| //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SelectionDAG::LegalizeVectors method. |
| // |
| // The vector legalizer looks for vector operations which might need to be |
| // scalarized and legalizes them. This is a separate step from Legalize because |
| // scalarizing can introduce illegal types. For example, suppose we have an |
| // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition |
| // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the |
| // operation, which introduces nodes with the illegal type i64 which must be |
| // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; |
| // the operation must be unrolled, which introduces nodes with the illegal |
| // type i8 which must be promoted. |
| // |
| // This does not legalize vector manipulations like ISD::BUILD_VECTOR, |
| // or operations that happen to take a vector which are custom-lowered; |
| // the legalization for such operations never produces nodes |
| // with illegal types, so it's okay to put off legalizing them until |
| // SelectionDAG::Legalize runs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Target/TargetLowering.h" |
| using namespace llvm; |
| |
| namespace { |
| class VectorLegalizer { |
| SelectionDAG& DAG; |
| const TargetLowering &TLI; |
| bool Changed; // Keep track of whether anything changed |
| |
| /// LegalizedNodes - For nodes that are of legal width, and that have more |
| /// than one use, this map indicates what regularized operand to use. This |
| /// allows us to avoid legalizing the same thing more than once. |
| SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; |
| |
| // Adds a node to the translation cache |
| void AddLegalizedOperand(SDValue From, SDValue To) { |
| LegalizedNodes.insert(std::make_pair(From, To)); |
| // If someone requests legalization of the new node, return itself. |
| if (From != To) |
| LegalizedNodes.insert(std::make_pair(To, To)); |
| } |
| |
| // Legalizes the given node |
| SDValue LegalizeOp(SDValue Op); |
| // Assuming the node is legal, "legalize" the results |
| SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); |
| // Implements unrolling a VSETCC. |
| SDValue UnrollVSETCC(SDValue Op); |
| // Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB |
| // isn't legal. |
| // Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if |
| // SINT_TO_FLOAT and SHR on vectors isn't legal. |
| SDValue ExpandUINT_TO_FLOAT(SDValue Op); |
| // Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. |
| SDValue ExpandSEXTINREG(SDValue Op); |
| // Implement vselect in terms of XOR, AND, OR when blend is not supported |
| // by the target. |
| SDValue ExpandVSELECT(SDValue Op); |
| SDValue ExpandSELECT(SDValue Op); |
| SDValue ExpandLoad(SDValue Op); |
| SDValue ExpandStore(SDValue Op); |
| SDValue ExpandFNEG(SDValue Op); |
| // Implements vector promotion; this is essentially just bitcasting the |
| // operands to a different type and bitcasting the result back to the |
| // original type. |
| SDValue PromoteVectorOp(SDValue Op); |
| // Implements [SU]INT_TO_FP vector promotion; this is a [zs]ext of the input |
| // operand to the next size up. |
| SDValue PromoteVectorOpINT_TO_FP(SDValue Op); |
| |
| public: |
| bool Run(); |
| VectorLegalizer(SelectionDAG& dag) : |
| DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} |
| }; |
| |
| bool VectorLegalizer::Run() { |
| // Before we start legalizing vector nodes, check if there are any vectors. |
| bool HasVectors = false; |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) { |
| // Check if the values of the nodes contain vectors. We don't need to check |
| // the operands because we are going to check their values at some point. |
| for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); |
| J != E; ++J) |
| HasVectors |= J->isVector(); |
| |
| // If we found a vector node we can start the legalization. |
| if (HasVectors) |
| break; |
| } |
| |
| // If this basic block has no vectors then no need to legalize vectors. |
| if (!HasVectors) |
| return false; |
| |
| // The legalize process is inherently a bottom-up recursive process (users |
| // legalize their uses before themselves). Given infinite stack space, we |
| // could just start legalizing on the root and traverse the whole graph. In |
| // practice however, this causes us to run out of stack space on large basic |
