| //*************************************************************************** |
| // File: |
| // PhyRegAlloc.cpp |
| // |
| // Purpose: |
| // Register allocation for LLVM. |
| // |
| // History: |
| // 9/10/01 - Ruchira Sasanka - created. |
| //**************************************************************************/ |
| |
| #include "llvm/CodeGen/RegisterAllocation.h" |
| #include "llvm/CodeGen/PhyRegAlloc.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrAnnot.h" |
| #include "llvm/CodeGen/MachineCodeForBasicBlock.h" |
| #include "llvm/CodeGen/MachineCodeForMethod.h" |
| #include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/MachineFrameInfo.h" |
| #include "llvm/Function.h" |
| #include "llvm/Type.h" |
| #include "llvm/iOther.h" |
| #include "llvm/CodeGen/RegAllocCommon.h" |
| #include "Support/CommandLine.h" |
| #include "Support/STLExtras.h" |
| #include <math.h> |
| using std::cerr; |
| using std::vector; |
| |
| RegAllocDebugLevel_t DEBUG_RA; |
| static cl::opt<RegAllocDebugLevel_t, true> |
| DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA), |
| cl::desc("enable register allocation debugging information"), |
| cl::values( |
| clEnumValN(RA_DEBUG_None , "n", "disable debug output"), |
| clEnumValN(RA_DEBUG_Normal , "y", "enable debug output"), |
| clEnumValN(RA_DEBUG_Verbose, "v", "enable extra debug output"), |
| 0)); |
| |
| |
| //---------------------------------------------------------------------------- |
| // RegisterAllocation pass front end... |
| //---------------------------------------------------------------------------- |
| namespace { |
| class RegisterAllocator : public FunctionPass { |
| TargetMachine &Target; |
| public: |
| inline RegisterAllocator(TargetMachine &T) : Target(T) {} |
| |
| const char *getPassName() const { return "Register Allocation"; } |
| |
| bool runOnFunction(Function &F) { |
| if (DEBUG_RA) |
| cerr << "\n********* Function "<< F.getName() << " ***********\n"; |
| |
| PhyRegAlloc PRA(&F, Target, &getAnalysis<FunctionLiveVarInfo>(), |
| &getAnalysis<LoopInfo>()); |
| PRA.allocateRegisters(); |
| |
| if (DEBUG_RA) cerr << "\nRegister allocation complete!\n"; |
| return false; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired(LoopInfo::ID); |
| AU.addRequired(FunctionLiveVarInfo::ID); |
| } |
| }; |
| } |
| |
| Pass *getRegisterAllocator(TargetMachine &T) { |
| return new RegisterAllocator(T); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Constructor: Init local composite objects and create register classes. |
| //---------------------------------------------------------------------------- |
| PhyRegAlloc::PhyRegAlloc(Function *F, const TargetMachine& tm, |
| FunctionLiveVarInfo *Lvi, LoopInfo *LDC) |
| : TM(tm), Meth(F), |
| mcInfo(MachineCodeForMethod::get(F)), |
| LVI(Lvi), LRI(F, tm, RegClassList), |
| MRI(tm.getRegInfo()), |
| NumOfRegClasses(MRI.getNumOfRegClasses()), |
| LoopDepthCalc(LDC) { |
| |
| // create each RegisterClass and put in RegClassList |
| // |
| for (unsigned rc=0; rc < NumOfRegClasses; rc++) |
| RegClassList.push_back(new RegClass(F, MRI.getMachineRegClass(rc), |
| &ResColList)); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Destructor: Deletes register classes |
| //---------------------------------------------------------------------------- |
| PhyRegAlloc::~PhyRegAlloc() { |
| for ( unsigned rc=0; rc < NumOfRegClasses; rc++) |
| delete RegClassList[rc]; |
| |
| AddedInstrMap.clear(); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // This method initally creates interference graphs (one in each reg class) |
| // and IGNodeList (one in each IG). The actual nodes will be pushed later. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::createIGNodeListsAndIGs() { |
| if (DEBUG_RA) cerr << "Creating LR lists ...\n"; |
| |
| // hash map iterator |
| LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin(); |
| |
| // hash map end |
| LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end(); |
| |
| for (; HMI != HMIEnd ; ++HMI ) { |
| if (HMI->first) { |
| LiveRange *L = HMI->second; // get the LiveRange |
| if (!L) { |
| if (DEBUG_RA) { |
| cerr << "\n*?!?Warning: Null liver range found for: " |
| << RAV(HMI->first) << "\n"; |
| } |
| continue; |
| } |
| // if the Value * is not null, and LR |
| // is not yet written to the IGNodeList |
| if (!(L->getUserIGNode()) ) { |
| RegClass *const RC = // RegClass of first value in the LR |
| RegClassList[ L->getRegClass()->getID() ]; |
| |
| RC->addLRToIG(L); // add this LR to an IG |
| } |
| } |
| } |
| |
| // init RegClassList |
| for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[rc]->createInterferenceGraph(); |
| |
| if (DEBUG_RA) |
| cerr << "LRLists Created!\n"; |
| } |
| |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method will add all interferences at for a given instruction. |
| // Interence occurs only if the LR of Def (Inst or Arg) is of the same reg |
