| //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // MachineScheduler schedules machine instructions after phi elimination. It |
| // preserves LiveIntervals so it can be invoked before register allocation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "misched" |
| |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/ScheduleDFS.h" |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <queue> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, |
| cl::desc("Force top-down list scheduling")); |
| cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, |
| cl::desc("Force bottom-up list scheduling")); |
| } |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show MISched dags after they are processed")); |
| |
| static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, |
| cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); |
| #else |
| static bool ViewMISchedDAGs = false; |
| #endif // NDEBUG |
| |
| // Experimental heuristics |
| static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, |
| cl::desc("Enable load clustering."), cl::init(true)); |
| |
| // Experimental heuristics |
| static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, |
| cl::desc("Enable scheduling for macro fusion."), cl::init(true)); |
| |
| static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, |
| cl::desc("Verify machine instrs before and after machine scheduling")); |
| |
| // DAG subtrees must have at least this many nodes. |
| static const unsigned MinSubtreeSize = 8; |
| |
| //===----------------------------------------------------------------------===// |
| // Machine Instruction Scheduling Pass and Registry |
| //===----------------------------------------------------------------------===// |
| |
| MachineSchedContext::MachineSchedContext(): |
| MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { |
| RegClassInfo = new RegisterClassInfo(); |
| } |
| |
| MachineSchedContext::~MachineSchedContext() { |
| delete RegClassInfo; |
| } |
| |
| namespace { |
| /// MachineScheduler runs after coalescing and before register allocation. |
| class MachineScheduler : public MachineSchedContext, |
| public MachineFunctionPass { |
| public: |
| MachineScheduler(); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| virtual void releaseMemory() {} |
| |
| virtual bool runOnMachineFunction(MachineFunction&); |
| |
| virtual void print(raw_ostream &O, const Module* = 0) const; |
| |
| static char ID; // Class identification, replacement for typeinfo |
| }; |
| } // namespace |
| |
| char MachineScheduler::ID = 0; |
| |
| char &llvm::MachineSchedulerID = MachineScheduler::ID; |
| |
| INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", |
| "Machine Instruction Scheduler", false, false) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_END(MachineScheduler, "misched", |
| "Machine Instruction Scheduler", false, false) |
| |
| MachineScheduler::MachineScheduler() |
| : MachineFunctionPass(ID) { |
| initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequiredID(MachineDominatorsID); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.addRequired<SlotIndexes>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<LiveIntervals>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| MachinePassRegistry MachineSchedRegistry::Registry; |
| |
| /// A dummy default scheduler factory indicates whether the scheduler |
| /// is overridden on the command line. |
| static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { |
| return 0; |
| } |
| |
| /// MachineSchedOpt allows command line selection of the scheduler. |
| static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, |
| RegisterPassParser<MachineSchedRegistry> > |
| MachineSchedOpt("misched", |
| cl::init(&useDefaultMachineSched), cl::Hidden, |
| cl::desc("Machine instruction scheduler to use")); |
| |
| static MachineSchedRegistry |
| DefaultSchedRegistry("default", "Use the target's default scheduler choice.", |
| useDefaultMachineSched); |
| |
| /// Forward declare the standard machine scheduler. This will be used as the |
| /// default scheduler if the target does not set a default. |
| static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); |
| |
| |
| /// Decrement this iterator until reaching the top or a non-debug instr. |
| static MachineBasicBlock::iterator |
| priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { |
| assert(I != Beg && "reached the top of the region, cannot decrement"); |
| while (--I != Beg) { |
| if (!I->isDebugValue()) |
| break; |
| } |
| return I; |
| } |
| |
| /// If this iterator is a debug value, increment until reaching the End or a |
| /// non-debug instruction. |
| static MachineBasicBlock::iterator |
| nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { |
| for(; I != End; ++I) { |
| if (!I->isDebugValue()) |
| break; |
| } |
| return I; |
| } |
| |
| /// Top-level MachineScheduler pass driver. |
| /// |
| /// Visit blocks in function order. Divide each block into scheduling regions |
| /// and visit them bottom-up. Visiting regions bottom-up is not required, but is |
| /// consistent with the DAG builder, which traverses the interior of the |
| /// scheduling regions bottom-up. |
| /// |
| /// This design avoids exposing scheduling boundaries to the DAG builder, |
| /// simplifying the DAG builder's support for "special" target instructions. |
| /// At the same time the design allows target schedulers to operate across |
| /// scheduling boundaries, for example to bundle the boudary instructions |
| /// without reordering them. This creates complexity, because the target |
| /// scheduler must update the RegionBegin and RegionEnd positions cached by |
| /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler |
| /// design would be to split blocks at scheduling boundaries, but LLVM has a |
| /// general bias against block splitting purely for implementation simplicity. |
| bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { |
| DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); |
| |
| // Initialize the context of the pass. |
| MF = &mf; |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| PassConfig = &getAnalysis<TargetPassConfig>(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| |
| LIS = &getAnalysis<LiveIntervals>(); |
| const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); |
| |
| if (VerifyScheduling) { |
| DEBUG(LIS->print(dbgs())); |
| MF->verify(this, "Before machine scheduling."); |
| } |
| RegClassInfo->runOnMachineFunction(*MF); |
| |
| // Select the scheduler, or set the default. |
| MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; |
| if (Ctor == useDefaultMachineSched) { |
| // Get the default scheduler set by the target. |
| Ctor = MachineSchedRegistry::getDefault(); |
| if (!Ctor) { |
| Ctor = createConvergingSched; |
| MachineSchedRegistry::setDefault(Ctor); |
| } |
| } |
| // Instantiate the selected scheduler. |
| OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); |
| |
| // Visit all machine basic blocks. |
| // |
| // TODO: Visit blocks in global postorder or postorder within the bottom-up |
| // loop tree. Then we can optionally compute global RegPressure. |
| for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); |
| MBB != MBBEnd; ++MBB) { |
| |
| Scheduler->startBlock(MBB); |
| |
| // Break the block into scheduling regions [I, RegionEnd), and schedule each |
| // region as soon as it is discovered. RegionEnd points the scheduling |
| // boundary at the bottom of the region. The DAG does not include RegionEnd, |
| // but the region does (i.e. the next RegionEnd is above the previous |
| // RegionBegin). If the current block has no terminator then RegionEnd == |
| // MBB->end() for the bottom region. |
| // |
| // The Scheduler may insert instructions during either schedule() or |
| // exitRegion(), even for empty regions. So the local iterators 'I' and |
| // 'RegionEnd' are invalid across these calls. |
| unsigned RemainingInstrs = MBB->size(); |
| for(MachineBasicBlock::iterator RegionEnd = MBB->end(); |
| RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { |
| |
| // Avoid decrementing RegionEnd for blocks with no terminator. |
| if (RegionEnd != MBB->end() |
| || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { |
| --RegionEnd; |
| // Count the boundary instruction. |
| --RemainingInstrs; |
| } |
| |
| // The next region starts above the previous region. Look backward in the |
| // instruction stream until we find the nearest boundary. |
| MachineBasicBlock::iterator I = RegionEnd; |
| for(;I != MBB->begin(); --I, --RemainingInstrs) { |
| if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) |
| break; |
| } |
| // Notify the scheduler of the region, even if we may skip scheduling |
| // it. Perhaps it still needs to be bundled. |
| Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); |
| |
| // Skip empty scheduling regions (0 or 1 schedulable instructions). |
| if (I == RegionEnd || I == llvm::prior(RegionEnd)) { |
| // Close the current region. Bundle the terminator if needed. |
| // This invalidates 'RegionEnd' and 'I'. |
| Scheduler->exitRegion(); |
| continue; |
| } |
| DEBUG(dbgs() << "********** MI Scheduling **********\n"); |
| DEBUG(dbgs() << MF->getName() |
| << ":BB#" << MBB->getNumber() << " " << MBB->getName() |
| << "\n From: " << *I << " To: "; |
| if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; |
| else dbgs() << "End"; |
| dbgs() << " Remaining: " << RemainingInstrs << "\n"); |
| |
| // Schedule a region: possibly reorder instructions. |
| // This invalidates 'RegionEnd' and 'I'. |
| Scheduler->schedule(); |
| |
| // Close the current region. |
| Scheduler->exitRegion(); |
| |
| // Scheduling has invalidated the current iterator 'I'. Ask the |
| // scheduler for the top of it's scheduled region. |
| RegionEnd = Scheduler->begin(); |
| } |
| assert(RemainingInstrs == 0 && "Instruction count mismatch!"); |
| Scheduler->finishBlock(); |
| } |
| Scheduler->finalizeSchedule(); |
| DEBUG(LIS->print(dbgs())); |
| if (VerifyScheduling) |
| MF->verify(this, "After machine scheduling."); |
| return true; |
| } |
| |
