| //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that Mips uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "mips-lower" |
| |
| #include "MipsISelLowering.h" |
| #include "MipsMachineFunction.h" |
| #include "MipsTargetMachine.h" |
| #include "MipsSubtarget.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| const char *MipsTargetLowering:: |
| getTargetNodeName(unsigned Opcode) const |
| { |
| switch (Opcode) |
| { |
| case MipsISD::JmpLink : return "MipsISD::JmpLink"; |
| case MipsISD::Hi : return "MipsISD::Hi"; |
| case MipsISD::Lo : return "MipsISD::Lo"; |
| case MipsISD::GPRel : return "MipsISD::GPRel"; |
| case MipsISD::Ret : return "MipsISD::Ret"; |
| case MipsISD::CMov : return "MipsISD::CMov"; |
| case MipsISD::SelectCC : return "MipsISD::SelectCC"; |
| case MipsISD::FPSelectCC : return "MipsISD::FPSelectCC"; |
| case MipsISD::FPBrcond : return "MipsISD::FPBrcond"; |
| case MipsISD::FPCmp : return "MipsISD::FPCmp"; |
| default : return NULL; |
| } |
| } |
| |
| MipsTargetLowering:: |
| MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM) |
| { |
| Subtarget = &TM.getSubtarget<MipsSubtarget>(); |
| |
| // Mips does not have i1 type, so use i32 for |
| // setcc operations results (slt, sgt, ...). |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| |
| // JumpTable targets must use GOT when using PIC_ |
| setUsesGlobalOffsetTable(true); |
| |
| // Set up the register classes |
| addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass); |
| |
| // When dealing with single precision only, use libcalls |
| if (!Subtarget->isSingleFloat()) { |
| addRegisterClass(MVT::f32, Mips::AFGR32RegisterClass); |
| if (!Subtarget->isFP64bit()) |
| addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass); |
| } else |
| addRegisterClass(MVT::f32, Mips::FGR32RegisterClass); |
| |
| // Legal fp constants |
| addLegalFPImmediate(APFloat(+0.0f)); |
| |
| // Load extented operations for i1 types must be promoted |
| setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| |
| // Used by legalize types to correctly generate the setcc result. |
| // Without this, every float setcc comes with a AND/OR with the result, |
| // we don't want this, since the fpcmp result goes to a flag register, |
| // which is used implicitly by brcond and select operations. |
| AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); |
| |
| // Mips Custom Operations |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::RET, MVT::Other, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| setOperationAction(ISD::SETCC, MVT::f32, Custom); |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| |
| // We custom lower AND/OR to handle the case where the DAG contain 'ands/ors' |
| // with operands comming from setcc fp comparions. This is necessary since |
| // the result from these setcc are in a flag registers (FCR31). |
| setOperationAction(ISD::AND, MVT::i32, Custom); |
| setOperationAction(ISD::OR, MVT::i32, Custom); |
| |
| // Operations not directly supported by Mips. |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, MVT::Other, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| // We don't have line number support yet. |
| setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand); |
| setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); |
| |
| // Use the default for now |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); |
| |
| if (Subtarget->isSingleFloat()) |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); |
| |
| if (!Subtarget->hasSEInReg()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| } |
| |
| if (!Subtarget->hasBitCount()) |
| setOperationAction(ISD::CTLZ, MVT::i32, Expand); |
| |
| if (!Subtarget->hasSwap()) |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| |
| setStackPointerRegisterToSaveRestore(Mips::SP); |
| computeRegisterProperties(); |
| } |
| |
| |
| MVT MipsTargetLowering::getSetCCResultType(const SDValue &) const { |
| return MVT::i32; |
| } |
| |
| |
| SDValue MipsTargetLowering:: |