| // class as that of live var. The live var passed to this function is the |
| // LVset AFTER the instruction |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::addInterference(const Value *Def, |
| const ValueSet *LVSet, |
| bool isCallInst) { |
| |
| ValueSet::const_iterator LIt = LVSet->begin(); |
| |
| // get the live range of instruction |
| // |
| const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def ); |
| |
| IGNode *const IGNodeOfDef = LROfDef->getUserIGNode(); |
| assert( IGNodeOfDef ); |
| |
| RegClass *const RCOfDef = LROfDef->getRegClass(); |
| |
| // for each live var in live variable set |
| // |
| for ( ; LIt != LVSet->end(); ++LIt) { |
| |
| if (DEBUG_RA >= RA_DEBUG_Verbose) |
| cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> "; |
| |
| // get the live range corresponding to live var |
| // |
| LiveRange *LROfVar = LRI.getLiveRangeForValue(*LIt); |
| |
| // LROfVar can be null if it is a const since a const |
| // doesn't have a dominating def - see Assumptions above |
| // |
| if (LROfVar) { |
| if (LROfDef == LROfVar) // do not set interf for same LR |
| continue; |
| |
| // if 2 reg classes are the same set interference |
| // |
| if (RCOfDef == LROfVar->getRegClass()) { |
| RCOfDef->setInterference( LROfDef, LROfVar); |
| } else if (DEBUG_RA >= RA_DEBUG_Verbose) { |
| // we will not have LRs for values not explicitly allocated in the |
| // instruction stream (e.g., constants) |
| cerr << " warning: no live range for " << RAV(*LIt) << "\n"; |
| } |
| } |
| } |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // For a call instruction, this method sets the CallInterference flag in |
| // the LR of each variable live int the Live Variable Set live after the |
| // call instruction (except the return value of the call instruction - since |
| // the return value does not interfere with that call itself). |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, |
| const ValueSet *LVSetAft) { |
| |
| if (DEBUG_RA) |
| cerr << "\n For call inst: " << *MInst; |
| |
| ValueSet::const_iterator LIt = LVSetAft->begin(); |
| |
| // for each live var in live variable set after machine inst |
| // |
| for ( ; LIt != LVSetAft->end(); ++LIt) { |
| |
| // get the live range corresponding to live var |
| // |
| LiveRange *const LR = LRI.getLiveRangeForValue(*LIt ); |
| |
| if (LR && DEBUG_RA) { |
| cerr << "\n\tLR Aft Call: "; |
| printSet(*LR); |
| } |
| |
| // LR can be null if it is a const since a const |
| // doesn't have a dominating def - see Assumptions above |
| // |
| if (LR ) { |
| LR->setCallInterference(); |
| if (DEBUG_RA) { |
| cerr << "\n ++Added call interf for LR: " ; |
| printSet(*LR); |
| } |
| } |
| |
| } |
| |
| // Now find the LR of the return value of the call |
| // We do this because, we look at the LV set *after* the instruction |
| // to determine, which LRs must be saved across calls. The return value |
| // of the call is live in this set - but it does not interfere with call |
| // (i.e., we can allocate a volatile register to the return value) |
| // |
| CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst); |
| |
| if (const Value *RetVal = argDesc->getReturnValue()) { |
| LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal ); |
| assert( RetValLR && "No LR for RetValue of call"); |
| RetValLR->clearCallInterference(); |
| } |
| |
| // If the CALL is an indirect call, find the LR of the function pointer. |
| // That has a call interference because it conflicts with outgoing args. |
| if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) { |
| LiveRange *AddrValLR = LRI.getLiveRangeForValue( AddrVal ); |
| assert( AddrValLR && "No LR for indirect addr val of call"); |
| AddrValLR->setCallInterference(); |
| } |
| |
| } |
| |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method will walk thru code and create interferences in the IG of |
| // each RegClass. Also, this method calculates the spill cost of each |
| // Live Range (it is done in this method to save another pass over the code). |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::buildInterferenceGraphs() |
| { |
| |
| if (DEBUG_RA) cerr << "Creating interference graphs ...\n"; |
| |
| unsigned BBLoopDepthCost; |
| for (Function::const_iterator BBI = Meth->begin(), BBE = Meth->end(); |
| BBI != BBE; ++BBI) { |
| |
| // find the 10^(loop_depth) of this BB |
| // |
| BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BBI)); |
| |
| // get the iterator for machine instructions |
| // |
| const MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(BBI); |
| MachineCodeForBasicBlock::const_iterator MII = MIVec.begin(); |
| |
| // iterate over all the machine instructions in BB |
| // |
| for ( ; MII != MIVec.end(); ++MII) { |
| |
| const MachineInstr *MInst = *MII; |
| |
| // get the LV set after the instruction |
| // |
| const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BBI); |
| |
| const bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode()); |
