| //===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements routines for translating from LLVM IR into SelectionDAG IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "SelectionDAGBuild.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Constants.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/DwarfWriter.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| /// LimitFloatPrecision - Generate low-precision inline sequences for |
| /// some float libcalls (6, 8 or 12 bits). |
| static unsigned LimitFloatPrecision; |
| |
| static cl::opt<unsigned, true> |
| LimitFPPrecision("limit-float-precision", |
| cl::desc("Generate low-precision inline sequences " |
| "for some float libcalls"), |
| cl::location(LimitFloatPrecision), |
| cl::init(0)); |
| |
| /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence |
| /// of insertvalue or extractvalue indices that identify a member, return |
| /// the linearized index of the start of the member. |
| /// |
| static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, |
| const unsigned *Indices, |
| const unsigned *IndicesEnd, |
| unsigned CurIndex = 0) { |
| // Base case: We're done. |
| if (Indices && Indices == IndicesEnd) |
| return CurIndex; |
| |
| // Given a struct type, recursively traverse the elements. |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (StructType::element_iterator EB = STy->element_begin(), |
| EI = EB, |
| EE = STy->element_end(); |
| EI != EE; ++EI) { |
| if (Indices && *Indices == unsigned(EI - EB)) |
| return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); |
| CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); |
| } |
| return CurIndex; |
| } |
| // Given an array type, recursively traverse the elements. |
| else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| const Type *EltTy = ATy->getElementType(); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { |
| if (Indices && *Indices == i) |
| return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); |
| CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); |
| } |
| return CurIndex; |
| } |
| // We haven't found the type we're looking for, so keep searching. |
| return CurIndex + 1; |
| } |
| |
| /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of |
| /// MVTs that represent all the individual underlying |
| /// non-aggregate types that comprise it. |
| /// |
| /// If Offsets is non-null, it points to a vector to be filled in |
| /// with the in-memory offsets of each of the individual values. |
| /// |
| static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, |
| SmallVectorImpl<MVT> &ValueVTs, |
| SmallVectorImpl<uint64_t> *Offsets = 0, |
| uint64_t StartingOffset = 0) { |
| // Given a struct type, recursively traverse the elements. |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); |
| for (StructType::element_iterator EB = STy->element_begin(), |
| EI = EB, |
| EE = STy->element_end(); |
| EI != EE; ++EI) |
| ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, |
| StartingOffset + SL->getElementOffset(EI - EB)); |
| return; |
| } |
| // Given an array type, recursively traverse the elements. |
| if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| const Type *EltTy = ATy->getElementType(); |
| uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, |
| StartingOffset + i * EltSize); |
| return; |
| } |
| // Interpret void as zero return values. |
| if (Ty == Type::VoidTy) |
| return; |
| // Base case: we can get an MVT for this LLVM IR type. |
| ValueVTs.push_back(TLI.getValueType(Ty)); |
| if (Offsets) |
| Offsets->push_back(StartingOffset); |
| } |
| |
| namespace llvm { |
| /// RegsForValue - This struct represents the registers (physical or virtual) |
| /// that a particular set of values is assigned, and the type information about |
| /// the value. The most common situation is to represent one value at a time, |
| /// but struct or array values are handled element-wise as multiple values. |
| /// The splitting of aggregates is performed recursively, so that we never |
| /// have aggregate-typed registers. The values at this point do not necessarily |
| /// have legal types, so each value may require one or more registers of some |
| /// legal type. |
| /// |
| struct VISIBILITY_HIDDEN RegsForValue { |
| /// TLI - The TargetLowering object. |
| /// |
| const TargetLowering *TLI; |
| |
| /// ValueVTs - The value types of the values, which may not be legal, and |
| /// may need be promoted or synthesized from one or more registers. |
| /// |
| SmallVector<MVT, 4> ValueVTs; |
| |
| /// RegVTs - The value types of the registers. This is the same size as |
| /// ValueVTs and it records, for each value, what the type of the assigned |
| /// register or registers are. (Individual values are never synthesized |
| /// from more than one type of register.) |
| /// |
| /// With virtual registers, the contents of RegVTs is redundant with TLI's |
| /// getRegisterType member function, however when with physical registers |
| /// it is necessary to have a separate record of the types. |
| /// |
| SmallVector<MVT, 4> RegVTs; |
| |
| /// Regs - This list holds the registers assigned to the values. |
| /// Each legal or promoted value requires one register, and each |
| /// expanded value requires multiple registers. |
| /// |
| SmallVector<unsigned, 4> Regs; |
| |
| RegsForValue() : TLI(0) {} |
| |
| RegsForValue(const TargetLowering &tli, |
| const SmallVector<unsigned, 4> ®s, |
| MVT regvt, MVT valuevt) |
| : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} |
| RegsForValue(const TargetLowering &tli, |
| const SmallVector<unsigned, 4> ®s, |
| const SmallVector<MVT, 4> ®vts, |
| const SmallVector<MVT, 4> &valuevts) |
| : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} |
| RegsForValue(const TargetLowering &tli, |
| unsigned Reg, const Type *Ty) : TLI(&tli) { |
| ComputeValueVTs(tli, Ty, ValueVTs); |
| |
| for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| MVT ValueVT = ValueVTs[Value]; |
| unsigned NumRegs = TLI->getNumRegisters(ValueVT); |
| MVT RegisterVT = TLI->getRegisterType(ValueVT); |
| for (unsigned i = 0; i != NumRegs; ++i) |
| Regs.push_back(Reg + i); |
| RegVTs.push_back(RegisterVT); |
| Reg += NumRegs; |
| } |
| } |
| |
| /// append - Add the specified values to this one. |
| void append(const RegsForValue &RHS) { |
| TLI = RHS.TLI; |
| ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); |
| RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); |
| Regs.append(RHS.Regs.begin(), RHS.Regs.end()); |
| } |
| |
| |
| /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from |
| /// this value and returns the result as a ValueVTs value. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| /// If the Flag pointer is NULL, no flag is used. |
| SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, |
| SDValue &Chain, SDValue *Flag) const; |
| |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the |
| /// specified value into the registers specified by this object. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| /// If the Flag pointer is NULL, no flag is used. |
| void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, |
| SDValue &Chain, SDValue *Flag) const; |
| |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node |
| /// operand list. This adds the code marker, matching input operand index |
| /// (if applicable), and includes the number of values added into it. |
| void AddInlineAsmOperands(unsigned Code, |
| bool HasMatching, unsigned MatchingIdx, |
| SelectionDAG &DAG, std::vector<SDValue> &Ops) const; |
| }; |
| } |
| |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by |
| /// PHI nodes or outside of the basic block that defines it, or used by a |
| /// switch or atomic instruction, which may expand to multiple basic blocks. |
| static bool isUsedOutsideOfDefiningBlock(Instruction *I) { |
| if (isa<PHINode>(I)) return true; |
| BasicBlock *BB = I->getParent(); |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI)) |
| return true; |
| return false; |
| } |
| |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the |
| /// entry block, return true. This includes arguments used by switches, since |
| /// the switch may expand into multiple basic blocks. |
| static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) { |
| // With FastISel active, we may be splitting blocks, so force creation |
| // of virtual registers for all non-dead arguments. |
| // Don't force virtual registers for byval arguments though, because |
| // fast-isel can't handle those in all cases. |
| if (EnableFastISel && !A->hasByValAttr()) |
| return A->use_empty(); |
| |
| BasicBlock *Entry = A->getParent()->begin(); |
| for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) |
| return false; // Use not in entry block. |
| return true; |
| } |
| |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli) |
| : TLI(tli) { |
| } |
| |
| void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf, |
| SelectionDAG &DAG, |
| bool EnableFastISel) { |
| Fn = &fn; |
| MF = &mf; |
| RegInfo = &MF->getRegInfo(); |
| |
| // Create a vreg for each argument register that is not dead and is used |
| // outside of the entry block for the function. |
| for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); |
| AI != E; ++AI) |
| if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) |
| InitializeRegForValue(AI); |
| |
| // Initialize the mapping of values to registers. This is only set up for |
| // instruction values that are used outside of the block that defines |
| // them. |
| Function::iterator BB = Fn->begin(), EB = Fn->end(); |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { |
| const Type *Ty = AI->getAllocatedType(); |
| uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); |
| unsigned Align = |
| std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), |
| AI->getAlignment()); |
| |
| TySize *= CUI->getZExtValue(); // Get total allocated size. |
| if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. |
| StaticAllocaMap[AI] = |
| MF->getFrameInfo()->CreateStackObject(TySize, Align); |
| } |
| |
| for (; BB != EB; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) |
| if (!isa<AllocaInst>(I) || |
| !StaticAllocaMap.count(cast<AllocaInst>(I))) |
| InitializeRegForValue(I); |
| |
| // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This |
| // also creates the initial PHI MachineInstrs, though none of the input |
| // operands are populated. |
| for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) { |
| MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); |