| void MachineScheduler::print(raw_ostream &O, const Module* m) const { |
| // unimplemented |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void ReadyQueue::dump() { |
| dbgs() << Name << ": "; |
| for (unsigned i = 0, e = Queue.size(); i < e; ++i) |
| dbgs() << Queue[i]->NodeNum << " "; |
| dbgs() << "\n"; |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals |
| // preservation. |
| //===----------------------------------------------------------------------===// |
| |
| ScheduleDAGMI::~ScheduleDAGMI() { |
| delete DFSResult; |
| DeleteContainerPointers(Mutations); |
| delete SchedImpl; |
| } |
| |
| bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { |
| if (SuccSU != &ExitSU) { |
| // Do not use WillCreateCycle, it assumes SD scheduling. |
| // If Pred is reachable from Succ, then the edge creates a cycle. |
| if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) |
| return false; |
| Topo.AddPred(SuccSU, PredDep.getSUnit()); |
| } |
| SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); |
| // Return true regardless of whether a new edge needed to be inserted. |
| return true; |
| } |
| |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When |
| /// NumPredsLeft reaches zero, release the successor node. |
| /// |
| /// FIXME: Adjust SuccSU height based on MinLatency. |
| void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { |
| SUnit *SuccSU = SuccEdge->getSUnit(); |
| |
| if (SuccEdge->isWeak()) { |
| --SuccSU->WeakPredsLeft; |
| if (SuccEdge->isCluster()) |
| NextClusterSucc = SuccSU; |
| return; |
| } |
| #ifndef NDEBUG |
| if (SuccSU->NumPredsLeft == 0) { |
| dbgs() << "*** Scheduling failed! ***\n"; |
| SuccSU->dump(this); |
| dbgs() << " has been released too many times!\n"; |
| llvm_unreachable(0); |
| } |
| #endif |
| --SuccSU->NumPredsLeft; |
| if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) |
| SchedImpl->releaseTopNode(SuccSU); |
| } |
| |
| /// releaseSuccessors - Call releaseSucc on each of SU's successors. |
| void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { |
| for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| releaseSucc(SU, &*I); |
| } |
| } |
| |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When |
| /// NumSuccsLeft reaches zero, release the predecessor node. |
| /// |
| /// FIXME: Adjust PredSU height based on MinLatency. |
| void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { |
| SUnit *PredSU = PredEdge->getSUnit(); |
| |
| if (PredEdge->isWeak()) { |
| --PredSU->WeakSuccsLeft; |
| if (PredEdge->isCluster()) |
| NextClusterPred = PredSU; |
| return; |
| } |
| #ifndef NDEBUG |
| if (PredSU->NumSuccsLeft == 0) { |
| dbgs() << "*** Scheduling failed! ***\n"; |
| PredSU->dump(this); |
| dbgs() << " has been released too many times!\n"; |
| llvm_unreachable(0); |
| } |
| #endif |
| --PredSU->NumSuccsLeft; |
| if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) |
| SchedImpl->releaseBottomNode(PredSU); |
| } |
| |
| /// releasePredecessors - Call releasePred on each of SU's predecessors. |
| void ScheduleDAGMI::releasePredecessors(SUnit *SU) { |
| for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| releasePred(SU, &*I); |
| } |
| } |
| |
| void ScheduleDAGMI::moveInstruction(MachineInstr *MI, |
| MachineBasicBlock::iterator InsertPos) { |
| // Advance RegionBegin if the first instruction moves down. |
| if (&*RegionBegin == MI) |
| ++RegionBegin; |
| |
| // Update the instruction stream. |
| BB->splice(InsertPos, BB, MI); |
| |
| // Update LiveIntervals |
| LIS->handleMove(MI, /*UpdateFlags=*/true); |
| |
| // Recede RegionBegin if an instruction moves above the first. |
| if (RegionBegin == InsertPos) |
| RegionBegin = MI; |
| } |
| |
| bool ScheduleDAGMI::checkSchedLimit() { |
| #ifndef NDEBUG |
| if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { |
| CurrentTop = CurrentBottom; |
| return false; |
| } |
| ++NumInstrsScheduled; |
| #endif |
| return true; |
| } |
| |
| /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after |
| /// crossing a scheduling boundary. [begin, end) includes all instructions in |
| /// the region, including the boundary itself and single-instruction regions |
| /// that don't get scheduled. |
| void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, |
| MachineBasicBlock::iterator begin, |
| MachineBasicBlock::iterator end, |
| unsigned endcount) |
| { |
| ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); |
| |
| // For convenience remember the end of the liveness region. |
| LiveRegionEnd = |
| (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); |
| } |
| |
| // Setup the register pressure trackers for the top scheduled top and bottom |
| // scheduled regions. |
| void ScheduleDAGMI::initRegPressure() { |
| TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); |
| BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); |
| |
| // Close the RPTracker to finalize live ins. |
| RPTracker.closeRegion(); |
| |
| DEBUG(RPTracker.getPressure().dump(TRI)); |
| |
| // Initialize the live ins and live outs. |
| TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); |
| BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); |
| |
| // Close one end of the tracker so we can call |
| // getMaxUpward/DownwardPressureDelta before advancing across any |
| // instructions. This converts currently live regs into live ins/outs. |
| TopRPTracker.closeTop(); |
| BotRPTracker.closeBottom(); |
| |
| // Account for liveness generated by the region boundary. |
| if (LiveRegionEnd != RegionEnd) |
| BotRPTracker.recede(); |
| |
| assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); |
| |
| // Cache the list of excess pressure sets in this region. This will also track |
| // the max pressure in the scheduled code for these sets. |
| RegionCriticalPSets.clear(); |
| const std::vector<unsigned> &RegionPressure = |
| RPTracker.getPressure().MaxSetPressure; |
| for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { |
| unsigned Limit = TRI->getRegPressureSetLimit(i); |
| DEBUG(dbgs() << TRI->getRegPressureSetName(i) |
| << "Limit " << Limit |
| << " Actual " << RegionPressure[i] << "\n"); |
| if (RegionPressure[i] > Limit) |
| RegionCriticalPSets.push_back(PressureElement(i, 0)); |
| } |
| DEBUG(dbgs() << "Excess PSets: "; |
| for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) |
| dbgs() << TRI->getRegPressureSetName( |
| RegionCriticalPSets[i].PSetID) << " "; |
| dbgs() << "\n"); |
| } |
| |
| // FIXME: When the pressure tracker deals in pressure differences then we won't |
| // iterate over all RegionCriticalPSets[i]. |
| void ScheduleDAGMI:: |
| updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { |
| for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { |
| unsigned ID = RegionCriticalPSets[i].PSetID; |
| int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; |
| if ((int)NewMaxPressure[ID] > MaxUnits) |
| MaxUnits = NewMaxPressure[ID]; |
| } |
| } |
| |
| /// schedule - Called back from MachineScheduler::runOnMachineFunction |
| /// after setting up the current scheduling region. [RegionBegin, RegionEnd) |
| /// only includes instructions that have DAG nodes, not scheduling boundaries. |
| /// |
| /// This is a skeletal driver, with all the functionality pushed into helpers, |
| /// so that it can be easilly extended by experimental schedulers. Generally, |
| /// implementing MachineSchedStrategy should be sufficient to implement a new |
| /// scheduling algorithm. However, if a scheduler further subclasses |
| /// ScheduleDAGMI then it will want to override this virtual method in order to |
| /// update any specialized state. |
| void ScheduleDAGMI::schedule() { |
| buildDAGWithRegPressure(); |
| |
| Topo.InitDAGTopologicalSorting(); |
| |
| postprocessDAG(); |
| |
| SmallVector<SUnit*, 8> TopRoots, BotRoots; |
| findRootsAndBiasEdges(TopRoots, BotRoots); |
| |
| // Initialize the strategy before modifying the DAG. |
| // This may initialize a DFSResult to be used for queue priority. |
| SchedImpl->initialize(this); |
| |
| DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| SUnits[su].dumpAll(this)); |
| if (ViewMISchedDAGs) viewGraph(); |
| |
| // Initialize ready queues now that the DAG and priority data are finalized. |
| initQueues(TopRoots, BotRoots); |
| |
| bool IsTopNode = false; |
| while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { |
| assert(!SU->isScheduled && "Node already scheduled"); |
| if (!checkSchedLimit()) |
| break; |
| |
| scheduleMI(SU, IsTopNode); |
| |
| updateQueues(SU, IsTopNode); |
| } |
| assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); |
| |
| placeDebugValues(); |
| |
| DEBUG({ |
| unsigned BBNum = begin()->getParent()->getNumber(); |
| dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; |
| dumpSchedule(); |
| dbgs() << '\n'; |
| }); |
| } |
| |
| /// Build the DAG and setup three register pressure trackers. |
| void ScheduleDAGMI::buildDAGWithRegPressure() { |
| // Initialize the register pressure tracker used by buildSchedGraph. |
| RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); |
| |
| // Account for liveness generate by the region boundary. |
| if (LiveRegionEnd != RegionEnd) |
| RPTracker.recede(); |
| |
| // Build the DAG, and compute current register pressure. |
| buildSchedGraph(AA, &RPTracker); |
| |
| // Initialize top/bottom trackers after computing region pressure. |
| initRegPressure(); |
| } |
| |
| /// Apply each ScheduleDAGMutation step in order. |
| void ScheduleDAGMI::postprocessDAG() { |
| for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { |
| Mutations[i]->apply(this); |
| } |
| } |
| |
| void ScheduleDAGMI::computeDFSResult() { |
| if (!DFSResult) |
| DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); |
| DFSResult->clear(); |
| ScheduledTrees.clear(); |
| DFSResult->resize(SUnits.size()); |
| DFSResult->compute(SUnits); |
| ScheduledTrees.resize(DFSResult->getNumSubtrees()); |
| } |
| |
| void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, |
| SmallVectorImpl<SUnit*> &BotRoots) { |
| for (std::vector<SUnit>::iterator |
| I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { |
| SUnit *SU = &(*I); |
| assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); |
| |
| // Order predecessors so DFSResult follows the critical path. |
| SU->biasCriticalPath(); |
| |
| // A SUnit is ready to top schedule if it has no predecessors. |
| if (!I->NumPredsLeft) |
| TopRoots.push_back(SU); |
| // A SUnit is ready to bottom schedule if it has no successors. |
| if (!I->NumSuccsLeft) |
| BotRoots.push_back(SU); |
| } |
| ExitSU.biasCriticalPath(); |
| } |
| |
| /// Identify DAG roots and setup scheduler queues. |
| void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, |
| ArrayRef<SUnit*> BotRoots) { |
| NextClusterSucc = NULL; |
| NextClusterPred = NULL; |
| |
| // Release all DAG roots for scheduling, not including EntrySU/ExitSU. |
| // |
| // Nodes with unreleased weak edges can still be roots. |
| // Release top roots in forward order. |
| for (SmallVectorImpl<SUnit*>::const_iterator |
| I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { |
| SchedImpl->releaseTopNode(*I); |
| } |
| // Release bottom roots in reverse order so the higher priority nodes appear |
| // first. This is more natural and slightly more efficient. |
| for (SmallVectorImpl<SUnit*>::const_reverse_iterator |
| I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { |
| SchedImpl->releaseBottomNode(*I); |
| } |
| |
| releaseSuccessors(&EntrySU); |
| releasePredecessors(&ExitSU); |
| |
| SchedImpl->registerRoots(); |
| |
| // Advance past initial DebugValues. |
| assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); |
| CurrentTop = nextIfDebug(RegionBegin, RegionEnd); |
| TopRPTracker.setPos(CurrentTop); |
| |
| CurrentBottom = RegionEnd; |
| } |
| |
| /// Move an instruction and update register pressure. |
| void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { |
| // Move the instruction to its new location in the instruction stream. |
| MachineInstr *MI = SU->getInstr(); |
| |
| if (IsTopNode) { |
| assert(SU->isTopReady() && "node still has unscheduled dependencies"); |
| if (&*CurrentTop == MI) |
| CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); |
| else { |
| moveInstruction(MI, CurrentTop); |
| TopRPTracker.setPos(MI); |
| } |
| |
| // Update top scheduled pressure. |
| TopRPTracker.advance(); |
| assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); |
| updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); |
| } |
| else { |
| assert(SU->isBottomReady() && "node still has unscheduled dependencies"); |
| MachineBasicBlock::iterator priorII = |
| priorNonDebug(CurrentBottom, CurrentTop); |
| if (&*priorII == MI) |
| CurrentBottom = priorII; |
| else { |
| if (&*CurrentTop == MI) { |
| CurrentTop = nextIfDebug(++CurrentTop, priorII); |
| TopRPTracker.setPos(CurrentTop); |
| } |
| moveInstruction(MI, CurrentBottom); |
| CurrentBottom = MI; |
| } |
| // Update bottom scheduled pressure. |
| BotRPTracker.recede(); |
| assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); |
| updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); |
| } |
| } |
| |
| /// Update scheduler queues after scheduling an instruction. |
| void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { |
| // Release dependent instructions for scheduling. |
| if (IsTopNode) |
| releaseSuccessors(SU); |
| else |
| releasePredecessors(SU); |
| |
| SU->isScheduled = true; |
| |
| if (DFSResult) { |
| unsigned SubtreeID = DFSResult->getSubtreeID(SU); |
| if (!ScheduledTrees.test(SubtreeID)) { |
| ScheduledTrees.set(SubtreeID); |
| DFSResult->scheduleTree(SubtreeID); |
| SchedImpl->scheduleTree(SubtreeID); |
| } |
| } |
| |
| // Notify the scheduling strategy after updating the DAG. |
| SchedImpl->schedNode(SU, IsTopNode); |
| } |
| |
| /// Reinsert any remaining debug_values, just like the PostRA scheduler. |
| void ScheduleDAGMI::placeDebugValues() { |
| // If first instruction was a DBG_VALUE then put it back. |
| if (FirstDbgValue) { |
| BB->splice(RegionBegin, BB, FirstDbgValue); |
| RegionBegin = FirstDbgValue; |
| } |
| |
| for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator |
| DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { |
| std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); |
| MachineInstr *DbgValue = P.first; |
| MachineBasicBlock::iterator OrigPrevMI = P.second; |
| if (&*RegionBegin == DbgValue) |
| ++RegionBegin; |
| BB->splice(++OrigPrevMI, BB, DbgValue); |
| if (OrigPrevMI == llvm::prior(RegionEnd)) |
| RegionEnd = DbgValue; |
| } |
| DbgValues.clear(); |
| FirstDbgValue = NULL; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void ScheduleDAGMI::dumpSchedule() const { |
| for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { |
| if (SUnit *SU = getSUnit(&(*MI))) |
| SU->dump(this); |
| else |
| dbgs() << "Missing SUnit\n"; |
| } |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // LoadClusterMutation - DAG post-processing to cluster loads. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// \brief Post-process the DAG to create cluster edges between neighboring |
| /// loads. |
| class LoadClusterMutation : public ScheduleDAGMutation { |
| struct LoadInfo { |
| SUnit *SU; |
| unsigned BaseReg; |
| unsigned Offset; |
| LoadInfo(SUnit *su, unsigned reg, unsigned ofs) |
| : SU(su), BaseReg(reg), Offset(ofs) {} |
| }; |
| static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, |
| const LoadClusterMutation::LoadInfo &RHS); |
| |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| public: |
| LoadClusterMutation(const TargetInstrInfo *tii, |
| const TargetRegisterInfo *tri) |
| : TII(tii), TRI(tri) {} |
| |
| virtual void apply(ScheduleDAGMI *DAG); |
| protected: |
| void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); |
| }; |
| } // anonymous |
| |
| bool LoadClusterMutation::LoadInfoLess( |
| const LoadClusterMutation::LoadInfo &LHS, |
| const LoadClusterMutation::LoadInfo &RHS) { |
| if (LHS.BaseReg != RHS.BaseReg) |
| return LHS.BaseReg < RHS.BaseReg; |
| return LHS.Offset < RHS.Offset; |
| } |
| |
| void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, |
| ScheduleDAGMI *DAG) { |
| SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; |
| for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { |
| SUnit *SU = Loads[Idx]; |
| unsigned BaseReg; |
| unsigned Offset; |
| if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) |
| LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); |
| } |
| if (LoadRecords.size() < 2) |
| return; |
| std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); |
| unsigned ClusterLength = 1; |
| for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { |
| if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { |
| ClusterLength = 1; |
| continue; |
| } |
| |
| SUnit *SUa = LoadRecords[Idx].SU; |
| SUnit *SUb = LoadRecords[Idx+1].SU; |
| if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) |
| && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { |
| |
| DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" |
| << SUb->NodeNum << ")\n"); |
| // Copy successor edges from SUa to SUb. Interleaving computation |
| // dependent on SUa can prevent load combining due to register reuse. |
| // Predecessor edges do not need to be copied from SUb to SUa since nearby |
| // loads should have effectively the same inputs. |
| for (SUnit::const_succ_iterator |
| SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { |
| if (SI->getSUnit() == SUb) |
| continue; |
| DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); |
| DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); |
| } |
| ++ClusterLength; |
| } |
| else |
| ClusterLength = 1; |
| } |
| } |
| |
| /// \brief Callback from DAG postProcessing to create cluster edges for loads. |
| void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { |
| // Map DAG NodeNum to store chain ID. |
| DenseMap<unsigned, unsigned> StoreChainIDs; |
| // Map each store chain to a set of dependent loads. |
| SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; |
| for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { |
| SUnit *SU = &DAG->SUnits[Idx]; |
| if (!SU->getInstr()->mayLoad()) |
| continue; |
| unsigned ChainPredID = DAG->SUnits.size(); |
| for (SUnit::const_pred_iterator |
| PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { |
| if (PI->isCtrl()) { |
| ChainPredID = PI->getSUnit()->NodeNum; |
| break; |
| } |
| } |
| // Check if this chain-like pred has been seen |
| // before. ChainPredID==MaxNodeID for loads at the top of the schedule. |
| unsigned NumChains = StoreChainDependents.size(); |
| std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = |
| StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); |
| if (Result.second) |
| StoreChainDependents.resize(NumChains + 1); |
| StoreChainDependents[Result.first->second].push_back(SU); |
| } |
| // Iterate over the store chains. |
| for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) |
| clusterNeighboringLoads(StoreChainDependents[Idx], DAG); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MacroFusion - DAG post-processing to encourage fusion of macro ops. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// \brief Post-process the DAG to create cluster edges between instructions |
| /// that may be fused by the processor into a single operation. |
| class MacroFusion : public ScheduleDAGMutation { |
| const TargetInstrInfo *TII; |
| public: |
| MacroFusion(const TargetInstrInfo *tii): TII(tii) {} |
| |
| virtual void apply(ScheduleDAGMI *DAG); |
| }; |
| } // anonymous |
| |
| /// \brief Callback from DAG postProcessing to create cluster edges to encourage |
| /// fused operations. |
| void MacroFusion::apply(ScheduleDAGMI *DAG) { |
| // For now, assume targets can only fuse with the branch. |
| MachineInstr *Branch = DAG->ExitSU.getInstr(); |
| if (!Branch) |
| return; |
| |
| for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { |
| SUnit *SU = &DAG->SUnits[--Idx]; |
| if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) |
| continue; |
| |
| // Create a single weak edge from SU to ExitSU. The only effect is to cause |
| // bottom-up scheduling to heavily prioritize the clustered SU. There is no |