| |
| if (isCallInst ) { |
| // set the isCallInterference flag of each live range wich extends |
| // accross this call instruction. This information is used by graph |
| // coloring algo to avoid allocating volatile colors to live ranges |
| // that span across calls (since they have to be saved/restored) |
| // |
| setCallInterferences(MInst, &LVSetAI); |
| } |
| |
| |
| // iterate over all MI operands to find defs |
| // |
| for (MachineInstr::const_val_op_iterator OpI = MInst->begin(), |
| OpE = MInst->end(); OpI != OpE; ++OpI) { |
| if (OpI.isDef()) // create a new LR iff this operand is a def |
| addInterference(*OpI, &LVSetAI, isCallInst); |
| |
| // Calculate the spill cost of each live range |
| // |
| LiveRange *LR = LRI.getLiveRangeForValue(*OpI); |
| if (LR) LR->addSpillCost(BBLoopDepthCost); |
| } |
| |
| |
| // if there are multiple defs in this instruction e.g. in SETX |
| // |
| if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode())) |
| addInterf4PseudoInstr(MInst); |
| |
| |
| // Also add interference for any implicit definitions in a machine |
| // instr (currently, only calls have this). |
| // |
| unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); |
| if ( NumOfImpRefs > 0 ) { |
| for (unsigned z=0; z < NumOfImpRefs; z++) |
| if (MInst->implicitRefIsDefined(z) ) |
| addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst ); |
| } |
| |
| |
| } // for all machine instructions in BB |
| } // for all BBs in function |
| |
| |
| // add interferences for function arguments. Since there are no explict |
| // defs in the function for args, we have to add them manually |
| // |
| addInterferencesForArgs(); |
| |
| if (DEBUG_RA) |
| cerr << "Interference graphs calculted!\n"; |
| |
| } |
| |
| |
| |
| //-------------------------------------------------------------------------- |
| // Pseudo instructions will be exapnded to multiple instructions by the |
| // assembler. Consequently, all the opernds must get distinct registers. |
| // Therefore, we mark all operands of a pseudo instruction as they interfere |
| // with one another. |
| //-------------------------------------------------------------------------- |
| void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) { |
| |
| bool setInterf = false; |
| |
| // iterate over MI operands to find defs |
| // |
| for (MachineInstr::const_val_op_iterator It1 = MInst->begin(), |
| ItE = MInst->end(); It1 != ItE; ++It1) { |
| const LiveRange *LROfOp1 = LRI.getLiveRangeForValue(*It1); |
| assert((LROfOp1 || !It1.isDef()) && "No LR for Def in PSEUDO insruction"); |
| |
| MachineInstr::const_val_op_iterator It2 = It1; |
| for (++It2; It2 != ItE; ++It2) { |
| const LiveRange *LROfOp2 = LRI.getLiveRangeForValue(*It2); |
| |
| if (LROfOp2) { |
| RegClass *RCOfOp1 = LROfOp1->getRegClass(); |
| RegClass *RCOfOp2 = LROfOp2->getRegClass(); |
| |
| if (RCOfOp1 == RCOfOp2 ){ |
| RCOfOp1->setInterference( LROfOp1, LROfOp2 ); |
| setInterf = true; |
| } |
| } // if Op2 has a LR |
| } // for all other defs in machine instr |
| } // for all operands in an instruction |
| |
| if (!setInterf && MInst->getNumOperands() > 2) { |
| cerr << "\nInterf not set for any operand in pseudo instr:\n"; |
| cerr << *MInst; |
| assert(0 && "Interf not set for pseudo instr with > 2 operands" ); |
| } |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method will add interferences for incoming arguments to a function. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::addInterferencesForArgs() { |
| // get the InSet of root BB |
| const ValueSet &InSet = LVI->getInSetOfBB(&Meth->front()); |
| |
| for (Function::const_aiterator AI = Meth->abegin(); AI != Meth->aend(); ++AI) { |
| // add interferences between args and LVars at start |
| addInterference(AI, &InSet, false); |
| |
| if (DEBUG_RA >= RA_DEBUG_Verbose) |
| cerr << " - %% adding interference for argument " << RAV(AI) << "\n"; |
| } |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method is called after register allocation is complete to set the |
| // allocated reisters in the machine code. This code will add register numbers |
| // to MachineOperands that contain a Value. Also it calls target specific |
| // methods to produce caller saving instructions. At the end, it adds all |
| // additional instructions produced by the register allocator to the |
| // instruction stream. |
| //---------------------------------------------------------------------------- |
| |
| //----------------------------- |
| // Utility functions used below |
| //----------------------------- |
| inline void |
| PrependInstructions(vector<MachineInstr *> &IBef, |
| MachineCodeForBasicBlock& MIVec, |
| MachineCodeForBasicBlock::iterator& MII, |
| const std::string& msg) |
| { |
| if (!IBef.empty()) |
| { |
| MachineInstr* OrigMI = *MII; |
| std::vector<MachineInstr *>::iterator AdIt; |
| for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) |
| { |
| if (DEBUG_RA) { |
