builds a partitioning from it. |
| AllocaPartitioning(const DataLayout &TD, AllocaInst &AI); |
| |
| /// \brief Test whether a pointer to the allocation escapes our analysis. |
| /// |
| /// If this is true, the partitioning is never fully built and should be |
| /// ignored. |
| bool isEscaped() const { return PointerEscapingInstr; } |
| |
| /// \brief Support for iterating over the partitions. |
| /// @{ |
| typedef SmallVectorImpl<Partition>::iterator iterator; |
| iterator begin() { return Partitions.begin(); } |
| iterator end() { return Partitions.end(); } |
| |
| typedef SmallVectorImpl<Partition>::const_iterator const_iterator; |
| const_iterator begin() const { return Partitions.begin(); } |
| const_iterator end() const { return Partitions.end(); } |
| /// @} |
| |
| /// \brief Support for iterating over and manipulating a particular |
| /// partition's uses. |
| /// |
| /// The iteration support provided for uses is more limited, but also |
| /// includes some manipulation routines to support rewriting the uses of |
| /// partitions during SROA. |
| /// @{ |
| typedef SmallVectorImpl<PartitionUse>::iterator use_iterator; |
| use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); } |
| use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); } |
| use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); } |
| use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); } |
| |
| typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator; |
| const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); } |
| const_use_iterator use_begin(const_iterator I) const { |
| return Uses[I - begin()].begin(); |
| } |
| const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); } |
| const_use_iterator use_end(const_iterator I) const { |
| return Uses[I - begin()].end(); |
| } |
| |
| unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); } |
| unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); } |
| const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const { |
| return Uses[PIdx][UIdx]; |
| } |
| const PartitionUse &getUse(const_iterator I, unsigned UIdx) const { |
| return Uses[I - begin()][UIdx]; |
| } |
| |
| void use_push_back(unsigned Idx, const PartitionUse &PU) { |
| Uses[Idx].push_back(PU); |
| } |
| void use_push_back(const_iterator I, const PartitionUse &PU) { |
| Uses[I - begin()].push_back(PU); |
| } |
| /// @} |
| |
| /// \brief Allow iterating the dead users for this alloca. |
| /// |
| /// These are instructions which will never actually use the alloca as they |
| /// are outside the allocated range. They are safe to replace with undef and |
| /// delete. |
| /// @{ |
| typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator; |
| dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } |
| dead_user_iterator dead_user_end() const { return DeadUsers.end(); } |
| /// @} |
| |
| /// \brief Allow iterating the dead expressions referring to this alloca. |
| /// |
| /// These are operands which have cannot actually be used to refer to the |
| /// alloca as they are outside its range and the user doesn't correct for |
| /// that. These mostly consist of PHI node inputs and the like which we just |
| /// need to replace with undef. |
| /// @{ |
| typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator; |
| dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } |
| dead_op_iterator dead_op_end() const { return DeadOperands.end(); } |
| /// @} |
| |
| /// \brief MemTransferInst auxiliary data. |
| /// This struct provides some auxiliary data about memory transfer |
| /// intrinsics such as memcpy and memmove. These intrinsics can use two |
| /// different ranges within the same alloca, and provide other challenges to |
| /// correctly represent. We stash extra data to help us untangle this |
| /// after the partitioning is complete. |
| struct MemTransferOffsets { |
| /// The destination begin and end offsets when the destination is within |
| /// this alloca. If the end offset is zero the destination is not within |
| /// this alloca. |
| uint64_t DestBegin, DestEnd; |
| |
| /// The source begin and end offsets when the source is within this alloca. |
| /// If the end offset is zero, the source is not within this alloca. |
| uint64_t SourceBegin, SourceEnd; |
| |
| /// Flag for whether an alloca is splittable. |
| bool IsSplittable; |
| }; |
| MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const { |
| return MemTransferInstData.lookup(&II); |
| } |
| |
| /// \brief Map from a PHI or select operand back to a partition. |
| /// |
| /// When manipulating PHI nodes or selects, they can use more than one |
| /// partition of an alloca. We store a special mapping to allow finding the |
| /// partition referenced by each of these operands, if any. |
| iterator findPartitionForPHIOrSelectOperand(Use *U) { |
| SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt |
| = PHIOrSelectOpMap.find(U); |
| if (MapIt == PHIOrSelectOpMap.end()) |
| return end(); |
| |
| return begin() + MapIt->second.first; |
| } |
| |
| /// \brief Map from a PHI or select operand back to the specific use of |
| /// a partition. |
| /// |
| /// Similar to mapping these operands back to the partitions, this maps |
| /// directly to the use structure of that partition. |
| use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) { |
| SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt |
| = PHIOrSelectOpMap.find(U); |
| assert(MapIt != PHIOrSelectOpMap.end()); |
| return Uses[MapIt->second.first].begin() + MapIt->second.second; |
| } |
| |
| /// \brief Compute a common type among the uses of a particular partition. |
| /// |
| /// This routines walks all of the uses of a particular partition and tries |
| /// to find a common type between them. Untyped operations such as memset and |
| /// memcpy are ignored. |
| Type *getCommonType(iterator I) const; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; |
| void printUsers(raw_ostream &OS, const_iterator I, |
| StringRef Indent = " ") const; |
| void print(raw_ostream &OS) const; |
| void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const; |
| void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const; |
| #endif |
| |
| private: |
| template <typename DerivedT, typename RetT = void> class BuilderBase; |
| class PartitionBuilder; |
| friend class AllocaPartitioning::PartitionBuilder; |
| class UseBuilder; |
| friend class AllocaPartitioning::UseBuilder; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// \brief Handle to alloca instruction to simplify method interfaces. |
| AllocaInst &AI; |
| #endif |
| |
| /// \brief The instruction responsible for this alloca having no partitioning. |
| /// |
| /// When an instruction (potentially) escapes the pointer to the alloca, we |
| /// store a pointer to that here and abort trying to partition the alloca. |
| /// This will be null if the alloca is partitioned successfully. |
| Instruction *PointerEscapingInstr; |
| |
| /// \brief The partitions of the alloca. |
| /// |
| /// We store a vector of the partitions over the alloca here. This vector is |
| /// sorted by increasing begin offset, and then by decreasing end offset. See |
| /// the Partition inner class for more details. Initially (during |
| /// construction) there are overlaps, but we form a disjoint sequence of |
| /// partitions while finishing construction and a fully constructed object is |
| /// expected to always have this as a disjoint space. |
| SmallVector<Partition, 8> Partitions; |
| |
| /// \brief The uses of the partitions. |
| /// |
| /// This is essentially a mapping from each partition to a list of uses of |
| /// that partition. The mapping is done with a Uses vector that has the exact |
| /// same number of entries as the partition vector. Each entry is itself |
| /// a vector of the uses. |
| SmallVector<SmallVector<PartitionUse, 2>, 8> Uses; |
| |
| /// \brief Instructions which will become dead if we rewrite the alloca. |
| /// |
| /// Note that these are not separated by partition. This is because we expect |
| /// a partitioned alloca to be completely rewritten or not rewritten at all. |
| /// If rewritten, all these instructions can simply be removed and replaced |
| /// with undef as they come from outside of the allocated space. |
| SmallVector<Instruction *, 8> DeadUsers; |
| |
| /// \brief Operands which will become dead if we rewrite the alloca. |
| /// |
| /// These are operands that in their particular use can be replaced with |
| /// undef when we rewrite the alloca. These show up in out-of-bounds inputs |
| /// to PHI nodes and the like. They aren't entirely dead (there might be |
| /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we |
| /// want to swap this particular input for undef to simplify the use lists of |
| /// the alloca. |
| SmallVector<Use *, 8> DeadOperands; |
| |
| /// \brief The underlying storage for auxiliary memcpy and memset info. |
| SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData; |
| |
| /// \brief A side datastructure used when building up the partitions and uses. |
| /// |
| /// This mapping is only really used during the initial building of the |
| /// partitioning so that we can retain information about PHI and select nodes |
| /// processed. |
| SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes; |
| |
| /// \brief Auxiliary information for particular PHI or select operands. |
| SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap; |
| |
| /// \brief A utility routine called from the constructor. |
| /// |
| /// This does what it says on the tin. It is the key of the alloca partition |
| /// splitting and merging. After it is called we have the desired disjoint |
| /// collection of partitions. |
| void splitAndMergePartitions(); |
| }; |
| } |
| |
| static Value *foldSelectInst(SelectInst &SI) { |
| // If the condition being selected on is a constant or the same value is |
| // being selected between, fold the select. Yes this does (rarely) happen |
| // early on. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) |
| return SI.getOperand(1+CI->isZero()); |
| if (SI.getOperand(1) == SI.getOperand(2)) |
| return SI.getOperand(1); |
| |
| return 0; |
| } |
| |
| /// \brief Builder for the alloca partitioning. |
| /// |
| /// This class builds an alloca partitioning by recursively visiting the uses |
| /// of an alloca and splitting the partitions for each load and store at each |
| /// offset. |
| class AllocaPartitioning::PartitionBuilder |
| : public PtrUseVisitor<PartitionBuilder> { |
| friend class PtrUseVisitor<PartitionBuilder>; |
| friend class InstVisitor<PartitionBuilder>; |
| typedef PtrUseVisitor<PartitionBuilder> Base; |
| |
| const uint64_t AllocSize; |
| AllocaPartitioning &P; |
| |
| SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap; |
| |
| public: |
| PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P) |
| : PtrUseVisitor<PartitionBuilder>(DL), |
| AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), |
| P(P) {} |
| |
| private: |
| void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, |
| bool IsSplittable = false) { |
| // Completely skip uses which have a zero size or start either before or |
| // past the end of the allocation. |
| if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) { |
| DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset |
| << " which has zero size or starts outside of the " |
| << AllocSize << " byte alloca:\n" |
| << " alloca: " << P.AI << "\n" |
| << " use: " << I << "\n"); |
| return; |
| } |
| |
| uint64_t BeginOffset = Offset.getZExtValue(); |
| uint64_t EndOffset = BeginOffset + Size; |
| |
| // Clamp the end offset to the end of the allocation. Note that this is |
| // formulated to handle even the case where "BeginOffset + Size" overflows. |
| // This may appear superficially to be something we could ignore entirely, |
| // but that is not so! There may be widened loads or PHI-node uses where |
| // some instructions are dead but not others. We can't completely ignore |
| // them, and so have to record at least the information here. |
| assert(AllocSize >= BeginOffset); // Established above. |
| if (Size > AllocSize - BeginOffset) { |
| DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset |
| << " to remain within the " << AllocSize << " byte alloca:\n" |
| << " alloca: " << P.AI << "\n" |
| << " use: " << I << "\n"); |
| EndOffset = AllocSize; |
| } |
| |
| Partition New(BeginOffset, EndOffset, IsSplittable); |
| P.Partitions.push_back(New); |
| } |
| |
| void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, |
| uint64_t Size, bool IsVolatile) { |
| // We allow splitting of loads and stores where the type is an integer type |
| // and cover the entire alloca. This prevents us from splitting over |
| // eagerly. |
| // FIXME: In the great blue eventually, we should eagerly split all integer |
| // loads and stores, and then have a separate step that merges adjacent |
| // alloca partitions into a single partition suitable for integer widening. |
| // Or we should skip the merge step and rely on GVN and other passes to |
| // merge adjacent loads and stores that survive mem2reg. |
| bool IsSplittable = |
| Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize; |
| |
| insertUse(I, Offset, Size, IsSplittable); |
| } |
| |
| void visitLoadInst(LoadInst &LI) { |
| assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && |
| "All simple FCA loads should have been pre-split"); |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&LI); |
| |
| uint64_t Size = DL.getTypeStoreSize(LI.getType()); |
| return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); |
| } |
| |
| void visitStoreInst(StoreInst &SI) { |
| Value *ValOp = SI.getValueOperand(); |
| if (ValOp == *U) |
| return PI.setEscapedAndAborted(&SI); |
| if (!IsOffsetKnown) |
| return PI.setAborted(&SI); |
| |
| uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); |
| |
| // If this memory access can be shown to *statically* extend outside the |
| // bounds of of the allocation, it's behavior is undefined, so simply |
| // ignore it. Note that this is more strict than the generic clamping |
| // behavior of insertUse. We also try to handle cases which might run the |
| // risk of overflow. |
| // FIXME: We should instead consider the pointer to have escaped if this |
| // function is being instrumented for addressing bugs or race conditions. |
| if (Offset.isNegative() || Size > AllocSize || |
| Offset.ugt(AllocSize - Size)) { |
| DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset |
| << " which extends past the end of the " << AllocSize |
| << " byte alloca:\n" |
| << " alloca: " << P.AI << "\n" |
| << " use: " << SI << "\n"); |
| return; |
| } |
| |
| assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && |
| "All simple FCA stores should have been pre-split"); |
| handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); |
| } |
| |
| |
| void visitMemSetInst(MemSetInst &II) { |
| assert(II.getRawDest() == *U && "Pointer use is not the destination?"); |
| ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| if ((Length && Length->getValue() == 0) || |
| (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) |
| // Zero-length mem transfer intrinsics can be ignored entirely. |
| return; |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| insertUse(II, Offset, |
| Length ? Length->getLimitedValue() |
| : AllocSize - Offset.getLimitedValue(), |
| (bool)Length); |
| } |
| |
| void visitMemTransferInst(MemTransferInst &II) { |
| ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| if ((Length && Length->getValue() == 0) || |
| (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) |
| // Zero-length mem transfer intrinsics can be ignored entirely. |
| return; |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| uint64_t RawOffset = Offset.getLimitedValue(); |
| uint64_t Size = Length ? Length->getLimitedValue() |
| : AllocSize - RawOffset; |
| |
| MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; |
| |
| // Only intrinsics with a constant length can be split. |
| Offsets.IsSplittable = Length; |
| |
| if (*U == II.getRawDest()) { |
| Offsets.DestBegin = RawOffset; |