| LowerOperation(SDValue Op, SelectionDAG &DAG) |
| { |
| switch (Op.getOpcode()) |
| { |
| case ISD::AND: return LowerANDOR(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::CALL: return LowerCALL(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::OR: return LowerANDOR(Op, DAG); |
| case ISD::RET: return LowerRET(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| } |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lower helper functions |
| //===----------------------------------------------------------------------===// |
| |
| // AddLiveIn - This helper function adds the specified physical register to the |
| // MachineFunction as a live in value. It also creates a corresponding |
| // virtual register for it. |
| static unsigned |
| AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC) |
| { |
| assert(RC->contains(PReg) && "Not the correct regclass!"); |
| unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); |
| MF.getRegInfo().addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| // A address must be loaded from a small section if its size is less than the |
| // small section size threshold. Data in this section must be addressed using |
| // gp_rel operator. |
| bool MipsTargetLowering::IsInSmallSection(unsigned Size) { |
| return (Size > 0 && (Size <= Subtarget->getSSectionThreshold())); |
| } |
| |
| // Discover if this global address can be placed into small data/bss section. |
| bool MipsTargetLowering::IsGlobalInSmallSection(GlobalValue *GV) |
| { |
| const TargetData *TD = getTargetData(); |
| const GlobalVariable *GVA = dyn_cast<GlobalVariable>(GV); |
| |
| if (!GVA) |
| return false; |
| |
| const Type *Ty = GV->getType()->getElementType(); |
| unsigned Size = TD->getABITypeSize(Ty); |
| |
| // if this is a internal constant string, there is a special |
| // section for it, but not in small data/bss. |
| if (GVA->hasInitializer() && GV->hasInternalLinkage()) { |
| Constant *C = GVA->getInitializer(); |
| const ConstantArray *CVA = dyn_cast<ConstantArray>(C); |
| if (CVA && CVA->isCString()) |
| return false; |
| } |
| |
| return IsInSmallSection(Size); |
| } |
| |
| // Get fp branch code (not opcode) from condition code. |
| static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) { |
| if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) |
| return Mips::BRANCH_T; |
| |
| if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) |
| return Mips::BRANCH_F; |
| |
| return Mips::BRANCH_INVALID; |
| } |
| |
| static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC) { |
| switch(BC) { |
| default: |
| assert(0 && "Unknown branch code"); |
| case Mips::BRANCH_T : return Mips::BC1T; |
| case Mips::BRANCH_F : return Mips::BC1F; |
| case Mips::BRANCH_TL : return Mips::BC1TL; |
| case Mips::BRANCH_FL : return Mips::BC1FL; |
| } |
| } |
| |
| static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: assert(0 && "Unknown fp condition code!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: return Mips::FCOND_EQ; |
| case ISD::SETUNE: return Mips::FCOND_OGL; |
| case ISD::SETLT: |
| case ISD::SETOLT: return Mips::FCOND_OLT; |
| case ISD::SETGT: |
| case ISD::SETOGT: return Mips::FCOND_OGT; |
| case ISD::SETLE: |
| case ISD::SETOLE: return Mips::FCOND_OLE; |
| case ISD::SETGE: |
| case ISD::SETOGE: return Mips::FCOND_OGE; |
| case ISD::SETULT: return Mips::FCOND_ULT; |
| case ISD::SETULE: return Mips::FCOND_ULE; |
| case ISD::SETUGT: return Mips::FCOND_UGT; |
| case ISD::SETUGE: return Mips::FCOND_UGE; |
| case ISD::SETUO: return Mips::FCOND_UN; |
| case ISD::SETO: return Mips::FCOND_OR; |
| case ISD::SETNE: |
| case ISD::SETONE: return Mips::FCOND_NEQ; |
| case ISD::SETUEQ: return Mips::FCOND_UEQ; |
| } |
| } |
| |
| MachineBasicBlock * |
| MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) |
| { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| bool isFPCmp = false; |
| |
| switch (MI->getOpcode()) { |
| default: assert(false && "Unexpected instr type to insert"); |
| case Mips::Select_FCC: |
| case Mips::Select_FCC_SO32: |
