| //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes how to lower LLVM code to machine code. This has two |
| // main components: |
| // |
| // 1. Which ValueTypes are natively supported by the target. |
| // 2. Which operations are supported for supported ValueTypes. |
| // 3. Cost thresholds for alternative implementations of certain operations. |
| // |
| // In addition it has a few other components, like information about FP |
| // immediates. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TARGET_TARGETLOWERING_H |
| #define LLVM_TARGET_TARGETLOWERING_H |
| |
| #include "llvm/Constants.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <map> |
| #include <vector> |
| |
| namespace llvm { |
| class AllocaInst; |
| class Function; |
| class FastISel; |
| class MachineBasicBlock; |
| class MachineFunction; |
| class MachineFrameInfo; |
| class MachineInstr; |
| class MachineModuleInfo; |
| class SDNode; |
| class SDValue; |
| class SelectionDAG; |
| class TargetData; |
| class TargetMachine; |
| class TargetRegisterClass; |
| class TargetSubtarget; |
| class Value; |
| class VectorType; |
| |
| //===----------------------------------------------------------------------===// |
| /// TargetLowering - This class defines information used to lower LLVM code to |
| /// legal SelectionDAG operators that the target instruction selector can accept |
| /// natively. |
| /// |
| /// This class also defines callbacks that targets must implement to lower |
| /// target-specific constructs to SelectionDAG operators. |
| /// |
| class TargetLowering { |
| public: |
| /// LegalizeAction - This enum indicates whether operations are valid for a |
| /// target, and if not, what action should be used to make them valid. |
| enum LegalizeAction { |
| Legal, // The target natively supports this operation. |
| Promote, // This operation should be executed in a larger type. |
| Expand, // Try to expand this to other ops, otherwise use a libcall. |
| Custom // Use the LowerOperation hook to implement custom lowering. |
| }; |
| |
| enum OutOfRangeShiftAmount { |
| Undefined, // Oversized shift amounts are undefined (default). |
| Mask, // Shift amounts are auto masked (anded) to value size. |
| Extend // Oversized shift pulls in zeros or sign bits. |
| }; |
| |
| enum SetCCResultValue { |
| UndefinedSetCCResult, // SetCC returns a garbage/unknown extend. |
| ZeroOrOneSetCCResult, // SetCC returns a zero extended result. |
| ZeroOrNegativeOneSetCCResult // SetCC returns a sign extended result. |
| }; |
| |
| enum SchedPreference { |
| SchedulingForLatency, // Scheduling for shortest total latency. |
| SchedulingForRegPressure // Scheduling for lowest register pressure. |
| }; |
| |
| explicit TargetLowering(TargetMachine &TM); |
| virtual ~TargetLowering(); |
| |
| TargetMachine &getTargetMachine() const { return TM; } |
| const TargetData *getTargetData() const { return TD; } |
| |
| bool isBigEndian() const { return !IsLittleEndian; } |
| bool isLittleEndian() const { return IsLittleEndian; } |
| MVT getPointerTy() const { return PointerTy; } |
| MVT getShiftAmountTy() const { return ShiftAmountTy; } |
| OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; } |
| |
| /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC |
| /// codegen. |
| bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; } |
| |
| /// isSelectExpensive - Return true if the select operation is expensive for |
| /// this target. |
| bool isSelectExpensive() const { return SelectIsExpensive; } |
| |
| /// isIntDivCheap() - Return true if integer divide is usually cheaper than |
| /// a sequence of several shifts, adds, and multiplies for this target. |
| bool isIntDivCheap() const { return IntDivIsCheap; } |
| |
| /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of |
| /// srl/add/sra. |
| bool isPow2DivCheap() const { return Pow2DivIsCheap; } |
| |
| /// getSetCCResultType - Return the ValueType of the result of setcc |
| /// operations. |
| virtual MVT getSetCCResultType(const SDValue &) const; |
| |
| /// getSetCCResultContents - For targets without boolean registers, this flag |
| /// returns information about the contents of the high-bits in the setcc |
| /// result register. |
| SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;} |
| |
| /// getSchedulingPreference - Return target scheduling preference. |
| SchedPreference getSchedulingPreference() const { |
| return SchedPreferenceInfo; |
| } |
| |
| /// getRegClassFor - Return the register class that should be used for the |
| /// specified value type. This may only be called on legal types. |
| TargetRegisterClass *getRegClassFor(MVT VT) const { |
| assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT)); |
| TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT()]; |
| assert(RC && "This value type is not natively supported!"); |
| return RC; |
| } |
| |
| /// isTypeLegal - Return true if the target has native support for the |
| /// specified value type. This means that it has a register that directly |
| /// holds it without promotions or expansions. |
| bool isTypeLegal(MVT VT) const { |
| assert(!VT.isSimple() || |
| (unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT)); |
| return VT.isSimple() && RegClassForVT[VT.getSimpleVT()] != 0; |
| } |
| |
| class ValueTypeActionImpl { |
| /// ValueTypeActions - This is a bitvector that contains two bits for each |
| /// value type, where the two bits correspond to the LegalizeAction enum. |
| /// This can be queried with "getTypeAction(VT)". |
| uint32_t ValueTypeActions[2]; |
| public: |
| ValueTypeActionImpl() { |
| ValueTypeActions[0] = ValueTypeActions[1] = 0; |
| } |
| ValueTypeActionImpl(const ValueTypeActionImpl &RHS) { |
| ValueTypeActions[0] = RHS.ValueTypeActions[0]; |
| ValueTypeActions[1] = RHS.ValueTypeActions[1]; |
| } |
| |
| LegalizeAction getTypeAction(MVT VT) const { |
| if (VT.isExtended()) { |
| if (VT.isVector()) return Expand; |
| if (VT.isInteger()) |
| // First promote to a power-of-two size, then expand if necessary. |
| return VT == VT.getRoundIntegerType() ? Expand : Promote; |
| assert(0 && "Unsupported extended type!"); |
| return Legal; |
| } |
| unsigned I = VT.getSimpleVT(); |
| assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0])); |
| return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3); |
| } |
| void setTypeAction(MVT VT, LegalizeAction Action) { |
| unsigned I = VT.getSimpleVT(); |
| assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0])); |
| ValueTypeActions[I>>4] |= Action << ((I*2) & 31); |
| } |
| }; |
| |
| const ValueTypeActionImpl &getValueTypeActions() const { |
| return ValueTypeActions; |
| } |
| |
| /// getTypeAction - Return how we should legalize values of this type, either |
| /// it is already legal (return 'Legal') or we need to promote it to a larger |
| /// type (return 'Promote'), or we need to expand it into multiple registers |
| /// of smaller integer type (return 'Expand'). 'Custom' is not an option. |
| LegalizeAction getTypeAction(MVT VT) const { |
| return ValueTypeActions.getTypeAction(VT); |
| } |
| |
| /// getTypeToTransformTo - For types supported by the target, this is an |
| /// identity function. For types that must be promoted to larger types, this |
| /// returns the larger type to promote to. For integer types that are larger |
| /// than the largest integer register, this contains one step in the expansion |
| /// to get to the smaller register. For illegal floating point types, this |
| /// returns the integer type to transform to. |
| MVT getTypeToTransformTo(MVT VT) const { |
| if (VT.isSimple()) { |
| assert((unsigned)VT.getSimpleVT() < array_lengthof(TransformToType)); |
| MVT NVT = TransformToType[VT.getSimpleVT()]; |
| assert(getTypeAction(NVT) != Promote && |
| "Promote may not follow Expand or Promote"); |
| return NVT; |
| } |
| |
| if (VT.isVector()) |