| Offsets.DestEnd = RawOffset + Size; |
| } |
| if (*U == II.getRawSource()) { |
| Offsets.SourceBegin = RawOffset; |
| Offsets.SourceEnd = RawOffset + Size; |
| } |
| |
| // If we have set up end offsets for both the source and the destination, |
| // we have found both sides of this transfer pointing at the same alloca. |
| bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd; |
| if (SeenBothEnds && II.getRawDest() != II.getRawSource()) { |
| unsigned PrevIdx = MemTransferPartitionMap[&II]; |
| |
| // Check if the begin offsets match and this is a non-volatile transfer. |
| // In that case, we can completely elide the transfer. |
| if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) { |
| P.Partitions[PrevIdx].kill(); |
| return; |
| } |
| |
| // Otherwise we have an offset transfer within the same alloca. We can't |
| // split those. |
| P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false; |
| } else if (SeenBothEnds) { |
| // Handle the case where this exact use provides both ends of the |
| // operation. |
| assert(II.getRawDest() == II.getRawSource()); |
| |
| // For non-volatile transfers this is a no-op. |
| if (!II.isVolatile()) |
| return; |
| |
| // Otherwise just suppress splitting. |
| Offsets.IsSplittable = false; |
| } |
| |
| |
| // Insert the use now that we've fixed up the splittable nature. |
| insertUse(II, Offset, Size, Offsets.IsSplittable); |
| |
| // Setup the mapping from intrinsic to partition of we've not seen both |
| // ends of this transfer. |
| if (!SeenBothEnds) { |
| unsigned NewIdx = P.Partitions.size() - 1; |
| bool Inserted |
| = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second; |
| assert(Inserted && |
| "Already have intrinsic in map but haven't seen both ends"); |
| (void)Inserted; |
| } |
| } |
| |
| // Disable SRoA for any intrinsics except for lifetime invariants. |
| // FIXME: What about debug intrinsics? This matches old behavior, but |
| // doesn't make sense. |
| void visitIntrinsicInst(IntrinsicInst &II) { |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| if (II.getIntrinsicID() == Intrinsic::lifetime_start || |
| II.getIntrinsicID() == Intrinsic::lifetime_end) { |
| ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
| uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), |
| Length->getLimitedValue()); |
| insertUse(II, Offset, Size, true); |
| return; |
| } |
| |
| Base::visitIntrinsicInst(II); |
| } |
| |
| Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { |
| // We consider any PHI or select that results in a direct load or store of |
| // the same offset to be a viable use for partitioning purposes. These uses |
| // are considered unsplittable and the size is the maximum loaded or stored |
| // size. |
| SmallPtrSet<Instruction *, 4> Visited; |
| SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; |
| Visited.insert(Root); |
| Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); |
| // If there are no loads or stores, the access is dead. We mark that as |
| // a size zero access. |
| Size = 0; |
| do { |
| Instruction *I, *UsedI; |
| llvm::tie(UsedI, I) = Uses.pop_back_val(); |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); |
| continue; |
| } |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| Value *Op = SI->getOperand(0); |
| if (Op == UsedI) |
| return SI; |
| Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); |
| continue; |
| } |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| if (!GEP->hasAllZeroIndices()) |
| return GEP; |
| } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && |
| !isa<SelectInst>(I)) { |
| return I; |
| } |
| |
| for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; |
| ++UI) |
| if (Visited.insert(cast<Instruction>(*UI))) |
| Uses.push_back(std::make_pair(I, cast<Instruction>(*UI))); |
| } while (!Uses.empty()); |
| |
| return 0; |
| } |
| |
| void visitPHINode(PHINode &PN) { |
| if (PN.use_empty()) |
| return; |
| if (!IsOffsetKnown) |
| return PI.setAborted(&PN); |
| |
| // See if we already have computed info on this node. |
| std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN]; |
| if (PHIInfo.first) { |
| PHIInfo.second = true; |
| insertUse(PN, Offset, PHIInfo.first); |
| return; |
| } |
| |
| // Check for an unsafe use of the PHI node. |
| if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first)) |
| return PI.setAborted(UnsafeI); |
| |
| insertUse(PN, Offset, PHIInfo.first); |
| } |
| |
| void visitSelectInst(SelectInst &SI) { |
| if (SI.use_empty()) |
| return; |
| if (Value *Result = foldSelectInst(SI)) { |
| if (Result == *U) |
| // If the result of the constant fold will be the pointer, recurse |
| // through the select as if we had RAUW'ed it. |
| enqueueUsers(SI); |
| |
| return; |
| } |
| if (!IsOffsetKnown) |
| return PI.setAborted(&SI); |
| |
| // See if we already have computed info on this node. |
| std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI]; |
| if (SelectInfo.first) { |
| SelectInfo.second = true; |
| insertUse(SI, Offset, SelectInfo.first); |
| return; |
| } |
| |
| // Check for an unsafe use of the PHI node. |
| if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first)) |
| return PI.setAborted(UnsafeI); |
| |
| insertUse(SI, Offset, SelectInfo.first); |
| } |
| |
| /// \brief Disable SROA entirely if there are unhandled users of the alloca. |
| void visitInstruction(Instruction &I) { |
| PI.setAborted(&I); |
| } |
| }; |
| |
| /// \brief Use adder for the alloca partitioning. |
| /// |
| /// This class adds the uses of an alloca to all of the partitions which they |
| /// use. For splittable partitions, this can end up doing essentially a linear |
| /// walk of the partitions, but the number of steps remains bounded by the |
| /// total result instruction size: |
| /// - The number of partitions is a result of the number unsplittable |
| /// instructions using the alloca. |
| /// - The number of users of each partition is at worst the total number of |
| /// splittable instructions using the alloca. |
| /// Thus we will produce N * M instructions in the end, where N are the number |
| /// of unsplittable uses and M are the number of splittable. This visitor does |
| /// the exact same number of updates to the partitioning. |
| /// |
| /// In the more common case, this visitor will leverage the fact that the |
| /// partition space is pre-sorted, and do a logarithmic search for the |
| /// partition needed, making the total visit a classical ((N + M) * log(N)) |
| /// complexity operation. |
| class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> { |
| friend class PtrUseVisitor<UseBuilder>; |
| friend class InstVisitor<UseBuilder>; |
| typedef PtrUseVisitor<UseBuilder> Base; |
| |
| const uint64_t AllocSize; |
| AllocaPartitioning &P; |
| |
| /// \brief Set to de-duplicate dead instructions found in the use walk. |
| SmallPtrSet<Instruction *, 4> VisitedDeadInsts; |
| |
| public: |
| UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P) |
| : PtrUseVisitor<UseBuilder>(TD), |
| AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())), |
| P(P) {} |
| |
| private: |
| void markAsDead(Instruction &I) { |
| if (VisitedDeadInsts.insert(&I)) |
| P.DeadUsers.push_back(&I); |
| } |
| |
| void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) { |
| // If the use has a zero size or extends outside of the allocation, record |
| // it as a dead use for elimination later. |
| if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) |
| return markAsDead(User); |
| |
| uint64_t BeginOffset = Offset.getZExtValue(); |
| uint64_t EndOffset = BeginOffset + Size; |
| |
| // Clamp the end offset to the end of the allocation. Note that this is |
| // formulated to handle even the case where "BeginOffset + Size" overflows. |
| assert(AllocSize >= BeginOffset); // Established above. |
| if (Size > AllocSize - BeginOffset) |
| EndOffset = AllocSize; |
| |
| // NB: This only works if we have zero overlapping partitions. |
| iterator I = std::lower_bound(P.begin(), P.end(), BeginOffset); |
| if (I != P.begin() && llvm::prior(I)->EndOffset > BeginOffset) |
| I = llvm::prior(I); |
| iterator E = P.end(); |
| bool IsSplit = llvm::next(I) != E && llvm::next(I)->BeginOffset < EndOffset; |
| for (; I != E && I->BeginOffset < EndOffset; ++I) { |
| PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset), |
| std::min(I->EndOffset, EndOffset), U, IsSplit); |
| P.use_push_back(I, NewPU); |
| if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser())) |
| P.PHIOrSelectOpMap[U] |
| = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1); |
| } |
| } |
| |
| void visitBitCastInst(BitCastInst &BC) { |
| if (BC.use_empty()) |
| return markAsDead(BC); |
| |
| return Base::visitBitCastInst(BC); |
| } |
| |
| void visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| if (GEPI.use_empty()) |
| return markAsDead(GEPI); |
| |
| return Base::visitGetElementPtrInst(GEPI); |
| } |
| |
| void visitLoadInst(LoadInst &LI) { |
| assert(IsOffsetKnown); |
| uint64_t Size = DL.getTypeStoreSize(LI.getType()); |
| insertUse(LI, Offset, Size); |
| } |
| |
| void visitStoreInst(StoreInst &SI) { |
| assert(IsOffsetKnown); |
| uint64_t Size = DL.getTypeStoreSize(SI.getOperand(0)->getType()); |
| |
| // If this memory access can be shown to *statically* extend outside the |
| // bounds of of the allocation, it's behavior is undefined, so simply |
| // ignore it. Note that this is more strict than the generic clamping |
| // behavior of insertUse. |
| if (Offset.isNegative() || Size > AllocSize || |
| Offset.ugt(AllocSize - Size)) |
| return markAsDead(SI); |
| |
| insertUse(SI, Offset, Size); |
| } |
| |
| void visitMemSetInst(MemSetInst &II) { |
| ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| if ((Length && Length->getValue() == 0) || |
| (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) |
| return markAsDead(II); |
| |
| assert(IsOffsetKnown); |
| insertUse(II, Offset, Length ? Length->getLimitedValue() |
| : AllocSize - Offset.getLimitedValue()); |
| } |
| |
| void visitMemTransferInst(MemTransferInst &II) { |
| ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| if ((Length && Length->getValue() == 0) || |
| (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) |
| return markAsDead(II); |
| |
| assert(IsOffsetKnown); |
| uint64_t Size = Length ? Length->getLimitedValue() |
| : AllocSize - Offset.getLimitedValue(); |
| |
| MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; |
| if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd && |
| Offsets.DestBegin == Offsets.SourceBegin) |
| return markAsDead(II); // Skip identity transfers without side-effects. |
| |
| insertUse(II, Offset, Size); |
| } |
| |
| void visitIntrinsicInst(IntrinsicInst &II) { |
| assert(IsOffsetKnown); |
| assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| II.getIntrinsicID() == Intrinsic::lifetime_end); |
| |
| ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
| insertUse(II, Offset, std::min(Length->getLimitedValue(), |
| AllocSize - Offset.getLimitedValue())); |
| } |
| |
| void insertPHIOrSelect(Instruction &User, const APInt &Offset) { |
| uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first; |
| |
| // For PHI and select operands outside the alloca, we can't nuke the entire |
| // phi or select -- the other side might still be relevant, so we special |
| // case them here and use a separate structure to track the operands |
| // themselves which should be replaced with undef. |
| if ((Offset.isNegative() && Offset.uge(Size)) || |
| (!Offset.isNegative() && Offset.uge(AllocSize))) { |
| P.DeadOperands.push_back(U); |
| return; |
| } |
| |
| insertUse(User, Offset, Size); |
| } |
| |
| void visitPHINode(PHINode &PN) { |
| if (PN.use_empty()) |
| return markAsDead(PN); |
| |
| assert(IsOffsetKnown); |
| insertPHIOrSelect(PN, Offset); |
| } |
| |
| void visitSelectInst(SelectInst &SI) { |
| if (SI.use_empty()) |
| return markAsDead(SI); |
| |
| if (Value *Result = foldSelectInst(SI)) { |
| if (Result == *U) |
| // If the result of the constant fold will be the pointer, recurse |
| // through the select as if we had RAUW'ed it. |
| enqueueUsers(SI); |
| else |
| // Otherwise the operand to the select is dead, and we can replace it |
| // with undef. |
| P.DeadOperands.push_back(U); |
| |
| return; |
| } |
| |
| assert(IsOffsetKnown); |
| insertPHIOrSelect(SI, Offset); |
| } |
| |
| /// \brief Unreachable, we've already visited the alloca once. |
| void visitInstruction(Instruction &I) { |
| llvm_unreachable("Unhandled instruction in use builder."); |
| } |
| }; |
| |
| void AllocaPartitioning::splitAndMergePartitions() { |
| size_t NumDeadPartitions = 0; |
| |
| // Track the range of splittable partitions that we pass when accumulating |
| // overlapping unsplittable partitions. |
| uint64_t SplitEndOffset = 0ull; |
| |
| Partition New(0ull, 0ull, false); |
| |
| for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) { |
| ++j; |
| |
| if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) { |
| assert(New.BeginOffset == New.EndOffset); |
| New = Partitions[i]; |
| } else { |
| assert(New.IsSplittable); |
| New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset); |
| } |
| assert(New.BeginOffset != New.EndOffset); |
| |
| // Scan the overlapping partitions. |
| while (j != e && New.EndOffset > Partitions[j].BeginOffset) { |
| // If the new partition we are forming is splittable, stop at the first |
| // unsplittable partition. |
| if (New.IsSplittable && !Partitions[j].IsSplittable) |
| break; |
| |
| // Grow the new partition to include any equally splittable range. 'j' is |
| // always equally splittable when New is splittable, but when New is not |
| // splittable, we may subsume some (or part of some) splitable partition |
| // without growing the new one. |
| if (New.IsSplittable == Partitions[j].IsSplittable) { |
| New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset); |
| } else { |
| assert(!New.IsSplittable); |
| assert(Partitions[j].IsSplittable); |
| SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset); |
| } |
| |
| Partitions[j].kill(); |
| ++NumDeadPartitions; |
| ++j; |
| } |
| |
| // If the new partition is splittable, chop off the end as soon as the |
| // unsplittable subsequent partition starts and ensure we eventually cover |
| // the splittable area. |
| if (j != e && New.IsSplittable) { |
| SplitEndOffset = std::max(SplitEndOffset, New.EndOffset); |
| New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); |
| } |
| |
| // Add the new partition if it differs from the original one and is |
| // non-empty. We can end up with an empty partition here if it was |
| // splittable but there is an unsplittable one that starts at the same |
| // offset. |
| if (New != Partitions[i]) { |
| if (New.BeginOffset != New.EndOffset) |
| Partitions.push_back(New); |
| // Mark the old one for removal. |
| Partitions[i].kill(); |
| ++NumDeadPartitions; |
| } |
| |
| New.BeginOffset = New.EndOffset; |
| if (!New.IsSplittable) { |
| New.EndOffset = std::max(New.EndOffset, SplitEndOffset); |
| if (j != e && !Partitions[j].IsSplittable) |
| New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); |
| New.IsSplittable = true; |
| // If there is a trailing splittable partition which won't be fused into |
| // the next splittable partition go ahead and add it onto the partitions |
| // list. |
| if (New.BeginOffset < New.EndOffset && |
| (j == e || !Partitions[j].IsSplittable || |
| New.EndOffset < Partitions[j].BeginOffset)) { |
| Partitions.push_back(New); |
| New.BeginOffset = New.EndOffset = 0ull; |
| } |
| } |
| } |
| |
| // Re-sort the partitions now that they have been split and merged into |
| // disjoint set of partitions. Also remove any of the dead partitions we've |
| // replaced in the process. |
| std::sort(Partitions.begin(), Partitions.end()); |
| if (NumDeadPartitions) { |
| assert(Partitions.back().isDead()); |
| assert((ptrdiff_t)NumDeadPartitions == |
| std::count(Partitions.begin(), Partitions.end(), Partitions.back())); |
| } |
| Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end()); |
| } |
| |
| AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI) |