| MBBMap[BB] = MBB; |
| MF->push_back(MBB); |
| |
| // Create Machine PHI nodes for LLVM PHI nodes, lowering them as |
| // appropriate. |
| PHINode *PN; |
| DebugLoc DL; |
| for (BasicBlock::iterator |
| I = BB->begin(), E = BB->end(); I != E; ++I) { |
| if (CallInst *CI = dyn_cast<CallInst>(I)) { |
| if (Function *F = CI->getCalledFunction()) { |
| switch (F->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::dbg_stoppoint: { |
| DbgStopPointInst *SPI = cast<DbgStopPointInst>(I); |
| if (isValidDebugInfoIntrinsic(*SPI, CodeGenOpt::Default)) |
| DL = ExtractDebugLocation(*SPI, MF->getDebugLocInfo()); |
| break; |
| } |
| case Intrinsic::dbg_func_start: { |
| DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I); |
| if (isValidDebugInfoIntrinsic(*FSI, CodeGenOpt::Default)) |
| DL = ExtractDebugLocation(*FSI, MF->getDebugLocInfo()); |
| break; |
| } |
| } |
| } |
| } |
| |
| PN = dyn_cast<PHINode>(I); |
| if (!PN || PN->use_empty()) continue; |
| |
| unsigned PHIReg = ValueMap[PN]; |
| assert(PHIReg && "PHI node does not have an assigned virtual register!"); |
| |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, PN->getType(), ValueVTs); |
| for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { |
| MVT VT = ValueVTs[vti]; |
| unsigned NumRegisters = TLI.getNumRegisters(VT); |
| const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); |
| for (unsigned i = 0; i != NumRegisters; ++i) |
| BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i); |
| PHIReg += NumRegisters; |
| } |
| } |
| } |
| } |
| |
| unsigned FunctionLoweringInfo::MakeReg(MVT VT) { |
| return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| /// CreateRegForValue - Allocate the appropriate number of virtual registers of |
| /// the correctly promoted or expanded types. Assign these registers |
| /// consecutive vreg numbers and return the first assigned number. |
| /// |
| /// In the case that the given value has struct or array type, this function |
| /// will assign registers for each member or element. |
| /// |
| unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, V->getType(), ValueVTs); |
| |
| unsigned FirstReg = 0; |
| for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| MVT ValueVT = ValueVTs[Value]; |
| MVT RegisterVT = TLI.getRegisterType(ValueVT); |
| |
| unsigned NumRegs = TLI.getNumRegisters(ValueVT); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| unsigned R = MakeReg(RegisterVT); |
| if (!FirstReg) FirstReg = R; |
| } |
| } |
| return FirstReg; |
| } |
| |
| /// getCopyFromParts - Create a value that contains the specified legal parts |
| /// combined into the value they represent. If the parts combine to a type |
| /// larger then ValueVT then AssertOp can be used to specify whether the extra |
| /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT |
| /// (ISD::AssertSext). |
| static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, |
| const SDValue *Parts, |
| unsigned NumParts, MVT PartVT, MVT ValueVT, |
| ISD::NodeType AssertOp = ISD::DELETED_NODE) { |
| assert(NumParts > 0 && "No parts to assemble!"); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| SDValue Val = Parts[0]; |
| |
| if (NumParts > 1) { |
| // Assemble the value from multiple parts. |
| if (!ValueVT.isVector() && ValueVT.isInteger()) { |
| unsigned PartBits = PartVT.getSizeInBits(); |
| unsigned ValueBits = ValueVT.getSizeInBits(); |
| |
| // Assemble the power of 2 part. |
| unsigned RoundParts = NumParts & (NumParts - 1) ? |
| 1 << Log2_32(NumParts) : NumParts; |
| unsigned RoundBits = PartBits * RoundParts; |
| MVT RoundVT = RoundBits == ValueBits ? |
| ValueVT : MVT::getIntegerVT(RoundBits); |
| SDValue Lo, Hi; |
| |
| MVT HalfVT = MVT::getIntegerVT(RoundBits/2); |
| |
| if (RoundParts > 2) { |
| Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); |
| Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, |
| PartVT, HalfVT); |
| } else { |
| Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); |
| Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); |
| } |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); |
| |
| if (RoundParts < NumParts) { |
| // Assemble the trailing non-power-of-2 part. |
| unsigned OddParts = NumParts - RoundParts; |
| MVT OddVT = MVT::getIntegerVT(OddParts * PartBits); |
| Hi = getCopyFromParts(DAG, dl, |
| Parts+RoundParts, OddParts, PartVT, OddVT); |
| |
| // Combine the round and odd parts. |
| Lo = Val; |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits); |
| Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); |
| Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, |
| DAG.getConstant(Lo.getValueType().getSizeInBits(), |
| TLI.getPointerTy())); |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); |
| Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); |
| } |
| } else if (ValueVT.isVector()) { |
| // Handle a multi-element vector. |
| MVT IntermediateVT, RegisterVT; |
| unsigned NumIntermediates; |
| unsigned NumRegs = |
| TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, |
| RegisterVT); |
| assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); |
| NumParts = NumRegs; // Silence a compiler warning. |
| assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); |
| assert(RegisterVT == Parts[0].getValueType() && |
| "Part type doesn't match part!"); |
| |
| // Assemble the parts into intermediate operands. |
| SmallVector<SDValue, 8> Ops(NumIntermediates); |
| if (NumIntermediates == NumParts) { |
| // If the register was not expanded, truncate or copy the value, |
| // as appropriate. |
| for (unsigned i = 0; i != NumParts; ++i) |
| Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, |
| PartVT, IntermediateVT); |
| } else if (NumParts > 0) { |
| // If the intermediate type was expanded, build the intermediate operands |
| // from the parts. |
| assert(NumParts % NumIntermediates == 0 && |
| "Must expand into a divisible number of parts!"); |
| unsigned Factor = NumParts / NumIntermediates; |
| for (unsigned i = 0; i != NumIntermediates; ++i) |
| Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, |
| PartVT, IntermediateVT); |
| } |
| |
| // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate |
| // operands. |
| Val = DAG.getNode(IntermediateVT.isVector() ? |
| ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, |
| ValueVT, &Ops[0], NumIntermediates); |
| } else if (PartVT.isFloatingPoint()) { |
| // FP split into multiple FP parts (for ppcf128) |
| assert(ValueVT == MVT(MVT::ppcf128) && PartVT == MVT(MVT::f64) && |
| "Unexpected split"); |
| SDValue Lo, Hi; |
| Lo = DAG.getNode(ISD::BIT_CONVERT, dl, MVT(MVT::f64), Parts[0]); |
| Hi = DAG.getNode(ISD::BIT_CONVERT, dl, MVT(MVT::f64), Parts[1]); |
| if (TLI.isBigEndian()) |
| std::swap(Lo, Hi); |
| Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); |
| } else { |
| // FP split into integer parts (soft fp) |
| assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && |
| !PartVT.isVector() && "Unexpected split"); |
| MVT IntVT = MVT::getIntegerVT(ValueVT.getSizeInBits()); |
| Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); |
| } |
| } |
| |
| // There is now one part, held in Val. Correct it to match ValueVT. |
| PartVT = Val.getValueType(); |
| |
| if (PartVT == ValueVT) |
| return Val; |
| |
| if (PartVT.isVector()) { |
| assert(ValueVT.isVector() && "Unknown vector conversion!"); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); |
| } |
| |
| if (ValueVT.isVector()) { |
| assert(ValueVT.getVectorElementType() == PartVT && |
| ValueVT.getVectorNumElements() == 1 && |
| "Only trivial scalar-to-vector conversions should get here!"); |
| return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); |
| } |
| |
| if (PartVT.isInteger() && |
| ValueVT.isInteger()) { |
| if (ValueVT.bitsLT(PartVT)) { |
| // For a truncate, see if we have any information to |
| // indicate whether the truncated bits will always be |
| // zero or sign-extension. |
| if (AssertOp != ISD::DELETED_NODE) |
| Val = DAG.getNode(AssertOp, dl, PartVT, Val, |
| DAG.getValueType(ValueVT)); |
| return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); |
| } else { |
| return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); |
| } |
| } |
| |
| if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { |
| if (ValueVT.bitsLT(Val.getValueType())) |
| // FP_ROUND's are always exact here. |
| return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, |
| DAG.getIntPtrConstant(1)); |
| return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); |
| } |
| |
| if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) |
| return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); |
| |
| llvm_unreachable("Unknown mismatch!"); |
| return SDValue(); |
| } |
| |
| /// getCopyToParts - Create a series of nodes that contain the specified value |
| /// split into legal parts. If the parts contain more bits than Val, then, for |
| /// integers, ExtendKind can be used to specify how to generate the extra bits. |
| static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, |
| SDValue *Parts, unsigned NumParts, MVT PartVT, |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| MVT PtrVT = TLI.getPointerTy(); |
| MVT ValueVT = Val.getValueType(); |
| unsigned PartBits = PartVT.getSizeInBits(); |
| unsigned OrigNumParts = NumParts; |
| assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); |
| |
| if (!NumParts) |
| return; |
| |
| if (!ValueVT.isVector()) { |
| if (PartVT == ValueVT) { |
| assert(NumParts == 1 && "No-op copy with multiple parts!"); |
| Parts[0] = Val; |
| return; |
| } |
| |
| if (NumParts * PartBits > ValueVT.getSizeInBits()) { |
| // If the parts cover more bits than the value has, promote the value. |
| if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { |
| assert(NumParts == 1 && "Do not know what to promote to!"); |
| Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); |
| } else if (PartVT.isInteger() && ValueVT.isInteger()) { |
| ValueVT = MVT::getIntegerVT(NumParts * PartBits); |
| Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); |
| } else { |
| llvm_unreachable("Unknown mismatch!"); |
| } |
| } else if (PartBits == ValueVT.getSizeInBits()) { |
| // Different types of the same size. |
| assert(NumParts == 1 && PartVT != ValueVT); |
| Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); |
| } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { |
| // If the parts cover less bits than value has, truncate the value. |
| if (PartVT.isInteger() && ValueVT.isInteger()) { |