| return MVT::getVectorVT(VT.getVectorElementType(), |
| VT.getVectorNumElements() / 2); |
| if (VT.isInteger()) { |
| MVT NVT = VT.getRoundIntegerType(); |
| if (NVT == VT) |
| // Size is a power of two - expand to half the size. |
| return MVT::getIntegerVT(VT.getSizeInBits() / 2); |
| else |
| // Promote to a power of two size, avoiding multi-step promotion. |
| return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT; |
| } |
| assert(0 && "Unsupported extended type!"); |
| return MVT(); // Not reached |
| } |
| |
| /// getTypeToExpandTo - For types supported by the target, this is an |
| /// identity function. For types that must be expanded (i.e. integer types |
| /// that are larger than the largest integer register or illegal floating |
| /// point types), this returns the largest legal type it will be expanded to. |
| MVT getTypeToExpandTo(MVT VT) const { |
| assert(!VT.isVector()); |
| while (true) { |
| switch (getTypeAction(VT)) { |
| case Legal: |
| return VT; |
| case Expand: |
| VT = getTypeToTransformTo(VT); |
| break; |
| default: |
| assert(false && "Type is not legal nor is it to be expanded!"); |
| return VT; |
| } |
| } |
| return VT; |
| } |
| |
| /// getVectorTypeBreakdown - Vector types are broken down into some number of |
| /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 |
| /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. |
| /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. |
| /// |
| /// This method returns the number of registers needed, and the VT for each |
| /// register. It also returns the VT and quantity of the intermediate values |
| /// before they are promoted/expanded. |
| /// |
| unsigned getVectorTypeBreakdown(MVT VT, |
| MVT &IntermediateVT, |
| unsigned &NumIntermediates, |
| MVT &RegisterVT) const; |
| |
| typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator; |
| legal_fpimm_iterator legal_fpimm_begin() const { |
| return LegalFPImmediates.begin(); |
| } |
| legal_fpimm_iterator legal_fpimm_end() const { |
| return LegalFPImmediates.end(); |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const { |
| return true; |
| } |
| |
| /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is |
| /// used by Targets can use this to indicate if there is a suitable |
| /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant |
| /// pool entry. |
| virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps, |
| MVT EVT, |
| SelectionDAG &DAG) const { |
| return false; |
| } |
| |
| /// getOperationAction - Return how this operation should be treated: either |
| /// it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction getOperationAction(unsigned Op, MVT VT) const { |
| if (VT.isExtended()) return Expand; |
| assert(Op < array_lengthof(OpActions) && |
| (unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 && |
| "Table isn't big enough!"); |
| return (LegalizeAction)((OpActions[Op] >> (2*VT.getSimpleVT())) & 3); |
| } |
| |
| /// isOperationLegal - Return true if the specified operation is legal on this |
| /// target. |
| bool isOperationLegal(unsigned Op, MVT VT) const { |
| return (VT == MVT::Other || isTypeLegal(VT)) && |
| (getOperationAction(Op, VT) == Legal || |
| getOperationAction(Op, VT) == Custom); |
| } |
| |
| /// getLoadExtAction - Return how this load with extension should be treated: |
| /// either it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction getLoadExtAction(unsigned LType, MVT VT) const { |
| assert(LType < array_lengthof(LoadExtActions) && |
| (unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 && |
| "Table isn't big enough!"); |
| return (LegalizeAction)((LoadExtActions[LType] >> (2*VT.getSimpleVT())) & 3); |
| } |
| |
| /// isLoadExtLegal - Return true if the specified load with extension is legal |
| /// on this target. |
| bool isLoadExtLegal(unsigned LType, MVT VT) const { |
| return VT.isSimple() && |
| (getLoadExtAction(LType, VT) == Legal || |
| getLoadExtAction(LType, VT) == Custom); |
| } |
| |
| /// getTruncStoreAction - Return how this store with truncation should be |
| /// treated: either it is legal, needs to be promoted to a larger size, needs |
| /// to be expanded to some other code sequence, or the target has a custom |
| /// expander for it. |
| LegalizeAction getTruncStoreAction(MVT ValVT, |
| MVT MemVT) const { |
| assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) && |
| (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 && |
| "Table isn't big enough!"); |
| return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT()] >> |
| (2*MemVT.getSimpleVT())) & 3); |
| } |
| |
| /// isTruncStoreLegal - Return true if the specified store with truncation is |
| /// legal on this target. |
| bool isTruncStoreLegal(MVT ValVT, MVT MemVT) const { |
| return isTypeLegal(ValVT) && MemVT.isSimple() && |
| (getTruncStoreAction(ValVT, MemVT) == Legal || |
| getTruncStoreAction(ValVT, MemVT) == Custom); |
| } |
| |
| /// getIndexedLoadAction - Return how the indexed load should be treated: |
| /// either it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction |
| getIndexedLoadAction(unsigned IdxMode, MVT VT) const { |
| assert(IdxMode < array_lengthof(IndexedModeActions[0]) && |
| (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0][0])*4 && |
| "Table isn't big enough!"); |
| return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> |
| (2*VT.getSimpleVT())) & 3); |
| } |
| |
| /// isIndexedLoadLegal - Return true if the specified indexed load is legal |
| /// on this target. |
| bool isIndexedLoadLegal(unsigned IdxMode, MVT VT) const { |
| return VT.isSimple() && |
| (getIndexedLoadAction(IdxMode, VT) == Legal || |
| getIndexedLoadAction(IdxMode, VT) == Custom); |
| } |
| |
| /// getIndexedStoreAction - Return how the indexed store should be treated: |
| /// either it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction |
| getIndexedStoreAction(unsigned IdxMode, MVT VT) const { |
| assert(IdxMode < array_lengthof(IndexedModeActions[1]) && |
| (unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 && |
| "Table isn't big enough!"); |
| return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> |
| (2*VT.getSimpleVT())) & 3); |
| } |
| |
| /// isIndexedStoreLegal - Return true if the specified indexed load is legal |
| /// on this target. |
| bool isIndexedStoreLegal(unsigned IdxMode, MVT VT) const { |
| return VT.isSimple() && |
| (getIndexedStoreAction(IdxMode, VT) == Legal || |
| getIndexedStoreAction(IdxMode, VT) == Custom); |
| } |
| |
| /// getConvertAction - Return how the conversion should be treated: |
| /// either it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction |
| getConvertAction(MVT FromVT, MVT ToVT) const { |
| assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) && |
| (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 && |
| "Table isn't big enough!"); |
| return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT()] >> |
| (2*ToVT.getSimpleVT())) & 3); |
| } |
| |
| /// isConvertLegal - Return true if the specified conversion is legal |
| /// on this target. |
| bool isConvertLegal(MVT FromVT, MVT ToVT) const { |
| return isTypeLegal(FromVT) && isTypeLegal(ToVT) && |
| (getConvertAction(FromVT, ToVT) == Legal || |
| getConvertAction(FromVT, ToVT) == Custom); |
| } |
| |
| /// getCondCodeAction - Return how the condition code should be treated: |
| /// either it is legal, needs to be expanded to some other code sequence, |
| /// or the target has a custom expander for it. |
| LegalizeAction |
| getCondCodeAction(ISD::CondCode CC, MVT VT) const { |
| assert((unsigned)CC < array_lengthof(CondCodeActions) && |
| (unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 && |
| "Table isn't big enough!"); |
| LegalizeAction Action = (LegalizeAction) |
| ((CondCodeActions[CC] >> (2*VT.getSimpleVT())) & 3); |
| assert(Action != Promote && "Can't promote condition code!"); |
| return Action; |
| } |
| |