| // need to copy predecessor edges from ExitSU to SU, since top-down |
| // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling |
| // of SU, we could create an artificial edge from the deepest root, but it |
| // hasn't been needed yet. |
| bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); |
| (void)Success; |
| assert(Success && "No DAG nodes should be reachable from ExitSU"); |
| |
| DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); |
| break; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance |
| /// the schedule. |
| class ConvergingScheduler : public MachineSchedStrategy { |
| public: |
| /// Represent the type of SchedCandidate found within a single queue. |
| /// pickNodeBidirectional depends on these listed by decreasing priority. |
| enum CandReason { |
| NoCand, SingleExcess, SingleCritical, Cluster, |
| ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, |
| TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse, |
| NodeOrder}; |
| |
| #ifndef NDEBUG |
| static const char *getReasonStr(ConvergingScheduler::CandReason Reason); |
| #endif |
| |
| /// Policy for scheduling the next instruction in the candidate's zone. |
| struct CandPolicy { |
| bool ReduceLatency; |
| unsigned ReduceResIdx; |
| unsigned DemandResIdx; |
| |
| CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} |
| }; |
| |
| /// Status of an instruction's critical resource consumption. |
| struct SchedResourceDelta { |
| // Count critical resources in the scheduled region required by SU. |
| unsigned CritResources; |
| |
| // Count critical resources from another region consumed by SU. |
| unsigned DemandedResources; |
| |
| SchedResourceDelta(): CritResources(0), DemandedResources(0) {} |
| |
| bool operator==(const SchedResourceDelta &RHS) const { |
| return CritResources == RHS.CritResources |
| && DemandedResources == RHS.DemandedResources; |
| } |
| bool operator!=(const SchedResourceDelta &RHS) const { |
| return !operator==(RHS); |
| } |
| }; |
| |
| /// Store the state used by ConvergingScheduler heuristics, required for the |
| /// lifetime of one invocation of pickNode(). |
| struct SchedCandidate { |
| CandPolicy Policy; |
| |
| // The best SUnit candidate. |
| SUnit *SU; |
| |
| // The reason for this candidate. |
| CandReason Reason; |
| |
| // Register pressure values for the best candidate. |
| RegPressureDelta RPDelta; |
| |
| // Critical resource consumption of the best candidate. |
| SchedResourceDelta ResDelta; |
| |
| SchedCandidate(const CandPolicy &policy) |
| : Policy(policy), SU(NULL), Reason(NoCand) {} |
| |
| bool isValid() const { return SU; } |
| |
| // Copy the status of another candidate without changing policy. |
| void setBest(SchedCandidate &Best) { |
| assert(Best.Reason != NoCand && "uninitialized Sched candidate"); |
| SU = Best.SU; |
| Reason = Best.Reason; |
| RPDelta = Best.RPDelta; |
| ResDelta = Best.ResDelta; |
| } |
| |
| void initResourceDelta(const ScheduleDAGMI *DAG, |
| const TargetSchedModel *SchedModel); |
| }; |
| |
| /// Summarize the unscheduled region. |
| struct SchedRemainder { |
| // Critical path through the DAG in expected latency. |
| unsigned CriticalPath; |
| |
| // Unscheduled resources |
| SmallVector<unsigned, 16> RemainingCounts; |
| // Critical resource for the unscheduled zone. |
| unsigned CritResIdx; |
| // Number of micro-ops left to schedule. |
| unsigned RemainingMicroOps; |
| |
| void reset() { |
| CriticalPath = 0; |
| RemainingCounts.clear(); |
| CritResIdx = 0; |
| RemainingMicroOps = 0; |
| } |
| |
| SchedRemainder() { reset(); } |
| |
| void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); |
| |
| unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const { |
| if (!SchedModel->hasInstrSchedModel()) |
| return 0; |
| |
| return std::max( |
| RemainingMicroOps * SchedModel->getMicroOpFactor(), |
| RemainingCounts[CritResIdx]); |
| } |
| }; |
| |
| /// Each Scheduling boundary is associated with ready queues. It tracks the |
| /// current cycle in the direction of movement, and maintains the state |
| /// of "hazards" and other interlocks at the current cycle. |
| struct SchedBoundary { |
| ScheduleDAGMI *DAG; |
| const TargetSchedModel *SchedModel; |
| SchedRemainder *Rem; |
| |
| ReadyQueue Available; |
| ReadyQueue Pending; |
| bool CheckPending; |
| |
| // For heuristics, keep a list of the nodes that immediately depend on the |
| // most recently scheduled node. |
| SmallPtrSet<const SUnit*, 8> NextSUs; |
| |
| ScheduleHazardRecognizer *HazardRec; |
| |
| unsigned CurrCycle; |
| unsigned IssueCount; |
| |
| /// MinReadyCycle - Cycle of the soonest available instruction. |
| unsigned MinReadyCycle; |
| |
| // The expected latency of the critical path in this scheduled zone. |
| unsigned ExpectedLatency; |
| |
| // Resources used in the scheduled zone beyond this boundary. |
| SmallVector<unsigned, 16> ResourceCounts; |
| |
| // Cache the critical resources ID in this scheduled zone. |
| unsigned CritResIdx; |
| |
| // Is the scheduled region resource limited vs. latency limited. |
| bool IsResourceLimited; |
| |
| unsigned ExpectedCount; |
| |
| #ifndef NDEBUG |
| // Remember the greatest min operand latency. |
| unsigned MaxMinLatency; |
| #endif |
| |
| void reset() { |
| // A new HazardRec is created for each DAG and owned by SchedBoundary. |
| delete HazardRec; |
| |
| Available.clear(); |
| Pending.clear(); |
| CheckPending = false; |
| NextSUs.clear(); |
| HazardRec = 0; |
| CurrCycle = 0; |
| IssueCount = 0; |
| MinReadyCycle = UINT_MAX; |
| ExpectedLatency = 0; |
| ResourceCounts.resize(1); |
| assert(!ResourceCounts[0] && "nonzero count for bad resource"); |
| CritResIdx = 0; |
| IsResourceLimited = false; |
| ExpectedCount = 0; |
| #ifndef NDEBUG |
| MaxMinLatency = 0; |
| #endif |
| // Reserve a zero-count for invalid CritResIdx. |
| ResourceCounts.resize(1); |
| } |
| |
| /// Pending queues extend the ready queues with the same ID and the |
| /// PendingFlag set. |
| SchedBoundary(unsigned ID, const Twine &Name): |
| DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), |
| Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), |
| HazardRec(0) { |
| reset(); |
| } |
| |
| ~SchedBoundary() { delete HazardRec; } |
| |
| void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, |
| SchedRemainder *rem); |
| |
| bool isTop() const { |
| return Available.getID() == ConvergingScheduler::TopQID; |
| } |
| |
| unsigned getUnscheduledLatency(SUnit *SU) const { |
| if (isTop()) |
| return SU->getHeight(); |
| return SU->getDepth() + SU->Latency; |
| } |
| |
| unsigned getCriticalCount() const { |
| return ResourceCounts[CritResIdx]; |
| } |
| |
| bool checkHazard(SUnit *SU); |
| |
| void setLatencyPolicy(CandPolicy &Policy); |
| |
| void releaseNode(SUnit *SU, unsigned ReadyCycle); |
| |
| void bumpCycle(); |
| |
| void countResource(unsigned PIdx, unsigned Cycles); |
| |
| void bumpNode(SUnit *SU); |
| |
| void releasePending(); |
| |
| void removeReady(SUnit *SU); |
| |
| SUnit *pickOnlyChoice(); |
| }; |
| |
| private: |
| ScheduleDAGMI *DAG; |
| const TargetSchedModel *SchedModel; |
| const TargetRegisterInfo *TRI; |
| |
| // State of the top and bottom scheduled instruction boundaries. |
| SchedRemainder Rem; |
| SchedBoundary Top; |
| SchedBoundary Bot; |
| |
| public: |
| /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) |
| enum { |
| TopQID = 1, |
| BotQID = 2, |
| LogMaxQID = 2 |
| }; |
| |
| ConvergingScheduler(): |
| DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} |
| |
| virtual void initialize(ScheduleDAGMI *dag); |
| |
| virtual SUnit *pickNode(bool &IsTopNode); |
| |
| virtual void schedNode(SUnit *SU, bool IsTopNode); |
| |
| virtual void releaseTopNode(SUnit *SU); |
| |
| virtual void releaseBottomNode(SUnit *SU); |
| |
| virtual void registerRoots(); |
| |
| protected: |
| void balanceZones( |
| ConvergingScheduler::SchedBoundary &CriticalZone, |
| ConvergingScheduler::SchedCandidate &CriticalCand, |
| ConvergingScheduler::SchedBoundary &OppositeZone, |
| ConvergingScheduler::SchedCandidate &OppositeCand); |
| |
| void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand, |
| ConvergingScheduler::SchedCandidate &BotCand); |
| |
| void tryCandidate(SchedCandidate &Cand, |
| SchedCandidate &TryCand, |
| SchedBoundary &Zone, |
| const RegPressureTracker &RPTracker, |
| RegPressureTracker &TempTracker); |
| |
| SUnit *pickNodeBidirectional(bool &IsTopNode); |
| |
| void pickNodeFromQueue(SchedBoundary &Zone, |
| const RegPressureTracker &RPTracker, |
| SchedCandidate &Candidate); |
| |
| #ifndef NDEBUG |
| void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone); |
| #endif |
| }; |
| } // namespace |
| |
| void ConvergingScheduler::SchedRemainder:: |
| init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { |
| reset(); |
| if (!SchedModel->hasInstrSchedModel()) |
| return; |
| RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); |
| for (std::vector<SUnit>::iterator |
| I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { |
| const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); |
| RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC); |
| for (TargetSchedModel::ProcResIter |
| PI = SchedModel->getWriteProcResBegin(SC), |
| PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { |
| unsigned PIdx = PI->ProcResourceIdx; |
| unsigned Factor = SchedModel->getResourceFactor(PIdx); |
| RemainingCounts[PIdx] += (Factor * PI->Cycles); |
| } |
| } |
| for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds(); |
| PIdx != PEnd; ++PIdx) { |
| if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx]) |
| >= (int)SchedModel->getLatencyFactor()) { |
| CritResIdx = PIdx; |
| } |
| } |
| } |
| |
| void ConvergingScheduler::SchedBoundary:: |
| init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { |
| reset(); |
| DAG = dag; |
| SchedModel = smodel; |
| Rem = rem; |
| if (SchedModel->hasInstrSchedModel()) |
| ResourceCounts.resize(SchedModel->getNumProcResourceKinds()); |
| } |
| |
| void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { |
| DAG = dag; |
| SchedModel = DAG->getSchedModel(); |
| TRI = DAG->TRI; |
| |