| // blocks. To avoid this problem, compute an ordering of the nodes where each |
| // node is only legalized after all of its operands are legalized. |
| DAG.AssignTopologicalOrder(); |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) |
| LegalizeOp(SDValue(I, 0)); |
| |
| // Finally, it's possible the root changed. Get the new root. |
| SDValue OldRoot = DAG.getRoot(); |
| assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); |
| DAG.setRoot(LegalizedNodes[OldRoot]); |
| |
| LegalizedNodes.clear(); |
| |
| // Remove dead nodes now. |
| DAG.RemoveDeadNodes(); |
| |
| return Changed; |
| } |
| |
| SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { |
| // Generic legalization: just pass the operand through. |
| for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) |
| AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); |
| return Result.getValue(Op.getResNo()); |
| } |
| |
| SDValue VectorLegalizer::LegalizeOp(SDValue Op) { |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); |
| if (I != LegalizedNodes.end()) return I->second; |
| |
| SDNode* Node = Op.getNode(); |
| |
| // Legalize the operands |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Ops.push_back(LegalizeOp(Node->getOperand(i))); |
| |
| SDValue Result = |
| SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops.data(), Ops.size()), 0); |
| |
| if (Op.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { |
| if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT())) |
| return TranslateLegalizeResults(Op, Result); |
| Changed = true; |
| return LegalizeOp(ExpandLoad(Op)); |
| } |
| } else if (Op.getOpcode() == ISD::STORE) { |
| StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); |
| EVT StVT = ST->getMemoryVT(); |
| MVT ValVT = ST->getValue().getSimpleValueType(); |
| if (StVT.isVector() && ST->isTruncatingStore()) |
| switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: |
| return TranslateLegalizeResults(Op, Result); |
| case TargetLowering::Custom: |
| Changed = true; |
| return LegalizeOp(TLI.LowerOperation(Result, DAG)); |
| case TargetLowering::Expand: |
| Changed = true; |
| return LegalizeOp(ExpandStore(Op)); |
| } |
| } |
| |
| bool HasVectorValue = false; |
| for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); |
| J != E; |
| ++J) |
| HasVectorValue |= J->isVector(); |
| if (!HasVectorValue) |
| return TranslateLegalizeResults(Op, Result); |
| |
| EVT QueryType; |
| switch (Op.getOpcode()) { |
| default: |
| return TranslateLegalizeResults(Op, Result); |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| case ISD::CTLZ: |
| case ISD::CTTZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| case ISD::CTTZ_ZERO_UNDEF: |
| case ISD::CTPOP: |
| case ISD::SELECT: |
| case ISD::VSELECT: |
| case ISD::SELECT_CC: |
| case ISD::SETCC: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| case ISD::TRUNCATE: |
| case ISD::SIGN_EXTEND: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::FNEG: |
| case ISD::FABS: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FPOWI: |
| case ISD::FPOW: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FCEIL: |
| case ISD::FTRUNC: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| case ISD::FFLOOR: |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| case ISD::FMA: |
| case ISD::SIGN_EXTEND_INREG: |
| QueryType = Node->getValueType(0); |
| break; |
| case ISD::FP_ROUND_INREG: |
| QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| break; |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| QueryType = Node->getOperand(0).getValueType(); |
| break; |
| } |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { |
| case TargetLowering::Promote: |
| switch (Op.getOpcode()) { |
| default: |
| // "Promote" the operation by bitcasting |
| Result = PromoteVectorOp(Op); |
| Changed = true; |
| break; |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| // "Promote" the operation by extending the operand. |
| Result = PromoteVectorOpINT_TO_FP(Op); |
| Changed = true; |
| break; |
| } |
| break; |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: { |
| SDValue Tmp1 = TLI.LowerOperation(Op, DAG); |
| if (Tmp1.getNode()) { |
| Result = Tmp1; |
| break; |
| } |
| // FALL THROUGH |
| } |
| case TargetLowering::Expand: |
| if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) |
| Result = ExpandSEXTINREG(Op); |
| else if (Node->getOpcode() == ISD::VSELECT) |