| ValueVT = MVT::getIntegerVT(NumParts * PartBits); |
| Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); |
| } else { |
| llvm_unreachable("Unknown mismatch!"); |
| } |
| } |
| |
| // The value may have changed - recompute ValueVT. |
| ValueVT = Val.getValueType(); |
| assert(NumParts * PartBits == ValueVT.getSizeInBits() && |
| "Failed to tile the value with PartVT!"); |
| |
| if (NumParts == 1) { |
| assert(PartVT == ValueVT && "Type conversion failed!"); |
| Parts[0] = Val; |
| return; |
| } |
| |
| // Expand the value into multiple parts. |
| if (NumParts & (NumParts - 1)) { |
| // The number of parts is not a power of 2. Split off and copy the tail. |
| assert(PartVT.isInteger() && ValueVT.isInteger() && |
| "Do not know what to expand to!"); |
| unsigned RoundParts = 1 << Log2_32(NumParts); |
| unsigned RoundBits = RoundParts * PartBits; |
| unsigned OddParts = NumParts - RoundParts; |
| SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, |
| DAG.getConstant(RoundBits, |
| TLI.getPointerTy())); |
| getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); |
| if (TLI.isBigEndian()) |
| // The odd parts were reversed by getCopyToParts - unreverse them. |
| std::reverse(Parts + RoundParts, Parts + NumParts); |
| NumParts = RoundParts; |
| ValueVT = MVT::getIntegerVT(NumParts * PartBits); |
| Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); |
| } |
| |
| // The number of parts is a power of 2. Repeatedly bisect the value using |
| // EXTRACT_ELEMENT. |
| Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::getIntegerVT(ValueVT.getSizeInBits()), |
| Val); |
| for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { |
| for (unsigned i = 0; i < NumParts; i += StepSize) { |
| unsigned ThisBits = StepSize * PartBits / 2; |
| MVT ThisVT = MVT::getIntegerVT (ThisBits); |
| SDValue &Part0 = Parts[i]; |
| SDValue &Part1 = Parts[i+StepSize/2]; |
| |
| Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, |
| ThisVT, Part0, |
| DAG.getConstant(1, PtrVT)); |
| Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, |
| ThisVT, Part0, |
| DAG.getConstant(0, PtrVT)); |
| |
| if (ThisBits == PartBits && ThisVT != PartVT) { |
| Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, |
| PartVT, Part0); |
| Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, |
| PartVT, Part1); |
| } |
| } |
| } |
| |
| if (TLI.isBigEndian()) |
| std::reverse(Parts, Parts + OrigNumParts); |
| |
| return; |
| } |
| |
| // Vector ValueVT. |
| if (NumParts == 1) { |
| if (PartVT != ValueVT) { |
| if (PartVT.isVector()) { |
| Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); |
| } else { |
| assert(ValueVT.getVectorElementType() == PartVT && |
| ValueVT.getVectorNumElements() == 1 && |
| "Only trivial vector-to-scalar conversions should get here!"); |
| Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| PartVT, Val, |
| DAG.getConstant(0, PtrVT)); |
| } |
| } |
| |
| Parts[0] = Val; |
| return; |
| } |
| |
| // Handle a multi-element vector. |
| MVT IntermediateVT, RegisterVT; |
| unsigned NumIntermediates; |
| unsigned NumRegs = TLI |
| .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, |
| RegisterVT); |
| unsigned NumElements = ValueVT.getVectorNumElements(); |
| |
| assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); |
| NumParts = NumRegs; // Silence a compiler warning. |
| assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); |
| |
| // Split the vector into intermediate operands. |
| SmallVector<SDValue, 8> Ops(NumIntermediates); |
| for (unsigned i = 0; i != NumIntermediates; ++i) |
| if (IntermediateVT.isVector()) |
| Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, |
| IntermediateVT, Val, |
| DAG.getConstant(i * (NumElements / NumIntermediates), |
| PtrVT)); |
| else |
| Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, |
| IntermediateVT, Val, |
| DAG.getConstant(i, PtrVT)); |
| |
| // Split the intermediate operands into legal parts. |
| if (NumParts == NumIntermediates) { |
| // If the register was not expanded, promote or copy the value, |
| // as appropriate. |
| for (unsigned i = 0; i != NumParts; ++i) |
| getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); |
| } else if (NumParts > 0) { |
| // If the intermediate type was expanded, split each the value into |
| // legal parts. |
| assert(NumParts % NumIntermediates == 0 && |
| "Must expand into a divisible number of parts!"); |
| unsigned Factor = NumParts / NumIntermediates; |
| for (unsigned i = 0; i != NumIntermediates; ++i) |
| getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); |
| } |
| } |
| |
| |
| void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { |
| AA = &aa; |
| GFI = gfi; |
| TD = DAG.getTarget().getTargetData(); |
| } |
| |
| /// clear - Clear out the curret SelectionDAG and the associated |
| /// state and prepare this SelectionDAGLowering object to be used |
| /// for a new block. This doesn't clear out information about |
| /// additional blocks that are needed to complete switch lowering |
| /// or PHI node updating; that information is cleared out as it is |
| /// consumed. |
| void SelectionDAGLowering::clear() { |
| NodeMap.clear(); |
| PendingLoads.clear(); |
| PendingExports.clear(); |
| DAG.clear(); |
| CurDebugLoc = DebugLoc::getUnknownLoc(); |
| } |
| |
| /// getRoot - Return the current virtual root of the Selection DAG, |
| /// flushing any PendingLoad items. This must be done before emitting |
| /// a store or any other node that may need to be ordered after any |
| /// prior load instructions. |
| /// |
| SDValue SelectionDAGLowering::getRoot() { |
| if (PendingLoads.empty()) |
| return DAG.getRoot(); |
| |
| if (PendingLoads.size() == 1) { |
| SDValue Root = PendingLoads[0]; |
| DAG.setRoot(Root); |
| PendingLoads.clear(); |
| return Root; |
| } |
| |
| // Otherwise, we have to make a token factor node. |
| SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, |
| &PendingLoads[0], PendingLoads.size()); |
| PendingLoads.clear(); |
| DAG.setRoot(Root); |
| return Root; |
| } |
| |
| /// getControlRoot - Similar to getRoot, but instead of flushing all the |
| /// PendingLoad items, flush all the PendingExports items. It is necessary |
| /// to do this before emitting a terminator instruction. |
| /// |
| SDValue SelectionDAGLowering::getControlRoot() { |
| SDValue Root = DAG.getRoot(); |
| |
| if (PendingExports.empty()) |
| return Root; |
| |
| // Turn all of the CopyToReg chains into one factored node. |
| if (Root.getOpcode() != ISD::EntryToken) { |
| unsigned i = 0, e = PendingExports.size(); |
| for (; i != e; ++i) { |
| assert(PendingExports[i].getNode()->getNumOperands() > 1); |
| if (PendingExports[i].getNode()->getOperand(0) == Root) |
| break; // Don't add the root if we already indirectly depend on it. |
| } |
| |
| if (i == e) |
| PendingExports.push_back(Root); |
| } |
| |
| Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, |
| &PendingExports[0], |
| PendingExports.size()); |
| PendingExports.clear(); |
| DAG.setRoot(Root); |
| return Root; |
| } |
| |
| void SelectionDAGLowering::visit(Instruction &I) { |
| visit(I.getOpcode(), I); |
| } |
| |
| void SelectionDAGLowering::visit(unsigned Opcode, User &I) { |
| // Note: this doesn't use InstVisitor, because it has to work with |
| // ConstantExpr's in addition to instructions. |
| switch (Opcode) { |
| default: llvm_unreachable("Unknown instruction type encountered!"); |
| // Build the switch statement using the Instruction.def file. |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \ |
| case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); |
| #include "llvm/Instruction.def" |
| } |
| } |
| |
| SDValue SelectionDAGLowering::getValue(const Value *V) { |
| SDValue &N = NodeMap[V]; |
| if (N.getNode()) return N; |
| |
| if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { |
| MVT VT = TLI.getValueType(V->getType(), true); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) |
| return N = DAG.getConstant(*CI, VT); |
| |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return N = DAG.getGlobalAddress(GV, VT); |
| |
| if (isa<ConstantPointerNull>(C)) |
| return N = DAG.getConstant(0, TLI.getPointerTy()); |
| |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) |
| return N = DAG.getConstantFP(*CFP, VT); |
| |
| if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) |
| return N = DAG.getUNDEF(VT); |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| visit(CE->getOpcode(), *CE); |
| SDValue N1 = NodeMap[V]; |
| assert(N1.getNode() && "visit didn't populate the ValueMap!"); |
| return N1; |
| } |
| |
| if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { |
| SmallVector<SDValue, 4> Constants; |
| for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); |
| OI != OE; ++OI) { |
| SDNode *Val = getValue(*OI).getNode(); |
| for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) |
| Constants.push_back(SDValue(Val, i)); |
| } |
| return DAG.getMergeValues(&Constants[0], Constants.size(), |
| getCurDebugLoc()); |
| } |
| |
| if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { |
| assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && |
| "Unknown struct or array constant!"); |
| |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, C->getType(), ValueVTs); |
| unsigned NumElts = ValueVTs.size(); |
| if (NumElts == 0) |
| return SDValue(); // empty struct |
| SmallVector<SDValue, 4> Constants(NumElts); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| MVT EltVT = ValueVTs[i]; |
| if (isa<UndefValue>(C)) |
| Constants[i] = DAG.getUNDEF(EltVT); |
| else if (EltVT.isFloatingPoint()) |
| Constants[i] = DAG.getConstantFP(0, EltVT); |
| else |
| Constants[i] = DAG.getConstant(0, EltVT); |
| } |
| return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc()); |
| } |
| |
| const VectorType *VecTy = cast<VectorType>(V->getType()); |
| unsigned NumElements = VecTy->getNumElements(); |
| |
| // Now that we know the number and type of the elements, get that number of |
| // elements into the Ops array based on what kind of constant it is. |
| SmallVector<SDValue, 16> Ops; |
| if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { |
| for (unsigned i = 0; i != NumElements; ++i) |
| Ops.push_back(getValue(CP->getOperand(i))); |
| } else { |
| assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); |
| MVT EltVT = TLI.getValueType(VecTy->getElementType()); |
| |
| SDValue Op; |
| if (EltVT.isFloatingPoint()) |
| Op = DAG.getConstantFP(0, EltVT); |
| else |
| Op = DAG.getConstant(0, EltVT); |
| Ops.assign(NumElements, Op); |
| } |
| |
| // Create a BUILD_VECTOR node. |