| case Mips::Select_FCC_AS32: |
| case Mips::Select_FCC_D32: |
| isFPCmp = true; // FALL THROUGH |
| case Mips::Select_CC: |
| case Mips::Select_CC_SO32: |
| case Mips::Select_CC_AS32: |
| case Mips::Select_CC_D32: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // setcc r1, r2, r3 |
| // bNE r1, r0, copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| |
| // Emit the right instruction according to the type of the operands compared |
| if (isFPCmp) { |
| // Find the condiction code present in the setcc operation. |
| Mips::CondCode CC = (Mips::CondCode)MI->getOperand(4).getImm(); |
| // Get the branch opcode from the branch code. |
| unsigned Opc = FPBranchCodeToOpc(GetFPBranchCodeFromCond(CC)); |
| BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); |
| } else |
| BuildMI(BB, TII->get(Mips::BNE)).addReg(MI->getOperand(1).getReg()) |
| .addReg(Mips::ZERO).addMBB(sinkMBB); |
| |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| e = BB->succ_end(); i != e; ++i) |
| sinkMBB->addSuccessor(*i); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while(!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, TII->get(Mips::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB); |
| |
| F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. |
| return BB; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Misc Lower Operation implementation |
| //===----------------------------------------------------------------------===// |
| |
| SDValue MipsTargetLowering:: |
| LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) |
| { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| |
| // Get a reference from Mips stack pointer |
| SDValue StackPointer = DAG.getCopyFromReg(Chain, Mips::SP, MVT::i32); |
| |
| // Subtract the dynamic size from the actual stack size to |
| // obtain the new stack size. |
| SDValue Sub = DAG.getNode(ISD::SUB, MVT::i32, StackPointer, Size); |
| |
| // The Sub result contains the new stack start address, so it |
| // must be placed in the stack pointer register. |
| Chain = DAG.getCopyToReg(StackPointer.getValue(1), Mips::SP, Sub); |
| |
| // This node always has two return values: a new stack pointer |
| // value and a chain |
| SDValue Ops[2] = { Sub, Chain }; |
| return DAG.getMergeValues(Ops, 2); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerANDOR(SDValue Op, SelectionDAG &DAG) |
| { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| |
| if (LHS.getOpcode() != MipsISD::FPCmp || RHS.getOpcode() != MipsISD::FPCmp) |
| return Op; |
| |
| SDValue True = DAG.getConstant(1, MVT::i32); |
| SDValue False = DAG.getConstant(0, MVT::i32); |
| |
| SDValue LSEL = DAG.getNode(MipsISD::FPSelectCC, True.getValueType(), |
| LHS, True, False, LHS.getOperand(2)); |
| SDValue RSEL = DAG.getNode(MipsISD::FPSelectCC, True.getValueType(), |
| RHS, True, False, RHS.getOperand(2)); |
| |
| return DAG.getNode(Op.getOpcode(), MVT::i32, LSEL, RSEL); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerBRCOND(SDValue Op, SelectionDAG &DAG) |
| { |
| // The first operand is the chain, the second is the condition, the third is |
| // the block to branch to if the condition is true. |
| SDValue Chain = Op.getOperand(0); |
| SDValue Dest = Op.getOperand(2); |
| |
| if (Op.getOperand(1).getOpcode() != MipsISD::FPCmp) |
| return Op; |
| |
| SDValue CondRes = Op.getOperand(1); |
| SDValue CCNode = CondRes.getOperand(2); |
| Mips::CondCode CC = |
| (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); |
| SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32); |
| |
| return DAG.getNode(MipsISD::FPBrcond, Op.getValueType(), Chain, BrCode, |
| Dest, CondRes); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerSETCC(SDValue Op, SelectionDAG &DAG) |
| { |
| // The operands to this are the left and right operands to compare (ops #0, |
| // and #1) and the condition code to compare them with (op #2) as a |
| // CondCodeSDNode. |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| |
| return DAG.getNode(MipsISD::FPCmp, Op.getValueType(), LHS, RHS, |
| DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32)); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerSELECT(SDValue Op, SelectionDAG &DAG) |
| { |
| SDValue Cond = Op.getOperand(0); |
| SDValue True = Op.getOperand(1); |
| SDValue False = Op.getOperand(2); |
| |
| // if the incomming condition comes from a integer compare, the select |
| // operation must be SelectCC or a conditional move if the subtarget |
| // supports it. |
| if (Cond.getOpcode() != MipsISD::FPCmp) { |
| if (Subtarget->hasCondMov() && !True.getValueType().isFloatingPoint()) |
| return Op; |
| return DAG.getNode(MipsISD::SelectCC, True.getValueType(), |
| Cond, True, False); |
| } |
| |
| // if the incomming condition comes from fpcmp, the select |
| // operation must use FPSelectCC. |
| SDValue CCNode = Cond.getOperand(2); |
| return DAG.getNode(MipsISD::FPSelectCC, True.getValueType(), |
| Cond, True, False, CCNode); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) |
| { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32); |
| |
| if (!Subtarget->hasABICall()) { |
| const MVT *VTs = DAG.getNodeValueTypes(MVT::i32); |
| SDValue Ops[] = { GA }; |
| // %gp_rel relocation |
| if (!isa<Function>(GV) && IsGlobalInSmallSection(GV)) { |
| SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, VTs, 1, Ops, 1); |
| SDValue GOT = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i32); |
| return DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode); |
| } |
| // %hi/%lo relocation |
| SDValue HiPart = DAG.getNode(MipsISD::Hi, VTs, 1, Ops, 1); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, MVT::i32, GA); |
| return DAG.getNode(ISD::ADD, MVT::i32, HiPart, Lo); |
| |
| } else { // Abicall relocations, TODO: make this cleaner. |
| SDValue ResNode = DAG.getLoad(MVT::i32, DAG.getEntryNode(), GA, NULL, 0); |
| // On functions and global targets not internal linked only |
| // a load from got/GP is necessary for PIC to work. |
| if (!GV->hasInternalLinkage() || isa<Function>(GV)) |
| return ResNode; |
| SDValue Lo = DAG.getNode(MipsISD::Lo, MVT::i32, GA); |
| return DAG.getNode(ISD::ADD, MVT::i32, ResNode, Lo); |
| } |
| |
| assert(0 && "Dont know how to handle GlobalAddress"); |
| return SDValue(0,0); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) |
| { |
| assert(0 && "TLS not implemented for MIPS."); |
| return SDValue(); // Not reached |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerJumpTable(SDValue Op, SelectionDAG &DAG) |
| { |
| SDValue ResNode; |
| SDValue HiPart; |
| |
| MVT PtrVT = Op.getValueType(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); |
| |
| if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { |
| const MVT *VTs = DAG.getNodeValueTypes(MVT::i32); |
| SDValue Ops[] = { JTI }; |
| HiPart = DAG.getNode(MipsISD::Hi, VTs, 1, Ops, 1); |
| } else // Emit Load from Global Pointer |
| HiPart = DAG.getLoad(MVT::i32, DAG.getEntryNode(), JTI, NULL, 0); |
| |
| SDValue Lo = DAG.getNode(MipsISD::Lo, MVT::i32, JTI); |
| ResNode = DAG.getNode(ISD::ADD, MVT::i32, HiPart, Lo); |
| |
| return ResNode; |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerConstantPool(SDValue Op, SelectionDAG &DAG) |
| { |
| SDValue ResNode; |
| ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); |
| Constant *C = N->getConstVal(); |
| SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment()); |
| |
| // gp_rel relocation |
| // FIXME: we should reference the constant pool using small data sections, |
| // but the asm printer currently doens't support this feature without |
| // hacking it. This feature should come soon so we can uncomment the |
| // stuff below. |
| //if (!Subtarget->hasABICall() && |
| // IsInSmallSection(getTargetData()->getABITypeSize(C->getType()))) { |
| // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP); |
| // SDValue GOT = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i32); |
| // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode); |
| //} else { // %hi/%lo relocation |