| Result = ExpandVSELECT(Op); |
| else if (Node->getOpcode() == ISD::SELECT) |
| Result = ExpandSELECT(Op); |
| else if (Node->getOpcode() == ISD::UINT_TO_FP) |
| Result = ExpandUINT_TO_FLOAT(Op); |
| else if (Node->getOpcode() == ISD::FNEG) |
| Result = ExpandFNEG(Op); |
| else if (Node->getOpcode() == ISD::SETCC) |
| Result = UnrollVSETCC(Op); |
| else |
| Result = DAG.UnrollVectorOp(Op.getNode()); |
| break; |
| } |
| |
| // Make sure that the generated code is itself legal. |
| if (Result != Op) { |
| Result = LegalizeOp(Result); |
| Changed = true; |
| } |
| |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| AddLegalizedOperand(Op, Result); |
| return Result; |
| } |
| |
| SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) { |
| // Vector "promotion" is basically just bitcasting and doing the operation |
| // in a different type. For example, x86 promotes ISD::AND on v2i32 to |
| // v1i64. |
| MVT VT = Op.getSimpleValueType(); |
| assert(Op.getNode()->getNumValues() == 1 && |
| "Can't promote a vector with multiple results!"); |
| MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); |
| DebugLoc dl = Op.getDebugLoc(); |
| SmallVector<SDValue, 4> Operands(Op.getNumOperands()); |
| |
| for (unsigned j = 0; j != Op.getNumOperands(); ++j) { |
| if (Op.getOperand(j).getValueType().isVector()) |
| Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); |
| else |
| Operands[j] = Op.getOperand(j); |
| } |
| |
| Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size()); |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, Op); |
| } |
| |
| SDValue VectorLegalizer::PromoteVectorOpINT_TO_FP(SDValue Op) { |
| // INT_TO_FP operations may require the input operand be promoted even |
| // when the type is otherwise legal. |
| EVT VT = Op.getOperand(0).getValueType(); |
| assert(Op.getNode()->getNumValues() == 1 && |
| "Can't promote a vector with multiple results!"); |
| |
| // Normal getTypeToPromoteTo() doesn't work here, as that will promote |
| // by widening the vector w/ the same element width and twice the number |
| // of elements. We want the other way around, the same number of elements, |
| // each twice the width. |
| // |
| // Increase the bitwidth of the element to the next pow-of-two |
| // (which is greater than 8 bits). |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| EltVT = EVT::getIntegerVT(*DAG.getContext(), 2 * EltVT.getSizeInBits()); |
| assert(EltVT.isSimple() && "Promoting to a non-simple vector type!"); |
| |
| // Build a new vector type and check if it is legal. |
| MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SmallVector<SDValue, 4> Operands(Op.getNumOperands()); |
| |
| unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : |
| ISD::SIGN_EXTEND; |
| for (unsigned j = 0; j != Op.getNumOperands(); ++j) { |
| if (Op.getOperand(j).getValueType().isVector()) |
| Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); |
| else |
| Operands[j] = Op.getOperand(j); |
| } |
| |
| return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), &Operands[0], |
| Operands.size()); |
| } |
| |
| |
| SDValue VectorLegalizer::ExpandLoad(SDValue Op) { |
| DebugLoc dl = Op.getDebugLoc(); |
| LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); |
| SDValue Chain = LD->getChain(); |
| SDValue BasePTR = LD->getBasePtr(); |
| EVT SrcVT = LD->getMemoryVT(); |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| |
| SmallVector<SDValue, 8> Vals; |
| SmallVector<SDValue, 8> LoadChains; |
| unsigned NumElem = SrcVT.getVectorNumElements(); |
| |
| EVT SrcEltVT = SrcVT.getScalarType(); |
| EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); |
| |
| if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { |
| // When elements in a vector is not byte-addressable, we cannot directly |
| // load each element by advancing pointer, which could only address bytes. |
| // Instead, we load all significant words, mask bits off, and concatenate |
| // them to form each element. Finally, they are extended to destination |
| // scalar type to build the destination vector. |
| EVT WideVT = TLI.getPointerTy(); |
| |
| assert(WideVT.isRound() && |
| "Could not handle the sophisticated case when the widest integer is" |
| " not power of 2."); |
| assert(WideVT.bitsGE(SrcEltVT) && |
| "Type is not legalized?"); |
| |
| unsigned WideBytes = WideVT.getStoreSize(); |
| unsigned Offset = 0; |