| return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), |
| VT, &Ops[0], Ops.size()); |
| } |
| |
| // If this is a static alloca, generate it as the frameindex instead of |
| // computation. |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) |
| return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); |
| } |
| |
| unsigned InReg = FuncInfo.ValueMap[V]; |
| assert(InReg && "Value not in map!"); |
| |
| RegsForValue RFV(TLI, InReg, V->getType()); |
| SDValue Chain = DAG.getEntryNode(); |
| return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); |
| } |
| |
| |
| void SelectionDAGLowering::visitRet(ReturnInst &I) { |
| if (I.getNumOperands() == 0) { |
| DAG.setRoot(DAG.getNode(ISD::RET, getCurDebugLoc(), |
| MVT::Other, getControlRoot())); |
| return; |
| } |
| |
| SmallVector<SDValue, 8> NewValues; |
| NewValues.push_back(getControlRoot()); |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) continue; |
| |
| SDValue RetOp = getValue(I.getOperand(i)); |
| for (unsigned j = 0, f = NumValues; j != f; ++j) { |
| MVT VT = ValueVTs[j]; |
| |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| |
| const Function *F = I.getParent()->getParent(); |
| if (F->paramHasAttr(0, Attribute::SExt)) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (F->paramHasAttr(0, Attribute::ZExt)) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| // FIXME: C calling convention requires the return type to be promoted to |
| // at least 32-bit. But this is not necessary for non-C calling |
| // conventions. The frontend should mark functions whose return values |
| // require promoting with signext or zeroext attributes. |
| if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { |
| MVT MinVT = TLI.getRegisterType(MVT::i32); |
| if (VT.bitsLT(MinVT)) |
| VT = MinVT; |
| } |
| |
| unsigned NumParts = TLI.getNumRegisters(VT); |
| MVT PartVT = TLI.getRegisterType(VT); |
| SmallVector<SDValue, 4> Parts(NumParts); |
| getCopyToParts(DAG, getCurDebugLoc(), |
| SDValue(RetOp.getNode(), RetOp.getResNo() + j), |
| &Parts[0], NumParts, PartVT, ExtendKind); |
| |
| // 'inreg' on function refers to return value |
| ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
| if (F->paramHasAttr(0, Attribute::InReg)) |
| Flags.setInReg(); |
| |
| // Propagate extension type if any |
| if (F->paramHasAttr(0, Attribute::SExt)) |
| Flags.setSExt(); |
| else if (F->paramHasAttr(0, Attribute::ZExt)) |
| Flags.setZExt(); |
| |
| for (unsigned i = 0; i < NumParts; ++i) { |
| NewValues.push_back(Parts[i]); |
| NewValues.push_back(DAG.getArgFlags(Flags)); |
| } |
| } |
| } |
| DAG.setRoot(DAG.getNode(ISD::RET, getCurDebugLoc(), MVT::Other, |
| &NewValues[0], NewValues.size())); |
| } |
| |
| /// CopyToExportRegsIfNeeded - If the given value has virtual registers |
| /// created for it, emit nodes to copy the value into the virtual |
| /// registers. |
| void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value *V) { |
| if (!V->use_empty()) { |
| DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); |
| if (VMI != FuncInfo.ValueMap.end()) |
| CopyValueToVirtualRegister(V, VMI->second); |
| } |
| } |
| |
| /// ExportFromCurrentBlock - If this condition isn't known to be exported from |
| /// the current basic block, add it to ValueMap now so that we'll get a |
| /// CopyTo/FromReg. |
| void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { |
| // No need to export constants. |
| if (!isa<Instruction>(V) && !isa<Argument>(V)) return; |
| |
| // Already exported? |
| if (FuncInfo.isExportedInst(V)) return; |
| |
| unsigned Reg = FuncInfo.InitializeRegForValue(V); |
| CopyValueToVirtualRegister(V, Reg); |
| } |
| |
| bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, |
| const BasicBlock *FromBB) { |
| // The operands of the setcc have to be in this block. We don't know |
| // how to export them from some other block. |
| if (Instruction *VI = dyn_cast<Instruction>(V)) { |
| // Can export from current BB. |
| if (VI->getParent() == FromBB) |
| return true; |
| |
| // Is already exported, noop. |
| return FuncInfo.isExportedInst(V); |
| } |
| |
| // If this is an argument, we can export it if the BB is the entry block or |
| // if it is already exported. |
| if (isa<Argument>(V)) { |
| if (FromBB == &FromBB->getParent()->getEntryBlock()) |
| return true; |
| |
| // Otherwise, can only export this if it is already exported. |
| return FuncInfo.isExportedInst(V); |
| } |
| |
| // Otherwise, constants can always be exported. |
| return true; |
| } |
| |
| static bool InBlock(const Value *V, const BasicBlock *BB) { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| return I->getParent() == BB; |
| return true; |
| } |
| |
| /// getFCmpCondCode - Return the ISD condition code corresponding to |
| /// the given LLVM IR floating-point condition code. This includes |
| /// consideration of global floating-point math flags. |
| /// |
| static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { |
| ISD::CondCode FPC, FOC; |
| switch (Pred) { |
| case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; |
| case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; |
| case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; |
| case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; |
| case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; |
| case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; |
| case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; |
| case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; |
| case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; |
| case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; |
| case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; |
| case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; |
| case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; |
| case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; |
| case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; |
| case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; |
| default: |
| llvm_unreachable("Invalid FCmp predicate opcode!"); |
| FOC = FPC = ISD::SETFALSE; |
| break; |
| } |
| if (FiniteOnlyFPMath()) |
| return FOC; |
| else |
| return FPC; |
| } |
| |
| /// getICmpCondCode - Return the ISD condition code corresponding to |
| /// the given LLVM IR integer condition code. |
| /// |
| static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { |
| switch (Pred) { |
| case ICmpInst::ICMP_EQ: return ISD::SETEQ; |
| case ICmpInst::ICMP_NE: return ISD::SETNE; |
| case ICmpInst::ICMP_SLE: return ISD::SETLE; |
| case ICmpInst::ICMP_ULE: return ISD::SETULE; |
| case ICmpInst::ICMP_SGE: return ISD::SETGE; |
| case ICmpInst::ICMP_UGE: return ISD::SETUGE; |
| case ICmpInst::ICMP_SLT: return ISD::SETLT; |
| case ICmpInst::ICMP_ULT: return ISD::SETULT; |
| case ICmpInst::ICMP_SGT: return ISD::SETGT; |
| case ICmpInst::ICMP_UGT: return ISD::SETUGT; |
| default: |
| llvm_unreachable("Invalid ICmp predicate opcode!"); |
| return ISD::SETNE; |
| } |
| } |
| |
| /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. |
| /// This function emits a branch and is used at the leaves of an OR or an |
| /// AND operator tree. |
| /// |
| void |
| SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| MachineBasicBlock *CurBB) { |
| const BasicBlock *BB = CurBB->getBasicBlock(); |
| |
| // If the leaf of the tree is a comparison, merge the condition into |
| // the caseblock. |
| if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { |
| // The operands of the cmp have to be in this block. We don't know |
| // how to export them from some other block. If this is the first block |
| // of the sequence, no exporting is needed. |
| if (CurBB == CurMBB || |
| (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && |
| isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { |
| ISD::CondCode Condition; |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { |
| Condition = getICmpCondCode(IC->getPredicate()); |
| } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { |
| Condition = getFCmpCondCode(FC->getPredicate()); |
| } else { |
| Condition = ISD::SETEQ; // silence warning. |
| llvm_unreachable("Unknown compare instruction"); |
| } |
| |
| CaseBlock CB(Condition, BOp->getOperand(0), |
| BOp->getOperand(1), NULL, TBB, FBB, CurBB); |
| SwitchCases.push_back(CB); |
| return; |
| } |
| } |
| |
| // Create a CaseBlock record representing this branch. |
| CaseBlock CB(ISD::SETEQ, Cond, DAG.getContext()->getTrue(), |
| NULL, TBB, FBB, CurBB); |
| SwitchCases.push_back(CB); |
| } |
| |
| /// FindMergedConditions - If Cond is an expression like |
| void SelectionDAGLowering::FindMergedConditions(Value *Cond, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| MachineBasicBlock *CurBB, |
| unsigned Opc) { |
| // If this node is not part of the or/and tree, emit it as a branch. |
| Instruction *BOp = dyn_cast<Instruction>(Cond); |
| if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || |
| (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || |
| BOp->getParent() != CurBB->getBasicBlock() || |
| !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || |
| !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { |
| EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); |
| return; |
| } |
| |
| // Create TmpBB after CurBB. |
| MachineFunction::iterator BBI = CurBB; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); |
| CurBB->getParent()->insert(++BBI, TmpBB); |
| |
| if (Opc == Instruction::Or) { |
| // Codegen X | Y as: |
| // jmp_if_X TBB |
| // jmp TmpBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| |
| // Emit the LHS condition. |
| FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); |
| |
| // Emit the RHS condition into TmpBB. |
| FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); |
| } else { |
| assert(Opc == Instruction::And && "Unknown merge op!"); |
| // Codegen X & Y as: |
| // jmp_if_X TmpBB |
| // jmp FBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| // This requires creation of TmpBB after CurBB. |
| |
| // Emit the LHS condition. |
| FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); |
| |
| // Emit the RHS condition into TmpBB. |
| FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); |
| } |
| } |
| |
| /// If the set of cases should be emitted as a series of branches, return true. |
| /// If we should emit this as a bunch of and/or'd together conditions, return |
| /// false. |
| bool |
| SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ |
| if (Cases.size() != 2) return true; |
| |