| if (OrigMI) cerr << "For MInst: " << *OrigMI; |
| cerr << msg << " PREPENDed instr: " << **AdIt << "\n"; |
| } |
| MII = MIVec.insert(MII, *AdIt); |
| ++MII; |
| } |
| } |
| } |
| |
| inline void |
| AppendInstructions(std::vector<MachineInstr *> &IAft, |
| MachineCodeForBasicBlock& MIVec, |
| MachineCodeForBasicBlock::iterator& MII, |
| const std::string& msg) |
| { |
| if (!IAft.empty()) |
| { |
| MachineInstr* OrigMI = *MII; |
| std::vector<MachineInstr *>::iterator AdIt; |
| for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) |
| { |
| if (DEBUG_RA) { |
| if (OrigMI) cerr << "For MInst: " << *OrigMI; |
| cerr << msg << " APPENDed instr: " << **AdIt << "\n"; |
| } |
| ++MII; // insert before the next instruction |
| MII = MIVec.insert(MII, *AdIt); |
| } |
| } |
| } |
| |
| |
| void PhyRegAlloc::updateMachineCode() |
| { |
| MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(&Meth->getEntryNode()); |
| |
| // Insert any instructions needed at method entry |
| MachineCodeForBasicBlock::iterator MII = MIVec.begin(); |
| PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MIVec, MII, |
| "At function entry: \n"); |
| assert(AddedInstrAtEntry.InstrnsAfter.empty() && |
| "InstrsAfter should be unnecessary since we are just inserting at " |
| "the function entry point here."); |
| |
| for (Function::const_iterator BBI = Meth->begin(), BBE = Meth->end(); |
| BBI != BBE; ++BBI) { |
| |
| // iterate over all the machine instructions in BB |
| MachineCodeForBasicBlock &MIVec = MachineCodeForBasicBlock::get(BBI); |
| for (MachineCodeForBasicBlock::iterator MII = MIVec.begin(); |
| MII != MIVec.end(); ++MII) { |
| |
| MachineInstr *MInst = *MII; |
| |
| unsigned Opcode = MInst->getOpCode(); |
| |
| // do not process Phis |
| if (TM.getInstrInfo().isDummyPhiInstr(Opcode)) |
| continue; |
| |
| // Reset tmp stack positions so they can be reused for each machine instr. |
| mcInfo.popAllTempValues(TM); |
| |
| // Now insert speical instructions (if necessary) for call/return |
| // instructions. |
| // |
| if (TM.getInstrInfo().isCall(Opcode) || |
| TM.getInstrInfo().isReturn(Opcode)) { |
| |
| AddedInstrns &AI = AddedInstrMap[MInst]; |
| |
| if (TM.getInstrInfo().isCall(Opcode)) |
| MRI.colorCallArgs(MInst, LRI, &AI, *this, BBI); |
| else if (TM.getInstrInfo().isReturn(Opcode)) |
| MRI.colorRetValue(MInst, LRI, &AI); |
| } |
| |
| // Set the registers for operands in the machine instruction |
| // if a register was successfully allocated. If not, insert |
| // code to spill the register value. |
| // |
| for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) |
| { |
| MachineOperand& Op = MInst->getOperand(OpNum); |
| if (Op.getOperandType() == MachineOperand::MO_VirtualRegister || |
| Op.getOperandType() == MachineOperand::MO_CCRegister) |
| { |
| const Value *const Val = Op.getVRegValue(); |
| |
| LiveRange *const LR = LRI.getLiveRangeForValue(Val); |
| if (!LR) // consts or labels will have no live range |
| { |
| // if register is not allocated, mark register as invalid |
| if (Op.getAllocatedRegNum() == -1) |
| MInst->SetRegForOperand(OpNum, MRI.getInvalidRegNum()); |
| continue; |
| } |
| |
| if (LR->hasColor() ) |
| MInst->SetRegForOperand(OpNum, |
| MRI.getUnifiedRegNum(LR->getRegClass()->getID(), |
| LR->getColor())); |
| else |
| // LR did NOT receive a color (register). Insert spill code. |
| insertCode4SpilledLR(LR, MInst, BBI, OpNum ); |
| } |
| } // for each operand |
| |
| |
| // Now add instructions that the register allocator inserts before/after |
| // this machine instructions (done only for calls/rets/incoming args) |
| // We do this here, to ensure that spill for an instruction is inserted |
| // closest as possible to an instruction (see above insertCode4Spill...) |
| // |
| // If there are instructions to be added, *before* this machine |
| // instruction, add them now. |
| // |
| if (AddedInstrMap.count(MInst)) { |
| PrependInstructions(AddedInstrMap[MInst].InstrnsBefore, MIVec, MII,""); |
| } |
| |
| // If there are instructions to be added *after* this machine |
| // instruction, add them now |
| // |
| if (!AddedInstrMap[MInst].InstrnsAfter.empty()) { |
| |
| // if there are delay slots for this instruction, the instructions |
| // added after it must really go after the delayed instruction(s) |
| // So, we move the InstrAfter of the current instruction to the |
| // corresponding delayed instruction |
| |
| unsigned delay; |
| if ((delay=TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) >0){ |
| move2DelayedInstr(MInst, *(MII+delay) ); |
| } |
| else { |
| // Here we can add the "instructions after" to the current |
| // instruction since there are no delay slots for this instruction |
| AppendInstructions(AddedInstrMap[MInst].InstrnsAfter, MIVec, MII,""); |
| } // if not delay |
| } |
| |
| } // for each machine instruction |
| } |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method inserts spill code for AN operand whose LR was spilled. |