| /// isCondCodeLegal - Return true if the specified condition code is legal |
| /// on this target. |
| bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const { |
| return getCondCodeAction(CC, VT) == Legal || |
| getCondCodeAction(CC, VT) == Custom; |
| } |
| |
| |
| /// getTypeToPromoteTo - If the action for this operation is to promote, this |
| /// method returns the ValueType to promote to. |
| MVT getTypeToPromoteTo(unsigned Op, MVT VT) const { |
| assert(getOperationAction(Op, VT) == Promote && |
| "This operation isn't promoted!"); |
| |
| // See if this has an explicit type specified. |
| std::map<std::pair<unsigned, MVT::SimpleValueType>, |
| MVT::SimpleValueType>::const_iterator PTTI = |
| PromoteToType.find(std::make_pair(Op, VT.getSimpleVT())); |
| if (PTTI != PromoteToType.end()) return PTTI->second; |
| |
| assert((VT.isInteger() || VT.isFloatingPoint()) && |
| "Cannot autopromote this type, add it with AddPromotedToType."); |
| |
| MVT NVT = VT; |
| do { |
| NVT = (MVT::SimpleValueType)(NVT.getSimpleVT()+1); |
| assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && |
| "Didn't find type to promote to!"); |
| } while (!isTypeLegal(NVT) || |
| getOperationAction(Op, NVT) == Promote); |
| return NVT; |
| } |
| |
| /// getValueType - Return the MVT corresponding to this LLVM type. |
| /// This is fixed by the LLVM operations except for the pointer size. If |
| /// AllowUnknown is true, this will return MVT::Other for types with no MVT |
| /// counterpart (e.g. structs), otherwise it will assert. |
| MVT getValueType(const Type *Ty, bool AllowUnknown = false) const { |
| MVT VT = MVT::getMVT(Ty, AllowUnknown); |
| return VT == MVT::iPTR ? PointerTy : VT; |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. This is the actual |
| /// alignment, not its logarithm. |
| virtual unsigned getByValTypeAlignment(const Type *Ty) const; |
| |
| /// getRegisterType - Return the type of registers that this ValueType will |
| /// eventually require. |
| MVT getRegisterType(MVT VT) const { |
| if (VT.isSimple()) { |
| assert((unsigned)VT.getSimpleVT() < array_lengthof(RegisterTypeForVT)); |
| return RegisterTypeForVT[VT.getSimpleVT()]; |
| } |
| if (VT.isVector()) { |
| MVT VT1, RegisterVT; |
| unsigned NumIntermediates; |
| (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT); |
| return RegisterVT; |
| } |
| if (VT.isInteger()) { |
| return getRegisterType(getTypeToTransformTo(VT)); |
| } |
| assert(0 && "Unsupported extended type!"); |
| return MVT(); // Not reached |
| } |
| |
| /// getNumRegisters - Return the number of registers that this ValueType will |
| /// eventually require. This is one for any types promoted to live in larger |
| /// registers, but may be more than one for types (like i64) that are split |
| /// into pieces. For types like i140, which are first promoted then expanded, |
| /// it is the number of registers needed to hold all the bits of the original |
| /// type. For an i140 on a 32 bit machine this means 5 registers. |
| unsigned getNumRegisters(MVT VT) const { |
| if (VT.isSimple()) { |
| assert((unsigned)VT.getSimpleVT() < array_lengthof(NumRegistersForVT)); |
| return NumRegistersForVT[VT.getSimpleVT()]; |
| } |
| if (VT.isVector()) { |
| MVT VT1, VT2; |
| unsigned NumIntermediates; |
| return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2); |
| } |
| if (VT.isInteger()) { |
| unsigned BitWidth = VT.getSizeInBits(); |
| unsigned RegWidth = getRegisterType(VT).getSizeInBits(); |
| return (BitWidth + RegWidth - 1) / RegWidth; |
| } |
| assert(0 && "Unsupported extended type!"); |
| return 0; // Not reached |
| } |
| |
| /// ShouldShrinkFPConstant - If true, then instruction selection should |
| /// seek to shrink the FP constant of the specified type to a smaller type |
| /// in order to save space and / or reduce runtime. |
| virtual bool ShouldShrinkFPConstant(MVT VT) const { return true; } |
| |
| /// hasTargetDAGCombine - If true, the target has custom DAG combine |
| /// transformations that it can perform for the specified node. |
| bool hasTargetDAGCombine(ISD::NodeType NT) const { |
| assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); |
| return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); |
| } |
| |
| /// This function returns the maximum number of store operations permitted |
| /// to replace a call to llvm.memset. The value is set by the target at the |
| /// performance threshold for such a replacement. |
| /// @brief Get maximum # of store operations permitted for llvm.memset |
| unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; } |
| |
| /// This function returns the maximum number of store operations permitted |
| /// to replace a call to llvm.memcpy. The value is set by the target at the |
| /// performance threshold for such a replacement. |
| /// @brief Get maximum # of store operations permitted for llvm.memcpy |
| unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; } |
| |
| /// This function returns the maximum number of store operations permitted |
| /// to replace a call to llvm.memmove. The value is set by the target at the |
| /// performance threshold for such a replacement. |
| /// @brief Get maximum # of store operations permitted for llvm.memmove |
| unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; } |
| |
| /// This function returns true if the target allows unaligned memory accesses. |
| /// This is used, for example, in situations where an array copy/move/set is |
| /// converted to a sequence of store operations. It's use helps to ensure that |
| /// such replacements don't generate code that causes an alignment error |
| /// (trap) on the target machine. |
| /// @brief Determine if the target supports unaligned memory accesses. |
| bool allowsUnalignedMemoryAccesses() const { |
| return allowUnalignedMemoryAccesses; |
| } |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove lowering. |
| /// It returns MVT::iAny if SelectionDAG should be responsible for |
| /// determining it. |
| virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align, |
| bool isSrcConst, bool isSrcStr) const { |
| return MVT::iAny; |
| } |
| |
| /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp |
| /// to implement llvm.setjmp. |
| bool usesUnderscoreSetJmp() const { |
| return UseUnderscoreSetJmp; |
| } |
| |
| /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp |
| /// to implement llvm.longjmp. |
| bool usesUnderscoreLongJmp() const { |
| return UseUnderscoreLongJmp; |
| } |
| |
| /// getStackPointerRegisterToSaveRestore - If a physical register, this |
| /// specifies the register that llvm.savestack/llvm.restorestack should save |
| /// and restore. |
| unsigned getStackPointerRegisterToSaveRestore() const { |
| return StackPointerRegisterToSaveRestore; |
| } |
| |
| /// getExceptionAddressRegister - If a physical register, this returns |
| /// the register that receives the exception address on entry to a landing |
| /// pad. |
| unsigned getExceptionAddressRegister() const { |
| return ExceptionPointerRegister; |
| } |
| |
| /// getExceptionSelectorRegister - If a physical register, this returns |
| /// the register that receives the exception typeid on entry to a landing |
| /// pad. |
| unsigned getExceptionSelectorRegister() const { |
| return ExceptionSelectorRegister; |
| } |
| |
| /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never |
| /// set, the default is 200) |
| unsigned getJumpBufSize() const { |
| return JumpBufSize; |
| } |
| |
| /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes |
| /// (if never set, the default is 0) |
| unsigned getJumpBufAlignment() const { |
| return JumpBufAlignment; |
| } |
| |
| /// getIfCvtBlockLimit - returns the target specific if-conversion block size |
| /// limit. Any block whose size is greater should not be predicated. |
| unsigned getIfCvtBlockSizeLimit() const { |
| return IfCvtBlockSizeLimit; |
| } |