| unsigned RemainingBytes = SrcVT.getStoreSize(); |
| SmallVector<SDValue, 8> LoadVals; |
| |
| while (RemainingBytes > 0) { |
| SDValue ScalarLoad; |
| unsigned LoadBytes = WideBytes; |
| |
| if (RemainingBytes >= LoadBytes) { |
| ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, |
| LD->getPointerInfo().getWithOffset(Offset), |
| LD->isVolatile(), LD->isNonTemporal(), |
| LD->isInvariant(), LD->getAlignment()); |
| } else { |
| EVT LoadVT = WideVT; |
| while (RemainingBytes < LoadBytes) { |
| LoadBytes >>= 1; // Reduce the load size by half. |
| LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); |
| } |
| ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, |
| LD->getPointerInfo().getWithOffset(Offset), |
| LoadVT, LD->isVolatile(), |
| LD->isNonTemporal(), LD->getAlignment()); |
| } |
| |
| RemainingBytes -= LoadBytes; |
| Offset += LoadBytes; |
| BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, |
| DAG.getIntPtrConstant(LoadBytes)); |
| |
| LoadVals.push_back(ScalarLoad.getValue(0)); |
| LoadChains.push_back(ScalarLoad.getValue(1)); |
| } |
| |
| // Extract bits, pack and extend/trunc them into destination type. |
| unsigned SrcEltBits = SrcEltVT.getSizeInBits(); |
| SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT); |
| |
| unsigned BitOffset = 0; |
| unsigned WideIdx = 0; |
| unsigned WideBits = WideVT.getSizeInBits(); |
| |
| for (unsigned Idx = 0; Idx != NumElem; ++Idx) { |
| SDValue Lo, Hi, ShAmt; |
| |
| if (BitOffset < WideBits) { |
| ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT)); |
| Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); |
| Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); |
| } |
| |
| BitOffset += SrcEltBits; |
| if (BitOffset >= WideBits) { |
| WideIdx++; |
| Offset -= WideBits; |
| if (Offset > 0) { |
| ShAmt = DAG.getConstant(SrcEltBits - Offset, |
| TLI.getShiftAmountTy(WideVT)); |
| Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); |
| Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); |
| } |
| } |
| |
| if (Hi.getNode()) |
| Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); |
| |
| switch (ExtType) { |
| default: llvm_unreachable("Unknown extended-load op!"); |
| case ISD::EXTLOAD: |
| Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); |
| break; |
| case ISD::ZEXTLOAD: |
| Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); |
| break; |
| case ISD::SEXTLOAD: |
| ShAmt = DAG.getConstant(WideBits - SrcEltBits, |
| TLI.getShiftAmountTy(WideVT)); |
| Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); |
| Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); |
| Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); |
| break; |
| } |
| Vals.push_back(Lo); |
| } |
| } else { |
| unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; |
| |
| for (unsigned Idx=0; Idx<NumElem; Idx++) { |
| SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, |
| Op.getNode()->getValueType(0).getScalarType(), |
| Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), |
| SrcVT.getScalarType(), |
| LD->isVolatile(), LD->isNonTemporal(), |
| LD->getAlignment()); |
| |
| BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, |
| DAG.getIntPtrConstant(Stride)); |
| |
| Vals.push_back(ScalarLoad.getValue(0)); |
| LoadChains.push_back(ScalarLoad.getValue(1)); |
| } |
| } |
| |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &LoadChains[0], LoadChains.size()); |
| SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, |
| Op.getNode()->getValueType(0), &Vals[0], Vals.size()); |
| |
| AddLegalizedOperand(Op.getValue(0), Value); |
| AddLegalizedOperand(Op.getValue(1), NewChain); |
| |
| return (Op.getResNo() ? NewChain : Value); |
| } |
| |
| SDValue VectorLegalizer::ExpandStore(SDValue Op) { |
| DebugLoc dl = Op.getDebugLoc(); |
| StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); |
| SDValue Chain = ST->getChain(); |
| SDValue BasePTR = ST->getBasePtr(); |
| SDValue Value = ST->getValue(); |
| EVT StVT = ST->getMemoryVT(); |
| |
| unsigned Alignment = ST->getAlignment(); |
| bool isVolatile = ST->isVolatile(); |
| bool isNonTemporal = ST->isNonTemporal(); |
| |
| unsigned NumElem = StVT.getVectorNumElements(); |
| // The type of the data we want to save |
| EVT RegVT = Value.getValueType(); |
| EVT RegSclVT = RegVT.getScalarType(); |
| // The type of data as saved in memory. |
| EVT MemSclVT = StVT.getScalarType(); |