| // This method may be called several times for a single machine instruction |
| // if it contains many spilled operands. Each time it is called, it finds |
| // a register which is not live at that instruction and also which is not |
| // used by other spilled operands of the same instruction. Then it uses |
| // this register temporarily to accomodate the spilled value. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, |
| MachineInstr *MInst, |
| const BasicBlock *BB, |
| const unsigned OpNum) { |
| |
| assert(! TM.getInstrInfo().isCall(MInst->getOpCode()) && |
| (! TM.getInstrInfo().isReturn(MInst->getOpCode())) && |
| "Arg of a call/ret must be handled elsewhere"); |
| |
| MachineOperand& Op = MInst->getOperand(OpNum); |
| bool isDef = MInst->operandIsDefined(OpNum); |
| bool isDefAndUse = MInst->operandIsDefinedAndUsed(OpNum); |
| unsigned RegType = MRI.getRegType( LR ); |
| int SpillOff = LR->getSpillOffFromFP(); |
| RegClass *RC = LR->getRegClass(); |
| const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB); |
| |
| mcInfo.pushTempValue(TM, MRI.getSpilledRegSize(RegType) ); |
| |
| vector<MachineInstr*> MIBef, MIAft; |
| vector<MachineInstr*> AdIMid; |
| |
| // Choose a register to hold the spilled value. This may insert code |
| // before and after MInst to free up the value. If so, this code should |
| // be first and last in the spill sequence before/after MInst. |
| int TmpRegU = getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef, MIAft); |
| |
| // Set the operand first so that it this register does not get used |
| // as a scratch register for later calls to getUsableUniRegAtMI below |
| MInst->SetRegForOperand(OpNum, TmpRegU); |
| |
| // get the added instructions for this instruction |
| AddedInstrns &AI = AddedInstrMap[MInst]; |
| |
| // We may need a scratch register to copy the spilled value to/from memory. |
| // This may itself have to insert code to free up a scratch register. |
| // Any such code should go before (after) the spill code for a load (store). |
| int scratchRegType = -1; |
| int scratchReg = -1; |
| if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) |
| { |
| scratchReg = this->getUsableUniRegAtMI(scratchRegType, &LVSetBef, |
| MInst, MIBef, MIAft); |
| assert(scratchReg != MRI.getInvalidRegNum()); |
| MInst->getRegsUsed().insert(scratchReg); |
| } |
| |
| if (!isDef || isDefAndUse) { |
| // for a USE, we have to load the value of LR from stack to a TmpReg |
| // and use the TmpReg as one operand of instruction |
| |
| // actual loading instruction(s) |
| MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU, RegType, |
| scratchReg); |
| |
| // the actual load should be after the instructions to free up TmpRegU |
| MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end()); |
| AdIMid.clear(); |
| } |
| |
| if (isDef) { // if this is a Def |
| // for a DEF, we have to store the value produced by this instruction |
| // on the stack position allocated for this LR |
| |
| // actual storing instruction(s) |
| MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff, RegType, |
| scratchReg); |
| |
| MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end()); |
| } // if !DEF |
| |
| // Finally, insert the entire spill code sequences before/after MInst |
| AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end()); |
| AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end()); |
| |
| if (DEBUG_RA) { |
| cerr << "\nFor Inst " << *MInst; |
| cerr << " - SPILLED LR: "; printSet(*LR); |
| cerr << "\n - Added Instructions:"; |
| for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump)); |
| for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump)); |
| } |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // We can use the following method to get a temporary register to be used |
| // BEFORE any given machine instruction. If there is a register available, |
| // this method will simply return that register and set MIBef = MIAft = NULL. |
| // Otherwise, it will return a register and MIAft and MIBef will contain |
| // two instructions used to free up this returned register. |
| // Returned register number is the UNIFIED register number |
| //---------------------------------------------------------------------------- |
| |
| int PhyRegAlloc::getUsableUniRegAtMI(const int RegType, |
| const ValueSet *LVSetBef, |
| MachineInstr *MInst, |
| std::vector<MachineInstr*>& MIBef, |
| std::vector<MachineInstr*>& MIAft) { |
| |
| RegClass* RC = this->getRegClassByID(MRI.getRegClassIDOfRegType(RegType)); |
| |
| int RegU = getUnusedUniRegAtMI(RC, MInst, LVSetBef); |
| |
| if (RegU == -1) { |
| // we couldn't find an unused register. Generate code to free up a reg by |
| // saving it on stack and restoring after the instruction |
| |
| int TmpOff = mcInfo.pushTempValue(TM, MRI.getSpilledRegSize(RegType) ); |
| |
| RegU = getUniRegNotUsedByThisInst(RC, MInst); |
| |