| |
| /// getIfCvtDupBlockLimit - returns the target specific size limit for a |
| /// block to be considered for duplication. Any block whose size is greater |
| /// should not be duplicated to facilitate its predication. |
| unsigned getIfCvtDupBlockSizeLimit() const { |
| return IfCvtDupBlockSizeLimit; |
| } |
| |
| /// getPrefLoopAlignment - return the preferred loop alignment. |
| /// |
| unsigned getPrefLoopAlignment() const { |
| return PrefLoopAlignment; |
| } |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) { |
| return false; |
| } |
| |
| /// getPostIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) { |
| return false; |
| } |
| |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC |
| /// jumptable. |
| virtual SDValue getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const; |
| |
| /// isOffsetFoldingLegal - Return true if folding a constant offset |
| /// with the given GlobalAddress is legal. It is frequently not legal in |
| /// PIC relocation models. |
| virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; |
| |
| //===--------------------------------------------------------------------===// |
| // TargetLowering Optimization Methods |
| // |
| |
| /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two |
| /// SDValues for returning information from TargetLowering to its clients |
| /// that want to combine |
| struct TargetLoweringOpt { |
| SelectionDAG &DAG; |
| bool AfterLegalize; |
| SDValue Old; |
| SDValue New; |
| |
| explicit TargetLoweringOpt(SelectionDAG &InDAG, bool afterLegalize) |
| : DAG(InDAG), AfterLegalize(afterLegalize) {} |
| |
| bool CombineTo(SDValue O, SDValue N) { |
| Old = O; |
| New = N; |
| return true; |
| } |
| |
| /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| /// specified instruction is a constant integer. If so, check to see if |
| /// there are any bits set in the constant that are not demanded. If so, |
| /// shrink the constant and return true. |
| bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded); |
| }; |
| |
| /// SimplifyDemandedBits - Look at Op. At this point, we know that only the |
| /// DemandedMask bits of the result of Op are ever used downstream. If we can |
| /// use this information to simplify Op, create a new simplified DAG node and |
| /// return true, returning the original and new nodes in Old and New. |
| /// Otherwise, analyze the expression and return a mask of KnownOne and |
| /// KnownZero bits for the expression (used to simplify the caller). |
| /// The KnownZero/One bits may only be accurate for those bits in the |
| /// DemandedMask. |
| bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, |
| APInt &KnownZero, APInt &KnownOne, |
| TargetLoweringOpt &TLO, unsigned Depth = 0) const; |
| |
| /// computeMaskedBitsForTargetNode - Determine which of the bits specified in |
| /// Mask are known to be either zero or one and return them in the |
| /// KnownZero/KnownOne bitsets. |
| virtual void computeMaskedBitsForTargetNode(const SDValue Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth = 0) const; |
| |
| /// ComputeNumSignBitsForTargetNode - This method can be implemented by |
| /// targets that want to expose additional information about sign bits to the |
| /// DAG Combiner. |
| virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, |
| unsigned Depth = 0) const; |
| |
| struct DAGCombinerInfo { |
| void *DC; // The DAG Combiner object. |
| bool BeforeLegalize; |
| bool CalledByLegalizer; |
| public: |
| SelectionDAG &DAG; |
| |
| DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc) |
| : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {} |
| |
| bool isBeforeLegalize() const { return BeforeLegalize; } |
| bool isCalledByLegalizer() const { return CalledByLegalizer; } |
| |
| void AddToWorklist(SDNode *N); |
| SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To); |
| SDValue CombineTo(SDNode *N, SDValue Res); |
| SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1); |
| }; |
| |
| /// SimplifySetCC - Try to simplify a setcc built with the specified operands |
| /// and cc. If it is unable to simplify it, return a null SDValue. |
| SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1, |
| ISD::CondCode Cond, bool foldBooleans, |
| DAGCombinerInfo &DCI) const; |
| |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the |
| /// node is a GlobalAddress + offset. |
| virtual bool |
| isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const; |
| |
| /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is |
| /// loading 'Bytes' bytes from a location that is 'Dist' units away from the |
| /// location that the 'Base' load is loading from. |
| bool isConsecutiveLoad(SDNode *LD, SDNode *Base, unsigned Bytes, int Dist, |
| const MachineFrameInfo *MFI) const; |
| |
| /// PerformDAGCombine - This method will be invoked for all target nodes and |
| /// for any target-independent nodes that the target has registered with |
| /// invoke it for. |
| /// |
| /// The semantics are as follows: |
| /// Return Value: |
| /// SDValue.Val == 0 - No change was made |
| /// SDValue.Val == N - N was replaced, is dead, and is already handled. |
| /// otherwise - N should be replaced by the returned Operand. |
| /// |
| /// In addition, methods provided by DAGCombinerInfo may be used to perform |
| /// more complex transformations. |
| /// |
| virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| //===--------------------------------------------------------------------===// |
| // TargetLowering Configuration Methods - These methods should be invoked by |
| // the derived class constructor to configure this object for the target. |
| // |
| |
| protected: |
| /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a |
| /// GOT for PC-relative code. |
| void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; } |
| |
| /// setShiftAmountType - Describe the type that should be used for shift |
| /// amounts. This type defaults to the pointer type. |
| void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; } |
| |
| /// setSetCCResultContents - Specify how the target extends the result of a |
| /// setcc operation in a register. |
| void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; } |
| |
| /// setSchedulingPreference - Specify the target scheduling preference. |
| void setSchedulingPreference(SchedPreference Pref) { |
| SchedPreferenceInfo = Pref; |
| } |
| |
| /// setShiftAmountFlavor - Describe how the target handles out of range shift |
| /// amounts. |
| void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) { |
| ShiftAmtHandling = OORSA; |
| } |
| |
| /// setUseUnderscoreSetJmp - Indicate whether this target prefers to |
| /// use _setjmp to implement llvm.setjmp or the non _ version. |
| /// Defaults to false. |
| void setUseUnderscoreSetJmp(bool Val) { |
| UseUnderscoreSetJmp = Val; |
| } |
| |
| /// setUseUnderscoreLongJmp - Indicate whether this target prefers to |
| /// use _longjmp to implement llvm.longjmp or the non _ version. |
| /// Defaults to false. |
| void setUseUnderscoreLongJmp(bool Val) { |
| UseUnderscoreLongJmp = Val; |
| } |
| |
| /// setStackPointerRegisterToSaveRestore - If set to a physical register, this |
| /// specifies the register that llvm.savestack/llvm.restorestack should save |
| /// and restore. |
| void setStackPointerRegisterToSaveRestore(unsigned R) { |
| StackPointerRegisterToSaveRestore = R; |
| } |
| |
| /// setExceptionPointerRegister - If set to a physical register, this sets |
| /// the register that receives the exception address on entry to a landing |
| /// pad. |
| void setExceptionPointerRegister(unsigned R) { |
| ExceptionPointerRegister = R; |
| } |
| |
| /// setExceptionSelectorRegister - If set to a physical register, this sets |
| /// the register that receives the exception typeid on entry to a landing |
| /// pad. |
| void setExceptionSelectorRegister(unsigned R) { |