| // If this is two comparisons of the same values or'd or and'd together, they |
| // will get folded into a single comparison, so don't emit two blocks. |
| if ((Cases[0].CmpLHS == Cases[1].CmpLHS && |
| Cases[0].CmpRHS == Cases[1].CmpRHS) || |
| (Cases[0].CmpRHS == Cases[1].CmpLHS && |
| Cases[0].CmpLHS == Cases[1].CmpRHS)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void SelectionDAGLowering::visitBr(BranchInst &I) { |
| // Update machine-CFG edges. |
| MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| if (I.isUnconditional()) { |
| // Update machine-CFG edges. |
| CurMBB->addSuccessor(Succ0MBB); |
| |
| // If this is not a fall-through branch, emit the branch. |
| if (Succ0MBB != NextBlock) |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Succ0MBB))); |
| return; |
| } |
| |
| // If this condition is one of the special cases we handle, do special stuff |
| // now. |
| Value *CondVal = I.getCondition(); |
| MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; |
| |
| // If this is a series of conditions that are or'd or and'd together, emit |
| // this as a sequence of branches instead of setcc's with and/or operations. |
| // For example, instead of something like: |
| // cmp A, B |
| // C = seteq |
| // cmp D, E |
| // F = setle |
| // or C, F |
| // jnz foo |
| // Emit: |
| // cmp A, B |
| // je foo |
| // cmp D, E |
| // jle foo |
| // |
| if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { |
| if (BOp->hasOneUse() && |
| (BOp->getOpcode() == Instruction::And || |
| BOp->getOpcode() == Instruction::Or)) { |
| FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); |
| // If the compares in later blocks need to use values not currently |
| // exported from this block, export them now. This block should always |
| // be the first entry. |
| assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); |
| |
| // Allow some cases to be rejected. |
| if (ShouldEmitAsBranches(SwitchCases)) { |
| for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { |
| ExportFromCurrentBlock(SwitchCases[i].CmpLHS); |
| ExportFromCurrentBlock(SwitchCases[i].CmpRHS); |
| } |
| |
| // Emit the branch for this block. |
| visitSwitchCase(SwitchCases[0]); |
| SwitchCases.erase(SwitchCases.begin()); |
| return; |
| } |
| |
| // Okay, we decided not to do this, remove any inserted MBB's and clear |
| // SwitchCases. |
| for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) |
| CurMBB->getParent()->erase(SwitchCases[i].ThisBB); |
| |
| SwitchCases.clear(); |
| } |
| } |
| |
| // Create a CaseBlock record representing this branch. |
| CaseBlock CB(ISD::SETEQ, CondVal, DAG.getContext()->getTrue(), |
| NULL, Succ0MBB, Succ1MBB, CurMBB); |
| // Use visitSwitchCase to actually insert the fast branch sequence for this |
| // cond branch. |
| visitSwitchCase(CB); |
| } |
| |
| /// visitSwitchCase - Emits the necessary code to represent a single node in |
| /// the binary search tree resulting from lowering a switch instruction. |
| void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) { |
| SDValue Cond; |
| SDValue CondLHS = getValue(CB.CmpLHS); |
| DebugLoc dl = getCurDebugLoc(); |
| |
| // Build the setcc now. |
| if (CB.CmpMHS == NULL) { |
| // Fold "(X == true)" to X and "(X == false)" to !X to |
| // handle common cases produced by branch lowering. |
| if (CB.CmpRHS == DAG.getContext()->getTrue() && |
| CB.CC == ISD::SETEQ) |
| Cond = CondLHS; |
| else if (CB.CmpRHS == DAG.getContext()->getFalse() && |
| CB.CC == ISD::SETEQ) { |
| SDValue True = DAG.getConstant(1, CondLHS.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); |
| } else |
| Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); |
| } else { |
| assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); |
| |
| const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); |
| const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); |
| |
| SDValue CmpOp = getValue(CB.CmpMHS); |
| MVT VT = CmpOp.getValueType(); |
| |
| if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { |
| Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), |
| ISD::SETLE); |
| } else { |
| SDValue SUB = DAG.getNode(ISD::SUB, dl, |
| VT, CmpOp, DAG.getConstant(Low, VT)); |
| Cond = DAG.getSetCC(dl, MVT::i1, SUB, |
| DAG.getConstant(High-Low, VT), ISD::SETULE); |
| } |
| } |
| |
| // Update successor info |
| CurMBB->addSuccessor(CB.TrueBB); |
| CurMBB->addSuccessor(CB.FalseBB); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| // If the lhs block is the next block, invert the condition so that we can |
| // fall through to the lhs instead of the rhs block. |
| if (CB.TrueBB == NextBlock) { |
| std::swap(CB.TrueBB, CB.FalseBB); |
| SDValue True = DAG.getConstant(1, Cond.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); |
| } |
| SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, |
| MVT::Other, getControlRoot(), Cond, |
| DAG.getBasicBlock(CB.TrueBB)); |
| |
| // If the branch was constant folded, fix up the CFG. |
| if (BrCond.getOpcode() == ISD::BR) { |
| CurMBB->removeSuccessor(CB.FalseBB); |
| DAG.setRoot(BrCond); |
| } else { |
| // Otherwise, go ahead and insert the false branch. |
| if (BrCond == getControlRoot()) |
| CurMBB->removeSuccessor(CB.TrueBB); |
| |
| if (CB.FalseBB == NextBlock) |
| DAG.setRoot(BrCond); |
| else |
| DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, |
| DAG.getBasicBlock(CB.FalseBB))); |
| } |
| } |
| |
| /// visitJumpTable - Emit JumpTable node in the current MBB |
| void SelectionDAGLowering::visitJumpTable(JumpTable &JT) { |
| // Emit the code for the jump table |
| assert(JT.Reg != -1U && "Should lower JT Header first!"); |
| MVT PTy = TLI.getPointerTy(); |
| SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), |
| JT.Reg, PTy); |
| SDValue Table = DAG.getJumpTable(JT.JTI, PTy); |
| DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(), |
| MVT::Other, Index.getValue(1), |
| Table, Index)); |
| } |
| |
| /// visitJumpTableHeader - This function emits necessary code to produce index |
| /// in the JumpTable from switch case. |
| void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT, |
| JumpTableHeader &JTH) { |
| // Subtract the lowest switch case value from the value being switched on and |
| // conditional branch to default mbb if the result is greater than the |
| // difference between smallest and largest cases. |
| SDValue SwitchOp = getValue(JTH.SValue); |
| MVT VT = SwitchOp.getValueType(); |
| SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, |
| DAG.getConstant(JTH.First, VT)); |
| |
| // The SDNode we just created, which holds the value being switched on minus |
| // the the smallest case value, needs to be copied to a virtual register so it |
| // can be used as an index into the jump table in a subsequent basic block. |
| // This value may be smaller or larger than the target's pointer type, and |
| // therefore require extension or truncating. |
| if (VT.bitsGT(TLI.getPointerTy())) |
| SwitchOp = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), |
| TLI.getPointerTy(), SUB); |
| else |
| SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), |
| TLI.getPointerTy(), SUB); |
| |
| unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); |
| SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), |
| JumpTableReg, SwitchOp); |
| JT.Reg = JumpTableReg; |
| |
| // Emit the range check for the jump table, and branch to the default block |
| // for the switch statement if the value being switched on exceeds the largest |
| // case in the switch. |
| SDValue CMP = DAG.getSetCC(getCurDebugLoc(), |
| TLI.getSetCCResultType(SUB.getValueType()), SUB, |
| DAG.getConstant(JTH.Last-JTH.First,VT), |
| ISD::SETUGT); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), |
| MVT::Other, CopyTo, CMP, |
| DAG.getBasicBlock(JT.Default)); |
| |
| if (JT.MBB == NextBlock) |
| DAG.setRoot(BrCond); |
| else |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, |
| DAG.getBasicBlock(JT.MBB))); |
| } |
| |
| /// visitBitTestHeader - This function emits necessary code to produce value |
| /// suitable for "bit tests" |
| void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) { |
| // Subtract the minimum value |
| SDValue SwitchOp = getValue(B.SValue); |
| MVT VT = SwitchOp.getValueType(); |
| SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, |
| DAG.getConstant(B.First, VT)); |
| |
| // Check range |
| SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), |
| TLI.getSetCCResultType(SUB.getValueType()), |
| SUB, DAG.getConstant(B.Range, VT), |
| ISD::SETUGT); |
| |
| SDValue ShiftOp; |
| if (VT.bitsGT(TLI.getPointerTy())) |
| ShiftOp = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), |
| TLI.getPointerTy(), SUB); |
| else |
| ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), |
| TLI.getPointerTy(), SUB); |
| |
| B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); |
| SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), |
| B.Reg, ShiftOp); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| MachineBasicBlock* MBB = B.Cases[0].ThisBB; |
| |
| CurMBB->addSuccessor(B.Default); |
| CurMBB->addSuccessor(MBB); |
| |
| SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), |
| MVT::Other, CopyTo, RangeCmp, |
| DAG.getBasicBlock(B.Default)); |
| |
| if (MBB == NextBlock) |
| DAG.setRoot(BrRange); |
| else |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, |
| DAG.getBasicBlock(MBB))); |
| } |
| |
| /// visitBitTestCase - this function produces one "bit test" |
| void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB, |
| unsigned Reg, |
| BitTestCase &B) { |
| // Make desired shift |
| SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, |
| TLI.getPointerTy()); |
| SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), |
| TLI.getPointerTy(), |
| DAG.getConstant(1, TLI.getPointerTy()), |
| ShiftOp); |
| |
| // Emit bit tests and jumps |
| SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), |
| TLI.getPointerTy(), SwitchVal, |
| DAG.getConstant(B.Mask, TLI.getPointerTy())); |
| SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), |
| TLI.getSetCCResultType(AndOp.getValueType()), |
| AndOp, DAG.getConstant(0, TLI.getPointerTy()), |
| ISD::SETNE); |
| |
| CurMBB->addSuccessor(B.TargetBB); |
| CurMBB->addSuccessor(NextMBB); |
| |
| SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| AndCmp, DAG.getBasicBlock(B.TargetBB)); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| if (NextMBB == NextBlock) |
| DAG.setRoot(BrAnd); |
| else |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, |
| DAG.getBasicBlock(NextMBB))); |