| : |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| AI(AI), |
| #endif |
| PointerEscapingInstr(0) { |
| PartitionBuilder PB(TD, AI, *this); |
| PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI); |
| if (PtrI.isEscaped() || PtrI.isAborted()) { |
| // FIXME: We should sink the escape vs. abort info into the caller nicely, |
| // possibly by just storing the PtrInfo in the AllocaPartitioning. |
| PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() |
| : PtrI.getAbortingInst(); |
| assert(PointerEscapingInstr && "Did not track a bad instruction"); |
| return; |
| } |
| |
| // Sort the uses. This arranges for the offsets to be in ascending order, |
| // and the sizes to be in descending order. |
| std::sort(Partitions.begin(), Partitions.end()); |
| |
| // Remove any partitions from the back which are marked as dead. |
| while (!Partitions.empty() && Partitions.back().isDead()) |
| Partitions.pop_back(); |
| |
| if (Partitions.size() > 1) { |
| // Intersect splittability for all partitions with equal offsets and sizes. |
| // Then remove all but the first so that we have a sequence of non-equal but |
| // potentially overlapping partitions. |
| for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E; |
| I = J) { |
| ++J; |
| while (J != E && *I == *J) { |
| I->IsSplittable &= J->IsSplittable; |
| ++J; |
| } |
| } |
| Partitions.erase(std::unique(Partitions.begin(), Partitions.end()), |
| Partitions.end()); |
| |
| // Split splittable and merge unsplittable partitions into a disjoint set |
| // of partitions over the used space of the allocation. |
| splitAndMergePartitions(); |
| } |
| |
| // Now build up the user lists for each of these disjoint partitions by |
| // re-walking the recursive users of the alloca. |
| Uses.resize(Partitions.size()); |
| UseBuilder UB(TD, AI, *this); |
| PtrI = UB.visitPtr(AI); |
| assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!"); |
| assert(!PtrI.isAborted() && "Early aborted the visit of the pointer."); |
| } |
| |
| Type *AllocaPartitioning::getCommonType(iterator I) const { |
| Type *Ty = 0; |
| for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { |
| Use *U = UI->getUse(); |
| if (!U) |
| continue; // Skip dead uses. |
| if (isa<IntrinsicInst>(*U->getUser())) |
| continue; |
| if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset) |
| continue; |
| |
| Type *UserTy = 0; |
| if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) |
| UserTy = LI->getType(); |
| else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) |
| UserTy = SI->getValueOperand()->getType(); |
| else |
| return 0; // Bail if we have weird uses. |
| |
| if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) { |
| // If the type is larger than the partition, skip it. We only encounter |
| // this for split integer operations where we want to use the type of the |
| // entity causing the split. |
| if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8) |
| continue; |
| |
| // If we have found an integer type use covering the alloca, use that |
| // regardless of the other types, as integers are often used for a "bucket |
| // of bits" type. |
| return ITy; |
| } |
| |
| if (Ty && Ty != UserTy) |
| return 0; |
| |
| Ty = UserTy; |
| } |
| return Ty; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| |
| void AllocaPartitioning::print(raw_ostream &OS, const_iterator I, |
| StringRef Indent) const { |
| OS << Indent << "partition #" << (I - begin()) |
| << " [" << I->BeginOffset << "," << I->EndOffset << ")" |
| << (I->IsSplittable ? " (splittable)" : "") |
| << (Uses[I - begin()].empty() ? " (zero uses)" : "") |
| << "\n"; |
| } |
| |
| void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I, |
| StringRef Indent) const { |
| for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { |
| if (!UI->getUse()) |
| continue; // Skip dead uses. |
| OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") " |
| << "used by: " << *UI->getUse()->getUser() << "\n"; |
| if (MemTransferInst *II = |
| dyn_cast<MemTransferInst>(UI->getUse()->getUser())) { |
| const MemTransferOffsets &MTO = MemTransferInstData.lookup(II); |
| bool IsDest; |
| if (!MTO.IsSplittable) |
| IsDest = UI->BeginOffset == MTO.DestBegin; |
| else |
| IsDest = MTO.DestBegin != 0u; |
| OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": " |
| << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin) |
| << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n"; |
| } |
| } |
| } |
| |
| void AllocaPartitioning::print(raw_ostream &OS) const { |
| if (PointerEscapingInstr) { |
| OS << "No partitioning for alloca: " << AI << "\n" |
| << " A pointer to this alloca escaped by:\n" |
| << " " << *PointerEscapingInstr << "\n"; |
| return; |
| } |
| |
| OS << "Partitioning of alloca: " << AI << "\n"; |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| print(OS, I); |
| printUsers(OS, I); |
| } |
| } |
| |
| void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); } |
| void AllocaPartitioning::dump() const { print(dbgs()); } |
| |
| #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| |
| |
| namespace { |
| /// \brief Implementation of LoadAndStorePromoter for promoting allocas. |
| /// |
| /// This subclass of LoadAndStorePromoter adds overrides to handle promoting |
| /// the loads and stores of an alloca instruction, as well as updating its |
| /// debug information. This is used when a domtree is unavailable and thus |
| /// mem2reg in its full form can't be used to handle promotion of allocas to |
| /// scalar values. |
| class AllocaPromoter : public LoadAndStorePromoter { |
| AllocaInst &AI; |
| DIBuilder &DIB; |
| |
| SmallVector<DbgDeclareInst *, 4> DDIs; |
| SmallVector<DbgValueInst *, 4> DVIs; |
| |
| public: |
| AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, |
| AllocaInst &AI, DIBuilder &DIB) |
| : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} |
| |
| void run(const SmallVectorImpl<Instruction*> &Insts) { |
| // Remember which alloca we're promoting (for isInstInList). |
| if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { |
| for (Value::use_iterator UI = DebugNode->use_begin(), |
| UE = DebugNode->use_end(); |
| UI != UE; ++UI) |
| if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) |
| DDIs.push_back(DDI); |
| else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI)) |
| DVIs.push_back(DVI); |
| } |
| |
| LoadAndStorePromoter::run(Insts); |
| AI.eraseFromParent(); |
| while (!DDIs.empty()) |
| DDIs.pop_back_val()->eraseFromParent(); |
| while (!DVIs.empty()) |
| DVIs.pop_back_val()->eraseFromParent(); |
| } |
| |
| virtual bool isInstInList(Instruction *I, |
| const SmallVectorImpl<Instruction*> &Insts) const { |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| return LI->getOperand(0) == &AI; |
| return cast<StoreInst>(I)->getPointerOperand() == &AI; |
| } |
| |
| virtual void updateDebugInfo(Instruction *Inst) const { |
| for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(), |
| E = DDIs.end(); I != E; ++I) { |
| DbgDeclareInst *DDI = *I; |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) |
| ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| } |
| for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), |
| E = DVIs.end(); I != E; ++I) { |
| DbgValueInst *DVI = *I; |
| Value *Arg = 0; |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| // If an argument is zero extended then use argument directly. The ZExt |
| // may be zapped by an optimization pass in future. |
| if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) |
| Arg = dyn_cast<Argument>(ZExt->getOperand(0)); |
| if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) |
| Arg = dyn_cast<Argument>(SExt->getOperand(0)); |
| if (!Arg) |
| Arg = SI->getOperand(0); |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { |
| Arg = LI->getOperand(0); |
| } else { |
| continue; |
| } |
| Instruction *DbgVal = |
| DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), |
| Inst); |
| DbgVal->setDebugLoc(DVI->getDebugLoc()); |
| } |
| } |
| }; |
| } // end anon namespace |
| |
| |
| namespace { |
| /// \brief An optimization pass providing Scalar Replacement of Aggregates. |
| /// |
| /// This pass takes allocations which can be completely analyzed (that is, they |
| /// don't escape) and tries to turn them into scalar SSA values. There are |
| /// a few steps to this process. |
| /// |
| /// 1) It takes allocations of aggregates and analyzes the ways in which they |
| /// are used to try to split them into smaller allocations, ideally of |
| /// a single scalar data type. It will split up memcpy and memset accesses |
| /// as necessary and try to isolate individual scalar accesses. |
| /// 2) It will transform accesses into forms which are suitable for SSA value |
| /// promotion. This can be replacing a memset with a scalar store of an |
| /// integer value, or it can involve speculating operations on a PHI or |
| /// select to be a PHI or select of the results. |
| /// 3) Finally, this will try to detect a pattern of accesses which map cleanly |
| /// onto insert and extract operations on a vector value, and convert them to |
| /// this form. By doing so, it will enable promotion of vector aggregates to |
| /// SSA vector values. |
| class SROA : public FunctionPass { |
| const bool RequiresDomTree; |
| |
| LLVMContext *C; |
| const DataLayout *TD; |
| DominatorTree *DT; |
| |
| /// \brief Worklist of alloca instructions to simplify. |
| /// |
| /// Each alloca in the function is added to this. Each new alloca formed gets |
| /// added to it as well to recursively simplify unless that alloca can be |
| /// directly promoted. Finally, each time we rewrite a use of an alloca other |
| /// the one being actively rewritten, we add it back onto the list if not |
| /// already present to ensure it is re-visited. |
| SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist; |
| |
| /// \brief A collection of instructions to delete. |
| /// We try to batch deletions to simplify code and make things a bit more |
| /// efficient. |
| SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts; |
| |
| /// \brief Post-promotion worklist. |
| /// |
| /// Sometimes we discover an alloca which has a high probability of becoming |
| /// viable for SROA after a round of promotion takes place. In those cases, |
| /// the alloca is enqueued here for re-processing. |
| /// |
| /// Note that we have to be very careful to clear allocas out of this list in |
| /// the event they are deleted. |
| SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist; |
| |
| /// \brief A collection of alloca instructions we can directly promote. |
| std::vector<AllocaInst *> PromotableAllocas; |
| |
| public: |
| SROA(bool RequiresDomTree = true) |
| : FunctionPass(ID), RequiresDomTree(RequiresDomTree), |
| C(0), TD(0), DT(0) { |
| initializeSROAPass(*PassRegistry::getPassRegistry()); |
| } |
| bool runOnFunction(Function &F); |
| void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| const char *getPassName() const { return "SROA"; } |
| static char ID; |
| |
| private: |
| friend class PHIOrSelectSpeculator; |
| friend class AllocaPartitionRewriter; |
| friend class AllocaPartitionVectorRewriter; |
| |
| bool rewriteAllocaPartition(AllocaInst &AI, |
| AllocaPartitioning &P, |
| AllocaPartitioning::iterator PI); |
| bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P); |
| bool runOnAlloca(AllocaInst &AI); |
| void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas); |
| bool promoteAllocas(Function &F); |
| }; |
| } |
| |
| char SROA::ID = 0; |
| |
| FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { |
| return new SROA(RequiresDomTree); |
| } |
| |
| INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| false, false) |
| |
| namespace { |
| /// \brief Visitor to speculate PHIs and Selects where possible. |
| class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> { |
| // Befriend the base class so it can delegate to private visit methods. |
| friend class llvm::InstVisitor<PHIOrSelectSpeculator>; |
| |
| const DataLayout &TD; |
| AllocaPartitioning &P; |
| SROA &Pass; |
| |
| public: |
| PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass) |
| : TD(TD), P(P), Pass(Pass) {} |
| |
| /// \brief Visit the users of an alloca partition and rewrite them. |
| void visitUsers(AllocaPartitioning::const_iterator PI) { |
| // Note that we need to use an index here as the underlying vector of uses |
| // may be grown during speculation. However, we never need to re-visit the |
| // new uses, and so we can use the initial size bound. |
| for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) { |
| const PartitionUse &PU = P.getUse(PI, Idx); |
| if (!PU.getUse()) |
| continue; // Skip dead use. |
| |
| visit(cast<Instruction>(PU.getUse()->getUser())); |
| } |
| } |
| |
| private: |
| // By default, skip this instruction. |
| void visitInstruction(Instruction &I) {} |
| |
| /// PHI instructions that use an alloca and are subsequently loaded can be |
| /// rewritten to load both input pointers in the pred blocks and then PHI the |
| /// results, allowing the load of the alloca to be promoted. |
| /// From this: |
| /// %P2 = phi [i32* %Alloca, i32* %Other] |
| /// %V = load i32* %P2 |
| /// to: |
| /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| /// ... |
| /// %V2 = load i32* %Other |
| /// ... |
| /// %V = phi [i32 %V1, i32 %V2] |
| /// |
| /// We can do this to a select if its only uses are loads and if the operands |
| /// to the select can be loaded unconditionally. |
| /// |
| /// FIXME: This should be hoisted into a generic utility, likely in |
| /// Transforms/Util/Local.h |
| bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) { |
| // For now, we can only do this promotion if the load is in the same block |
| // as the PHI, and if there are no stores between the phi and load. |
| // TODO: Allow recursive phi users. |
| // TODO: Allow stores. |
| BasicBlock *BB = PN.getParent(); |
| unsigned MaxAlign = 0; |
| for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); |
| UI != UE; ++UI) { |
| LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| if (LI == 0 || !LI->isSimple()) return false; |
| |
| // For now we only allow loads in the same block as the PHI. This is |
| // a common case that happens when instcombine merges two loads through |
| // a PHI. |
| if (LI->getParent() != BB) return false; |
| |
| // Ensure that there are no instructions between the PHI and the load that |
| // could store. |
| for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) |
| if (BBI->mayWriteToMemory()) |
| return false; |
| |
| MaxAlign = std::max(MaxAlign, LI->getAlignment()); |
| Loads.push_back(LI); |
| } |
| |
| // We can only transform this if it is safe to push the loads into the |
| // predecessor blocks. The only thing to watch out for is that we can't put |
| // a possibly trapping load in the predecessor if it is a critical edge. |
| for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); |
| Value *InVal = PN.getIncomingValue(Idx); |
| |
| // If the value is produced by the terminator of the predecessor (an |
| // invoke) or it has side-effects, there is no valid place to put a load |
| // in the predecessor. |
| if (TI == InVal || TI->mayHaveSideEffects()) |
| return false; |
| |
| // If the predecessor has a single successor, then the edge isn't |
| // critical. |
| if (TI->getNumSuccessors() == 1) |
| continue; |
| |
| // If this pointer is always safe to load, or if we can prove that there |
| // is already a load in the block, then we can move the load to the pred |
| // block. |
| if (InVal->isDereferenceablePointer() || |
| isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD)) |
| continue; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void visitPHINode(PHINode &PN) { |
| DEBUG(dbgs() << " original: " << PN << "\n"); |
| |
| SmallVector<LoadInst *, 4> Loads; |
| if (!isSafePHIToSpeculate(PN, Loads)) |
| return; |
| |
| assert(!Loads.empty()); |
| |
| Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); |
| IRBuilder<> PHIBuilder(&PN); |
| PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), |
| PN.getName() + ".sroa.speculated"); |
| |