| ExceptionSelectorRegister = R; |
| } |
| |
| /// SelectIsExpensive - Tells the code generator not to expand operations |
| /// into sequences that use the select operations if possible. |
| void setSelectIsExpensive() { SelectIsExpensive = true; } |
| |
| /// setIntDivIsCheap - Tells the code generator that integer divide is |
| /// expensive, and if possible, should be replaced by an alternate sequence |
| /// of instructions not containing an integer divide. |
| void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; } |
| |
| /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate |
| /// srl/add/sra for a signed divide by power of two, and let the target handle |
| /// it. |
| void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; } |
| |
| /// addRegisterClass - Add the specified register class as an available |
| /// regclass for the specified value type. This indicates the selector can |
| /// handle values of that class natively. |
| void addRegisterClass(MVT VT, TargetRegisterClass *RC) { |
| assert((unsigned)VT.getSimpleVT() < array_lengthof(RegClassForVT)); |
| AvailableRegClasses.push_back(std::make_pair(VT, RC)); |
| RegClassForVT[VT.getSimpleVT()] = RC; |
| } |
| |
| /// computeRegisterProperties - Once all of the register classes are added, |
| /// this allows us to compute derived properties we expose. |
| void computeRegisterProperties(); |
| |
| /// setOperationAction - Indicate that the specified operation does not work |
| /// with the specified type and indicate what to do about it. |
| void setOperationAction(unsigned Op, MVT VT, |
| LegalizeAction Action) { |
| assert((unsigned)VT.getSimpleVT() < sizeof(OpActions[0])*4 && |
| Op < array_lengthof(OpActions) && "Table isn't big enough!"); |
| OpActions[Op] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2); |
| OpActions[Op] |= (uint64_t)Action << VT.getSimpleVT()*2; |
| } |
| |
| /// setLoadExtAction - Indicate that the specified load with extension does |
| /// not work with the with specified type and indicate what to do about it. |
| void setLoadExtAction(unsigned ExtType, MVT VT, |
| LegalizeAction Action) { |
| assert((unsigned)VT.getSimpleVT() < sizeof(LoadExtActions[0])*4 && |
| ExtType < array_lengthof(LoadExtActions) && |
| "Table isn't big enough!"); |
| LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2); |
| LoadExtActions[ExtType] |= (uint64_t)Action << VT.getSimpleVT()*2; |
| } |
| |
| /// setTruncStoreAction - Indicate that the specified truncating store does |
| /// not work with the with specified type and indicate what to do about it. |
| void setTruncStoreAction(MVT ValVT, MVT MemVT, |
| LegalizeAction Action) { |
| assert((unsigned)ValVT.getSimpleVT() < array_lengthof(TruncStoreActions) && |
| (unsigned)MemVT.getSimpleVT() < sizeof(TruncStoreActions[0])*4 && |
| "Table isn't big enough!"); |
| TruncStoreActions[ValVT.getSimpleVT()] &= ~(uint64_t(3UL) << |
| MemVT.getSimpleVT()*2); |
| TruncStoreActions[ValVT.getSimpleVT()] |= (uint64_t)Action << |
| MemVT.getSimpleVT()*2; |
| } |
| |
| /// setIndexedLoadAction - Indicate that the specified indexed load does or |
| /// does not work with the with specified type and indicate what to do abort |
| /// it. NOTE: All indexed mode loads are initialized to Expand in |
| /// TargetLowering.cpp |
| void setIndexedLoadAction(unsigned IdxMode, MVT VT, |
| LegalizeAction Action) { |
| assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[0])*4 && |
| IdxMode < array_lengthof(IndexedModeActions[0]) && |
| "Table isn't big enough!"); |
| IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2); |
| IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2; |
| } |
| |
| /// setIndexedStoreAction - Indicate that the specified indexed store does or |
| /// does not work with the with specified type and indicate what to do about |
| /// it. NOTE: All indexed mode stores are initialized to Expand in |
| /// TargetLowering.cpp |
| void setIndexedStoreAction(unsigned IdxMode, MVT VT, |
| LegalizeAction Action) { |
| assert((unsigned)VT.getSimpleVT() < sizeof(IndexedModeActions[1][0])*4 && |
| IdxMode < array_lengthof(IndexedModeActions[1]) && |
| "Table isn't big enough!"); |
| IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2); |
| IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT.getSimpleVT()*2; |
| } |
| |
| /// setConvertAction - Indicate that the specified conversion does or does |
| /// not work with the with specified type and indicate what to do about it. |
| void setConvertAction(MVT FromVT, MVT ToVT, |
| LegalizeAction Action) { |
| assert((unsigned)FromVT.getSimpleVT() < array_lengthof(ConvertActions) && |
| (unsigned)ToVT.getSimpleVT() < sizeof(ConvertActions[0])*4 && |
| "Table isn't big enough!"); |
| ConvertActions[FromVT.getSimpleVT()] &= ~(uint64_t(3UL) << |
| ToVT.getSimpleVT()*2); |
| ConvertActions[FromVT.getSimpleVT()] |= (uint64_t)Action << |
| ToVT.getSimpleVT()*2; |
| } |
| |
| /// setCondCodeAction - Indicate that the specified condition code is or isn't |
| /// supported on the target and indicate what to do about it. |
| void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) { |
| assert((unsigned)VT.getSimpleVT() < sizeof(CondCodeActions[0])*4 && |
| (unsigned)CC < array_lengthof(CondCodeActions) && |
| "Table isn't big enough!"); |
| CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.getSimpleVT()*2); |
| CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.getSimpleVT()*2; |
| } |
| |
| /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the |
| /// promotion code defaults to trying a larger integer/fp until it can find |
| /// one that works. If that default is insufficient, this method can be used |
| /// by the target to override the default. |
| void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { |
| PromoteToType[std::make_pair(Opc, OrigVT.getSimpleVT())] = |
| DestVT.getSimpleVT(); |
| } |
| |
| /// addLegalFPImmediate - Indicate that this target can instruction select |
| /// the specified FP immediate natively. |
| void addLegalFPImmediate(const APFloat& Imm) { |
| LegalFPImmediates.push_back(Imm); |
| } |
| |
| /// setTargetDAGCombine - Targets should invoke this method for each target |
| /// independent node that they want to provide a custom DAG combiner for by |
| /// implementing the PerformDAGCombine virtual method. |
| void setTargetDAGCombine(ISD::NodeType NT) { |
| assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); |
| TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); |
| } |
| |
| /// setJumpBufSize - Set the target's required jmp_buf buffer size (in |
| /// bytes); default is 200 |
| void setJumpBufSize(unsigned Size) { |
| JumpBufSize = Size; |
| } |
| |
| /// setJumpBufAlignment - Set the target's required jmp_buf buffer |
| /// alignment (in bytes); default is 0 |
| void setJumpBufAlignment(unsigned Align) { |
| JumpBufAlignment = Align; |
| } |
| |
| /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size |
| /// limit (in number of instructions); default is 2. |
| void setIfCvtBlockSizeLimit(unsigned Limit) { |
| IfCvtBlockSizeLimit = Limit; |
| } |
| |
| /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number |
| /// of instructions) to be considered for code duplication during |
| /// if-conversion; default is 2. |
| void setIfCvtDupBlockSizeLimit(unsigned Limit) { |
| IfCvtDupBlockSizeLimit = Limit; |
| } |
| |
| /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default |
| /// alignment is zero, it means the target does not care about loop alignment. |
| void setPrefLoopAlignment(unsigned Align) { |
| PrefLoopAlignment = Align; |
| } |
| |
| public: |
| |
| virtual const TargetSubtarget *getSubtarget() { |
| assert(0 && "Not Implemented"); |
| return NULL; // this is here to silence compiler errors |
| } |
| //===--------------------------------------------------------------------===// |