| |
| // Cast floats into integers |
| unsigned ScalarSize = MemSclVT.getSizeInBits(); |
| |
| // Round odd types to the next pow of two. |
| if (!isPowerOf2_32(ScalarSize)) |
| ScalarSize = NextPowerOf2(ScalarSize); |
| |
| // Store Stride in bytes |
| unsigned Stride = ScalarSize/8; |
| // Extract each of the elements from the original vector |
| // and save them into memory individually. |
| SmallVector<SDValue, 8> Stores; |
| for (unsigned Idx = 0; Idx < NumElem; Idx++) { |
| SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| RegSclVT, Value, DAG.getIntPtrConstant(Idx)); |
| |
| // This scalar TruncStore may be illegal, but we legalize it later. |
| SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, |
| ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, |
| isVolatile, isNonTemporal, Alignment); |
| |
| BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, |
| DAG.getIntPtrConstant(Stride)); |
| |
| Stores.push_back(Store); |
| } |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &Stores[0], Stores.size()); |
| AddLegalizedOperand(Op, TF); |
| return TF; |
| } |
| |
| SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { |
| // Lower a select instruction where the condition is a scalar and the |
| // operands are vectors. Lower this select to VSELECT and implement it |
| // using XOR AND OR. The selector bit is broadcasted. |
| EVT VT = Op.getValueType(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| SDValue Mask = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue Op2 = Op.getOperand(2); |
| |
| assert(VT.isVector() && !Mask.getValueType().isVector() |
| && Op1.getValueType() == Op2.getValueType() && "Invalid type"); |
| |
| unsigned NumElem = VT.getVectorNumElements(); |
| |
| // If we can't even use the basic vector operations of |
| // AND,OR,XOR, we will have to scalarize the op. |
| // Notice that the operation may be 'promoted' which means that it is |
| // 'bitcasted' to another type which is handled. |
| // Also, we need to be able to construct a splat vector using BUILD_VECTOR. |
| if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| // Generate a mask operand. |
| EVT MaskTy = TLI.getSetCCResultType(VT); |
| assert(MaskTy.isVector() && "Invalid CC type"); |
| assert(MaskTy.getSizeInBits() == Op1.getValueType().getSizeInBits() |
| && "Invalid mask size"); |
| |
| // What is the size of each element in the vector mask. |
| EVT BitTy = MaskTy.getScalarType(); |
| |
| Mask = DAG.getNode(ISD::SELECT, DL, BitTy, Mask, |
| DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy), |
| DAG.getConstant(0, BitTy)); |
| |
| // Broadcast the mask so that the entire vector is all-one or all zero. |
| SmallVector<SDValue, 8> Ops(NumElem, Mask); |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, &Ops[0], Ops.size()); |
| |
| // Bitcast the operands to be the same type as the mask. |
| // This is needed when we select between FP types because |
| // the mask is a vector of integers. |
| Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); |
| Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); |
| |
| SDValue AllOnes = DAG.getConstant( |
| APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy); |
| SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); |
| |
| Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); |
| Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); |
| SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); |
| return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); |
| } |
| |
| SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { |
| EVT VT = Op.getValueType(); |
| |
| // Make sure that the SRA and SHL instructions are available. |
| if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| DebugLoc DL = Op.getDebugLoc(); |
| EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); |
| |
| unsigned BW = VT.getScalarType().getSizeInBits(); |
| unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); |
| SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT); |
| |
| Op = Op.getOperand(0); |
| Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); |
| return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); |
| } |
| |
| SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { |
| // Implement VSELECT in terms of XOR, AND, OR |
| // on platforms which do not support blend natively. |