| Rem.init(DAG, SchedModel); |
| Top.init(DAG, SchedModel, &Rem); |
| Bot.init(DAG, SchedModel, &Rem); |
| |
| DAG->computeDFSResult(); |
| |
| // Initialize resource counts. |
| |
| // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or |
| // are disabled, then these HazardRecs will be disabled. |
| const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); |
| const TargetMachine &TM = DAG->MF.getTarget(); |
| Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); |
| Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); |
| |
| assert((!ForceTopDown || !ForceBottomUp) && |
| "-misched-topdown incompatible with -misched-bottomup"); |
| } |
| |
| void ConvergingScheduler::releaseTopNode(SUnit *SU) { |
| if (SU->isScheduled) |
| return; |
| |
| for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; |
| unsigned MinLatency = I->getMinLatency(); |
| #ifndef NDEBUG |
| Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); |
| #endif |
| if (SU->TopReadyCycle < PredReadyCycle + MinLatency) |
| SU->TopReadyCycle = PredReadyCycle + MinLatency; |
| } |
| Top.releaseNode(SU, SU->TopReadyCycle); |
| } |
| |
| void ConvergingScheduler::releaseBottomNode(SUnit *SU) { |
| if (SU->isScheduled) |
| return; |
| |
| assert(SU->getInstr() && "Scheduled SUnit must have instr"); |
| |
| for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| if (I->isWeak()) |
| continue; |
| unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; |
| unsigned MinLatency = I->getMinLatency(); |
| #ifndef NDEBUG |
| Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); |
| #endif |
| if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) |
| SU->BotReadyCycle = SuccReadyCycle + MinLatency; |
| } |
| Bot.releaseNode(SU, SU->BotReadyCycle); |
| } |
| |
| void ConvergingScheduler::registerRoots() { |
| Rem.CriticalPath = DAG->ExitSU.getDepth(); |
| // Some roots may not feed into ExitSU. Check all of them in case. |
| for (std::vector<SUnit*>::const_iterator |
| I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { |
| if ((*I)->getDepth() > Rem.CriticalPath) |
| Rem.CriticalPath = (*I)->getDepth(); |
| } |
| DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); |
| } |
| |
| /// Does this SU have a hazard within the current instruction group. |
| /// |
| /// The scheduler supports two modes of hazard recognition. The first is the |
| /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that |
| /// supports highly complicated in-order reservation tables |
| /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. |
| /// |
| /// The second is a streamlined mechanism that checks for hazards based on |
| /// simple counters that the scheduler itself maintains. It explicitly checks |
| /// for instruction dispatch limitations, including the number of micro-ops that |
| /// can dispatch per cycle. |
| /// |
| /// TODO: Also check whether the SU must start a new group. |
| bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { |
| if (HazardRec->isEnabled()) |
| return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; |
| |
| unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); |
| if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) { |
| DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" |
| << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Compute the remaining latency to determine whether ILP should be increased. |
| void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) { |
| // FIXME: compile time. In all, we visit four queues here one we should only |
| // need to visit the one that was last popped if we cache the result. |
| unsigned RemLatency = 0; |
| for (ReadyQueue::iterator I = Available.begin(), E = Available.end(); |
| I != E; ++I) { |
| unsigned L = getUnscheduledLatency(*I); |
| if (L > RemLatency) |
| RemLatency = L; |
| } |
| for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end(); |
| I != E; ++I) { |
| unsigned L = getUnscheduledLatency(*I); |
| if (L > RemLatency) |
| RemLatency = L; |
| } |
| unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow(); |
| if (RemLatency + ExpectedLatency >= CriticalPathLimit |
| && RemLatency > Rem->getMaxRemainingCount(SchedModel)) { |
| Policy.ReduceLatency = true; |
| DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n'); |
| } |
| } |
| |
| void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, |
| unsigned ReadyCycle) { |
| |
| if (ReadyCycle < MinReadyCycle) |
| MinReadyCycle = ReadyCycle; |
| |
| // Check for interlocks first. For the purpose of other heuristics, an |
| // instruction that cannot issue appears as if it's not in the ReadyQueue. |
| if (ReadyCycle > CurrCycle || checkHazard(SU)) |
| Pending.push(SU); |
| else |
| Available.push(SU); |
| |
| // Record this node as an immediate dependent of the scheduled node. |
| NextSUs.insert(SU); |
| } |
| |
| /// Move the boundary of scheduled code by one cycle. |
| void ConvergingScheduler::SchedBoundary::bumpCycle() { |
| unsigned Width = SchedModel->getIssueWidth(); |
| IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; |
| |
| unsigned NextCycle = CurrCycle + 1; |
| assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); |
| if (MinReadyCycle > NextCycle) { |
| IssueCount = 0; |
| NextCycle = MinReadyCycle; |
| } |
| |
| if (!HazardRec->isEnabled()) { |
| // Bypass HazardRec virtual calls. |
| CurrCycle = NextCycle; |
| } |
| else { |
| // Bypass getHazardType calls in case of long latency. |
| for (; CurrCycle != NextCycle; ++CurrCycle) { |
| if (isTop()) |
| HazardRec->AdvanceCycle(); |
| else |
| HazardRec->RecedeCycle(); |
| } |
| } |
| CheckPending = true; |
| IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); |
| |
| DEBUG(dbgs() << " *** " << Available.getName() << " cycle " |
| << CurrCycle << '\n'); |
| } |
| |
| /// Add the given processor resource to this scheduled zone. |
| void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx, |
| unsigned Cycles) { |
| unsigned Factor = SchedModel->getResourceFactor(PIdx); |
| DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name |
| << " +(" << Cycles << "x" << Factor |
| << ") / " << SchedModel->getLatencyFactor() << '\n'); |
| |
| unsigned Count = Factor * Cycles; |
| ResourceCounts[PIdx] += Count; |
| assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); |
| Rem->RemainingCounts[PIdx] -= Count; |
| |
| // Check if this resource exceeds the current critical resource by a full |
| // cycle. If so, it becomes the critical resource. |
| if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx]) |
| >= (int)SchedModel->getLatencyFactor()) { |
| CritResIdx = PIdx; |
| DEBUG(dbgs() << " *** Critical resource " |
| << SchedModel->getProcResource(PIdx)->Name << " x" |
| << ResourceCounts[PIdx] << '\n'); |
| } |
| } |
| |
| /// Move the boundary of scheduled code by one SUnit. |
| void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { |
| // Update the reservation table. |
| if (HazardRec->isEnabled()) { |
| if (!isTop() && SU->isCall) { |
| // Calls are scheduled with their preceding instructions. For bottom-up |
| // scheduling, clear the pipeline state before emitting. |
| HazardRec->Reset(); |
| } |
| HazardRec->EmitInstruction(SU); |
| } |
| // Update resource counts and critical resource. |
| if (SchedModel->hasInstrSchedModel()) { |
| const MCSchedClassDesc *SC = DAG->getSchedClass(SU); |
| Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC); |
| for (TargetSchedModel::ProcResIter |
| PI = SchedModel->getWriteProcResBegin(SC), |
| PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { |
| countResource(PI->ProcResourceIdx, PI->Cycles); |
| } |
| } |
| if (isTop()) { |
| if (SU->getDepth() > ExpectedLatency) |
| ExpectedLatency = SU->getDepth(); |
| } |
| else { |
| if (SU->getHeight() > ExpectedLatency) |
| ExpectedLatency = SU->getHeight(); |
| } |
| |
| IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); |
| |
| // Check the instruction group dispatch limit. |
| // TODO: Check if this SU must end a dispatch group. |
| IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); |
| |
| // checkHazard prevents scheduling multiple instructions per cycle that exceed |
| // issue width. However, we commonly reach the maximum. In this case |
| // opportunistically bump the cycle to avoid uselessly checking everything in |
| // the readyQ. Furthermore, a single instruction may produce more than one |
| // cycle's worth of micro-ops. |
| if (IssueCount >= SchedModel->getIssueWidth()) { |
| DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n'); |
| bumpCycle(); |
| } |
| } |
| |
| /// Release pending ready nodes in to the available queue. This makes them |
| /// visible to heuristics. |
| void ConvergingScheduler::SchedBoundary::releasePending() { |
| // If the available queue is empty, it is safe to reset MinReadyCycle. |
| if (Available.empty()) |
| MinReadyCycle = UINT_MAX; |
| |
| // Check to see if any of the pending instructions are ready to issue. If |
| // so, add them to the available queue. |
| for (unsigned i = 0, e = Pending.size(); i != e; ++i) { |
| SUnit *SU = *(Pending.begin()+i); |
| unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; |
| |
| if (ReadyCycle < MinReadyCycle) |
| MinReadyCycle = ReadyCycle; |
| |
| if (ReadyCycle > CurrCycle) |
| continue; |
| |
| if (checkHazard(SU)) |
| continue; |
| |
| Available.push(SU); |
| Pending.remove(Pending.begin()+i); |
| --i; --e; |
| } |
| DEBUG(if (!Pending.empty()) Pending.dump()); |
| CheckPending = false; |
| } |
| |
| /// Remove SU from the ready set for this boundary. |
| void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { |
| if (Available.isInQueue(SU)) |
| Available.remove(Available.find(SU)); |
| else { |
| assert(Pending.isInQueue(SU) && "bad ready count"); |
| Pending.remove(Pending.find(SU)); |
| } |
| } |
| |
| /// If this queue only has one ready candidate, return it. As a side effect, |
| /// defer any nodes that now hit a hazard, and advance the cycle until at least |
| /// one node is ready. If multiple instructions are ready, return NULL. |
| SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { |
| if (CheckPending) |
| releasePending(); |
| |