| // Check if we need a scratch register to copy this register to memory. |
| int scratchRegType = -1; |
| if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) |
| { |
| int scratchReg = this->getUsableUniRegAtMI(scratchRegType, LVSetBef, |
| MInst, MIBef, MIAft); |
| assert(scratchReg != MRI.getInvalidRegNum()); |
| |
| // We may as well hold the value in the scratch register instead |
| // of copying it to memory and back. But we have to mark the |
| // register as used by this instruction, so it does not get used |
| // as a scratch reg. by another operand or anyone else. |
| MInst->getRegsUsed().insert(scratchReg); |
| MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType); |
| MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType); |
| } |
| else |
| { // the register can be copied directly to/from memory so do it. |
| MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType); |
| MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType); |
| } |
| } |
| |
| return RegU; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // This method is called to get a new unused register that can be used to |
| // accomodate a spilled value. |
| // This method may be called several times for a single machine instruction |
| // if it contains many spilled operands. Each time it is called, it finds |
| // a register which is not live at that instruction and also which is not |
| // used by other spilled operands of the same instruction. |
| // Return register number is relative to the register class. NOT |
| // unified number |
| //---------------------------------------------------------------------------- |
| int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, |
| const MachineInstr *MInst, |
| const ValueSet *LVSetBef) { |
| |
| unsigned NumAvailRegs = RC->getNumOfAvailRegs(); |
| |
| std::vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr(); |
| |
| for (unsigned i=0; i < NumAvailRegs; i++) // Reset array |
| IsColorUsedArr[i] = false; |
| |
| ValueSet::const_iterator LIt = LVSetBef->begin(); |
| |
| // for each live var in live variable set after machine inst |
| for ( ; LIt != LVSetBef->end(); ++LIt) { |
| |
| // get the live range corresponding to live var |
| LiveRange *const LRofLV = LRI.getLiveRangeForValue(*LIt ); |
| |
| // LR can be null if it is a const since a const |
| // doesn't have a dominating def - see Assumptions above |
| if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor() ) |
| IsColorUsedArr[ LRofLV->getColor() ] = true; |
| } |
| |
| // It is possible that one operand of this MInst was already spilled |
| // and it received some register temporarily. If that's the case, |
| // it is recorded in machine operand. We must skip such registers. |
| |
| setRelRegsUsedByThisInst(RC, MInst); |
| |
| for (unsigned c=0; c < NumAvailRegs; c++) // find first unused color |
| if (!IsColorUsedArr[c]) |
| return MRI.getUnifiedRegNum(RC->getID(), c); |
| |
| return -1; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Get any other register in a register class, other than what is used |
| // by operands of a machine instruction. Returns the unified reg number. |
| //---------------------------------------------------------------------------- |
| int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, |
| const MachineInstr *MInst) { |
| |
| vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr(); |
| unsigned NumAvailRegs = RC->getNumOfAvailRegs(); |
| |
| for (unsigned i=0; i < NumAvailRegs ; i++) // Reset array |
| IsColorUsedArr[i] = false; |
| |
| setRelRegsUsedByThisInst(RC, MInst); |
| |
| for (unsigned c=0; c < RC->getNumOfAvailRegs(); c++)// find first unused color |
| if (!IsColorUsedArr[c]) |
| return MRI.getUnifiedRegNum(RC->getID(), c); |
| |
| assert(0 && "FATAL: No free register could be found in reg class!!"); |
| return 0; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method modifies the IsColorUsedArr of the register class passed to it. |
| // It sets the bits corresponding to the registers used by this machine |
| // instructions. Both explicit and implicit operands are set. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, |
| const MachineInstr *MInst ) { |
| |
| vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr(); |
| |
| // Add the registers already marked as used by the instruction. |
| // This should include any scratch registers that are used to save |
| // values across the instruction (e.g., for saving state register values). |
| const hash_set<int>& regsUsed = MInst->getRegsUsed(); |
| for (hash_set<int>::const_iterator SI=regsUsed.begin(), SE=regsUsed.end(); |
| SI != SE; ++SI) |
| { |
| unsigned classId = 0; |
| int classRegNum = MRI.getClassRegNum(*SI, classId); |
| if (RC->getID() == classId) |
| { |
| assert(classRegNum < (int) IsColorUsedArr.size() && |
| "Illegal register number for this reg class?"); |
| IsColorUsedArr[classRegNum] = true; |
| } |
| } |
| |
| // Now add registers allocated to the live ranges of values used in |