| SDValue HiPart = DAG.getNode(MipsISD::Hi, MVT::i32, CP); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, MVT::i32, CP); |
| ResNode = DAG.getNode(ISD::ADD, MVT::i32, HiPart, Lo); |
| //} |
| |
| return ResNode; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| // |
| // The lower operations present on calling convention works on this order: |
| // LowerCALL (virt regs --> phys regs, virt regs --> stack) |
| // LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs) |
| // LowerRET (virt regs --> phys regs) |
| // LowerCALL (phys regs --> virt regs) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MipsGenCallingConv.inc" |
| |
| //===----------------------------------------------------------------------===// |
| // CALL Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// LowerCCCCallTo - functions arguments are copied from virtual |
| /// regs to (physical regs)/(stack frame), CALLSEQ_START and |
| /// CALLSEQ_END are emitted. |
| /// TODO: isVarArg, isTailCall. |
| SDValue MipsTargetLowering:: |
| LowerCALL(SDValue Op, SelectionDAG &DAG) |
| { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| CallSDNode *TheCall = cast<CallSDNode>(Op.getNode()); |
| SDValue Chain = TheCall->getChain(); |
| SDValue Callee = TheCall->getCallee(); |
| bool isVarArg = TheCall->isVarArg(); |
| unsigned CC = TheCall->getCallingConv(); |
| |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| |
| // To meet O32 ABI, Mips must always allocate 16 bytes on |
| // the stack (even if less than 4 are used as arguments) |
| if (Subtarget->isABI_O32()) { |
| int VTsize = MVT(MVT::i32).getSizeInBits()/8; |
| MFI->CreateFixedObject(VTsize, (VTsize*3)); |
| } |
| |
| CCInfo.AnalyzeCallOperands(TheCall, CC_Mips); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| |
| // With EABI is it possible to have 16 args on registers. |
| SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| // First/LastArgStackLoc contains the first/last |
| // "at stack" argument location. |
| int LastArgStackLoc = 0; |
| unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16); |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| |
| // Arguments start after the 5 first operands of ISD::CALL |
| SDValue Arg = TheCall->getArg(i); |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: assert(0 && "Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| // Arguments that can be passed on register must be kept at |
| // RegsToPass vector |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| continue; |
| } |
| |
| // Register cant get to this point... |
| assert(VA.isMemLoc()); |
| |
| // Create the frame index object for this incoming parameter |
| // This guarantees that when allocating Local Area the firsts |
| // 16 bytes which are alwayes reserved won't be overwritten |
| // if O32 ABI is used. For EABI the first address is zero. |
| LastArgStackLoc = (FirstStackArgLoc + VA.getLocMemOffset()); |
| int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, |
| LastArgStackLoc); |
| |
| SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy()); |
| |
| // emit ISD::STORE whichs stores the |
| // parameter value to a stack Location |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| } |
| |
| // Transform all store nodes into one single node because all store |
| // nodes are independent of each other. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token |
| // chain and flag operands which copy the outgoing args into registers. |
| // The InFlag in necessary since all emited instructions must be |
| // stuck together. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| |
| |
| // MipsJmpLink = #chain, #target_address, #opt_in_flags... |
| // = Chain, Callee, Reg#1, Reg#2, ... |
| // |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| Chain = DAG.getNode(MipsISD::JmpLink, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| // Create a stack location to hold GP when PIC is used. This stack |
| // location is used on function prologue to save GP and also after all |