| // Get the TBAA tag and alignment to use from one of the loads. It doesn't |
| // matter which one we get and if any differ. |
| LoadInst *SomeLoad = cast<LoadInst>(Loads.back()); |
| MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); |
| unsigned Align = SomeLoad->getAlignment(); |
| |
| // Rewrite all loads of the PN to use the new PHI. |
| do { |
| LoadInst *LI = Loads.pop_back_val(); |
| LI->replaceAllUsesWith(NewPN); |
| Pass.DeadInsts.insert(LI); |
| } while (!Loads.empty()); |
| |
| // Inject loads into all of the pred blocks. |
| for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| BasicBlock *Pred = PN.getIncomingBlock(Idx); |
| TerminatorInst *TI = Pred->getTerminator(); |
| Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx)); |
| Value *InVal = PN.getIncomingValue(Idx); |
| IRBuilder<> PredBuilder(TI); |
| |
| LoadInst *Load |
| = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." + |
| Pred->getName())); |
| ++NumLoadsSpeculated; |
| Load->setAlignment(Align); |
| if (TBAATag) |
| Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| NewPN->addIncoming(Load, Pred); |
| |
| Instruction *Ptr = dyn_cast<Instruction>(InVal); |
| if (!Ptr) |
| // No uses to rewrite. |
| continue; |
| |
| // Try to lookup and rewrite any partition uses corresponding to this phi |
| // input. |
| AllocaPartitioning::iterator PI |
| = P.findPartitionForPHIOrSelectOperand(InUse); |
| if (PI == P.end()) |
| continue; |
| |
| // Replace the Use in the PartitionUse for this operand with the Use |
| // inside the load. |
| AllocaPartitioning::use_iterator UI |
| = P.findPartitionUseForPHIOrSelectOperand(InUse); |
| assert(isa<PHINode>(*UI->getUse()->getUser())); |
| UI->setUse(&Load->getOperandUse(Load->getPointerOperandIndex())); |
| } |
| DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); |
| } |
| |
| /// Select instructions that use an alloca and are subsequently loaded can be |
| /// rewritten to load both input pointers and then select between the result, |
| /// allowing the load of the alloca to be promoted. |
| /// From this: |
| /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other |
| /// %V = load i32* %P2 |
| /// to: |
| /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| /// %V2 = load i32* %Other |
| /// %V = select i1 %cond, i32 %V1, i32 %V2 |
| /// |
| /// We can do this to a select if its only uses are loads and if the operand |
| /// to the select can be loaded unconditionally. |
| bool isSafeSelectToSpeculate(SelectInst &SI, |
| SmallVectorImpl<LoadInst *> &Loads) { |
| Value *TValue = SI.getTrueValue(); |
| Value *FValue = SI.getFalseValue(); |
| bool TDerefable = TValue->isDereferenceablePointer(); |
| bool FDerefable = FValue->isDereferenceablePointer(); |
| |
| for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); |
| UI != UE; ++UI) { |
| LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| if (LI == 0 || !LI->isSimple()) return false; |
| |
| // Both operands to the select need to be dereferencable, either |
| // absolutely (e.g. allocas) or at this point because we can see other |
| // accesses to it. |
| if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI, |
| LI->getAlignment(), &TD)) |
| return false; |
| if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI, |
| LI->getAlignment(), &TD)) |
| return false; |
| Loads.push_back(LI); |
| } |
| |
| return true; |
| } |
| |
| void visitSelectInst(SelectInst &SI) { |
| DEBUG(dbgs() << " original: " << SI << "\n"); |
| |
| // If the select isn't safe to speculate, just use simple logic to emit it. |
| SmallVector<LoadInst *, 4> Loads; |
| if (!isSafeSelectToSpeculate(SI, Loads)) |
| return; |
| |
| IRBuilder<> IRB(&SI); |
| Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) }; |
| AllocaPartitioning::iterator PIs[2]; |
| PartitionUse PUs[2]; |
| for (unsigned i = 0, e = 2; i != e; ++i) { |
| PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]); |
| if (PIs[i] != P.end()) { |
| // If the pointer is within the partitioning, remove the select from |
| // its uses. We'll add in the new loads below. |
| AllocaPartitioning::use_iterator UI |
| = P.findPartitionUseForPHIOrSelectOperand(Ops[i]); |
| PUs[i] = *UI; |
| // Clear out the use here so that the offsets into the use list remain |
| // stable but this use is ignored when rewriting. |
| UI->setUse(0); |
| } |
| } |
| |
| Value *TV = SI.getTrueValue(); |
| Value *FV = SI.getFalseValue(); |
| // Replace the loads of the select with a select of two loads. |
| while (!Loads.empty()) { |
| LoadInst *LI = Loads.pop_back_val(); |
| |
| IRB.SetInsertPoint(LI); |
| LoadInst *TL = |
| IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); |
| LoadInst *FL = |
| IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); |
| NumLoadsSpeculated += 2; |
| |
| // Transfer alignment and TBAA info if present. |
| TL->setAlignment(LI->getAlignment()); |
| FL->setAlignment(LI->getAlignment()); |
| if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { |
| TL->setMetadata(LLVMContext::MD_tbaa, Tag); |
| FL->setMetadata(LLVMContext::MD_tbaa, Tag); |
| } |
| |
| Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, |
| LI->getName() + ".sroa.speculated"); |
| |
| LoadInst *Loads[2] = { TL, FL }; |
| for (unsigned i = 0, e = 2; i != e; ++i) { |
| if (PIs[i] != P.end()) { |
| Use *LoadUse = &Loads[i]->getOperandUse(0); |
| assert(PUs[i].getUse()->get() == LoadUse->get()); |
| PUs[i].setUse(LoadUse); |
| P.use_push_back(PIs[i], PUs[i]); |
| } |
| } |
| |
| DEBUG(dbgs() << " speculated to: " << *V << "\n"); |
| LI->replaceAllUsesWith(V); |
| Pass.DeadInsts.insert(LI); |
| } |
| } |
| }; |
| } |
| |
| /// \brief Build a GEP out of a base pointer and indices. |
| /// |
| /// This will return the BasePtr if that is valid, or build a new GEP |
| /// instruction using the IRBuilder if GEP-ing is needed. |
| static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr, |
| SmallVectorImpl<Value *> &Indices, |
| const Twine &Prefix) { |
| if (Indices.empty()) |
| return BasePtr; |
| |
| // A single zero index is a no-op, so check for this and avoid building a GEP |
| // in that case. |
| if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) |
| return BasePtr; |
| |
| return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx"); |
| } |
| |
| /// \brief Get a natural GEP off of the BasePtr walking through Ty toward |
| /// TargetTy without changing the offset of the pointer. |
| /// |
| /// This routine assumes we've already established a properly offset GEP with |
| /// Indices, and arrived at the Ty type. The goal is to continue to GEP with |
| /// zero-indices down through type layers until we find one the same as |
| /// TargetTy. If we can't find one with the same type, we at least try to use |
| /// one with the same size. If none of that works, we just produce the GEP as |
| /// indicated by Indices to have the correct offset. |
| static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const DataLayout &TD, |
| Value *BasePtr, Type *Ty, Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| const Twine &Prefix) { |
| if (Ty == TargetTy) |
| return buildGEP(IRB, BasePtr, Indices, Prefix); |
| |
| // See if we can descend into a struct and locate a field with the correct |
| // type. |
| unsigned NumLayers = 0; |
| Type *ElementTy = Ty; |
| do { |
| if (ElementTy->isPointerTy()) |
| break; |
| if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) { |
| ElementTy = SeqTy->getElementType(); |
| // Note that we use the default address space as this index is over an |
| // array or a vector, not a pointer. |
| Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0))); |
| } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { |
| if (STy->element_begin() == STy->element_end()) |
| break; // Nothing left to descend into. |
| ElementTy = *STy->element_begin(); |
| Indices.push_back(IRB.getInt32(0)); |
| } else { |
| break; |
| } |
| ++NumLayers; |
| } while (ElementTy != TargetTy); |
| if (ElementTy != TargetTy) |
| Indices.erase(Indices.end() - NumLayers, Indices.end()); |
| |
| return buildGEP(IRB, BasePtr, Indices, Prefix); |
| } |
| |
| /// \brief Recursively compute indices for a natural GEP. |
| /// |
| /// This is the recursive step for getNaturalGEPWithOffset that walks down the |
| /// element types adding appropriate indices for the GEP. |
| static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const DataLayout &TD, |
| Value *Ptr, Type *Ty, APInt &Offset, |
| Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| const Twine &Prefix) { |
| if (Offset == 0) |
| return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix); |
| |
| // We can't recurse through pointer types. |
| if (Ty->isPointerTy()) |
| return 0; |
| |
| // We try to analyze GEPs over vectors here, but note that these GEPs are |
| // extremely poorly defined currently. The long-term goal is to remove GEPing |
| // over a vector from the IR completely. |
| if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { |
| unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType()); |
| if (ElementSizeInBits % 8) |
| return 0; // GEPs over non-multiple of 8 size vector elements are invalid. |
| APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| if (NumSkippedElements.ugt(VecTy->getNumElements())) |
| return 0; |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(), |
| Offset, TargetTy, Indices, Prefix); |
| } |
| |
| if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| Type *ElementTy = ArrTy->getElementType(); |
| APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| if (NumSkippedElements.ugt(ArrTy->getNumElements())) |
| return 0; |
| |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| Indices, Prefix); |
| } |
| |
| StructType *STy = dyn_cast<StructType>(Ty); |
| if (!STy) |
| return 0; |
| |
| const StructLayout *SL = TD.getStructLayout(STy); |
| uint64_t StructOffset = Offset.getZExtValue(); |
| if (StructOffset >= SL->getSizeInBytes()) |
| return 0; |
| unsigned Index = SL->getElementContainingOffset(StructOffset); |
| Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); |
| Type *ElementTy = STy->getElementType(Index); |
| if (Offset.uge(TD.getTypeAllocSize(ElementTy))) |
| return 0; // The offset points into alignment padding. |
| |
| Indices.push_back(IRB.getInt32(Index)); |
| return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| Indices, Prefix); |
| } |
| |
| /// \brief Get a natural GEP from a base pointer to a particular offset and |
| /// resulting in a particular type. |
| /// |
| /// The goal is to produce a "natural" looking GEP that works with the existing |
| /// composite types to arrive at the appropriate offset and element type for |
| /// a pointer. TargetTy is the element type the returned GEP should point-to if |
| /// possible. We recurse by decreasing Offset, adding the appropriate index to |
| /// Indices, and setting Ty to the result subtype. |
| /// |
| /// If no natural GEP can be constructed, this function returns null. |
| static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const DataLayout &TD, |
| Value *Ptr, APInt Offset, Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| const Twine &Prefix) { |
| PointerType *Ty = cast<PointerType>(Ptr->getType()); |
| |
| // Don't consider any GEPs through an i8* as natural unless the TargetTy is |
| // an i8. |
| if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8)) |
| return 0; |
| |
| Type *ElementTy = Ty->getElementType(); |
| if (!ElementTy->isSized()) |
| return 0; // We can't GEP through an unsized element. |
| APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); |
| if (ElementSize == 0) |
| return 0; // Zero-length arrays can't help us build a natural GEP. |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| Indices, Prefix); |
| } |
| |
| /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the |
| /// resulting pointer has PointerTy. |
| /// |
| /// This tries very hard to compute a "natural" GEP which arrives at the offset |
| /// and produces the pointer type desired. Where it cannot, it will try to use |
| /// the natural GEP to arrive at the offset and bitcast to the type. Where that |
| /// fails, it will try to use an existing i8* and GEP to the byte offset and |
| /// bitcast to the type. |
| /// |
| /// The strategy for finding the more natural GEPs is to peel off layers of the |
| /// pointer, walking back through bit casts and GEPs, searching for a base |
| /// pointer from which we can compute a natural GEP with the desired |
| /// properties. The algorithm tries to fold as many constant indices into |
| /// a single GEP as possible, thus making each GEP more independent of the |
| /// surrounding code. |
| static Value *getAdjustedPtr(IRBuilder<> &IRB, const DataLayout &TD, |
| Value *Ptr, APInt Offset, Type *PointerTy, |
| const Twine &Prefix) { |
| // Even though we don't look through PHI nodes, we could be called on an |
| // instruction in an unreachable block, which may be on a cycle. |
| SmallPtrSet<Value *, 4> Visited; |
| Visited.insert(Ptr); |
| SmallVector<Value *, 4> Indices; |
| |
| // We may end up computing an offset pointer that has the wrong type. If we |
| // never are able to compute one directly that has the correct type, we'll |
| // fall back to it, so keep it around here. |
| Value *OffsetPtr = 0; |
| |
| // Remember any i8 pointer we come across to re-use if we need to do a raw |
| // byte offset. |
| Value *Int8Ptr = 0; |
| APInt Int8PtrOffset(Offset.getBitWidth(), 0); |
| |
| Type *TargetTy = PointerTy->getPointerElementType(); |
| |
| do { |
| // First fold any existing GEPs into the offset. |
| while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { |
| APInt GEPOffset(Offset.getBitWidth(), 0); |
| if (!GEP->accumulateConstantOffset(TD, GEPOffset)) |
| break; |
| Offset += GEPOffset; |
| Ptr = GEP->getPointerOperand(); |
| if (!Visited.insert(Ptr)) |
| break; |
| } |
| |
| // See if we can perform a natural GEP here. |
| Indices.clear(); |
| if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy, |
| Indices, Prefix)) { |
| if (P->getType() == PointerTy) { |
| // Zap any offset pointer that we ended up computing in previous rounds. |
| if (OffsetPtr && OffsetPtr->use_empty()) |
| if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) |
| I->eraseFromParent(); |
| return P; |
| } |
| if (!OffsetPtr) { |
| OffsetPtr = P; |
| } |
| } |
| |
| // Stash this pointer if we've found an i8*. |
| if (Ptr->getType()->isIntegerTy(8)) { |
| Int8Ptr = Ptr; |
| Int8PtrOffset = Offset; |
| } |
| |
| // Peel off a layer of the pointer and update the offset appropriately. |
| if (Operator::getOpcode(Ptr) == Instruction::BitCast) { |
| Ptr = cast<Operator>(Ptr)->getOperand(0); |
| } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { |
| if (GA->mayBeOverridden()) |
| break; |
| Ptr = GA->getAliasee(); |
| } else { |
| break; |
| } |
| assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); |
| } while (Visited.insert(Ptr)); |
| |
| if (!OffsetPtr) { |
| if (!Int8Ptr) { |
| Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(), |
| Prefix + ".raw_cast"); |
| Int8PtrOffset = Offset; |
| } |
| |
| OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : |
| IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), |
| Prefix + ".raw_idx"); |
| } |
| Ptr = OffsetPtr; |
| |
| // On the off chance we were targeting i8*, guard the bitcast here. |
| if (Ptr->getType() != PointerTy) |
| Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast"); |
| |
| return Ptr; |
| } |
| |
| /// \brief Test whether we can convert a value from the old to the new type. |
| /// |
| /// This predicate should be used to guard calls to convertValue in order to |
| /// ensure that we only try to convert viable values. The strategy is that we |
| /// will peel off single element struct and array wrappings to get to an |
| /// underlying value, and convert that value. |
| static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { |
| if (OldTy == NewTy) |
| return true; |
| if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) |
| if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) |
| if (NewITy->getBitWidth() >= OldITy->getBitWidth()) |
| return true; |