| // the instruction. These are not yet recorded in the instruction. |
| for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) |
| { |
| const MachineOperand& Op = MInst->getOperand(OpNum); |
| |
| if (Op.getOperandType() == MachineOperand::MO_VirtualRegister || |
| Op.getOperandType() == MachineOperand::MO_CCRegister) |
| if (const Value* Val = Op.getVRegValue()) |
| if (MRI.getRegClassIDOfValue(Val) == RC->getID()) |
| if (Op.getAllocatedRegNum() == -1) |
| if (LiveRange *LROfVal = LRI.getLiveRangeForValue(Val)) |
| if (LROfVal->hasColor() ) |
| // this operand is in a LR that received a color |
| IsColorUsedArr[LROfVal->getColor()] = true; |
| } |
| |
| // If there are implicit references, mark their allocated regs as well |
| // |
| for (unsigned z=0; z < MInst->getNumImplicitRefs(); z++) |
| if (const LiveRange* |
| LRofImpRef = LRI.getLiveRangeForValue(MInst->getImplicitRef(z))) |
| if (LRofImpRef->hasColor()) |
| // this implicit reference is in a LR that received a color |
| IsColorUsedArr[LRofImpRef->getColor()] = true; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // If there are delay slots for an instruction, the instructions |
| // added after it must really go after the delayed instruction(s). |
| // So, we move the InstrAfter of that instruction to the |
| // corresponding delayed instruction using the following method. |
| |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI, |
| const MachineInstr *DelayedMI) { |
| |
| // "added after" instructions of the original instr |
| std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter; |
| |
| // "added instructions" of the delayed instr |
| AddedInstrns &DelayAdI = AddedInstrMap[DelayedMI]; |
| |
| // "added after" instructions of the delayed instr |
| std::vector<MachineInstr *> &DelayedAft = DelayAdI.InstrnsAfter; |
| |
| // go thru all the "added after instructions" of the original instruction |
| // and append them to the "addded after instructions" of the delayed |
| // instructions |
| DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end()); |
| |
| // empty the "added after instructions" of the original instruction |
| OrigAft.clear(); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // This method prints the code with registers after register allocation is |
| // complete. |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::printMachineCode() |
| { |
| |
| cerr << "\n;************** Function " << Meth->getName() |
| << " *****************\n"; |
| |
| for (Function::const_iterator BBI = Meth->begin(), BBE = Meth->end(); |
| BBI != BBE; ++BBI) { |
| cerr << "\n"; printLabel(BBI); cerr << ": "; |
| |
| // get the iterator for machine instructions |
| MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(BBI); |
| MachineCodeForBasicBlock::iterator MII = MIVec.begin(); |
| |
| // iterate over all the machine instructions in BB |
| for ( ; MII != MIVec.end(); ++MII) { |
| MachineInstr *const MInst = *MII; |
| |
| cerr << "\n\t"; |
| cerr << TargetInstrDescriptors[MInst->getOpCode()].opCodeString; |
| |
| for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { |
| MachineOperand& Op = MInst->getOperand(OpNum); |
| |
| if (Op.getOperandType() == MachineOperand::MO_VirtualRegister || |
| Op.getOperandType() == MachineOperand::MO_CCRegister /*|| |
| Op.getOperandType() == MachineOperand::MO_PCRelativeDisp*/ ) { |
| |
| const Value *const Val = Op.getVRegValue () ; |
| // ****this code is temporary till NULL Values are fixed |
| if (! Val ) { |
| cerr << "\t<*NULL*>"; |
| continue; |
| } |
| |
| // if a label or a constant |
| if (isa<BasicBlock>(Val)) { |
| cerr << "\t"; printLabel( Op.getVRegValue () ); |
| } else { |
| // else it must be a register value |
| const int RegNum = Op.getAllocatedRegNum(); |
| |
| cerr << "\t" << "%" << MRI.getUnifiedRegName( RegNum ); |
| if (Val->hasName() ) |
| cerr << "(" << Val->getName() << ")"; |
| else |
| cerr << "(" << Val << ")"; |
| |
| if (Op.opIsDef() ) |
| cerr << "*"; |
| |
| const LiveRange *LROfVal = LRI.getLiveRangeForValue(Val); |
| if (LROfVal ) |
| if (LROfVal->hasSpillOffset() ) |
| cerr << "$"; |
| } |
| |
| } |
| else if (Op.getOperandType() == MachineOperand::MO_MachineRegister) { |
| cerr << "\t" << "%" << MRI.getUnifiedRegName(Op.getMachineRegNum()); |
| } |
| |
| else |
| cerr << "\t" << Op; // use dump field |
| } |
| |
| |
| |
| unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); |
| if (NumOfImpRefs > 0) { |
| cerr << "\tImplicit:"; |
| |
| for (unsigned z=0; z < NumOfImpRefs; z++) |
| cerr << RAV(MInst->getImplicitRef(z)) << "\t"; |
| } |
| |
| } // for all machine instructions |
| |
| cerr << "\n"; |
| |
| } // for all BBs |
| |
| cerr << "\n"; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::colorIncomingArgs() |
| { |
| const BasicBlock &FirstBB = Meth->front(); |
| const MachineInstr *FirstMI = MachineCodeForBasicBlock::get(&FirstBB).front(); |