| // emited CALL's to restore GP. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| // Function can have an arbitrary number of calls, so |
| // hold the LastArgStackLoc with the biggest offset. |
| int FI; |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| if (LastArgStackLoc >= MipsFI->getGPStackOffset()) { |
| LastArgStackLoc = (!LastArgStackLoc) ? (16) : (LastArgStackLoc+4); |
| // Create the frame index only once. SPOffset here can be anything |
| // (this will be fixed on processFunctionBeforeFrameFinalized) |
| if (MipsFI->getGPStackOffset() == -1) { |
| FI = MFI->CreateFixedObject(4, 0); |
| MipsFI->setGPFI(FI); |
| } |
| MipsFI->setGPStackOffset(LastArgStackLoc); |
| } |
| |
| // Reload GP value. |
| FI = MipsFI->getGPFI(); |
| SDValue FIN = DAG.getFrameIndex(FI,getPointerTy()); |
| SDValue GPLoad = DAG.getLoad(MVT::i32, Chain, FIN, NULL, 0); |
| Chain = GPLoad.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, DAG.getRegister(Mips::GP, MVT::i32), |
| GPLoad, SDValue(0,0)); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), Op.getResNo()); |
| } |
| |
| /// LowerCallResult - Lower the result values of an ISD::CALL into the |
| /// appropriate copies out of appropriate physical registers. This assumes that |
| /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call |
| /// being lowered. Returns a SDNode with the same number of values as the |
| /// ISD::CALL. |
| SDNode *MipsTargetLowering:: |
| LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall, |
| unsigned CallingConv, SelectionDAG &DAG) { |
| |
| bool isVarArg = TheCall->isVarArg(); |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); |
| |
| CCInfo.AnalyzeCallResult(TheCall, RetCC_Mips); |
| SmallVector<SDValue, 8> ResultVals; |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(), |
| RVLocs[i].getValVT(), InFlag).getValue(1); |
| InFlag = Chain.getValue(2); |
| ResultVals.push_back(Chain.getValue(0)); |
| } |
| |
| ResultVals.push_back(Chain); |
| |
| // Merge everything together with a MERGE_VALUES node. |
| return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0], |
| ResultVals.size()).getNode(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FORMAL_ARGUMENTS Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// LowerFORMAL_ARGUMENTS - transform physical registers into |
| /// virtual registers and generate load operations for |
| /// arguments places on the stack. |
| /// TODO: isVarArg |
| SDValue MipsTargetLowering:: |
| LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) |
| { |
| SDValue Root = Op.getOperand(0); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0; |
| unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); |
| |
| unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF); |
| |
| // GP must be live into PIC and non-PIC call target. |
| AddLiveIn(MF, Mips::GP, Mips::CPURegsRegisterClass); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| |
| CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_Mips); |
| SmallVector<SDValue, 16> ArgValues; |
| SDValue StackPtr; |
| |
| unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| |
| CCValAssign &VA = ArgLocs[i]; |
| |
| // Arguments stored on registers |
| if (VA.isRegLoc()) { |
| MVT RegVT = VA.getLocVT(); |
| TargetRegisterClass *RC = 0; |
| |
| if (RegVT == MVT::i32) |
| RC = Mips::CPURegsRegisterClass; |
| else if (RegVT == MVT::f32) { |
| if (Subtarget->isSingleFloat()) |
| RC = Mips::FGR32RegisterClass; |
| else |
| RC = Mips::AFGR32RegisterClass; |
| } else if (RegVT == MVT::f64) { |
| if (!Subtarget->isSingleFloat()) |
| RC = Mips::AFGR64RegisterClass; |
| } else |
| assert(0 && "RegVT not supported by FORMAL_ARGUMENTS Lowering"); |
| |
| // Transform the arguments stored on |
| // physical registers into virtual ones |
| unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted |
| // to 32 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| |
| if (VA.getLocInfo() != CCValAssign::Full) |
| ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); |
| |
| ArgValues.push_back(ArgValue); |
| |
| // To meet ABI, when VARARGS are passed on registers, the registers |