| } |
| |
| void SelectionDAGLowering::visitInvoke(InvokeInst &I) { |
| // Retrieve successors. |
| MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; |
| |
| const Value *Callee(I.getCalledValue()); |
| if (isa<InlineAsm>(Callee)) |
| visitInlineAsm(&I); |
| else |
| LowerCallTo(&I, getValue(Callee), false, LandingPad); |
| |
| // If the value of the invoke is used outside of its defining block, make it |
| // available as a virtual register. |
| CopyToExportRegsIfNeeded(&I); |
| |
| // Update successor info |
| CurMBB->addSuccessor(Return); |
| CurMBB->addSuccessor(LandingPad); |
| |
| // Drop into normal successor. |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Return))); |
| } |
| |
| void SelectionDAGLowering::visitUnwind(UnwindInst &I) { |
| } |
| |
| /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for |
| /// small case ranges). |
| bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default) { |
| Case& BackCase = *(CR.Range.second-1); |
| |
| // Size is the number of Cases represented by this range. |
| size_t Size = CR.Range.second - CR.Range.first; |
| if (Size > 3) |
| return false; |
| |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = CurMBB->getParent(); |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CR.CaseBB; |
| |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| // TODO: If any two of the cases has the same destination, and if one value |
| // is the same as the other, but has one bit unset that the other has set, |
| // use bit manipulation to do two compares at once. For example: |
| // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" |
| |
| // Rearrange the case blocks so that the last one falls through if possible. |
| if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { |
| // The last case block won't fall through into 'NextBlock' if we emit the |
| // branches in this order. See if rearranging a case value would help. |
| for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { |
| if (I->BB == NextBlock) { |
| std::swap(*I, BackCase); |
| break; |
| } |
| } |
| } |
| |
| // Create a CaseBlock record representing a conditional branch to |
| // the Case's target mbb if the value being switched on SV is equal |
| // to C. |
| MachineBasicBlock *CurBlock = CR.CaseBB; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { |
| MachineBasicBlock *FallThrough; |
| if (I != E-1) { |
| FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); |
| CurMF->insert(BBI, FallThrough); |
| |
| // Put SV in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(SV); |
| } else { |
| // If the last case doesn't match, go to the default block. |
| FallThrough = Default; |
| } |
| |
| Value *RHS, *LHS, *MHS; |
| ISD::CondCode CC; |
| if (I->High == I->Low) { |
| // This is just small small case range :) containing exactly 1 case |
| CC = ISD::SETEQ; |
| LHS = SV; RHS = I->High; MHS = NULL; |
| } else { |
| CC = ISD::SETLE; |
| LHS = I->Low; MHS = SV; RHS = I->High; |
| } |
| CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); |
| |
| // If emitting the first comparison, just call visitSwitchCase to emit the |
| // code into the current block. Otherwise, push the CaseBlock onto the |
| // vector to be later processed by SDISel, and insert the node's MBB |
| // before the next MBB. |
| if (CurBlock == CurMBB) |
| visitSwitchCase(CB); |
| else |
| SwitchCases.push_back(CB); |
| |
| CurBlock = FallThrough; |
| } |
| |
| return true; |
| } |
| |
| static inline bool areJTsAllowed(const TargetLowering &TLI) { |
| return !DisableJumpTables && |
| (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || |
| TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); |
| } |
| |
| static APInt ComputeRange(const APInt &First, const APInt &Last) { |
| APInt LastExt(Last), FirstExt(First); |
| uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; |
| LastExt.sext(BitWidth); FirstExt.sext(BitWidth); |
| return (LastExt - FirstExt + 1ULL); |
| } |
| |
| /// handleJTSwitchCase - Emit jumptable for current switch case range |
| bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default) { |
| Case& FrontCase = *CR.Range.first; |
| Case& BackCase = *(CR.Range.second-1); |
| |
| const APInt& First = cast<ConstantInt>(FrontCase.Low)->getValue(); |
| const APInt& Last = cast<ConstantInt>(BackCase.High)->getValue(); |
| |
| size_t TSize = 0; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; |
| I!=E; ++I) |
| TSize += I->size(); |
| |
| if (!areJTsAllowed(TLI) || TSize <= 3) |
| return false; |
| |
| APInt Range = ComputeRange(First, Last); |
| double Density = (double)TSize / Range.roundToDouble(); |
| if (Density < 0.4) |
| return false; |
| |
| DEBUG(errs() << "Lowering jump table\n" |
| << "First entry: " << First << ". Last entry: " << Last << '\n' |
| << "Range: " << Range |
| << "Size: " << TSize << ". Density: " << Density << "\n\n"); |
| |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = CurMBB->getParent(); |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CR.CaseBB; |
| |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); |
| |
| // Create a new basic block to hold the code for loading the address |
| // of the jump table, and jumping to it. Update successor information; |
| // we will either branch to the default case for the switch, or the jump |
| // table. |
| MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); |
| CurMF->insert(BBI, JumpTableBB); |
| CR.CaseBB->addSuccessor(Default); |
| CR.CaseBB->addSuccessor(JumpTableBB); |
| |
| // Build a vector of destination BBs, corresponding to each target |
| // of the jump table. If the value of the jump table slot corresponds to |
| // a case statement, push the case's BB onto the vector, otherwise, push |
| // the default BB. |
| std::vector<MachineBasicBlock*> DestBBs; |
| APInt TEI = First; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { |
| const APInt& Low = cast<ConstantInt>(I->Low)->getValue(); |
| const APInt& High = cast<ConstantInt>(I->High)->getValue(); |
| |
| if (Low.sle(TEI) && TEI.sle(High)) { |
| DestBBs.push_back(I->BB); |
| if (TEI==High) |
| ++I; |
| } else { |
| DestBBs.push_back(Default); |
| } |
| } |
| |
| // Update successor info. Add one edge to each unique successor. |
| BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); |
| for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), |
| E = DestBBs.end(); I != E; ++I) { |
| if (!SuccsHandled[(*I)->getNumber()]) { |
| SuccsHandled[(*I)->getNumber()] = true; |
| JumpTableBB->addSuccessor(*I); |
| } |
| } |
| |
| // Create a jump table index for this jump table, or return an existing |
| // one. |
| unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); |
| |
| // Set the jump table information so that we can codegen it as a second |
| // MachineBasicBlock |
| JumpTable JT(-1U, JTI, JumpTableBB, Default); |
| JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); |
| if (CR.CaseBB == CurMBB) |
| visitJumpTableHeader(JT, JTH); |
| |
| JTCases.push_back(JumpTableBlock(JTH, JT)); |
| |
| return true; |
| } |
| |
| /// handleBTSplitSwitchCase - emit comparison and split binary search tree into |
| /// 2 subtrees. |
| bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default) { |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = CurMBB->getParent(); |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CR.CaseBB; |
| |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| Case& FrontCase = *CR.Range.first; |
| Case& BackCase = *(CR.Range.second-1); |
| const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); |
| |
| // Size is the number of Cases represented by this range. |
| unsigned Size = CR.Range.second - CR.Range.first; |
| |
| const APInt& First = cast<ConstantInt>(FrontCase.Low)->getValue(); |
| const APInt& Last = cast<ConstantInt>(BackCase.High)->getValue(); |
| double FMetric = 0; |
| CaseItr Pivot = CR.Range.first + Size/2; |
| |
| // Select optimal pivot, maximizing sum density of LHS and RHS. This will |
| // (heuristically) allow us to emit JumpTable's later. |
| size_t TSize = 0; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; |
| I!=E; ++I) |
| TSize += I->size(); |
| |
| size_t LSize = FrontCase.size(); |
| size_t RSize = TSize-LSize; |
| DEBUG(errs() << "Selecting best pivot: \n" |
| << "First: " << First << ", Last: " << Last <<'\n' |
| << "LSize: " << LSize << ", RSize: " << RSize << '\n'); |
| for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; |
| J!=E; ++I, ++J) { |
| const APInt& LEnd = cast<ConstantInt>(I->High)->getValue(); |
| const APInt& RBegin = cast<ConstantInt>(J->Low)->getValue(); |
| APInt Range = ComputeRange(LEnd, RBegin); |
| assert((Range - 2ULL).isNonNegative() && |
| "Invalid case distance"); |
| double LDensity = (double)LSize / (LEnd - First + 1ULL).roundToDouble(); |
| double RDensity = (double)RSize / (Last - RBegin + 1ULL).roundToDouble(); |
| double Metric = Range.logBase2()*(LDensity+RDensity); |
| // Should always split in some non-trivial place |
| DEBUG(errs() <<"=>Step\n" |
| << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' |
| << "LDensity: " << LDensity |
| << ", RDensity: " << RDensity << '\n' |
| << "Metric: " << Metric << '\n'); |
| if (FMetric < Metric) { |
| Pivot = J; |
| FMetric = Metric; |
| DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); |
| } |
| |
| LSize += J->size(); |
| RSize -= J->size(); |
| } |
| if (areJTsAllowed(TLI)) { |
| // If our case is dense we *really* should handle it earlier! |
| assert((FMetric > 0) && "Should handle dense range earlier!"); |
| } else { |
| Pivot = CR.Range.first + Size/2; |
| } |
| |
| CaseRange LHSR(CR.Range.first, Pivot); |
| CaseRange RHSR(Pivot, CR.Range.second); |
| Constant *C = Pivot->Low; |
| MachineBasicBlock *FalseBB = 0, *TrueBB = 0; |
| |
| // We know that we branch to the LHS if the Value being switched on is |
| // less than the Pivot value, C. We use this to optimize our binary |
| // tree a bit, by recognizing that if SV is greater than or equal to the |
| // LHS's Case Value, and that Case Value is exactly one less than the |
| // Pivot's Value, then we can branch directly to the LHS's Target, |
| // rather than creating a leaf node for it. |
| if ((LHSR.second - LHSR.first) == 1 && |
| LHSR.first->High == CR.GE && |
| cast<ConstantInt>(C)->getValue() == |
| (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { |
| TrueBB = LHSR.first->BB; |
| } else { |
| TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); |
| CurMF->insert(BBI, TrueBB); |
| WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); |
| |