| if (IssueCount > 0) { |
| // Defer any ready instrs that now have a hazard. |
| for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { |
| if (checkHazard(*I)) { |
| Pending.push(*I); |
| I = Available.remove(I); |
| continue; |
| } |
| ++I; |
| } |
| } |
| for (unsigned i = 0; Available.empty(); ++i) { |
| assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && |
| "permanent hazard"); (void)i; |
| bumpCycle(); |
| releasePending(); |
| } |
| if (Available.size() == 1) |
| return *Available.begin(); |
| return NULL; |
| } |
| |
| /// Record the candidate policy for opposite zones with different critical |
| /// resources. |
| /// |
| /// If the CriticalZone is latency limited, don't force a policy for the |
| /// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed. |
| void ConvergingScheduler::balanceZones( |
| ConvergingScheduler::SchedBoundary &CriticalZone, |
| ConvergingScheduler::SchedCandidate &CriticalCand, |
| ConvergingScheduler::SchedBoundary &OppositeZone, |
| ConvergingScheduler::SchedCandidate &OppositeCand) { |
| |
| if (!CriticalZone.IsResourceLimited) |
| return; |
| assert(SchedModel->hasInstrSchedModel() && "required schedmodel"); |
| |
| SchedRemainder *Rem = CriticalZone.Rem; |
| |
| // If the critical zone is overconsuming a resource relative to the |
| // remainder, try to reduce it. |
| unsigned RemainingCritCount = |
| Rem->RemainingCounts[CriticalZone.CritResIdx]; |
| if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount) |
| > (int)SchedModel->getLatencyFactor()) { |
| CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx; |
| DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce " |
| << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name |
| << '\n'); |
| } |
| // If the other zone is underconsuming a resource relative to the full zone, |
| // try to increase it. |
| unsigned OppositeCount = |
| OppositeZone.ResourceCounts[CriticalZone.CritResIdx]; |
| if ((int)(OppositeZone.ExpectedCount - OppositeCount) |
| > (int)SchedModel->getLatencyFactor()) { |
| OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx; |
| DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand " |
| << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name |
| << '\n'); |
| } |
| } |
| |
| /// Determine if the scheduled zones exceed resource limits or critical path and |
| /// set each candidate's ReduceHeight policy accordingly. |
| void ConvergingScheduler::checkResourceLimits( |
| ConvergingScheduler::SchedCandidate &TopCand, |
| ConvergingScheduler::SchedCandidate &BotCand) { |
| |
| // Set ReduceLatency to true if needed. |
| Bot.setLatencyPolicy(BotCand.Policy); |
| Top.setLatencyPolicy(TopCand.Policy); |
| |
| // Handle resource-limited regions. |
| if (Top.IsResourceLimited && Bot.IsResourceLimited |
| && Top.CritResIdx == Bot.CritResIdx) { |
| // If the scheduled critical resource in both zones is no longer the |
| // critical remaining resource, attempt to reduce resource height both ways. |
| if (Top.CritResIdx != Rem.CritResIdx) { |
| TopCand.Policy.ReduceResIdx = Top.CritResIdx; |
| BotCand.Policy.ReduceResIdx = Bot.CritResIdx; |
| DEBUG(dbgs() << "Reduce scheduled " |
| << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n'); |
| } |
| return; |
| } |
| // Handle latency-limited regions. |
| if (!Top.IsResourceLimited && !Bot.IsResourceLimited) { |
| // If the total scheduled expected latency exceeds the region's critical |
| // path then reduce latency both ways. |
| // |
| // Just because a zone is not resource limited does not mean it is latency |
| // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle |
| // to exceed expected latency. |
| if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath) |
| && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) { |
| TopCand.Policy.ReduceLatency = true; |
| BotCand.Policy.ReduceLatency = true; |
| DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency |
| << " + " << Bot.ExpectedLatency << '\n'); |
| } |
| return; |
| } |
| // The critical resource is different in each zone, so request balancing. |
| |
| // Compute the cost of each zone. |
| Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle); |
| Top.ExpectedCount = std::max( |
| Top.getCriticalCount(), |
| Top.ExpectedCount * SchedModel->getLatencyFactor()); |
| Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle); |
| Bot.ExpectedCount = std::max( |
| Bot.getCriticalCount(), |
| Bot.ExpectedCount * SchedModel->getLatencyFactor()); |
| |
| balanceZones(Top, TopCand, Bot, BotCand); |
| balanceZones(Bot, BotCand, Top, TopCand); |
| } |
| |
| void ConvergingScheduler::SchedCandidate:: |
| initResourceDelta(const ScheduleDAGMI *DAG, |
| const TargetSchedModel *SchedModel) { |
| if (!Policy.ReduceResIdx && !Policy.DemandResIdx) |
| return; |
| |
| const MCSchedClassDesc *SC = DAG->getSchedClass(SU); |
| for (TargetSchedModel::ProcResIter |
| PI = SchedModel->getWriteProcResBegin(SC), |
| PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { |
| if (PI->ProcResourceIdx == Policy.ReduceResIdx) |
| ResDelta.CritResources += PI->Cycles; |
| if (PI->ProcResourceIdx == Policy.DemandResIdx) |
| ResDelta.DemandedResources += PI->Cycles; |
| } |
| } |
| |
| /// Return true if this heuristic determines order. |
| static bool tryLess(unsigned TryVal, unsigned CandVal, |
| ConvergingScheduler::SchedCandidate &TryCand, |
| ConvergingScheduler::SchedCandidate &Cand, |
| ConvergingScheduler::CandReason Reason) { |
| if (TryVal < CandVal) { |
| TryCand.Reason = Reason; |
| return true; |
| } |
| if (TryVal > CandVal) { |
| if (Cand.Reason > Reason) |
| Cand.Reason = Reason; |
| return true; |
| } |
| return false; |
| } |
| |
| static bool tryGreater(unsigned TryVal, unsigned CandVal, |
| ConvergingScheduler::SchedCandidate &TryCand, |
| ConvergingScheduler::SchedCandidate &Cand, |
| ConvergingScheduler::CandReason Reason) { |
| if (TryVal > CandVal) { |
| TryCand.Reason = Reason; |
| return true; |
| } |
| if (TryVal < CandVal) { |
| if (Cand.Reason > Reason) |
| Cand.Reason = Reason; |
| return true; |
| } |
| return false; |
| } |
| |
| static unsigned getWeakLeft(const SUnit *SU, bool isTop) { |
| return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; |
| } |
| |
| /// Apply a set of heursitics to a new candidate. Heuristics are currently |
| /// hierarchical. This may be more efficient than a graduated cost model because |
| /// we don't need to evaluate all aspects of the model for each node in the |
| /// queue. But it's really done to make the heuristics easier to debug and |
| /// statistically analyze. |
| /// |
| /// \param Cand provides the policy and current best candidate. |
| /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. |
| /// \param Zone describes the scheduled zone that we are extending. |
| /// \param RPTracker describes reg pressure within the scheduled zone. |
| /// \param TempTracker is a scratch pressure tracker to reuse in queries. |
| void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, |
| SchedCandidate &TryCand, |
| SchedBoundary &Zone, |
| const RegPressureTracker &RPTracker, |
| RegPressureTracker &TempTracker) { |
| |
| // Always initialize TryCand's RPDelta. |
| TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, |
| DAG->getRegionCriticalPSets(), |
| DAG->getRegPressure().MaxSetPressure); |
| |
| // Initialize the candidate if needed. |
| if (!Cand.isValid()) { |
| TryCand.Reason = NodeOrder; |
| return; |
| } |
| // Avoid exceeding the target's limit. |
| if (tryLess(TryCand.RPDelta.Excess.UnitIncrease, |
| Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess)) |
| return; |
| if (Cand.Reason == SingleExcess) |
| Cand.Reason = MultiPressure; |
| |
| // Avoid increasing the max critical pressure in the scheduled region. |
| if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease, |
| Cand.RPDelta.CriticalMax.UnitIncrease, |
| TryCand, Cand, SingleCritical)) |
| return; |
| if (Cand.Reason == SingleCritical) |
| Cand.Reason = MultiPressure; |
| |
| // Keep clustered nodes together to encourage downstream peephole |
| // optimizations which may reduce resource requirements. |
| // |
| // This is a best effort to set things up for a post-RA pass. Optimizations |
| // like generating loads of multiple registers should ideally be done within |
| // the scheduler pass by combining the loads during DAG postprocessing. |
| const SUnit *NextClusterSU = |
| Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); |
| if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, |
| TryCand, Cand, Cluster)) |
| return; |
| // Currently, weak edges are for clustering, so we hard-code that reason. |
| // However, deferring the current TryCand will not change Cand's reason. |
| CandReason OrigReason = Cand.Reason; |
| if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), |
| getWeakLeft(Cand.SU, Zone.isTop()), |
| TryCand, Cand, Cluster)) { |
| Cand.Reason = OrigReason; |
| return; |
| } |
| // Avoid critical resource consumption and balance the schedule. |
| TryCand.initResourceDelta(DAG, SchedModel); |
| if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, |
| TryCand, Cand, ResourceReduce)) |
| return; |
| if (tryGreater(TryCand.ResDelta.DemandedResources, |
| Cand.ResDelta.DemandedResources, |
| TryCand, Cand, ResourceDemand)) |
| return; |
| |
| // Avoid serializing long latency dependence chains. |
| if (Cand.Policy.ReduceLatency) { |
| if (Zone.isTop()) { |
| if (Cand.SU->getDepth() * SchedModel->getLatencyFactor() |
| > Zone.ExpectedCount) { |
| if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), |
| TryCand, Cand, TopDepthReduce)) |
| return; |
| } |
| if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), |
| TryCand, Cand, TopPathReduce)) |
| return; |
| } |
| else { |
| if (Cand.SU->getHeight() * SchedModel->getLatencyFactor() |
| > Zone.ExpectedCount) { |
| if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), |
| TryCand, Cand, BotHeightReduce)) |
| return; |
| } |
| if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), |
| TryCand, Cand, BotPathReduce)) |
| return; |
| } |
| } |
| |
| // Avoid increasing the max pressure of the entire region. |