| // Lowering methods - These methods must be implemented by targets so that |
| // the SelectionDAGLowering code knows how to lower these. |
| // |
| |
| /// LowerArguments - This hook must be implemented to indicate how we should |
| /// lower the arguments for the specified function, into the specified DAG. |
| virtual void |
| LowerArguments(Function &F, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue>& ArgValues); |
| |
| /// LowerCallTo - This hook lowers an abstract call to a function into an |
| /// actual call. This returns a pair of operands. The first element is the |
| /// return value for the function (if RetTy is not VoidTy). The second |
| /// element is the outgoing token chain. |
| struct ArgListEntry { |
| SDValue Node; |
| const Type* Ty; |
| bool isSExt : 1; |
| bool isZExt : 1; |
| bool isInReg : 1; |
| bool isSRet : 1; |
| bool isNest : 1; |
| bool isByVal : 1; |
| uint16_t Alignment; |
| |
| ArgListEntry() : isSExt(false), isZExt(false), isInReg(false), |
| isSRet(false), isNest(false), isByVal(false), Alignment(0) { } |
| }; |
| typedef std::vector<ArgListEntry> ArgListTy; |
| virtual std::pair<SDValue, SDValue> |
| LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt, |
| bool isVarArg, bool isInreg, unsigned CallingConv, |
| bool isTailCall, SDValue Callee, ArgListTy &Args, |
| SelectionDAG &DAG); |
| |
| /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a |
| /// memcpy. This can be used by targets to provide code sequences for cases |
| /// that don't fit the target's parameters for simple loads/stores and can be |
| /// more efficient than using a library call. This function can return a null |
| /// SDValue if the target declines to use custom code and a different |
| /// lowering strategy should be used. |
| /// |
| /// If AlwaysInline is true, the size is constant and the target should not |
| /// emit any calls and is strongly encouraged to attempt to emit inline code |
| /// even if it is beyond the usual threshold because this intrinsic is being |
| /// expanded in a place where calls are not feasible (e.g. within the prologue |
| /// for another call). If the target chooses to decline an AlwaysInline |
| /// request here, legalize will resort to using simple loads and stores. |
| virtual SDValue |
| EmitTargetCodeForMemcpy(SelectionDAG &DAG, |
| SDValue Chain, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3, unsigned Align, |
| bool AlwaysInline, |
| const Value *DstSV, uint64_t DstOff, |
| const Value *SrcSV, uint64_t SrcOff) { |
| return SDValue(); |
| } |
| |
| /// EmitTargetCodeForMemmove - Emit target-specific code that performs a |
| /// memmove. This can be used by targets to provide code sequences for cases |
| /// that don't fit the target's parameters for simple loads/stores and can be |
| /// more efficient than using a library call. This function can return a null |
| /// SDValue if the target declines to use custom code and a different |
| /// lowering strategy should be used. |
| virtual SDValue |
| EmitTargetCodeForMemmove(SelectionDAG &DAG, |
| SDValue Chain, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3, unsigned Align, |
| const Value *DstSV, uint64_t DstOff, |
| const Value *SrcSV, uint64_t SrcOff) { |
| return SDValue(); |
| } |
| |
| /// EmitTargetCodeForMemset - Emit target-specific code that performs a |
| /// memset. This can be used by targets to provide code sequences for cases |
| /// that don't fit the target's parameters for simple stores and can be more |
| /// efficient than using a library call. This function can return a null |
| /// SDValue if the target declines to use custom code and a different |
| /// lowering strategy should be used. |
| virtual SDValue |
| EmitTargetCodeForMemset(SelectionDAG &DAG, |
| SDValue Chain, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3, unsigned Align, |
| const Value *DstSV, uint64_t DstOff) { |
| return SDValue(); |
| } |
| |
| /// LowerOperation - This callback is invoked for operations that are |
| /// unsupported by the target, which are registered to use 'custom' lowering, |
| /// and whose defined values are all legal. |
| /// If the target has no operations that require custom lowering, it need not |
| /// implement this. The default implementation of this aborts. |
| virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG); |
| |
| /// ReplaceNodeResults - This callback is invoked for operations that are |
| /// unsupported by the target, which are registered to use 'custom' lowering, |
| /// and whose result type is illegal. This must return a node whose results |
| /// precisely match the results of the input node. This typically involves a |
| /// MERGE_VALUES node and/or BUILD_PAIR. |
| /// |
| /// If the target has no operations that require custom lowering, it need not |
| /// implement this. The default implementation aborts. |
| virtual SDNode *ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) { |
| assert(0 && "ReplaceNodeResults not implemented for this target!"); |
| return 0; |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible for |
| /// tail call optimization. Targets which want to do tail call optimization |
| /// should override this function. |
| virtual bool IsEligibleForTailCallOptimization(CallSDNode *Call, |
| SDValue Ret, |
| SelectionDAG &DAG) const { |
| return false; |
| } |
| |
| /// CheckTailCallReturnConstraints - Check whether CALL node immediatly |
| /// preceeds the RET node and whether the return uses the result of the node |
| /// or is a void return. This function can be used by the target to determine |
| /// eligiblity of tail call optimization. |
| static bool CheckTailCallReturnConstraints(CallSDNode *TheCall, SDValue Ret) { |
| unsigned NumOps = Ret.getNumOperands(); |
| if ((NumOps == 1 && |
| (Ret.getOperand(0) == SDValue(TheCall,1) || |
| Ret.getOperand(0) == SDValue(TheCall,0))) || |
| (NumOps > 1 && |
| Ret.getOperand(0) == SDValue(TheCall, |
| TheCall->getNumValues()-1) && |
| Ret.getOperand(1) == SDValue(TheCall,0))) |
| return true; |
| return false; |
| } |
| |
| /// GetPossiblePreceedingTailCall - Get preceeding TailCallNodeOpCode node if |
| /// it exists skip possible ISD:TokenFactor. |
| static SDValue GetPossiblePreceedingTailCall(SDValue Chain, |
| unsigned TailCallNodeOpCode) { |
| if (Chain.getOpcode() == TailCallNodeOpCode) { |
| return Chain; |
| } else if (Chain.getOpcode() == ISD::TokenFactor) { |
| if (Chain.getNumOperands() && |
| Chain.getOperand(0).getOpcode() == TailCallNodeOpCode) |
| return Chain.getOperand(0); |
| } |
| return Chain; |
| } |
| |
| /// getTargetNodeName() - This method returns the name of a target specific |
| /// DAG node. |
| virtual const char *getTargetNodeName(unsigned Opcode) const; |
| |
| /// createFastISel - This method returns a target specific FastISel object, |
| /// or null if the target does not support "fast" ISel. |
| virtual FastISel * |
| createFastISel(MachineFunction &, |
| MachineModuleInfo *, |
| DenseMap<const Value *, unsigned> &, |
| DenseMap<const BasicBlock *, MachineBasicBlock *> &, |
| DenseMap<const AllocaInst *, int> & |
| #ifndef NDEBUG |
| , SmallSet<Instruction*, 8> &CatchInfoLost |
| #endif |
| ) { |
| return 0; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Inline Asm Support hooks |
| // |
| |
| enum ConstraintType { |
| C_Register, // Constraint represents a single register. |
| C_RegisterClass, // Constraint represents one or more registers. |
| C_Memory, // Memory constraint. |
| C_Other, // Something else. |
| C_Unknown // Unsupported constraint. |
| }; |
| |
| /// AsmOperandInfo - This contains information for each constraint that we are |
| /// lowering. |
| struct AsmOperandInfo : public InlineAsm::ConstraintInfo { |
| /// ConstraintCode - This contains the actual string for the code, like "m". |
| /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that |
| /// most closely matches the operand. |