| // must have their values written to the caller stack frame. |
| if ((isVarArg) && (Subtarget->isABI_O32())) { |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getRegister(StackReg, getPointerTy()); |
| |
| // The stack pointer offset is relative to the caller stack frame. |
| // Since the real stack size is unknown here, a negative SPOffset |
| // is used so there's a way to adjust these offsets when the stack |
| // size get known (on EliminateFrameIndex). A dummy SPOffset is |
| // used instead of a direct negative address (which is recorded to |
| // be used on emitPrologue) to avoid mis-calc of the first stack |
| // offset on PEI::calculateFrameObjectOffsets. |
| // Arguments are always 32-bit. |
| int FI = MFI->CreateFixedObject(4, 0); |
| MipsFI->recordStoreVarArgsFI(FI, -(4+(i*4))); |
| SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy()); |
| |
| // emit ISD::STORE whichs stores the |
| // parameter value to a stack Location |
| ArgValues.push_back(DAG.getStore(Root, ArgValue, PtrOff, NULL, 0)); |
| } |
| |
| } else { // VA.isRegLoc() |
| |
| // sanity check |
| assert(VA.isMemLoc()); |
| |
| // The stack pointer offset is relative to the caller stack frame. |
| // Since the real stack size is unknown here, a negative SPOffset |
| // is used so there's a way to adjust these offsets when the stack |
| // size get known (on EliminateFrameIndex). A dummy SPOffset is |
| // used instead of a direct negative address (which is recorded to |
| // be used on emitPrologue) to avoid mis-calc of the first stack |
| // offset on PEI::calculateFrameObjectOffsets. |
| // Arguments are always 32-bit. |
| unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; |
| int FI = MFI->CreateFixedObject(ArgSize, 0); |
| MipsFI->recordLoadArgsFI(FI, -(ArgSize+ |
| (FirstStackArgLoc + VA.getLocMemOffset()))); |
| |
| // Create load nodes to retrieve arguments from the stack |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0)); |
| } |
| } |
| |
| // The mips ABIs for returning structs by value requires that we copy |
| // the sret argument into $v0 for the return. Save the argument into |
| // a virtual register so that we can access it from the return points. |
| if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { |
| unsigned Reg = MipsFI->getSRetReturnReg(); |
| if (!Reg) { |
| Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); |
| MipsFI->setSRetReturnReg(Reg); |
| } |
| SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]); |
| Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root); |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // Return the new list of results. |
| return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0], |
| ArgValues.size()).getValue(Op.getResNo()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| SDValue MipsTargetLowering:: |
| LowerRET(SDValue Op, SelectionDAG &DAG) |
| { |
| // CCValAssign - represent the assignment of |
| // the return value to a location |
| SmallVector<CCValAssign, 16> RVLocs; |
| unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); |
| bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); |
| |
| // Analize return values of ISD::RET |
| CCInfo.AnalyzeReturn(Op.getNode(), RetCC_Mips); |
| |
| // If this is the first return lowered for this function, add |
| // the regs to the liveout set for the function. |
| if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| if (RVLocs[i].isRegLoc()) |
| DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); |
| } |
| |
| // The chain is always operand #0 |
| SDValue Chain = Op.getOperand(0); |
| SDValue Flag; |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| // ISD::RET => ret chain, (regnum1,val1), ... |
| // So i*2+1 index only the regnums |
| Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag); |
| |
| // guarantee that all emitted copies are |
| // stuck together, avoiding something bad |
| Flag = Chain.getValue(1); |
| } |
| |
| // The mips ABIs for returning structs by value requires that we copy |