| if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) |
| return false; |
| if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) |
| return false; |
| |
| if (NewTy->isPointerTy() || OldTy->isPointerTy()) { |
| if (NewTy->isPointerTy() && OldTy->isPointerTy()) |
| return true; |
| if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) |
| return true; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// \brief Generic routine to convert an SSA value to a value of a different |
| /// type. |
| /// |
| /// This will try various different casting techniques, such as bitcasts, |
| /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test |
| /// two types for viability with this routine. |
| static Value *convertValue(const DataLayout &DL, IRBuilder<> &IRB, Value *V, |
| Type *Ty) { |
| assert(canConvertValue(DL, V->getType(), Ty) && |
| "Value not convertable to type"); |
| if (V->getType() == Ty) |
| return V; |
| if (IntegerType *OldITy = dyn_cast<IntegerType>(V->getType())) |
| if (IntegerType *NewITy = dyn_cast<IntegerType>(Ty)) |
| if (NewITy->getBitWidth() > OldITy->getBitWidth()) |
| return IRB.CreateZExt(V, NewITy); |
| if (V->getType()->isIntegerTy() && Ty->isPointerTy()) |
| return IRB.CreateIntToPtr(V, Ty); |
| if (V->getType()->isPointerTy() && Ty->isIntegerTy()) |
| return IRB.CreatePtrToInt(V, Ty); |
| |
| return IRB.CreateBitCast(V, Ty); |
| } |
| |
| /// \brief Test whether the given alloca partition can be promoted to a vector. |
| /// |
| /// This is a quick test to check whether we can rewrite a particular alloca |
| /// partition (and its newly formed alloca) into a vector alloca with only |
| /// whole-vector loads and stores such that it could be promoted to a vector |
| /// SSA value. We only can ensure this for a limited set of operations, and we |
| /// don't want to do the rewrites unless we are confident that the result will |
| /// be promotable, so we have an early test here. |
| static bool isVectorPromotionViable(const DataLayout &TD, |
| Type *AllocaTy, |
| AllocaPartitioning &P, |
| uint64_t PartitionBeginOffset, |
| uint64_t PartitionEndOffset, |
| AllocaPartitioning::const_use_iterator I, |
| AllocaPartitioning::const_use_iterator E) { |
| VectorType *Ty = dyn_cast<VectorType>(AllocaTy); |
| if (!Ty) |
| return false; |
| |
| uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType()); |
| |
| // While the definition of LLVM vectors is bitpacked, we don't support sizes |
| // that aren't byte sized. |
| if (ElementSize % 8) |
| return false; |
| assert((TD.getTypeSizeInBits(Ty) % 8) == 0 && |
| "vector size not a multiple of element size?"); |
| ElementSize /= 8; |
| |
| for (; I != E; ++I) { |
| Use *U = I->getUse(); |
| if (!U) |
| continue; // Skip dead use. |
| |
| uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset; |
| uint64_t BeginIndex = BeginOffset / ElementSize; |
| if (BeginIndex * ElementSize != BeginOffset || |
| BeginIndex >= Ty->getNumElements()) |
| return false; |
| uint64_t EndOffset = I->EndOffset - PartitionBeginOffset; |
| uint64_t EndIndex = EndOffset / ElementSize; |
| if (EndIndex * ElementSize != EndOffset || |
| EndIndex > Ty->getNumElements()) |
| return false; |
| |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| uint64_t NumElements = EndIndex - BeginIndex; |
| Type *PartitionTy |
| = (NumElements == 1) ? Ty->getElementType() |
| : VectorType::get(Ty->getElementType(), NumElements); |
| |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { |
| if (MI->isVolatile()) |
| return false; |
| if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) { |
| const AllocaPartitioning::MemTransferOffsets &MTO |
| = P.getMemTransferOffsets(*MTI); |
| if (!MTO.IsSplittable) |
| return false; |
| } |
| } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { |
| // Disable vector promotion when there are loads or stores of an FCA. |
| return false; |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { |
| if (LI->isVolatile()) |
| return false; |
| if (!canConvertValue(TD, PartitionTy, LI->getType())) |
| return false; |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { |
| if (SI->isVolatile()) |
| return false; |
| if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy)) |
| return false; |
| } else { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// \brief Test whether the given alloca partition's integer operations can be |
| /// widened to promotable ones. |
| /// |
| /// This is a quick test to check whether we can rewrite the integer loads and |
| /// stores to a particular alloca into wider loads and stores and be able to |
| /// promote the resulting alloca. |
| static bool isIntegerWideningViable(const DataLayout &TD, |
| Type *AllocaTy, |
| uint64_t AllocBeginOffset, |
| AllocaPartitioning &P, |
| AllocaPartitioning::const_use_iterator I, |
| AllocaPartitioning::const_use_iterator E) { |
| uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy); |
| // Don't create integer types larger than the maximum bitwidth. |
| if (SizeInBits > IntegerType::MAX_INT_BITS) |
| return false; |
| |
| // Don't try to handle allocas with bit-padding. |
| if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy)) |
| return false; |
| |
| // We need to ensure that an integer type with the appropriate bitwidth can |
| // be converted to the alloca type, whatever that is. We don't want to force |
| // the alloca itself to have an integer type if there is a more suitable one. |
| Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); |
| if (!canConvertValue(TD, AllocaTy, IntTy) || |
| !canConvertValue(TD, IntTy, AllocaTy)) |
| return false; |
| |
| uint64_t Size = TD.getTypeStoreSize(AllocaTy); |
| |
| // Check the uses to ensure the uses are (likely) promotable integer uses. |
| // Also ensure that the alloca has a covering load or store. We don't want |
| // to widen the integer operations only to fail to promote due to some other |
| // unsplittable entry (which we may make splittable later). |
| bool WholeAllocaOp = false; |
| for (; I != E; ++I) { |
| Use *U = I->getUse(); |
| if (!U) |
| continue; // Skip dead use. |
| |
| uint64_t RelBegin = I->BeginOffset - AllocBeginOffset; |
| uint64_t RelEnd = I->EndOffset - AllocBeginOffset; |
| |
| // We can't reasonably handle cases where the load or store extends past |
| // the end of the aloca's type and into its padding. |
| if (RelEnd > Size) |
| return false; |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { |
| if (LI->isVolatile()) |
| return false; |
| if (RelBegin == 0 && RelEnd == Size) |
| WholeAllocaOp = true; |
| if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { |
| if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy)) |
| return false; |
| continue; |
| } |
| // Non-integer loads need to be convertible from the alloca type so that |
| // they are promotable. |
| if (RelBegin != 0 || RelEnd != Size || |
| !canConvertValue(TD, AllocaTy, LI->getType())) |
| return false; |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { |
| Type *ValueTy = SI->getValueOperand()->getType(); |
| if (SI->isVolatile()) |
| return false; |
| if (RelBegin == 0 && RelEnd == Size) |
| WholeAllocaOp = true; |
| if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { |
| if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy)) |
| return false; |
| continue; |
| } |
| // Non-integer stores need to be convertible to the alloca type so that |
| // they are promotable. |
| if (RelBegin != 0 || RelEnd != Size || |
| !canConvertValue(TD, ValueTy, AllocaTy)) |
| return false; |
| } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { |
| if (MI->isVolatile() || !isa<Constant>(MI->getLength())) |
| return false; |
| if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) { |
| const AllocaPartitioning::MemTransferOffsets &MTO |
| = P.getMemTransferOffsets(*MTI); |
| if (!MTO.IsSplittable) |
| return false; |
| } |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { |
| if (II->getIntrinsicID() != Intrinsic::lifetime_start && |
| II->getIntrinsicID() != Intrinsic::lifetime_end) |
| return false; |
| } else { |
| return false; |
| } |
| } |
| return WholeAllocaOp; |
| } |
| |
| static Value *extractInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *V, |
| IntegerType *Ty, uint64_t Offset, |
| const Twine &Name) { |
| DEBUG(dbgs() << " start: " << *V << "\n"); |
| IntegerType *IntTy = cast<IntegerType>(V->getType()); |
| assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && |
| "Element extends past full value"); |
| uint64_t ShAmt = 8*Offset; |
| if (DL.isBigEndian()) |
| ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); |
| if (ShAmt) { |
| V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); |
| DEBUG(dbgs() << " shifted: " << *V << "\n"); |
| } |
| assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
| "Cannot extract to a larger integer!"); |
| if (Ty != IntTy) { |
| V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); |
| DEBUG(dbgs() << " trunced: " << *V << "\n"); |
| } |
| return V; |
| } |
| |
| static Value *insertInteger(const DataLayout &DL, IRBuilder<> &IRB, Value *Old, |
| Value *V, uint64_t Offset, const Twine &Name) { |
| IntegerType *IntTy = cast<IntegerType>(Old->getType()); |
| IntegerType *Ty = cast<IntegerType>(V->getType()); |
| assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
| "Cannot insert a larger integer!"); |
| DEBUG(dbgs() << " start: " << *V << "\n"); |
| if (Ty != IntTy) { |
| V = IRB.CreateZExt(V, IntTy, Name + ".ext"); |
| DEBUG(dbgs() << " extended: " << *V << "\n"); |
| } |
| assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && |
| "Element store outside of alloca store"); |
| uint64_t ShAmt = 8*Offset; |
| if (DL.isBigEndian()) |
| ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); |
| if (ShAmt) { |
| V = IRB.CreateShl(V, ShAmt, Name + ".shift"); |
| DEBUG(dbgs() << " shifted: " << *V << "\n"); |
| } |
| |
| if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { |
| APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); |
| Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); |
| DEBUG(dbgs() << " masked: " << *Old << "\n"); |
| V = IRB.CreateOr(Old, V, Name + ".insert"); |
| DEBUG(dbgs() << " inserted: " << *V << "\n"); |
| } |
| return V; |
| } |
| |
| static Value *extractVector(IRBuilder<> &IRB, Value *V, |
| unsigned BeginIndex, unsigned EndIndex, |
| const Twine &Name) { |
| VectorType *VecTy = cast<VectorType>(V->getType()); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| |
| if (NumElements == VecTy->getNumElements()) |
| return V; |
| |
| if (NumElements == 1) { |
| V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), |
| Name + ".extract"); |
| DEBUG(dbgs() << " extract: " << *V << "\n"); |
| return V; |
| } |
| |
| SmallVector<Constant*, 8> Mask; |
| Mask.reserve(NumElements); |
| for (unsigned i = BeginIndex; i != EndIndex; ++i) |
| Mask.push_back(IRB.getInt32(i)); |
| V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), |
| ConstantVector::get(Mask), |
| Name + ".extract"); |
| DEBUG(dbgs() << " shuffle: " << *V << "\n"); |
| return V; |
| } |
| |
| static Value *insertVector(IRBuilder<> &IRB, Value *Old, Value *V, |
| unsigned BeginIndex, const Twine &Name) { |
| VectorType *VecTy = cast<VectorType>(Old->getType()); |
| assert(VecTy && "Can only insert a vector into a vector"); |
| |
| VectorType *Ty = dyn_cast<VectorType>(V->getType()); |
| if (!Ty) { |
| // Single element to insert. |
| V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), |
| Name + ".insert"); |
| DEBUG(dbgs() << " insert: " << *V << "\n"); |
| return V; |
| } |
| |
| assert(Ty->getNumElements() <= VecTy->getNumElements() && |
| "Too many elements!"); |
| if (Ty->getNumElements() == VecTy->getNumElements()) { |
| assert(V->getType() == VecTy && "Vector type mismatch"); |
| return V; |
| } |
| unsigned EndIndex = BeginIndex + Ty->getNumElements(); |
| |
| // When inserting a smaller vector into the larger to store, we first |
| // use a shuffle vector to widen it with undef elements, and then |
| // a second shuffle vector to select between the loaded vector and the |
| // incoming vector. |
| SmallVector<Constant*, 8> Mask; |
| Mask.reserve(VecTy->getNumElements()); |
| for (unsigned i = 0; i != VecTy->getNumElements(); ++i) |
| if (i >= BeginIndex && i < EndIndex) |
| Mask.push_back(IRB.getInt32(i - BeginIndex)); |
| else |
| Mask.push_back(UndefValue::get(IRB.getInt32Ty())); |
| V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), |
| ConstantVector::get(Mask), |
| Name + ".expand"); |
| DEBUG(dbgs() << " shuffle1: " << *V << "\n"); |
| |
| Mask.clear(); |
| for (unsigned i = 0; i != VecTy->getNumElements(); ++i) |
| if (i >= BeginIndex && i < EndIndex) |
| Mask.push_back(IRB.getInt32(i)); |
| else |
| Mask.push_back(IRB.getInt32(i + VecTy->getNumElements())); |
| V = IRB.CreateShuffleVector(V, Old, ConstantVector::get(Mask), |
| Name + "insert"); |
| DEBUG(dbgs() << " shuffle2: " << *V << "\n"); |
| return V; |
| } |
| |
| namespace { |
| /// \brief Visitor to rewrite instructions using a partition of an alloca to |
| /// use a new alloca. |
| /// |
| /// Also implements the rewriting to vector-based accesses when the partition |
| /// passes the isVectorPromotionViable predicate. Most of the rewriting logic |
| /// lives here. |
| class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter, |
| bool> { |
| // Befriend the base class so it can delegate to private visit methods. |
| friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>; |
| |
| const DataLayout &TD; |
| AllocaPartitioning &P; |
| SROA &Pass; |
| AllocaInst &OldAI, &NewAI; |
| const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; |
| Type *NewAllocaTy; |
| |
| // If we are rewriting an alloca partition which can be written as pure |
| // vector operations, we stash extra information here. When VecTy is |
| // non-null, we have some strict guarantees about the rewritten alloca: |
| // - The new alloca is exactly the size of the vector type here. |
| // - The accesses all either map to the entire vector or to a single |
| // element. |
| // - The set of accessing instructions is only one of those handled above |
| // in isVectorPromotionViable. Generally these are the same access kinds |
| // which are promotable via mem2reg. |
| VectorType *VecTy; |
| Type *ElementTy; |
| uint64_t ElementSize; |
| |
| // This is a convenience and flag variable that will be null unless the new |
| // alloca's integer operations should be widened to this integer type due to |
| // passing isIntegerWideningViable above. If it is non-null, the desired |
| // integer type will be stored here for easy access during rewriting. |
| IntegerType *IntTy; |
| |
| // The offset of the partition user currently being rewritten. |
| uint64_t BeginOffset, EndOffset; |
| bool IsSplit; |
| Use *OldUse; |
| Instruction *OldPtr; |
| |
| // The name prefix to use when rewriting instructions for this alloca. |
| std::string NamePrefix; |
| |
| public: |
| AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P, |
| AllocaPartitioning::iterator PI, |
| SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, |
| uint64_t NewBeginOffset, uint64_t NewEndOffset) |
| : TD(TD), P(P), Pass(Pass), |
| OldAI(OldAI), NewAI(NewAI), |
| NewAllocaBeginOffset(NewBeginOffset), |
| NewAllocaEndOffset(NewEndOffset), |
| NewAllocaTy(NewAI.getAllocatedType()), |
| VecTy(), ElementTy(), ElementSize(), IntTy(), |
| BeginOffset(), EndOffset(), IsSplit(), OldUse(), OldPtr() { |
| } |
| |
| /// \brief Visit the users of the alloca partition and rewrite them. |
| bool visitUsers(AllocaPartitioning::const_use_iterator I, |
| AllocaPartitioning::const_use_iterator E) { |
| if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P, |
| NewAllocaBeginOffset, NewAllocaEndOffset, |
| I, E)) { |
| ++NumVectorized; |
| VecTy = cast<VectorType>(NewAI.getAllocatedType()); |
| ElementTy = VecTy->getElementType(); |
| assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 && |
| "Only multiple-of-8 sized vector elements are viable"); |
| ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8; |
| } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(), |
| NewAllocaBeginOffset, P, I, E)) { |