| if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease, |
| Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax)) |
| return; |
| if (Cand.Reason == SingleMax) |
| Cand.Reason = MultiPressure; |
| |
| // Prefer immediate defs/users of the last scheduled instruction. This is a |
| // nice pressure avoidance strategy that also conserves the processor's |
| // register renaming resources and keeps the machine code readable. |
| if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), |
| TryCand, Cand, NextDefUse)) |
| return; |
| |
| // Fall through to original instruction order. |
| if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) |
| || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { |
| TryCand.Reason = NodeOrder; |
| } |
| } |
| |
| /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is |
| /// more desirable than RHS from scheduling standpoint. |
| static bool compareRPDelta(const RegPressureDelta &LHS, |
| const RegPressureDelta &RHS) { |
| // Compare each component of pressure in decreasing order of importance |
| // without checking if any are valid. Invalid PressureElements are assumed to |
| // have UnitIncrease==0, so are neutral. |
| |
| // Avoid increasing the max critical pressure in the scheduled region. |
| if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) { |
| DEBUG(dbgs() << "RP excess top - bot: " |
| << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n'); |
| return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; |
| } |
| // Avoid increasing the max critical pressure in the scheduled region. |
| if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) { |
| DEBUG(dbgs() << "RP critical top - bot: " |
| << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease) |
| << '\n'); |
| return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; |
| } |
| // Avoid increasing the max pressure of the entire region. |
| if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) { |
| DEBUG(dbgs() << "RP current top - bot: " |
| << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease) |
| << '\n'); |
| return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; |
| } |
| return false; |
| } |
| |
| #ifndef NDEBUG |
| const char *ConvergingScheduler::getReasonStr( |
| ConvergingScheduler::CandReason Reason) { |
| switch (Reason) { |
| case NoCand: return "NOCAND "; |
| case SingleExcess: return "REG-EXCESS"; |
| case SingleCritical: return "REG-CRIT "; |
| case Cluster: return "CLUSTER "; |
| case SingleMax: return "REG-MAX "; |
| case MultiPressure: return "REG-MULTI "; |
| case ResourceReduce: return "RES-REDUCE"; |
| case ResourceDemand: return "RES-DEMAND"; |
| case TopDepthReduce: return "TOP-DEPTH "; |
| case TopPathReduce: return "TOP-PATH "; |
| case BotHeightReduce:return "BOT-HEIGHT"; |
| case BotPathReduce: return "BOT-PATH "; |
| case NextDefUse: return "DEF-USE "; |
| case NodeOrder: return "ORDER "; |
| }; |
| llvm_unreachable("Unknown reason!"); |
| } |
| |
| void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand, |
| const SchedBoundary &Zone) { |
| const char *Label = getReasonStr(Cand.Reason); |
| PressureElement P; |
| unsigned ResIdx = 0; |
| unsigned Latency = 0; |
| switch (Cand.Reason) { |
| default: |
| break; |
| case SingleExcess: |
| P = Cand.RPDelta.Excess; |
| break; |
| case SingleCritical: |
| P = Cand.RPDelta.CriticalMax; |
| break; |
| case SingleMax: |
| P = Cand.RPDelta.CurrentMax; |
| break; |
| case ResourceReduce: |
| ResIdx = Cand.Policy.ReduceResIdx; |
| break; |
| case ResourceDemand: |
| ResIdx = Cand.Policy.DemandResIdx; |
| break; |
| case TopDepthReduce: |
| Latency = Cand.SU->getDepth(); |
| break; |
| case TopPathReduce: |
| Latency = Cand.SU->getHeight(); |
| break; |
| case BotHeightReduce: |
| Latency = Cand.SU->getHeight(); |
| break; |
| case BotPathReduce: |
| Latency = Cand.SU->getDepth(); |
| break; |
| } |
| dbgs() << Label << " " << Zone.Available.getName() << " "; |
| if (P.isValid()) |
| dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease |
| << " "; |
| else |
| dbgs() << " "; |
| if (ResIdx) |
| dbgs() << SchedModel->getProcResource(ResIdx)->Name << " "; |
| else |
| dbgs() << " "; |
| if (Latency) |
| dbgs() << Latency << " cycles "; |
| else |
| dbgs() << " "; |
| Cand.SU->dump(DAG); |
| } |
| #endif |
| |
| /// Pick the best candidate from the top queue. |
| /// |
| /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during |
| /// DAG building. To adjust for the current scheduling location we need to |
| /// maintain the number of vreg uses remaining to be top-scheduled. |
| void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, |
| const RegPressureTracker &RPTracker, |
| SchedCandidate &Cand) { |
| ReadyQueue &Q = Zone.Available; |
| |
| DEBUG(Q.dump()); |
| |
| // getMaxPressureDelta temporarily modifies the tracker. |
| RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); |
| |
| for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { |
| |
| SchedCandidate TryCand(Cand.Policy); |
| TryCand.SU = *I; |
| tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); |
| if (TryCand.Reason != NoCand) { |
| // Initialize resource delta if needed in case future heuristics query it. |
| if (TryCand.ResDelta == SchedResourceDelta()) |
| TryCand.initResourceDelta(DAG, SchedModel); |
| Cand.setBest(TryCand); |
| DEBUG(traceCandidate(Cand, Zone)); |
| } |
| } |
| } |
| |
| static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, |
| bool IsTop) { |
| DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot") |
| << " SU(" << Cand.SU->NodeNum << ") " |
| << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); |
| } |
| |
| /// Pick the best candidate node from either the top or bottom queue. |
| SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { |
| // Schedule as far as possible in the direction of no choice. This is most |
| // efficient, but also provides the best heuristics for CriticalPSets. |
| if (SUnit *SU = Bot.pickOnlyChoice()) { |
| IsTopNode = false; |
| return SU; |
| } |
| if (SUnit *SU = Top.pickOnlyChoice()) { |
| IsTopNode = true; |
| return SU; |
| } |
| CandPolicy NoPolicy; |
| SchedCandidate BotCand(NoPolicy); |
| SchedCandidate TopCand(NoPolicy); |
| checkResourceLimits(TopCand, BotCand); |
| |
| // Prefer bottom scheduling when heuristics are silent. |
| pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); |
| assert(BotCand.Reason != NoCand && "failed to find the first candidate"); |
| |
| // If either Q has a single candidate that provides the least increase in |
| // Excess pressure, we can immediately schedule from that Q. |
| // |
| // RegionCriticalPSets summarizes the pressure within the scheduled region and |
| // affects picking from either Q. If scheduling in one direction must |
| // increase pressure for one of the excess PSets, then schedule in that |
| // direction first to provide more freedom in the other direction. |
| if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) { |
| IsTopNode = false; |
| tracePick(BotCand, IsTopNode); |
| return BotCand.SU; |
| } |
| // Check if the top Q has a better candidate. |
| pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find the first candidate"); |
| |
| // If either Q has a single candidate that minimizes pressure above the |
| // original region's pressure pick it. |
| if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) { |
| if (TopCand.Reason < BotCand.Reason) { |
| IsTopNode = true; |
| tracePick(TopCand, IsTopNode); |
| return TopCand.SU; |
| } |
| IsTopNode = false; |
| tracePick(BotCand, IsTopNode); |
| return BotCand.SU; |
| } |
| // Check for a salient pressure difference and pick the best from either side. |
| if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { |
| IsTopNode = true; |
| tracePick(TopCand, IsTopNode); |
| return TopCand.SU; |
| } |
| // Otherwise prefer the bottom candidate, in node order if all else failed. |
| if (TopCand.Reason < BotCand.Reason) { |
| IsTopNode = true; |
| tracePick(TopCand, IsTopNode); |
| return TopCand.SU; |
| } |
| IsTopNode = false; |
| tracePick(BotCand, IsTopNode); |
| return BotCand.SU; |
| } |
| |
| /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. |
| SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { |
| if (DAG->top() == DAG->bottom()) { |
| assert(Top.Available.empty() && Top.Pending.empty() && |
| Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); |
| return NULL; |
| } |
| SUnit *SU; |
| do { |
| if (ForceTopDown) { |
| SU = Top.pickOnlyChoice(); |
| if (!SU) { |
| CandPolicy NoPolicy; |
| SchedCandidate TopCand(NoPolicy); |
| pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find the first candidate"); |
| SU = TopCand.SU; |
| } |
| IsTopNode = true; |
| } |
| else if (ForceBottomUp) { |
| SU = Bot.pickOnlyChoice(); |
| if (!SU) { |
| CandPolicy NoPolicy; |
| SchedCandidate BotCand(NoPolicy); |
| pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); |
| assert(BotCand.Reason != NoCand && "failed to find the first candidate"); |
| SU = BotCand.SU; |
| } |
| IsTopNode = false; |
| } |
| else { |
| SU = pickNodeBidirectional(IsTopNode); |
| } |
| } while (SU->isScheduled); |
| |
| if (SU->isTopReady()) |
| Top.removeReady(SU); |
| if (SU->isBottomReady()) |
| Bot.removeReady(SU); |
| |
| DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") |
| << " Scheduling Instruction in cycle " |
| << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; |
| SU->dump(DAG)); |
| return SU; |
| } |
| |
| /// Update the scheduler's state after scheduling a node. This is the same node |
| /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update |
| /// it's state based on the current cycle before MachineSchedStrategy does. |
| void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { |
| if (IsTopNode) { |
| SU->TopReadyCycle = Top.CurrCycle; |
| Top.bumpNode(SU); |
| } |
| else { |
| SU->BotReadyCycle = Bot.CurrCycle; |
| Bot.bumpNode(SU); |
| } |
| } |
| |
| /// Create the standard converging machine scheduler. This will be used as the |
| /// default scheduler if the target does not set a default. |