| // the sret argument into $v0 for the return. We saved the argument into |
| // a virtual register in the entry block, so now we copy the value out |
| // and into $v0. |
| if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| unsigned Reg = MipsFI->getSRetReturnReg(); |
| |
| if (!Reg) |
| assert(0 && "sret virtual register not created in the entry block"); |
| SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy()); |
| |
| Chain = DAG.getCopyToReg(Chain, Mips::V0, Val, Flag); |
| Flag = Chain.getValue(1); |
| } |
| |
| // Return on Mips is always a "jr $ra" |
| if (Flag.getNode()) |
| return DAG.getNode(MipsISD::Ret, MVT::Other, |
| Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag); |
| else // Return Void |
| return DAG.getNode(MipsISD::Ret, MVT::Other, |
| Chain, DAG.getRegister(Mips::RA, MVT::i32)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Mips Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| MipsTargetLowering::ConstraintType MipsTargetLowering:: |
| getConstraintType(const std::string &Constraint) const |
| { |
| // Mips specific constrainy |
| // GCC config/mips/constraints.md |
| // |
| // 'd' : An address register. Equivalent to r |
| // unless generating MIPS16 code. |
| // 'y' : Equivalent to r; retained for |
| // backwards compatibility. |
| // 'f' : Floating Point registers. |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default : break; |
| case 'd': |
| case 'y': |
| case 'f': |
| return C_RegisterClass; |
| break; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"), |
| /// return a list of registers that can be used to satisfy the constraint. |
| /// This should only be used for C_RegisterClass constraints. |
| std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering:: |
| getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const |
| { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': |
| return std::make_pair(0U, Mips::CPURegsRegisterClass); |
| case 'f': |
| if (VT == MVT::f32) { |
| if (Subtarget->isSingleFloat()) |
| return std::make_pair(0U, Mips::FGR32RegisterClass); |
| else |
| return std::make_pair(0U, Mips::AFGR32RegisterClass); |
| } |
| if (VT == MVT::f64) |
| if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit())) |
| return std::make_pair(0U, Mips::AFGR64RegisterClass); |
| } |
| } |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| /// Given a register class constraint, like 'r', if this corresponds directly |
| /// to an LLVM register class, return a register of 0 and the register class |
| /// pointer. |
| std::vector<unsigned> MipsTargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT VT) const |
| { |
| if (Constraint.size() != 1) |
| return std::vector<unsigned>(); |
| |
| switch (Constraint[0]) { |
| default : break; |
| case 'r': |
| // GCC Mips Constraint Letters |
| case 'd': |
| case 'y': |
| return make_vector<unsigned>(Mips::T0, Mips::T1, Mips::T2, Mips::T3, |
| Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1, |
| Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7, |
| Mips::T8, 0); |
| |
| case 'f': |
| if (VT == MVT::f32) { |
| if (Subtarget->isSingleFloat()) |
| return make_vector<unsigned>(Mips::F2, Mips::F3, Mips::F4, Mips::F5, |
| Mips::F6, Mips::F7, Mips::F8, Mips::F9, Mips::F10, Mips::F11, |
| Mips::F20, Mips::F21, Mips::F22, Mips::F23, Mips::F24, |
| Mips::F25, Mips::F26, Mips::F27, Mips::F28, Mips::F29, |
| Mips::F30, Mips::F31, 0); |
| else |
| return make_vector<unsigned>(Mips::F2, Mips::F4, Mips::F6, Mips::F8, |
| Mips::F10, Mips::F20, Mips::F22, Mips::F24, Mips::F26, |
| Mips::F28, Mips::F30, 0); |
| } |
| |
| if (VT == MVT::f64) |
| if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit())) |
| return make_vector<unsigned>(Mips::D1, Mips::D2, Mips::D3, Mips::D4, |
| Mips::D5, Mips::D10, Mips::D11, Mips::D12, Mips::D13, |
| Mips::D14, Mips::D15, 0); |
| } |
| return std::vector<unsigned>(); |
| } |
| |
| bool |
| MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The Mips target isn't yet aware of offsets. |
| return false; |
| } |