| assert(FirstMI && "No machine instruction in entry BB"); |
| |
| MRI.colorMethodArgs(Meth, LRI, &AddedInstrAtEntry); |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // Used to generate a label for a basic block |
| //---------------------------------------------------------------------------- |
| void PhyRegAlloc::printLabel(const Value *const Val) { |
| if (Val->hasName()) |
| cerr << Val->getName(); |
| else |
| cerr << "Label" << Val; |
| } |
| |
| |
| //---------------------------------------------------------------------------- |
| // This method calls setSugColorUsable method of each live range. This |
| // will determine whether the suggested color of LR is really usable. |
| // A suggested color is not usable when the suggested color is volatile |
| // AND when there are call interferences |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::markUnusableSugColors() |
| { |
| if (DEBUG_RA ) cerr << "\nmarking unusable suggested colors ...\n"; |
| |
| // hash map iterator |
| LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin(); |
| LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end(); |
| |
| for (; HMI != HMIEnd ; ++HMI ) { |
| if (HMI->first) { |
| LiveRange *L = HMI->second; // get the LiveRange |
| if (L) { |
| if (L->hasSuggestedColor()) { |
| int RCID = L->getRegClass()->getID(); |
| if (MRI.isRegVolatile( RCID, L->getSuggestedColor()) && |
| L->isCallInterference() ) |
| L->setSuggestedColorUsable( false ); |
| else |
| L->setSuggestedColorUsable( true ); |
| } |
| } // if L->hasSuggestedColor() |
| } |
| } // for all LR's in hash map |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // The following method will set the stack offsets of the live ranges that |
| // are decided to be spillled. This must be called just after coloring the |
| // LRs using the graph coloring algo. For each live range that is spilled, |
| // this method allocate a new spill position on the stack. |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::allocateStackSpace4SpilledLRs() { |
| if (DEBUG_RA) cerr << "\nsetting LR stack offsets ...\n"; |
| |
| LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin(); |
| LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end(); |
| |
| for ( ; HMI != HMIEnd ; ++HMI) { |
| if (HMI->first && HMI->second) { |
| LiveRange *L = HMI->second; // get the LiveRange |
| if (!L->hasColor()) // NOTE: ** allocating the size of long Type ** |
| L->setSpillOffFromFP(mcInfo.allocateSpilledValue(TM, Type::LongTy)); |
| } |
| } // for all LR's in hash map |
| } |
| |
| |
| |
| //---------------------------------------------------------------------------- |
| // The entry pont to Register Allocation |
| //---------------------------------------------------------------------------- |
| |
| void PhyRegAlloc::allocateRegisters() |
| { |
| |
| // make sure that we put all register classes into the RegClassList |
| // before we call constructLiveRanges (now done in the constructor of |
| // PhyRegAlloc class). |
| // |
| LRI.constructLiveRanges(); // create LR info |
| |
| if (DEBUG_RA) |
| LRI.printLiveRanges(); |
| |
| createIGNodeListsAndIGs(); // create IGNode list and IGs |
| |
| buildInterferenceGraphs(); // build IGs in all reg classes |
| |
| |
| if (DEBUG_RA) { |
| // print all LRs in all reg classes |
| for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[rc]->printIGNodeList(); |
| |
| // print IGs in all register classes |
| for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[rc]->printIG(); |
| } |
| |
| |
| LRI.coalesceLRs(); // coalesce all live ranges |
| |
| |
| if (DEBUG_RA) { |
| // print all LRs in all reg classes |
| for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[ rc ]->printIGNodeList(); |
| |
| // print IGs in all register classes |
| for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[ rc ]->printIG(); |
| } |
| |
| |
| // mark un-usable suggested color before graph coloring algorithm. |
| // When this is done, the graph coloring algo will not reserve |
| // suggested color unnecessarily - they can be used by another LR |
| // |
| markUnusableSugColors(); |
| |
| // color all register classes using the graph coloring algo |
| for (unsigned rc=0; rc < NumOfRegClasses ; rc++) |
| RegClassList[ rc ]->colorAllRegs(); |
| |
| // Atter grpah coloring, if some LRs did not receive a color (i.e, spilled) |
| // a poistion for such spilled LRs |
| // |
| allocateStackSpace4SpilledLRs(); |
| |
| mcInfo.popAllTempValues(TM); // TODO **Check |
| |
| // color incoming args - if the correct color was not received |
| // insert code to copy to the correct register |
| // |
| colorIncomingArgs(); |
| |
| // Now update the machine code with register names and add any |
| // additional code inserted by the register allocator to the instruction |
| // stream |
| // |
| updateMachineCode(); |
| |
| if (DEBUG_RA) { |
| MachineCodeForMethod::get(Meth).dump(); |
| printMachineCode(); // only for DEBUGGING |
| } |
| } |
| |
| |
| |