| // Put SV in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(SV); |
| } |
| |
| // Similar to the optimization above, if the Value being switched on is |
| // known to be less than the Constant CR.LT, and the current Case Value |
| // is CR.LT - 1, then we can branch directly to the target block for |
| // the current Case Value, rather than emitting a RHS leaf node for it. |
| if ((RHSR.second - RHSR.first) == 1 && CR.LT && |
| cast<ConstantInt>(RHSR.first->Low)->getValue() == |
| (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { |
| FalseBB = RHSR.first->BB; |
| } else { |
| FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); |
| CurMF->insert(BBI, FalseBB); |
| WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); |
| |
| // Put SV in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(SV); |
| } |
| |
| // Create a CaseBlock record representing a conditional branch to |
| // the LHS node if the value being switched on SV is less than C. |
| // Otherwise, branch to LHS. |
| CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); |
| |
| if (CR.CaseBB == CurMBB) |
| visitSwitchCase(CB); |
| else |
| SwitchCases.push_back(CB); |
| |
| return true; |
| } |
| |
| /// handleBitTestsSwitchCase - if current case range has few destination and |
| /// range span less, than machine word bitwidth, encode case range into series |
| /// of masks and emit bit tests with these masks. |
| bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default){ |
| unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits(); |
| |
| Case& FrontCase = *CR.Range.first; |
| Case& BackCase = *(CR.Range.second-1); |
| |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = CurMBB->getParent(); |
| |
| // If target does not have legal shift left, do not emit bit tests at all. |
| if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) |
| return false; |
| |
| size_t numCmps = 0; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; |
| I!=E; ++I) { |
| // Single case counts one, case range - two. |
| numCmps += (I->Low == I->High ? 1 : 2); |
| } |
| |
| // Count unique destinations |
| SmallSet<MachineBasicBlock*, 4> Dests; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { |
| Dests.insert(I->BB); |
| if (Dests.size() > 3) |
| // Don't bother the code below, if there are too much unique destinations |
| return false; |
| } |
| DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' |
| << "Total number of comparisons: " << numCmps << '\n'); |
| |
| // Compute span of values. |
| const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); |
| const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); |
| APInt cmpRange = maxValue - minValue; |
| |
| DEBUG(errs() << "Compare range: " << cmpRange << '\n' |
| << "Low bound: " << minValue << '\n' |
| << "High bound: " << maxValue << '\n'); |
| |
| if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || |
| (!(Dests.size() == 1 && numCmps >= 3) && |
| !(Dests.size() == 2 && numCmps >= 5) && |
| !(Dests.size() >= 3 && numCmps >= 6))) |
| return false; |
| |
| DEBUG(errs() << "Emitting bit tests\n"); |
| APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); |
| |
| // Optimize the case where all the case values fit in a |
| // word without having to subtract minValue. In this case, |
| // we can optimize away the subtraction. |
| if (minValue.isNonNegative() && |
| maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { |
| cmpRange = maxValue; |
| } else { |
| lowBound = minValue; |
| } |
| |
| CaseBitsVector CasesBits; |
| unsigned i, count = 0; |
| |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { |
| MachineBasicBlock* Dest = I->BB; |
| for (i = 0; i < count; ++i) |
| if (Dest == CasesBits[i].BB) |
| break; |
| |
| if (i == count) { |
| assert((count < 3) && "Too much destinations to test!"); |
| CasesBits.push_back(CaseBits(0, Dest, 0)); |
| count++; |
| } |
| |
| const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); |
| const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); |
| |
| uint64_t lo = (lowValue - lowBound).getZExtValue(); |
| uint64_t hi = (highValue - lowBound).getZExtValue(); |
| |
| for (uint64_t j = lo; j <= hi; j++) { |
| CasesBits[i].Mask |= 1ULL << j; |
| CasesBits[i].Bits++; |
| } |
| |
| } |
| std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); |
| |
| BitTestInfo BTC; |
| |
| // Figure out which block is immediately after the current one. |
| MachineFunction::iterator BBI = CR.CaseBB; |
| ++BBI; |
| |
| const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); |
| |
| DEBUG(errs() << "Cases:\n"); |
| for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { |
| DEBUG(errs() << "Mask: " << CasesBits[i].Mask |
| << ", Bits: " << CasesBits[i].Bits |
| << ", BB: " << CasesBits[i].BB << '\n'); |
| |
| MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); |
| CurMF->insert(BBI, CaseBB); |
| BTC.push_back(BitTestCase(CasesBits[i].Mask, |
| CaseBB, |
| CasesBits[i].BB)); |
| |
| // Put SV in a virtual register to make it available from the new blocks. |
| ExportFromCurrentBlock(SV); |
| } |
| |
| BitTestBlock BTB(lowBound, cmpRange, SV, |
| -1U, (CR.CaseBB == CurMBB), |
| CR.CaseBB, Default, BTC); |
| |
| if (CR.CaseBB == CurMBB) |
| visitBitTestHeader(BTB); |
| |
| BitTestCases.push_back(BTB); |
| |
| return true; |
| } |
| |
| |
| /// Clusterify - Transform simple list of Cases into list of CaseRange's |
| size_t SelectionDAGLowering::Clusterify(CaseVector& Cases, |
| const SwitchInst& SI) { |
| size_t numCmps = 0; |
| |
| // Start with "simple" cases |
| for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { |
| MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; |
| Cases.push_back(Case(SI.getSuccessorValue(i), |
| SI.getSuccessorValue(i), |
| SMBB)); |
| } |
| std::sort(Cases.begin(), Cases.end(), CaseCmp()); |
| |
| // Merge case into clusters |
| if (Cases.size() >= 2) |
| // Must recompute end() each iteration because it may be |
| // invalidated by erase if we hold on to it |
| for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { |
| const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); |
| const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); |
| MachineBasicBlock* nextBB = J->BB; |
| MachineBasicBlock* currentBB = I->BB; |
| |
| // If the two neighboring cases go to the same destination, merge them |
| // into a single case. |
| if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { |
| I->High = J->High; |
| J = Cases.erase(J); |
| } else { |
| I = J++; |
| } |
| } |
| |
| for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { |
| if (I->Low != I->High) |
| // A range counts double, since it requires two compares. |
| ++numCmps; |
| } |
| |
| return numCmps; |
| } |
| |
| void SelectionDAGLowering::visitSwitch(SwitchInst &SI) { |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| |
| MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; |
| |
| // If there is only the default destination, branch to it if it is not the |
| // next basic block. Otherwise, just fall through. |
| if (SI.getNumOperands() == 2) { |
| // Update machine-CFG edges. |
| |
| // If this is not a fall-through branch, emit the branch. |
| CurMBB->addSuccessor(Default); |
| if (Default != NextBlock) |
| DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), |
| MVT::Other, getControlRoot(), |
| DAG.getBasicBlock(Default))); |
| return; |
| } |
| |
| // If there are any non-default case statements, create a vector of Cases |
| // representing each one, and sort the vector so that we can efficiently |
| // create a binary search tree from them. |
| CaseVector Cases; |
| size_t numCmps = Clusterify(Cases, SI); |
| DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() |
| << ". Total compares: " << numCmps << '\n'); |
| numCmps = 0; |
| |
| // Get the Value to be switched on and default basic blocks, which will be |
| // inserted into CaseBlock records, representing basic blocks in the binary |
| // search tree. |
| Value *SV = SI.getOperand(0); |
| |
| // Push the initial CaseRec onto the worklist |
| CaseRecVector WorkList; |
| WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); |
| |
| while (!WorkList.empty()) { |
| // Grab a record representing a case range to process off the worklist |
| CaseRec CR = WorkList.back(); |
| WorkList.pop_back(); |
| |
| if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) |
| continue; |
| |
| // If the range has few cases (two or less) emit a series of specific |
| // tests. |
| if (handleSmallSwitchRange(CR, WorkList, SV, Default)) |
| continue; |
| |
| // If the switch has more than 5 blocks, and at least 40% dense, and the |
| // target supports indirect branches, then emit a jump table rather than |
| // lowering the switch to a binary tree of conditional branches. |
| if (handleJTSwitchCase(CR, WorkList, SV, Default)) |
| continue; |
| |
| // Emit binary tree. We need to pick a pivot, and push left and right ranges |
| // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. |
| handleBTSplitSwitchCase(CR, WorkList, SV, Default); |
| } |
| } |
| |
| |
| void SelectionDAGLowering::visitFSub(User &I) { |
| // -0.0 - X --> fneg |
| const Type *Ty = I.getType(); |
| if (isa<VectorType>(Ty)) { |
| if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { |
| const VectorType *DestTy = cast<VectorType>(I.getType()); |
| const Type *ElTy = DestTy->getElementType(); |
| unsigned VL = DestTy->getNumElements(); |
| std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); |
| Constant *CNZ = DAG.getContext()->getConstantVector(&NZ[0], NZ.size()); |
| if (CV == CNZ) { |
| SDValue Op2 = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), |
| Op2.getValueType(), Op2)); |
| return; |
| } |
| } |
| } |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) |
| if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { |
| SDValue Op2 = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), |
| Op2.getValueType(), Op2)); |
| return; |
| } |
| |
| visitBinary(I, ISD::FSUB); |
| } |
| |
| void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) { |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| |
| setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), |
| Op1.getValueType(), Op1, Op2)); |
| } |
| |
| void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| if (!isa<VectorType>(I.getType()) && |
| Op2.getValueType() != TLI.getShiftAmountTy()) { |
| // If the operand is smaller than the shift count type, promote it. |
| if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType())) |
| Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), |