| IntTy = Type::getIntNTy(NewAI.getContext(), |
| TD.getTypeSizeInBits(NewAI.getAllocatedType())); |
| } |
| bool CanSROA = true; |
| for (; I != E; ++I) { |
| if (!I->getUse()) |
| continue; // Skip dead uses. |
| BeginOffset = I->BeginOffset; |
| EndOffset = I->EndOffset; |
| IsSplit = I->isSplit(); |
| OldUse = I->getUse(); |
| OldPtr = cast<Instruction>(OldUse->get()); |
| NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str(); |
| CanSROA &= visit(cast<Instruction>(OldUse->getUser())); |
| } |
| if (VecTy) { |
| assert(CanSROA); |
| VecTy = 0; |
| ElementTy = 0; |
| ElementSize = 0; |
| } |
| if (IntTy) { |
| assert(CanSROA); |
| IntTy = 0; |
| } |
| return CanSROA; |
| } |
| |
| private: |
| // Every instruction which can end up as a user must have a rewrite rule. |
| bool visitInstruction(Instruction &I) { |
| DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); |
| llvm_unreachable("No rewrite rule for this instruction!"); |
| } |
| |
| Twine getName(const Twine &Suffix) { |
| return NamePrefix + Suffix; |
| } |
| |
| Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) { |
| assert(BeginOffset >= NewAllocaBeginOffset); |
| APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset); |
| return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName("")); |
| } |
| |
| /// \brief Compute suitable alignment to access an offset into the new alloca. |
| unsigned getOffsetAlign(uint64_t Offset) { |
| unsigned NewAIAlign = NewAI.getAlignment(); |
| if (!NewAIAlign) |
| NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType()); |
| return MinAlign(NewAIAlign, Offset); |
| } |
| |
| /// \brief Compute suitable alignment to access this partition of the new |
| /// alloca. |
| unsigned getPartitionAlign() { |
| return getOffsetAlign(BeginOffset - NewAllocaBeginOffset); |
| } |
| |
| /// \brief Compute suitable alignment to access a type at an offset of the |
| /// new alloca. |
| /// |
| /// \returns zero if the type's ABI alignment is a suitable alignment, |
| /// otherwise returns the maximal suitable alignment. |
| unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) { |
| unsigned Align = getOffsetAlign(Offset); |
| return Align == TD.getABITypeAlignment(Ty) ? 0 : Align; |
| } |
| |
| /// \brief Compute suitable alignment to access a type at the beginning of |
| /// this partition of the new alloca. |
| /// |
| /// See \c getOffsetTypeAlign for details; this routine delegates to it. |
| unsigned getPartitionTypeAlign(Type *Ty) { |
| return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset); |
| } |
| |
| unsigned getIndex(uint64_t Offset) { |
| assert(VecTy && "Can only call getIndex when rewriting a vector"); |
| uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); |
| uint32_t Index = RelOffset / ElementSize; |
| assert(Index * ElementSize == RelOffset); |
| return Index; |
| } |
| |
| void deleteIfTriviallyDead(Value *V) { |
| Instruction *I = cast<Instruction>(V); |
| if (isInstructionTriviallyDead(I)) |
| Pass.DeadInsts.insert(I); |
| } |
| |
| Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB) { |
| unsigned BeginIndex = getIndex(BeginOffset); |
| unsigned EndIndex = getIndex(EndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| |
| Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".load")); |
| return extractVector(IRB, V, BeginIndex, EndIndex, getName(".vec")); |
| } |
| |
| Value *rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) { |
| assert(IntTy && "We cannot insert an integer to the alloca"); |
| assert(!LI.isVolatile()); |
| Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".load")); |
| V = convertValue(TD, IRB, V, IntTy); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
| if (Offset > 0 || EndOffset < NewAllocaEndOffset) |
| V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset, |
| getName(".extract")); |
| return V; |
| } |
| |
| bool visitLoadInst(LoadInst &LI) { |
| DEBUG(dbgs() << " original: " << LI << "\n"); |
| Value *OldOp = LI.getOperand(0); |
| assert(OldOp == OldPtr); |
| |
| uint64_t Size = EndOffset - BeginOffset; |
| |
| IRBuilder<> IRB(&LI); |
| Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8) |
| : LI.getType(); |
| bool IsPtrAdjusted = false; |
| Value *V; |
| if (VecTy) { |
| V = rewriteVectorizedLoadInst(IRB); |
| } else if (IntTy && LI.getType()->isIntegerTy()) { |
| V = rewriteIntegerLoad(IRB, LI); |
| } else if (BeginOffset == NewAllocaBeginOffset && |
| canConvertValue(TD, NewAllocaTy, LI.getType())) { |
| V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| LI.isVolatile(), getName(".load")); |
| } else { |
| Type *LTy = TargetTy->getPointerTo(); |
| V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy), |
| getPartitionTypeAlign(TargetTy), |
| LI.isVolatile(), getName(".load")); |
| IsPtrAdjusted = true; |
| } |
| V = convertValue(TD, IRB, V, TargetTy); |
| |
| if (IsSplit) { |
| assert(!LI.isVolatile()); |
| assert(LI.getType()->isIntegerTy() && |
| "Only integer type loads and stores are split"); |
| assert(Size < TD.getTypeStoreSize(LI.getType()) && |
| "Split load isn't smaller than original load"); |
| assert(LI.getType()->getIntegerBitWidth() == |
| TD.getTypeStoreSizeInBits(LI.getType()) && |
| "Non-byte-multiple bit width"); |
| // Move the insertion point just past the load so that we can refer to it. |
| IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI))); |
| // Create a placeholder value with the same type as LI to use as the |
| // basis for the new value. This allows us to replace the uses of LI with |
| // the computed value, and then replace the placeholder with LI, leaving |
| // LI only used for this computation. |
| Value *Placeholder |
| = new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); |
| V = insertInteger(TD, IRB, Placeholder, V, BeginOffset, |
| getName(".insert")); |
| LI.replaceAllUsesWith(V); |
| Placeholder->replaceAllUsesWith(&LI); |
| delete Placeholder; |
| } else { |
| LI.replaceAllUsesWith(V); |
| } |
| |
| Pass.DeadInsts.insert(&LI); |
| deleteIfTriviallyDead(OldOp); |
| DEBUG(dbgs() << " to: " << *V << "\n"); |
| return !LI.isVolatile() && !IsPtrAdjusted; |
| } |
| |
| bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, Value *V, |
| StoreInst &SI, Value *OldOp) { |
| unsigned BeginIndex = getIndex(BeginOffset); |
| unsigned EndIndex = getIndex(EndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| Type *PartitionTy |
| = (NumElements == 1) ? ElementTy |
| : VectorType::get(ElementTy, NumElements); |
| if (V->getType() != PartitionTy) |
| V = convertValue(TD, IRB, V, PartitionTy); |
| |
| // Mix in the existing elements. |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".load")); |
| V = insertVector(IRB, Old, V, BeginIndex, getName(".vec")); |
| |
| StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); |
| Pass.DeadInsts.insert(&SI); |
| |
| (void)Store; |
| DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return true; |
| } |
| |
| bool rewriteIntegerStore(IRBuilder<> &IRB, Value *V, StoreInst &SI) { |
| assert(IntTy && "We cannot extract an integer from the alloca"); |
| assert(!SI.isVolatile()); |
| if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".oldload")); |
| Old = convertValue(TD, IRB, Old, IntTy); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
| V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset, |
| getName(".insert")); |
| } |
| V = convertValue(TD, IRB, V, NewAllocaTy); |
| StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); |
| Pass.DeadInsts.insert(&SI); |
| (void)Store; |
| DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return true; |
| } |
| |
| bool visitStoreInst(StoreInst &SI) { |
| DEBUG(dbgs() << " original: " << SI << "\n"); |
| Value *OldOp = SI.getOperand(1); |
| assert(OldOp == OldPtr); |
| IRBuilder<> IRB(&SI); |
| |
| Value *V = SI.getValueOperand(); |
| |
| // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| // alloca that should be re-examined after promoting this alloca. |
| if (V->getType()->isPointerTy()) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) |
| Pass.PostPromotionWorklist.insert(AI); |
| |
| uint64_t Size = EndOffset - BeginOffset; |
| if (Size < TD.getTypeStoreSize(V->getType())) { |
| assert(!SI.isVolatile()); |
| assert(IsSplit && "A seemingly split store isn't splittable"); |
| assert(V->getType()->isIntegerTy() && |
| "Only integer type loads and stores are split"); |
| assert(V->getType()->getIntegerBitWidth() == |
| TD.getTypeStoreSizeInBits(V->getType()) && |
| "Non-byte-multiple bit width"); |
| IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8); |
| V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset, |
| getName(".extract")); |
| } |
| |
| if (VecTy) |
| return rewriteVectorizedStoreInst(IRB, V, SI, OldOp); |
| if (IntTy && V->getType()->isIntegerTy()) |
| return rewriteIntegerStore(IRB, V, SI); |
| |
| StoreInst *NewSI; |
| if (BeginOffset == NewAllocaBeginOffset && |
| canConvertValue(TD, V->getType(), NewAllocaTy)) { |
| V = convertValue(TD, IRB, V, NewAllocaTy); |
| NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), |
| SI.isVolatile()); |
| } else { |
| Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo()); |
| NewSI = IRB.CreateAlignedStore(V, NewPtr, |
| getPartitionTypeAlign(V->getType()), |
| SI.isVolatile()); |
| } |
| (void)NewSI; |
| Pass.DeadInsts.insert(&SI); |
| deleteIfTriviallyDead(OldOp); |
| |
| DEBUG(dbgs() << " to: " << *NewSI << "\n"); |
| return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); |
| } |
| |
| /// \brief Compute an integer value from splatting an i8 across the given |
| /// number of bytes. |
| /// |
| /// Note that this routine assumes an i8 is a byte. If that isn't true, don't |
| /// call this routine. |
| /// FIXME: Heed the advice above. |
| /// |
| /// \param V The i8 value to splat. |
| /// \param Size The number of bytes in the output (assuming i8 is one byte) |
| Value *getIntegerSplat(IRBuilder<> &IRB, Value *V, unsigned Size) { |
| assert(Size > 0 && "Expected a positive number of bytes."); |
| IntegerType *VTy = cast<IntegerType>(V->getType()); |
| assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); |
| if (Size == 1) |
| return V; |
| |
| Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8); |
| V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, getName(".zext")), |
| ConstantExpr::getUDiv( |
| Constant::getAllOnesValue(SplatIntTy), |
| ConstantExpr::getZExt( |
| Constant::getAllOnesValue(V->getType()), |
| SplatIntTy)), |
| getName(".isplat")); |
| return V; |
| } |
| |
| /// \brief Compute a vector splat for a given element value. |
| Value *getVectorSplat(IRBuilder<> &IRB, Value *V, unsigned NumElements) { |
| V = IRB.CreateVectorSplat(NumElements, V, NamePrefix); |
| DEBUG(dbgs() << " splat: " << *V << "\n"); |
| return V; |
| } |
| |
| bool visitMemSetInst(MemSetInst &II) { |
| DEBUG(dbgs() << " original: " << II << "\n"); |
| IRBuilder<> IRB(&II); |
| assert(II.getRawDest() == OldPtr); |
| |
| // If the memset has a variable size, it cannot be split, just adjust the |
| // pointer to the new alloca. |
| if (!isa<Constant>(II.getLength())) { |
| II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); |
| Type *CstTy = II.getAlignmentCst()->getType(); |
| II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign())); |
| |
| deleteIfTriviallyDead(OldPtr); |
| return false; |
| } |
| |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| Type *AllocaTy = NewAI.getAllocatedType(); |
| Type *ScalarTy = AllocaTy->getScalarType(); |
| |
| // If this doesn't map cleanly onto the alloca type, and that type isn't |
| // a single value type, just emit a memset. |
| if (!VecTy && !IntTy && |
| (BeginOffset != NewAllocaBeginOffset || |
| EndOffset != NewAllocaEndOffset || |
| !AllocaTy->isSingleValueType() || |
| !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) || |
| TD.getTypeSizeInBits(ScalarTy)%8 != 0)) { |
| Type *SizeTy = II.getLength()->getType(); |
| Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); |
| CallInst *New |
| = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB, |
| II.getRawDest()->getType()), |
| II.getValue(), Size, getPartitionAlign(), |
| II.isVolatile()); |
| (void)New; |
| DEBUG(dbgs() << " to: " << *New << "\n"); |
| return false; |
| } |
| |
| // If we can represent this as a simple value, we have to build the actual |
| // value to store, which requires expanding the byte present in memset to |
| // a sensible representation for the alloca type. This is essentially |
| // splatting the byte to a sufficiently wide integer, splatting it across |
| // any desired vector width, and bitcasting to the final type. |
| Value *V; |
| |
| if (VecTy) { |
| // If this is a memset of a vectorized alloca, insert it. |
| assert(ElementTy == ScalarTy); |
| |
| unsigned BeginIndex = getIndex(BeginOffset); |
| unsigned EndIndex = getIndex(EndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| |
| Value *Splat = getIntegerSplat(IRB, II.getValue(), |
| TD.getTypeSizeInBits(ElementTy)/8); |
| Splat = convertValue(TD, IRB, Splat, ElementTy); |
| if (NumElements > 1) |
| Splat = getVectorSplat(IRB, Splat, NumElements); |
| |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".oldload")); |
| V = insertVector(IRB, Old, Splat, BeginIndex, getName(".vec")); |
| } else if (IntTy) { |
| // If this is a memset on an alloca where we can widen stores, insert the |
| // set integer. |
| assert(!II.isVolatile()); |
| |
| uint64_t Size = EndOffset - BeginOffset; |
| V = getIntegerSplat(IRB, II.getValue(), Size); |
| |
| if (IntTy && (BeginOffset != NewAllocaBeginOffset || |
| EndOffset != NewAllocaBeginOffset)) { |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".oldload")); |
| Old = convertValue(TD, IRB, Old, IntTy); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
| V = insertInteger(TD, IRB, Old, V, Offset, getName(".insert")); |
| } else { |
| assert(V->getType() == IntTy && |
| "Wrong type for an alloca wide integer!"); |
| } |
| V = convertValue(TD, IRB, V, AllocaTy); |
| } else { |
| // Established these invariants above. |
| assert(BeginOffset == NewAllocaBeginOffset); |
| assert(EndOffset == NewAllocaEndOffset); |
| |
| V = getIntegerSplat(IRB, II.getValue(), |
| TD.getTypeSizeInBits(ScalarTy)/8); |
| if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) |
| V = getVectorSplat(IRB, V, AllocaVecTy->getNumElements()); |
| |
| V = convertValue(TD, IRB, V, AllocaTy); |
| } |
| |
| Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), |
| II.isVolatile()); |
| (void)New; |
| DEBUG(dbgs() << " to: " << *New << "\n"); |
| return !II.isVolatile(); |
| } |
| |
| bool visitMemTransferInst(MemTransferInst &II) { |
| // Rewriting of memory transfer instructions can be a bit tricky. We break |
| // them into two categories: split intrinsics and unsplit intrinsics. |
| |
| DEBUG(dbgs() << " original: " << II << "\n"); |
| IRBuilder<> IRB(&II); |
| |
| assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); |
| bool IsDest = II.getRawDest() == OldPtr; |
| |
| const AllocaPartitioning::MemTransferOffsets &MTO |
| = P.getMemTransferOffsets(II); |
| |
| // Compute the relative offset within the transfer. |
| unsigned IntPtrWidth = TD.getPointerSizeInBits(); |
| APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin |
| : MTO.SourceBegin)); |
| |
| unsigned Align = II.getAlignment(); |
| if (Align > 1) |
| Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(), |
| MinAlign(II.getAlignment(), getPartitionAlign())); |
| |
| // For unsplit intrinsics, we simply modify the source and destination |
| // pointers in place. This isn't just an optimization, it is a matter of |
| // correctness. With unsplit intrinsics we may be dealing with transfers |
| // within a single alloca before SROA ran, or with transfers that have |
| // a variable length. We may also be dealing with memmove instead of |
| // memcpy, and so simply updating the pointers is the necessary for us to |
| // update both source and dest of a single call. |
| if (!MTO.IsSplittable) { |
| Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); |
| if (IsDest) |
| II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); |
| else |