| EVT VT = Op.getOperand(0).getValueType(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| SDValue Mask = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue Op2 = Op.getOperand(2); |
| |
| // If we can't even use the basic vector operations of |
| // AND,OR,XOR, we will have to scalarize the op. |
| // Notice that the operation may be 'promoted' which means that it is |
| // 'bitcasted' to another type which is handled. |
| // This operation also isn't safe with AND, OR, XOR when the boolean |
| // type is 0/1 as we need an all ones vector constant to mask with. |
| // FIXME: Sign extend 1 to all ones if thats legal on the target. |
| if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || |
| TLI.getBooleanContents(true) != |
| TargetLowering::ZeroOrNegativeOneBooleanContent) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| assert(VT.getSizeInBits() == Op1.getValueType().getSizeInBits() |
| && "Invalid mask size"); |
| // Bitcast the operands to be the same type as the mask. |
| // This is needed when we select between FP types because |
| // the mask is a vector of integers. |
| Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); |
| Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); |
| |
| SDValue AllOnes = DAG.getConstant( |
| APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); |
| SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); |
| |
| Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); |
| Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); |
| SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); |
| return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); |
| } |
| |
| SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { |
| EVT VT = Op.getOperand(0).getValueType(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| // Make sure that the SINT_TO_FP and SRL instructions are available. |
| if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || |
| TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| EVT SVT = VT.getScalarType(); |
| assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && |
| "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); |
| |
| unsigned BW = SVT.getSizeInBits(); |
| SDValue HalfWord = DAG.getConstant(BW/2, VT); |
| |
| // Constants to clear the upper part of the word. |
| // Notice that we can also use SHL+SHR, but using a constant is slightly |
| // faster on x86. |
| uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; |
| SDValue HalfWordMask = DAG.getConstant(HWMask, VT); |
| |
| // Two to the power of half-word-size. |
| SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); |
| |
| // Clear upper part of LO, lower HI |
| SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); |
| SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); |
| |
| // Convert hi and lo to floats |
| // Convert the hi part back to the upper values |
| SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); |
| fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); |
| SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); |
| |
| // Add the two halves |
| return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); |
| } |
| |
| |
| SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { |
| if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { |
| SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); |
| return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), |
| Zero, Op.getOperand(0)); |
| } |
| return DAG.UnrollVectorOp(Op.getNode()); |
| } |
| |
| SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { |
| EVT VT = Op.getValueType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); |
| EVT TmpEltVT = LHS.getValueType().getVectorElementType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SmallVector<SDValue, 8> Ops(NumElems); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, |
| DAG.getIntPtrConstant(i)); |
| SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, |
| DAG.getIntPtrConstant(i)); |
| Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT), |
| LHSElem, RHSElem, CC); |
| Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i], |
| DAG.getConstant(APInt::getAllOnesValue |
| (EltVT.getSizeInBits()), EltVT), |
| DAG.getConstant(0, EltVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems); |
| } |
| |
| } |
| |
| bool SelectionDAG::LegalizeVectors() { |
| return VectorLegalizer(*this).Run(); |
| } |