| static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { |
| assert((!ForceTopDown || !ForceBottomUp) && |
| "-misched-topdown incompatible with -misched-bottomup"); |
| ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); |
| // Register DAG post-processors. |
| if (EnableLoadCluster) |
| DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); |
| if (EnableMacroFusion) |
| DAG->addMutation(new MacroFusion(DAG->TII)); |
| return DAG; |
| } |
| static MachineSchedRegistry |
| ConvergingSchedRegistry("converge", "Standard converging scheduler.", |
| createConvergingSched); |
| |
| //===----------------------------------------------------------------------===// |
| // ILP Scheduler. Currently for experimental analysis of heuristics. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// \brief Order nodes by the ILP metric. |
| struct ILPOrder { |
| const SchedDFSResult *DFSResult; |
| const BitVector *ScheduledTrees; |
| bool MaximizeILP; |
| |
| ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} |
| |
| /// \brief Apply a less-than relation on node priority. |
| /// |
| /// (Return true if A comes after B in the Q.) |
| bool operator()(const SUnit *A, const SUnit *B) const { |
| unsigned SchedTreeA = DFSResult->getSubtreeID(A); |
| unsigned SchedTreeB = DFSResult->getSubtreeID(B); |
| if (SchedTreeA != SchedTreeB) { |
| // Unscheduled trees have lower priority. |
| if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) |
| return ScheduledTrees->test(SchedTreeB); |
| |
| // Trees with shallower connections have have lower priority. |
| if (DFSResult->getSubtreeLevel(SchedTreeA) |
| != DFSResult->getSubtreeLevel(SchedTreeB)) { |
| return DFSResult->getSubtreeLevel(SchedTreeA) |
| < DFSResult->getSubtreeLevel(SchedTreeB); |
| } |
| } |
| if (MaximizeILP) |
| return DFSResult->getILP(A) < DFSResult->getILP(B); |
| else |
| return DFSResult->getILP(A) > DFSResult->getILP(B); |
| } |
| }; |
| |
| /// \brief Schedule based on the ILP metric. |
| class ILPScheduler : public MachineSchedStrategy { |
| /// In case all subtrees are eventually connected to a common root through |
| /// data dependence (e.g. reduction), place an upper limit on their size. |
| /// |
| /// FIXME: A subtree limit is generally good, but in the situation commented |
| /// above, where multiple similar subtrees feed a common root, we should |
| /// only split at a point where the resulting subtrees will be balanced. |
| /// (a motivating test case must be found). |
| static const unsigned SubtreeLimit = 16; |
| |
| ScheduleDAGMI *DAG; |
| ILPOrder Cmp; |
| |
| std::vector<SUnit*> ReadyQ; |
| public: |
| ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} |
| |
| virtual void initialize(ScheduleDAGMI *dag) { |
| DAG = dag; |
| DAG->computeDFSResult(); |
| Cmp.DFSResult = DAG->getDFSResult(); |
| Cmp.ScheduledTrees = &DAG->getScheduledTrees(); |
| ReadyQ.clear(); |
| } |
| |
| virtual void registerRoots() { |
| // Restore the heap in ReadyQ with the updated DFS results. |
| std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); |
| } |
| |
| /// Implement MachineSchedStrategy interface. |
| /// ----------------------------------------- |
| |
| /// Callback to select the highest priority node from the ready Q. |
| virtual SUnit *pickNode(bool &IsTopNode) { |
| if (ReadyQ.empty()) return NULL; |
| pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); |
| SUnit *SU = ReadyQ.back(); |
| ReadyQ.pop_back(); |
| IsTopNode = false; |
| DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): " |
| << *SU->getInstr() |
| << " ILP: " << DAG->getDFSResult()->getILP(SU) |
| << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" |
| << DAG->getDFSResult()->getSubtreeLevel( |
| DAG->getDFSResult()->getSubtreeID(SU)) << '\n'); |
| return SU; |
| } |
| |
| /// \brief Scheduler callback to notify that a new subtree is scheduled. |
| virtual void scheduleTree(unsigned SubtreeID) { |
| std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); |
| } |
| |
| /// Callback after a node is scheduled. Mark a newly scheduled tree, notify |
| /// DFSResults, and resort the priority Q. |
| virtual void schedNode(SUnit *SU, bool IsTopNode) { |
| assert(!IsTopNode && "SchedDFSResult needs bottom-up"); |
| } |
| |
| virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } |
| |
| virtual void releaseBottomNode(SUnit *SU) { |
| ReadyQ.push_back(SU); |
| std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); |
| } |
| }; |
| } // namespace |
| |
| static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { |
| return new ScheduleDAGMI(C, new ILPScheduler(true)); |
| } |
| static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { |
| return new ScheduleDAGMI(C, new ILPScheduler(false)); |
| } |
| static MachineSchedRegistry ILPMaxRegistry( |
| "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); |
| static MachineSchedRegistry ILPMinRegistry( |
| "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); |
| |
| //===----------------------------------------------------------------------===// |
| // Machine Instruction Shuffler for Correctness Testing |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| namespace { |
| /// Apply a less-than relation on the node order, which corresponds to the |
| /// instruction order prior to scheduling. IsReverse implements greater-than. |
| template<bool IsReverse> |
| struct SUnitOrder { |
| bool operator()(SUnit *A, SUnit *B) const { |
| if (IsReverse) |
| return A->NodeNum > B->NodeNum; |
| else |
| return A->NodeNum < B->NodeNum; |
| } |
| }; |
| |
| /// Reorder instructions as much as possible. |
| class InstructionShuffler : public MachineSchedStrategy { |
| bool IsAlternating; |
| bool IsTopDown; |
| |
| // Using a less-than relation (SUnitOrder<false>) for the TopQ priority |
| // gives nodes with a higher number higher priority causing the latest |
| // instructions to be scheduled first. |
| PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > |
| TopQ; |
| // When scheduling bottom-up, use greater-than as the queue priority. |
| PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > |
| BottomQ; |
| public: |
| InstructionShuffler(bool alternate, bool topdown) |
| : IsAlternating(alternate), IsTopDown(topdown) {} |
| |
| virtual void initialize(ScheduleDAGMI *) { |
| TopQ.clear(); |
| BottomQ.clear(); |
| } |
| |
| /// Implement MachineSchedStrategy interface. |
| /// ----------------------------------------- |
| |
| virtual SUnit *pickNode(bool &IsTopNode) { |
| SUnit *SU; |
| if (IsTopDown) { |
| do { |
| if (TopQ.empty()) return NULL; |
| SU = TopQ.top(); |
| TopQ.pop(); |
| } while (SU->isScheduled); |
| IsTopNode = true; |
| } |
| else { |
| do { |
| if (BottomQ.empty()) return NULL; |
| SU = BottomQ.top(); |
| BottomQ.pop(); |
| } while (SU->isScheduled); |
| IsTopNode = false; |
| } |
| if (IsAlternating) |
| IsTopDown = !IsTopDown; |
| return SU; |
| } |
| |
| virtual void schedNode(SUnit *SU, bool IsTopNode) {} |
| |
| virtual void releaseTopNode(SUnit *SU) { |
| TopQ.push(SU); |
| } |
| virtual void releaseBottomNode(SUnit *SU) { |
| BottomQ.push(SU); |
| } |
| }; |
| } // namespace |
| |
| static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { |
| bool Alternate = !ForceTopDown && !ForceBottomUp; |
| bool TopDown = !ForceBottomUp; |
| assert((TopDown || !ForceTopDown) && |
| "-misched-topdown incompatible with -misched-bottomup"); |
| return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); |
| } |
| static MachineSchedRegistry ShufflerRegistry( |
| "shuffle", "Shuffle machine instructions alternating directions", |
| createInstructionShuffler); |
| #endif // !NDEBUG |
| |
| //===----------------------------------------------------------------------===// |
| // GraphWriter support for ScheduleDAGMI. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| namespace llvm { |
| |
| template<> struct GraphTraits< |
| ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; |
| |
| template<> |
| struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { |
| |
| DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} |
| |
| static std::string getGraphName(const ScheduleDAG *G) { |
| return G->MF.getName(); |
| } |
| |
| static bool renderGraphFromBottomUp() { |
| return true; |
| } |
| |
| static bool isNodeHidden(const SUnit *Node) { |
| return (Node->NumPreds > 10 || Node->NumSuccs > 10); |
| } |
| |
| static bool hasNodeAddressLabel(const SUnit *Node, |
| const ScheduleDAG *Graph) { |
| return false; |
| } |
| |
| /// If you want to override the dot attributes printed for a particular |
| /// edge, override this method. |
| static std::string getEdgeAttributes(const SUnit *Node, |
| SUnitIterator EI, |
| const ScheduleDAG *Graph) { |
| if (EI.isArtificialDep()) |
| return "color=cyan,style=dashed"; |
| if (EI.isCtrlDep()) |
| return "color=blue,style=dashed"; |
| return ""; |
| } |
| |
| static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { |
| std::string Str; |
| raw_string_ostream SS(Str); |
| SS << "SU(" << SU->NodeNum << ')'; |
| return SS.str(); |
| } |
| static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { |
| return G->getGraphNodeLabel(SU); |
| } |
| |
| static std::string getNodeAttributes(const SUnit *N, |
| const ScheduleDAG *Graph) { |
| std::string Str("shape=Mrecord"); |
| const SchedDFSResult *DFS = |
| static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); |
| if (DFS) { |
| Str += ",style=filled,fillcolor=\"#"; |
| Str += DOT::getColorString(DFS->getSubtreeID(N)); |
| Str += '"'; |
| } |
| return Str; |
| } |
| }; |
| } // namespace llvm |
| #endif // NDEBUG |
| |
| /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG |
| /// rendered using 'dot'. |
| /// |
| void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { |
| #ifndef NDEBUG |
| ViewGraph(this, Name, false, Title); |
| #else |
| errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " |
| << "systems with Graphviz or gv!\n"; |
| #endif // NDEBUG |
| } |
| |
| /// Out-of-line implementation with no arguments is handy for gdb. |
| void ScheduleDAGMI::viewGraph() { |
| viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); |
| } |