| II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType())); |
| |
| Type *CstTy = II.getAlignmentCst()->getType(); |
| II.setAlignment(ConstantInt::get(CstTy, Align)); |
| |
| DEBUG(dbgs() << " to: " << II << "\n"); |
| deleteIfTriviallyDead(OldOp); |
| return false; |
| } |
| // For split transfer intrinsics we have an incredibly useful assurance: |
| // the source and destination do not reside within the same alloca, and at |
| // least one of them does not escape. This means that we can replace |
| // memmove with memcpy, and we don't need to worry about all manner of |
| // downsides to splitting and transforming the operations. |
| |
| // If this doesn't map cleanly onto the alloca type, and that type isn't |
| // a single value type, just emit a memcpy. |
| bool EmitMemCpy |
| = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset || |
| EndOffset != NewAllocaEndOffset || |
| !NewAI.getAllocatedType()->isSingleValueType()); |
| |
| // If we're just going to emit a memcpy, the alloca hasn't changed, and the |
| // size hasn't been shrunk based on analysis of the viable range, this is |
| // a no-op. |
| if (EmitMemCpy && &OldAI == &NewAI) { |
| uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin; |
| uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd; |
| // Ensure the start lines up. |
| assert(BeginOffset == OrigBegin); |
| (void)OrigBegin; |
| |
| // Rewrite the size as needed. |
| if (EndOffset != OrigEnd) |
| II.setLength(ConstantInt::get(II.getLength()->getType(), |
| EndOffset - BeginOffset)); |
| return false; |
| } |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| // alloca that should be re-examined after rewriting this instruction. |
| Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); |
| if (AllocaInst *AI |
| = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) |
| Pass.Worklist.insert(AI); |
| |
| if (EmitMemCpy) { |
| Type *OtherPtrTy = IsDest ? II.getRawSource()->getType() |
| : II.getRawDest()->getType(); |
| |
| // Compute the other pointer, folding as much as possible to produce |
| // a single, simple GEP in most cases. |
| OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy, |
| getName("." + OtherPtr->getName())); |
| |
| Value *OurPtr |
| = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType() |
| : II.getRawSource()->getType()); |
| Type *SizeTy = II.getLength()->getType(); |
| Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); |
| |
| CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, |
| IsDest ? OtherPtr : OurPtr, |
| Size, Align, II.isVolatile()); |
| (void)New; |
| DEBUG(dbgs() << " to: " << *New << "\n"); |
| return false; |
| } |
| |
| // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy |
| // is equivalent to 1, but that isn't true if we end up rewriting this as |
| // a load or store. |
| if (!Align) |
| Align = 1; |
| |
| bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset && |
| EndOffset == NewAllocaEndOffset; |
| uint64_t Size = EndOffset - BeginOffset; |
| unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0; |
| unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0; |
| unsigned NumElements = EndIndex - BeginIndex; |
| IntegerType *SubIntTy |
| = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0; |
| |
| Type *OtherPtrTy = NewAI.getType(); |
| if (VecTy && !IsWholeAlloca) { |
| if (NumElements == 1) |
| OtherPtrTy = VecTy->getElementType(); |
| else |
| OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); |
| |
| OtherPtrTy = OtherPtrTy->getPointerTo(); |
| } else if (IntTy && !IsWholeAlloca) { |
| OtherPtrTy = SubIntTy->getPointerTo(); |
| } |
| |
| Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy, |
| getName("." + OtherPtr->getName())); |
| Value *DstPtr = &NewAI; |
| if (!IsDest) |
| std::swap(SrcPtr, DstPtr); |
| |
| Value *Src; |
| if (VecTy && !IsWholeAlloca && !IsDest) { |
| Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".load")); |
| Src = extractVector(IRB, Src, BeginIndex, EndIndex, getName(".vec")); |
| } else if (IntTy && !IsWholeAlloca && !IsDest) { |
| Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".load")); |
| Src = convertValue(TD, IRB, Src, IntTy); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
| Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, getName(".extract")); |
| } else { |
| Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(), |
| getName(".copyload")); |
| } |
| |
| if (VecTy && !IsWholeAlloca && IsDest) { |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".oldload")); |
| Src = insertVector(IRB, Old, Src, BeginIndex, getName(".vec")); |
| } else if (IntTy && !IsWholeAlloca && IsDest) { |
| Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| getName(".oldload")); |
| Old = convertValue(TD, IRB, Old, IntTy); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
| Src = insertInteger(TD, IRB, Old, Src, Offset, getName(".insert")); |
| Src = convertValue(TD, IRB, Src, NewAllocaTy); |
| } |
| |
| StoreInst *Store = cast<StoreInst>( |
| IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile())); |
| (void)Store; |
| DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return !II.isVolatile(); |
| } |
| |
| bool visitIntrinsicInst(IntrinsicInst &II) { |
| assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| II.getIntrinsicID() == Intrinsic::lifetime_end); |
| DEBUG(dbgs() << " original: " << II << "\n"); |
| IRBuilder<> IRB(&II); |
| assert(II.getArgOperand(1) == OldPtr); |
| |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| ConstantInt *Size |
| = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), |
| EndOffset - BeginOffset); |
| Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType()); |
| Value *New; |
| if (II.getIntrinsicID() == Intrinsic::lifetime_start) |
| New = IRB.CreateLifetimeStart(Ptr, Size); |
| else |
| New = IRB.CreateLifetimeEnd(Ptr, Size); |
| |
| (void)New; |
| DEBUG(dbgs() << " to: " << *New << "\n"); |
| return true; |
| } |
| |
| bool visitPHINode(PHINode &PN) { |
| DEBUG(dbgs() << " original: " << PN << "\n"); |
| |
| // We would like to compute a new pointer in only one place, but have it be |
| // as local as possible to the PHI. To do that, we re-use the location of |
| // the old pointer, which necessarily must be in the right position to |
| // dominate the PHI. |
| IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr)); |
| |
| Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); |
| // Replace the operands which were using the old pointer. |
| std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); |
| |
| DEBUG(dbgs() << " to: " << PN << "\n"); |
| deleteIfTriviallyDead(OldPtr); |
| return false; |
| } |
| |
| bool visitSelectInst(SelectInst &SI) { |
| DEBUG(dbgs() << " original: " << SI << "\n"); |
| IRBuilder<> IRB(&SI); |
| |
| // Find the operand we need to rewrite here. |
| bool IsTrueVal = SI.getTrueValue() == OldPtr; |
| if (IsTrueVal) |
| assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!"); |
| else |
| assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!"); |
| |
| Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType()); |
| SI.setOperand(IsTrueVal ? 1 : 2, NewPtr); |
| DEBUG(dbgs() << " to: " << SI << "\n"); |
| deleteIfTriviallyDead(OldPtr); |
| return false; |
| } |
| |
| }; |
| } |
| |
| namespace { |
| /// \brief Visitor to rewrite aggregate loads and stores as scalar. |
| /// |
| /// This pass aggressively rewrites all aggregate loads and stores on |
| /// a particular pointer (or any pointer derived from it which we can identify) |
| /// with scalar loads and stores. |
| class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { |
| // Befriend the base class so it can delegate to private visit methods. |
| friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; |
| |
| const DataLayout &TD; |
| |
| /// Queue of pointer uses to analyze and potentially rewrite. |
| SmallVector<Use *, 8> Queue; |
| |
| /// Set to prevent us from cycling with phi nodes and loops. |
| SmallPtrSet<User *, 8> Visited; |
| |
| /// The current pointer use being rewritten. This is used to dig up the used |
| /// value (as opposed to the user). |
| Use *U; |
| |
| public: |
| AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {} |
| |
| /// Rewrite loads and stores through a pointer and all pointers derived from |
| /// it. |
| bool rewrite(Instruction &I) { |
| DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); |
| enqueueUsers(I); |
| bool Changed = false; |
| while (!Queue.empty()) { |
| U = Queue.pop_back_val(); |
| Changed |= visit(cast<Instruction>(U->getUser())); |
| } |
| return Changed; |
| } |
| |
| private: |
| /// Enqueue all the users of the given instruction for further processing. |
| /// This uses a set to de-duplicate users. |
| void enqueueUsers(Instruction &I) { |
| for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; |
| ++UI) |
| if (Visited.insert(*UI)) |
| Queue.push_back(&UI.getUse()); |
| } |
| |
| // Conservative default is to not rewrite anything. |
| bool visitInstruction(Instruction &I) { return false; } |
| |
| /// \brief Generic recursive split emission class. |
| template <typename Derived> |
| class OpSplitter { |
| protected: |
| /// The builder used to form new instructions. |
| IRBuilder<> IRB; |
| /// The indices which to be used with insert- or extractvalue to select the |
| /// appropriate value within the aggregate. |
| SmallVector<unsigned, 4> Indices; |
| /// The indices to a GEP instruction which will move Ptr to the correct slot |
| /// within the aggregate. |
| SmallVector<Value *, 4> GEPIndices; |
| /// The base pointer of the original op, used as a base for GEPing the |
| /// split operations. |
| Value *Ptr; |
| |
| /// Initialize the splitter with an insertion point, Ptr and start with a |
| /// single zero GEP index. |
| OpSplitter(Instruction *InsertionPoint, Value *Ptr) |
| : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} |
| |
| public: |
| /// \brief Generic recursive split emission routine. |
| /// |
| /// This method recursively splits an aggregate op (load or store) into |
| /// scalar or vector ops. It splits recursively until it hits a single value |
| /// and emits that single value operation via the template argument. |
| /// |
| /// The logic of this routine relies on GEPs and insertvalue and |
| /// extractvalue all operating with the same fundamental index list, merely |
| /// formatted differently (GEPs need actual values). |
| /// |
| /// \param Ty The type being split recursively into smaller ops. |
| /// \param Agg The aggregate value being built up or stored, depending on |
| /// whether this is splitting a load or a store respectively. |
| void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { |
| if (Ty->isSingleValueType()) |
| return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); |
| |
| if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| unsigned OldSize = Indices.size(); |
| (void)OldSize; |
| for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; |
| ++Idx) { |
| assert(Indices.size() == OldSize && "Did not return to the old size"); |
| Indices.push_back(Idx); |
| GEPIndices.push_back(IRB.getInt32(Idx)); |
| emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); |
| GEPIndices.pop_back(); |
| Indices.pop_back(); |
| } |
| return; |
| } |
| |
| if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| unsigned OldSize = Indices.size(); |
| (void)OldSize; |
| for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; |
| ++Idx) { |
| assert(Indices.size() == OldSize && "Did not return to the old size"); |
| Indices.push_back(Idx); |
| GEPIndices.push_back(IRB.getInt32(Idx)); |
| emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); |
| GEPIndices.pop_back(); |
| Indices.pop_back(); |
| } |
| return; |
| } |
| |
| llvm_unreachable("Only arrays and structs are aggregate loadable types"); |
| } |
| }; |
| |
| struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { |
| LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) |
| : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} |
| |
| /// Emit a leaf load of a single value. This is called at the leaves of the |
| /// recursive emission to actually load values. |
| void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { |
| assert(Ty->isSingleValueType()); |
| // Load the single value and insert it using the indices. |
| Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"); |
| Value *Load = IRB.CreateLoad(GEP, Name + ".load"); |
| Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); |
| DEBUG(dbgs() << " to: " << *Load << "\n"); |
| } |
| }; |
| |
| bool visitLoadInst(LoadInst &LI) { |
| assert(LI.getPointerOperand() == *U); |
| if (!LI.isSimple() || LI.getType()->isSingleValueType()) |
| return false; |
| |
| // We have an aggregate being loaded, split it apart. |
| DEBUG(dbgs() << " original: " << LI << "\n"); |
| LoadOpSplitter Splitter(&LI, *U); |
| Value *V = UndefValue::get(LI.getType()); |
| Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); |
| LI.replaceAllUsesWith(V); |
| LI.eraseFromParent(); |
| return true; |
| } |
| |
| struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { |
| StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) |
| : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} |
| |
| /// Emit a leaf store of a single value. This is called at the leaves of the |
| /// recursive emission to actually produce stores. |
| void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { |
| assert(Ty->isSingleValueType()); |
| // Extract the single value and store it using the indices. |
| Value *Store = IRB.CreateStore( |
| IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), |
| IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); |
| (void)Store; |
| DEBUG(dbgs() << " to: " << *Store << "\n"); |
| } |
| }; |
| |
| bool visitStoreInst(StoreInst &SI) { |
| if (!SI.isSimple() || SI.getPointerOperand() != *U) |
| return false; |
| Value *V = SI.getValueOperand(); |
| if (V->getType()->isSingleValueType()) |
| return false; |
| |
| // We have an aggregate being stored, split it apart. |
| DEBUG(dbgs() << " original: " << SI << "\n"); |
| StoreOpSplitter Splitter(&SI, *U); |
| Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); |
| SI.eraseFromParent(); |
| return true; |
| } |
| |
| bool visitBitCastInst(BitCastInst &BC) { |
| enqueueUsers(BC); |
| return false; |
| } |
| |
| bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| enqueueUsers(GEPI); |
| return false; |
| } |
| |
| bool visitPHINode(PHINode &PN) { |
| enqueueUsers(PN); |
| return false; |
| } |
| |
| bool visitSelectInst(SelectInst &SI) { |
| enqueueUsers(SI); |
| return false; |
| } |
| }; |
| } |
| |
| /// \brief Strip aggregate type wrapping. |
| /// |
| /// This removes no-op aggregate types wrapping an underlying type. It will |
| /// strip as many layers of types as it can without changing either the type |
| /// size or the allocated size. |
| static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { |
| if (Ty->isSingleValueType()) |
| return Ty; |
| |
| uint64_t AllocSize = DL.getTypeAllocSize(Ty); |
| uint64_t TypeSize = DL.getTypeSizeInBits(Ty); |
| |
| Type *InnerTy; |
| if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| InnerTy = ArrTy->getElementType(); |
| } else if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| unsigned Index = SL->getElementContainingOffset(0); |
| InnerTy = STy->getElementType(Index); |
| } else { |
| return Ty; |
| } |
| |
| if (AllocSize > DL.getTypeAllocSize(InnerTy) || |
| TypeSize > DL.getTypeSizeInBits(InnerTy)) |
| return Ty; |
| |
| return stripAggregateTypeWrapping(DL, InnerTy); |
| } |
| |
| /// \brief Try to find a partition of the aggregate type passed in for a given |
| /// offset and size. |
| /// |
| /// This recurses through the aggregate type and tries to compute a subtype |
| /// based on the offset and size. When the offset and size span a sub-section |
| /// of an array, it will even compute a new array type for that sub-section, |
| /// and the same for structs. |
| /// |
| /// Note that this routine is very strict and tries to find a partition of the |
| /// type which produces the *exact* right offset and size. It is not forgiving |