| std::string ConstraintCode; |
| |
| /// ConstraintType - Information about the constraint code, e.g. Register, |
| /// RegisterClass, Memory, Other, Unknown. |
| TargetLowering::ConstraintType ConstraintType; |
| |
| /// CallOperandval - If this is the result output operand or a |
| /// clobber, this is null, otherwise it is the incoming operand to the |
| /// CallInst. This gets modified as the asm is processed. |
| Value *CallOperandVal; |
| |
| /// ConstraintVT - The ValueType for the operand value. |
| MVT ConstraintVT; |
| |
| /// isMatchingInputConstraint - Return true of this is an input operand that |
| /// is a matching constraint like "4". |
| bool isMatchingInputConstraint() const; |
| |
| /// getMatchedOperand - If this is an input matching constraint, this method |
| /// returns the output operand it matches. |
| unsigned getMatchedOperand() const; |
| |
| AsmOperandInfo(const InlineAsm::ConstraintInfo &info) |
| : InlineAsm::ConstraintInfo(info), |
| ConstraintType(TargetLowering::C_Unknown), |
| CallOperandVal(0), ConstraintVT(MVT::Other) { |
| } |
| }; |
| |
| /// ComputeConstraintToUse - Determines the constraint code and constraint |
| /// type to use for the specific AsmOperandInfo, setting |
| /// OpInfo.ConstraintCode and OpInfo.ConstraintType. If the actual operand |
| /// being passed in is available, it can be passed in as Op, otherwise an |
| /// empty SDValue can be passed. If hasMemory is true it means one of the asm |
| /// constraint of the inline asm instruction being processed is 'm'. |
| virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, |
| SDValue Op, |
| bool hasMemory, |
| SelectionDAG *DAG = 0) const; |
| |
| /// getConstraintType - Given a constraint, return the type of constraint it |
| /// is for this target. |
| virtual ConstraintType getConstraintType(const std::string &Constraint) const; |
| |
| /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"), |
| /// return a list of registers that can be used to satisfy the constraint. |
| /// This should only be used for C_RegisterClass constraints. |
| virtual std::vector<unsigned> |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT VT) const; |
| |
| /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g. |
| /// {edx}), return the register number and the register class for the |
| /// register. |
| /// |
| /// Given a register class constraint, like 'r', if this corresponds directly |
| /// to an LLVM register class, return a register of 0 and the register class |
| /// pointer. |
| /// |
| /// This should only be used for C_Register constraints. On error, |
| /// this returns a register number of 0 and a null register class pointer.. |
| virtual std::pair<unsigned, const TargetRegisterClass*> |
| getRegForInlineAsmConstraint(const std::string &Constraint, |
| MVT VT) const; |
| |
| /// LowerXConstraint - try to replace an X constraint, which matches anything, |
| /// with another that has more specific requirements based on the type of the |
| /// corresponding operand. This returns null if there is no replacement to |
| /// make. |
| virtual const char *LowerXConstraint(MVT ConstraintVT) const; |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. If hasMemory is true |
| /// it means one of the asm constraint of the inline asm instruction being |
| /// processed is 'm'. |
| virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter, |
| bool hasMemory, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const; |
| |
| //===--------------------------------------------------------------------===// |
| // Scheduler hooks |
| // |
| |
| // EmitInstrWithCustomInserter - This method should be implemented by targets |
| // that mark instructions with the 'usesCustomDAGSchedInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and the scheduler passes ownership of it to this method. |
| virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB); |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing mode description hooks (used by LSR etc). |
| // |
| |
| /// AddrMode - This represents an addressing mode of: |
| /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg |
| /// If BaseGV is null, there is no BaseGV. |
| /// If BaseOffs is zero, there is no base offset. |
| /// If HasBaseReg is false, there is no base register. |
| /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with |
| /// no scale. |
| /// |
| struct AddrMode { |
| GlobalValue *BaseGV; |
| int64_t BaseOffs; |
| bool HasBaseReg; |
| int64_t Scale; |
| AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {} |
| }; |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented by |
| /// AM is legal for this target, for a load/store of the specified type. |
| /// TODO: Handle pre/postinc as well. |
| virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const; |
| |
| /// isTruncateFree - Return true if it's free to truncate a value of |
| /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in |
| /// register EAX to i16 by referencing its sub-register AX. |
| virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const { |
| return false; |
| } |
| |
| virtual bool isTruncateFree(MVT VT1, MVT VT2) const { |
| return false; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Div utility functions |
| // |
| SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, |
| std::vector<SDNode*>* Created) const; |
| SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, |
| std::vector<SDNode*>* Created) const; |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Runtime Library hooks |
| // |
| |
| /// setLibcallName - Rename the default libcall routine name for the specified |
| /// libcall. |
| void setLibcallName(RTLIB::Libcall Call, const char *Name) { |
| LibcallRoutineNames[Call] = Name; |
| } |
| |
| /// getLibcallName - Get the libcall routine name for the specified libcall. |
| /// |
| const char *getLibcallName(RTLIB::Libcall Call) const { |
| return LibcallRoutineNames[Call]; |
| } |
| |
| /// setCmpLibcallCC - Override the default CondCode to be used to test the |
| /// result of the comparison libcall against zero. |
| void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { |
| CmpLibcallCCs[Call] = CC; |
| } |
| |
| /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of |
| /// the comparison libcall against zero. |
| ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { |
| return CmpLibcallCCs[Call]; |
| } |
| |
| private: |
| TargetMachine &TM; |
| const TargetData *TD; |
| |
| /// PointerTy - The type to use for pointers, usually i32 or i64. |
| /// |
| MVT PointerTy; |
| |
| /// IsLittleEndian - True if this is a little endian target. |
| /// |
| bool IsLittleEndian; |
| |
| /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen. |
| /// |
| bool UsesGlobalOffsetTable; |
| |
| /// SelectIsExpensive - Tells the code generator not to expand operations |
| /// into sequences that use the select operations if possible. |
| bool SelectIsExpensive; |
| |
| /// IntDivIsCheap - Tells the code generator not to expand integer divides by |
| /// constants into a sequence of muls, adds, and shifts. This is a hack until |
| /// a real cost model is in place. If we ever optimize for size, this will be |
| /// set to true unconditionally. |
| bool IntDivIsCheap; |
| |
| /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate |
| /// srl/add/sra for a signed divide by power of two, and let the target handle |
| /// it. |
| bool Pow2DivIsCheap; |
| |
| /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement |
| /// llvm.setjmp. Defaults to false. |
| bool UseUnderscoreSetJmp; |
| |
| /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement |
| /// llvm.longjmp. Defaults to false. |
| bool UseUnderscoreLongJmp; |
| |
| /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever |
| /// PointerTy is. |
| MVT ShiftAmountTy; |
| |
| OutOfRangeShiftAmount ShiftAmtHandling; |
| |