| /// when the size or offset cause either end of type-based partition to be off. |
| /// Also, this is a best-effort routine. It is reasonable to give up and not |
| /// return a type if necessary. |
| static Type *getTypePartition(const DataLayout &TD, Type *Ty, |
| uint64_t Offset, uint64_t Size) { |
| if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size) |
| return stripAggregateTypeWrapping(TD, Ty); |
| if (Offset > TD.getTypeAllocSize(Ty) || |
| (TD.getTypeAllocSize(Ty) - Offset) < Size) |
| return 0; |
| |
| if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { |
| // We can't partition pointers... |
| if (SeqTy->isPointerTy()) |
| return 0; |
| |
| Type *ElementTy = SeqTy->getElementType(); |
| uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); |
| uint64_t NumSkippedElements = Offset / ElementSize; |
| if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) |
| if (NumSkippedElements >= ArrTy->getNumElements()) |
| return 0; |
| if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) |
| if (NumSkippedElements >= VecTy->getNumElements()) |
| return 0; |
| Offset -= NumSkippedElements * ElementSize; |
| |
| // First check if we need to recurse. |
| if (Offset > 0 || Size < ElementSize) { |
| // Bail if the partition ends in a different array element. |
| if ((Offset + Size) > ElementSize) |
| return 0; |
| // Recurse through the element type trying to peel off offset bytes. |
| return getTypePartition(TD, ElementTy, Offset, Size); |
| } |
| assert(Offset == 0); |
| |
| if (Size == ElementSize) |
| return stripAggregateTypeWrapping(TD, ElementTy); |
| assert(Size > ElementSize); |
| uint64_t NumElements = Size / ElementSize; |
| if (NumElements * ElementSize != Size) |
| return 0; |
| return ArrayType::get(ElementTy, NumElements); |
| } |
| |
| StructType *STy = dyn_cast<StructType>(Ty); |
| if (!STy) |
| return 0; |
| |
| const StructLayout *SL = TD.getStructLayout(STy); |
| if (Offset >= SL->getSizeInBytes()) |
| return 0; |
| uint64_t EndOffset = Offset + Size; |
| if (EndOffset > SL->getSizeInBytes()) |
| return 0; |
| |
| unsigned Index = SL->getElementContainingOffset(Offset); |
| Offset -= SL->getElementOffset(Index); |
| |
| Type *ElementTy = STy->getElementType(Index); |
| uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); |
| if (Offset >= ElementSize) |
| return 0; // The offset points into alignment padding. |
| |
| // See if any partition must be contained by the element. |
| if (Offset > 0 || Size < ElementSize) { |
| if ((Offset + Size) > ElementSize) |
| return 0; |
| return getTypePartition(TD, ElementTy, Offset, Size); |
| } |
| assert(Offset == 0); |
| |
| if (Size == ElementSize) |
| return stripAggregateTypeWrapping(TD, ElementTy); |
| |
| StructType::element_iterator EI = STy->element_begin() + Index, |
| EE = STy->element_end(); |
| if (EndOffset < SL->getSizeInBytes()) { |
| unsigned EndIndex = SL->getElementContainingOffset(EndOffset); |
| if (Index == EndIndex) |
| return 0; // Within a single element and its padding. |
| |
| // Don't try to form "natural" types if the elements don't line up with the |
| // expected size. |
| // FIXME: We could potentially recurse down through the last element in the |
| // sub-struct to find a natural end point. |
| if (SL->getElementOffset(EndIndex) != EndOffset) |
| return 0; |
| |
| assert(Index < EndIndex); |
| EE = STy->element_begin() + EndIndex; |
| } |
| |
| // Try to build up a sub-structure. |
| StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE), |
| STy->isPacked()); |
| const StructLayout *SubSL = TD.getStructLayout(SubTy); |
| if (Size != SubSL->getSizeInBytes()) |
| return 0; // The sub-struct doesn't have quite the size needed. |
| |
| return SubTy; |
| } |
| |
| /// \brief Rewrite an alloca partition's users. |
| /// |
| /// This routine drives both of the rewriting goals of the SROA pass. It tries |
| /// to rewrite uses of an alloca partition to be conducive for SSA value |
| /// promotion. If the partition needs a new, more refined alloca, this will |
| /// build that new alloca, preserving as much type information as possible, and |
| /// rewrite the uses of the old alloca to point at the new one and have the |
| /// appropriate new offsets. It also evaluates how successful the rewrite was |
| /// at enabling promotion and if it was successful queues the alloca to be |
| /// promoted. |
| bool SROA::rewriteAllocaPartition(AllocaInst &AI, |
| AllocaPartitioning &P, |
| AllocaPartitioning::iterator PI) { |
| uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset; |
| bool IsLive = false; |
| for (AllocaPartitioning::use_iterator UI = P.use_begin(PI), |
| UE = P.use_end(PI); |
| UI != UE && !IsLive; ++UI) |
| if (UI->getUse()) |
| IsLive = true; |
| if (!IsLive) |
| return false; // No live uses left of this partition. |
| |
| DEBUG(dbgs() << "Speculating PHIs and selects in partition " |
| << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n"); |
| |
| PHIOrSelectSpeculator Speculator(*TD, P, *this); |
| DEBUG(dbgs() << " speculating "); |
| DEBUG(P.print(dbgs(), PI, "")); |
| Speculator.visitUsers(PI); |
| |
| // Try to compute a friendly type for this partition of the alloca. This |
| // won't always succeed, in which case we fall back to a legal integer type |
| // or an i8 array of an appropriate size. |
| Type *AllocaTy = 0; |
| if (Type *PartitionTy = P.getCommonType(PI)) |
| if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize) |
| AllocaTy = PartitionTy; |
| if (!AllocaTy) |
| if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(), |
| PI->BeginOffset, AllocaSize)) |
| AllocaTy = PartitionTy; |
| if ((!AllocaTy || |
| (AllocaTy->isArrayTy() && |
| AllocaTy->getArrayElementType()->isIntegerTy())) && |
| TD->isLegalInteger(AllocaSize * 8)) |
| AllocaTy = Type::getIntNTy(*C, AllocaSize * 8); |
| if (!AllocaTy) |
| AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize); |
| assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize); |
| |
| // Check for the case where we're going to rewrite to a new alloca of the |
| // exact same type as the original, and with the same access offsets. In that |
| // case, re-use the existing alloca, but still run through the rewriter to |
| // perform phi and select speculation. |
| AllocaInst *NewAI; |
| if (AllocaTy == AI.getAllocatedType()) { |
| assert(PI->BeginOffset == 0 && |
| "Non-zero begin offset but same alloca type"); |
| assert(PI == P.begin() && "Begin offset is zero on later partition"); |
| NewAI = &AI; |
| } else { |
| unsigned Alignment = AI.getAlignment(); |
| if (!Alignment) { |
| // The minimum alignment which users can rely on when the explicit |
| // alignment is omitted or zero is that required by the ABI for this |
| // type. |
| Alignment = TD->getABITypeAlignment(AI.getAllocatedType()); |
| } |
| Alignment = MinAlign(Alignment, PI->BeginOffset); |
| // If we will get at least this much alignment from the type alone, leave |
| // the alloca's alignment unconstrained. |
| if (Alignment <= TD->getABITypeAlignment(AllocaTy)) |
| Alignment = 0; |
| NewAI = new AllocaInst(AllocaTy, 0, Alignment, |
| AI.getName() + ".sroa." + Twine(PI - P.begin()), |
| &AI); |
| ++NumNewAllocas; |
| } |
| |
| DEBUG(dbgs() << "Rewriting alloca partition " |
| << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: " |
| << *NewAI << "\n"); |
| |
| // Track the high watermark of the post-promotion worklist. We will reset it |
| // to this point if the alloca is not in fact scheduled for promotion. |
| unsigned PPWOldSize = PostPromotionWorklist.size(); |
| |
| AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI, |
| PI->BeginOffset, PI->EndOffset); |
| DEBUG(dbgs() << " rewriting "); |
| DEBUG(P.print(dbgs(), PI, "")); |
| bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI)); |
| if (Promotable) { |
| DEBUG(dbgs() << " and queuing for promotion\n"); |
| PromotableAllocas.push_back(NewAI); |
| } else if (NewAI != &AI) { |
| // If we can't promote the alloca, iterate on it to check for new |
| // refinements exposed by splitting the current alloca. Don't iterate on an |
| // alloca which didn't actually change and didn't get promoted. |
| Worklist.insert(NewAI); |
| } |
| |
| // Drop any post-promotion work items if promotion didn't happen. |
| if (!Promotable) |
| while (PostPromotionWorklist.size() > PPWOldSize) |
| PostPromotionWorklist.pop_back(); |
| |
| return true; |
| } |
| |
| /// \brief Walks the partitioning of an alloca rewriting uses of each partition. |
| bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) { |
| bool Changed = false; |
| for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE; |
| ++PI) |
| Changed |= rewriteAllocaPartition(AI, P, PI); |
| |
| return Changed; |
| } |
| |
| /// \brief Analyze an alloca for SROA. |
| /// |
| /// This analyzes the alloca to ensure we can reason about it, builds |
| /// a partitioning of the alloca, and then hands it off to be split and |
| /// rewritten as needed. |
| bool SROA::runOnAlloca(AllocaInst &AI) { |
| DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); |
| ++NumAllocasAnalyzed; |
| |
| // Special case dead allocas, as they're trivial. |
| if (AI.use_empty()) { |
| AI.eraseFromParent(); |
| return true; |
| } |
| |
| // Skip alloca forms that this analysis can't handle. |
| if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || |
| TD->getTypeAllocSize(AI.getAllocatedType()) == 0) |
| return false; |
| |
| bool Changed = false; |
| |
| // First, split any FCA loads and stores touching this alloca to promote |
| // better splitting and promotion opportunities. |
| AggLoadStoreRewriter AggRewriter(*TD); |
| Changed |= AggRewriter.rewrite(AI); |
| |
| // Build the partition set using a recursive instruction-visiting builder. |
| AllocaPartitioning P(*TD, AI); |
| DEBUG(P.print(dbgs())); |
| if (P.isEscaped()) |
| return Changed; |
| |
| // Delete all the dead users of this alloca before splitting and rewriting it. |
| for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(), |
| DE = P.dead_user_end(); |
| DI != DE; ++DI) { |
| Changed = true; |
| (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); |
| DeadInsts.insert(*DI); |
| } |
| for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(), |
| DE = P.dead_op_end(); |
| DO != DE; ++DO) { |
| Value *OldV = **DO; |
| // Clobber the use with an undef value. |
| **DO = UndefValue::get(OldV->getType()); |
| if (Instruction *OldI = dyn_cast<Instruction>(OldV)) |
| if (isInstructionTriviallyDead(OldI)) { |
| Changed = true; |
| DeadInsts.insert(OldI); |
| } |
| } |
| |
| // No partitions to split. Leave the dead alloca for a later pass to clean up. |
| if (P.begin() == P.end()) |
| return Changed; |
| |
| return splitAlloca(AI, P) || Changed; |
| } |
| |
| /// \brief Delete the dead instructions accumulated in this run. |
| /// |
| /// Recursively deletes the dead instructions we've accumulated. This is done |
| /// at the very end to maximize locality of the recursive delete and to |
| /// minimize the problems of invalidated instruction pointers as such pointers |
| /// are used heavily in the intermediate stages of the algorithm. |
| /// |
| /// We also record the alloca instructions deleted here so that they aren't |
| /// subsequently handed to mem2reg to promote. |
| void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) { |
| while (!DeadInsts.empty()) { |
| Instruction *I = DeadInsts.pop_back_val(); |
| DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); |
| |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| |
| for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) |
| if (Instruction *U = dyn_cast<Instruction>(*OI)) { |
| // Zero out the operand and see if it becomes trivially dead. |
| *OI = 0; |
| if (isInstructionTriviallyDead(U)) |
| DeadInsts.insert(U); |
| } |
| |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| DeletedAllocas.insert(AI); |
| |
| ++NumDeleted; |
| I->eraseFromParent(); |
| } |
| } |
| |
| /// \brief Promote the allocas, using the best available technique. |
| /// |
| /// This attempts to promote whatever allocas have been identified as viable in |
| /// the PromotableAllocas list. If that list is empty, there is nothing to do. |
| /// If there is a domtree available, we attempt to promote using the full power |
| /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is |
| /// based on the SSAUpdater utilities. This function returns whether any |
| /// promotion occurred. |
| bool SROA::promoteAllocas(Function &F) { |
| if (PromotableAllocas.empty()) |
| return false; |
| |
| NumPromoted += PromotableAllocas.size(); |
| |
| if (DT && !ForceSSAUpdater) { |
| DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); |
| PromoteMemToReg(PromotableAllocas, *DT); |
| PromotableAllocas.clear(); |
| return true; |
| } |
| |
| DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); |
| SSAUpdater SSA; |
| DIBuilder DIB(*F.getParent()); |
| SmallVector<Instruction*, 64> Insts; |
| |
| for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { |
| AllocaInst *AI = PromotableAllocas[Idx]; |
| for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); |
| UI != UE;) { |
| Instruction *I = cast<Instruction>(*UI++); |
| // FIXME: Currently the SSAUpdater infrastructure doesn't reason about |
| // lifetime intrinsics and so we strip them (and the bitcasts+GEPs |
| // leading to them) here. Eventually it should use them to optimize the |
| // scalar values produced. |
| if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { |
| assert(onlyUsedByLifetimeMarkers(I) && |
| "Found a bitcast used outside of a lifetime marker."); |
| while (!I->use_empty()) |
| cast<Instruction>(*I->use_begin())->eraseFromParent(); |
| I->eraseFromParent(); |
| continue; |
| } |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| assert(II->getIntrinsicID() == Intrinsic::lifetime_start || |
| II->getIntrinsicID() == Intrinsic::lifetime_end); |
| II->eraseFromParent(); |
| continue; |
| } |
| |
| Insts.push_back(I); |
| } |
| AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); |
| Insts.clear(); |
| } |
| |
| PromotableAllocas.clear(); |
| return true; |
| } |
| |
| namespace { |
| /// \brief A predicate to test whether an alloca belongs to a set. |
| class IsAllocaInSet { |
| typedef SmallPtrSet<AllocaInst *, 4> SetType; |
| const SetType &Set; |
| |
| public: |
| typedef AllocaInst *argument_type; |
| |
| IsAllocaInSet(const SetType &Set) : Set(Set) {} |
| bool operator()(AllocaInst *AI) const { return Set.count(AI); } |
| }; |
| } |
| |
| bool SROA::runOnFunction(Function &F) { |
| DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); |
| C = &F.getContext(); |
| TD = getAnalysisIfAvailable<DataLayout>(); |
| if (!TD) { |
| DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); |
| return false; |
| } |
| DT = getAnalysisIfAvailable<DominatorTree>(); |
| |
| BasicBlock &EntryBB = F.getEntryBlock(); |
| for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end()); |
| I != E; ++I) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| Worklist.insert(AI); |
| |
| bool Changed = false; |
| // A set of deleted alloca instruction pointers which should be removed from |
| // the list of promotable allocas. |
| SmallPtrSet<AllocaInst *, 4> DeletedAllocas; |
| |
| do { |
| while (!Worklist.empty()) { |
| Changed |= runOnAlloca(*Worklist.pop_back_val()); |
| deleteDeadInstructions(DeletedAllocas); |
| |
| // Remove the deleted allocas from various lists so that we don't try to |
| // continue processing them. |
| if (!DeletedAllocas.empty()) { |
| Worklist.remove_if(IsAllocaInSet(DeletedAllocas)); |
| PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas)); |
| PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), |
| PromotableAllocas.end(), |
| IsAllocaInSet(DeletedAllocas)), |
| PromotableAllocas.end()); |
| DeletedAllocas.clear(); |
| } |
| } |
| |
| Changed |= promoteAllocas(F); |
| |
| Worklist = PostPromotionWorklist; |
| PostPromotionWorklist.clear(); |
| } while (!Worklist.empty()); |
| |
| return Changed; |
| } |
| |
| void SROA::getAnalysisUsage(AnalysisUsage &AU) const { |
| if (RequiresDomTree) |
| AU.addRequired<DominatorTree>(); |
| AU.setPreservesCFG(); |
| } |