| /// SetCCResultContents - Information about the contents of the high-bits in |
| /// the result of a setcc comparison operation. |
| SetCCResultValue SetCCResultContents; |
| |
| /// SchedPreferenceInfo - The target scheduling preference: shortest possible |
| /// total cycles or lowest register usage. |
| SchedPreference SchedPreferenceInfo; |
| |
| /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers |
| unsigned JumpBufSize; |
| |
| /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf |
| /// buffers |
| unsigned JumpBufAlignment; |
| |
| /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be |
| /// if-converted. |
| unsigned IfCvtBlockSizeLimit; |
| |
| /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be |
| /// duplicated during if-conversion. |
| unsigned IfCvtDupBlockSizeLimit; |
| |
| /// PrefLoopAlignment - The perferred loop alignment. |
| /// |
| unsigned PrefLoopAlignment; |
| |
| /// StackPointerRegisterToSaveRestore - If set to a physical register, this |
| /// specifies the register that llvm.savestack/llvm.restorestack should save |
| /// and restore. |
| unsigned StackPointerRegisterToSaveRestore; |
| |
| /// ExceptionPointerRegister - If set to a physical register, this specifies |
| /// the register that receives the exception address on entry to a landing |
| /// pad. |
| unsigned ExceptionPointerRegister; |
| |
| /// ExceptionSelectorRegister - If set to a physical register, this specifies |
| /// the register that receives the exception typeid on entry to a landing |
| /// pad. |
| unsigned ExceptionSelectorRegister; |
| |
| /// RegClassForVT - This indicates the default register class to use for |
| /// each ValueType the target supports natively. |
| TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; |
| unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; |
| MVT RegisterTypeForVT[MVT::LAST_VALUETYPE]; |
| |
| /// TransformToType - For any value types we are promoting or expanding, this |
| /// contains the value type that we are changing to. For Expanded types, this |
| /// contains one step of the expand (e.g. i64 -> i32), even if there are |
| /// multiple steps required (e.g. i64 -> i16). For types natively supported |
| /// by the system, this holds the same type (e.g. i32 -> i32). |
| MVT TransformToType[MVT::LAST_VALUETYPE]; |
| |
| // Defines the capacity of the TargetLowering::OpActions table |
| static const int OpActionsCapacity = 212; |
| |
| /// OpActions - For each operation and each value type, keep a LegalizeAction |
| /// that indicates how instruction selection should deal with the operation. |
| /// Most operations are Legal (aka, supported natively by the target), but |
| /// operations that are not should be described. Note that operations on |
| /// non-legal value types are not described here. |
| uint64_t OpActions[OpActionsCapacity]; |
| |
| /// LoadExtActions - For each load of load extension type and each value type, |
| /// keep a LegalizeAction that indicates how instruction selection should deal |
| /// with the load. |
| uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE]; |
| |
| /// TruncStoreActions - For each truncating store, keep a LegalizeAction that |
| /// indicates how instruction selection should deal with the store. |
| uint64_t TruncStoreActions[MVT::LAST_VALUETYPE]; |
| |
| /// IndexedModeActions - For each indexed mode and each value type, keep a |
| /// pair of LegalizeAction that indicates how instruction selection should |
| /// deal with the load / store. |
| uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE]; |
| |
| /// ConvertActions - For each conversion from source type to destination type, |
| /// keep a LegalizeAction that indicates how instruction selection should |
| /// deal with the conversion. |
| /// Currently, this is used only for floating->floating conversions |
| /// (FP_EXTEND and FP_ROUND). |
| uint64_t ConvertActions[MVT::LAST_VALUETYPE]; |
| |
| /// CondCodeActions - For each condition code (ISD::CondCode) keep a |
| /// LegalizeAction that indicates how instruction selection should |
| /// deal with the condition code. |
| uint64_t CondCodeActions[ISD::SETCC_INVALID]; |
| |
| ValueTypeActionImpl ValueTypeActions; |
| |
| std::vector<APFloat> LegalFPImmediates; |
| |
| std::vector<std::pair<MVT, TargetRegisterClass*> > AvailableRegClasses; |
| |
| /// TargetDAGCombineArray - Targets can specify ISD nodes that they would |
| /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(), |
| /// which sets a bit in this array. |
| unsigned char |
| TargetDAGCombineArray[OpActionsCapacity/(sizeof(unsigned char)*8)]; |
| |
| /// PromoteToType - For operations that must be promoted to a specific type, |
| /// this holds the destination type. This map should be sparse, so don't hold |
| /// it as an array. |
| /// |
| /// Targets add entries to this map with AddPromotedToType(..), clients access |
| /// this with getTypeToPromoteTo(..). |
| std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType> |
| PromoteToType; |
| |
| /// LibcallRoutineNames - Stores the name each libcall. |
| /// |
| const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL]; |
| |
| /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result |
| /// of each of the comparison libcall against zero. |
| ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; |
| |
| protected: |
| /// When lowering @llvm.memset this field specifies the maximum number of |
| /// store operations that may be substituted for the call to memset. Targets |
| /// must set this value based on the cost threshold for that target. Targets |
| /// should assume that the memset will be done using as many of the largest |
| /// store operations first, followed by smaller ones, if necessary, per |
| /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine |
| /// with 16-bit alignment would result in four 2-byte stores and one 1-byte |
| /// store. This only applies to setting a constant array of a constant size. |
| /// @brief Specify maximum number of store instructions per memset call. |
| unsigned maxStoresPerMemset; |
| |
| /// When lowering @llvm.memcpy this field specifies the maximum number of |
| /// store operations that may be substituted for a call to memcpy. Targets |
| /// must set this value based on the cost threshold for that target. Targets |
| /// should assume that the memcpy will be done using as many of the largest |
| /// store operations first, followed by smaller ones, if necessary, per |
| /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine |
| /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store |
| /// and one 1-byte store. This only applies to copying a constant array of |
| /// constant size. |
| /// @brief Specify maximum bytes of store instructions per memcpy call. |
| unsigned maxStoresPerMemcpy; |
| |
| /// When lowering @llvm.memmove this field specifies the maximum number of |
| /// store instructions that may be substituted for a call to memmove. Targets |
| /// must set this value based on the cost threshold for that target. Targets |
| /// should assume that the memmove will be done using as many of the largest |
| /// store operations first, followed by smaller ones, if necessary, per |
| /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine |
| /// with 8-bit alignment would result in nine 1-byte stores. This only |
| /// applies to copying a constant array of constant size. |
| /// @brief Specify maximum bytes of store instructions per memmove call. |
| unsigned maxStoresPerMemmove; |
| |
| /// This field specifies whether the target machine permits unaligned memory |
| /// accesses. This is used, for example, to determine the size of store |
| /// operations when copying small arrays and other similar tasks. |
| /// @brief Indicate whether the target permits unaligned memory accesses. |
| bool allowUnalignedMemoryAccesses; |
| }; |
| } // end llvm namespace |
| |
| #endif |