| TLI.getShiftAmountTy(), Op2); |
| // If the operand is larger than the shift count type but the shift |
| // count type has enough bits to represent any shift value, truncate |
| // it now. This is a common case and it exposes the truncate to |
| // optimization early. |
| else if (TLI.getShiftAmountTy().getSizeInBits() >= |
| Log2_32_Ceil(Op2.getValueType().getSizeInBits())) |
| Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), |
| TLI.getShiftAmountTy(), Op2); |
| // Otherwise we'll need to temporarily settle for some other |
| // convenient type; type legalization will make adjustments as |
| // needed. |
| else if (TLI.getPointerTy().bitsLT(Op2.getValueType())) |
| Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), |
| TLI.getPointerTy(), Op2); |
| else if (TLI.getPointerTy().bitsGT(Op2.getValueType())) |
| Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), |
| TLI.getPointerTy(), Op2); |
| } |
| |
| setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), |
| Op1.getValueType(), Op1, Op2)); |
| } |
| |
| void SelectionDAGLowering::visitICmp(User &I) { |
| ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) |
| predicate = IC->getPredicate(); |
| else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) |
| predicate = ICmpInst::Predicate(IC->getPredicate()); |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| ISD::CondCode Opcode = getICmpCondCode(predicate); |
| |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); |
| } |
| |
| void SelectionDAGLowering::visitFCmp(User &I) { |
| FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; |
| if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) |
| predicate = FC->getPredicate(); |
| else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) |
| predicate = FCmpInst::Predicate(FC->getPredicate()); |
| SDValue Op1 = getValue(I.getOperand(0)); |
| SDValue Op2 = getValue(I.getOperand(1)); |
| ISD::CondCode Condition = getFCmpCondCode(predicate); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); |
| } |
| |
| void SelectionDAGLowering::visitSelect(User &I) { |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, I.getType(), ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues != 0) { |
| SmallVector<SDValue, 4> Values(NumValues); |
| SDValue Cond = getValue(I.getOperand(0)); |
| SDValue TrueVal = getValue(I.getOperand(1)); |
| SDValue FalseVal = getValue(I.getOperand(2)); |
| |
| for (unsigned i = 0; i != NumValues; ++i) |
| Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), |
| TrueVal.getValueType(), Cond, |
| SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), |
| SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&ValueVTs[0], NumValues), |
| &Values[0], NumValues)); |
| } |
| } |
| |
| |
| void SelectionDAGLowering::visitTrunc(User &I) { |
| // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitZExt(User &I) { |
| // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
| // ZExt also can't be a cast to bool for same reason. So, nothing much to do |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitSExt(User &I) { |
| // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
| // SExt also can't be a cast to bool for same reason. So, nothing much to do |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitFPTrunc(User &I) { |
| // FPTrunc is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), |
| DestVT, N, DAG.getIntPtrConstant(0))); |
| } |
| |
| void SelectionDAGLowering::visitFPExt(User &I){ |
| // FPTrunc is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitFPToUI(User &I) { |
| // FPToUI is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitFPToSI(User &I) { |
| // FPToSI is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitUIToFP(User &I) { |
| // UIToFP is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitSIToFP(User &I){ |
| // SIToFP is never a no-op cast, no need to check |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitPtrToInt(User &I) { |
| // What to do depends on the size of the integer and the size of the pointer. |
| // We can either truncate, zero extend, or no-op, accordingly. |
| SDValue N = getValue(I.getOperand(0)); |
| MVT SrcVT = N.getValueType(); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| SDValue Result; |
| if (DestVT.bitsLT(SrcVT)) |
| Result = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N); |
| else |
| // Note: ZERO_EXTEND can handle cases where the sizes are equal too |
| Result = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N); |
| setValue(&I, Result); |
| } |
| |
| void SelectionDAGLowering::visitIntToPtr(User &I) { |
| // What to do depends on the size of the integer and the size of the pointer. |
| // We can either truncate, zero extend, or no-op, accordingly. |
| SDValue N = getValue(I.getOperand(0)); |
| MVT SrcVT = N.getValueType(); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| if (DestVT.bitsLT(SrcVT)) |
| setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); |
| else |
| // Note: ZERO_EXTEND can handle cases where the sizes are equal too |
| setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), |
| DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitBitCast(User &I) { |
| SDValue N = getValue(I.getOperand(0)); |
| MVT DestVT = TLI.getValueType(I.getType()); |
| |
| // BitCast assures us that source and destination are the same size so this |
| // is either a BIT_CONVERT or a no-op. |
| if (DestVT != N.getValueType()) |
| setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), |
| DestVT, N)); // convert types |
| else |
| setValue(&I, N); // noop cast. |
| } |
| |
| void SelectionDAGLowering::visitInsertElement(User &I) { |
| SDValue InVec = getValue(I.getOperand(0)); |
| SDValue InVal = getValue(I.getOperand(1)); |
| SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), |
| TLI.getPointerTy(), |
| getValue(I.getOperand(2))); |
| |
| setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), |
| TLI.getValueType(I.getType()), |
| InVec, InVal, InIdx)); |
| } |
| |
| void SelectionDAGLowering::visitExtractElement(User &I) { |
| SDValue InVec = getValue(I.getOperand(0)); |
| SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), |
| TLI.getPointerTy(), |
| getValue(I.getOperand(1))); |
| setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), |
| TLI.getValueType(I.getType()), InVec, InIdx)); |
| } |
| |
| |
| // Utility for visitShuffleVector - Returns true if the mask is mask starting |
| // from SIndx and increasing to the element length (undefs are allowed). |
| static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { |
| unsigned MaskNumElts = Mask.size(); |
| for (unsigned i = 0; i != MaskNumElts; ++i) |
| if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) |
| return false; |
| return true; |
| } |
| |
| void SelectionDAGLowering::visitShuffleVector(User &I) { |
| SmallVector<int, 8> Mask; |
| SDValue Src1 = getValue(I.getOperand(0)); |
| SDValue Src2 = getValue(I.getOperand(1)); |
| |
| // Convert the ConstantVector mask operand into an array of ints, with -1 |
| // representing undef values. |
| SmallVector<Constant*, 8> MaskElts; |
| cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), |
| MaskElts); |
| unsigned MaskNumElts = MaskElts.size(); |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| if (isa<UndefValue>(MaskElts[i])) |
| Mask.push_back(-1); |
| else |
| Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); |
| } |
| |
| MVT VT = TLI.getValueType(I.getType()); |
| MVT SrcVT = Src1.getValueType(); |
| unsigned SrcNumElts = SrcVT.getVectorNumElements(); |
| |
| if (SrcNumElts == MaskNumElts) { |
| setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, |
| &Mask[0])); |
| return; |
| } |
| |
| // Normalize the shuffle vector since mask and vector length don't match. |
| if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { |
| // Mask is longer than the source vectors and is a multiple of the source |
| // vectors. We can use concatenate vector to make the mask and vectors |
| // lengths match. |
| if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { |
| // The shuffle is concatenating two vectors together. |
| setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), |
| VT, Src1, Src2)); |
| return; |
| } |
| |
| // Pad both vectors with undefs to make them the same length as the mask. |
| unsigned NumConcat = MaskNumElts / SrcNumElts; |
| bool Src1U = Src1.getOpcode() == ISD::UNDEF; |
| bool Src2U = Src2.getOpcode() == ISD::UNDEF; |
| SDValue UndefVal = DAG.getUNDEF(SrcVT); |
| |
| SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); |
| SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); |
| MOps1[0] = Src1; |
| MOps2[0] = Src2; |
| |
| Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, |
| getCurDebugLoc(), VT, |
| &MOps1[0], NumConcat); |
| Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, |
| getCurDebugLoc(), VT, |
| &MOps2[0], NumConcat); |
| |
| // Readjust mask for new input vector length. |
| SmallVector<int, 8> MappedOps; |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| if (Idx < (int)SrcNumElts) |
| MappedOps.push_back(Idx); |
| else |
| MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); |
| } |
| setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, |
| &MappedOps[0])); |
| return; |
| } |
| |
| if (SrcNumElts > MaskNumElts) { |
| // Analyze the access pattern of the vector to see if we can extract |
| // two subvectors and do the shuffle. The analysis is done by calculating |
| // the range of elements the mask access on both vectors. |
| int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; |
| int MaxRange[2] = {-1, -1}; |
| |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| int Input = 0; |
| if (Idx < 0) |
| continue; |
| |
| if (Idx >= (int)SrcNumElts) { |
| Input = 1; |
| Idx -= SrcNumElts; |
| } |
| if (Idx > MaxRange[Input]) |
| MaxRange[Input] = Idx; |
| if (Idx < MinRange[Input]) |
| MinRange[Input] = Idx; |
| } |
| |
| // Check if the access is smaller than the vector size and can we find |
| // a reasonable extract index. |
| int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract. |
| int StartIdx[2]; // StartIdx to extract from |
| for (int Input=0; Input < 2; ++Input) { |
| if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { |
| RangeUse[Input] = 0; // Unused |
| StartIdx[Input] = 0; |
| } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { |
| // Fits within range but we should see if we can find a good |
| // start index that is a multiple of the mask length. |
| if (MaxRange[Input] < (int)MaskNumElts) { |
| RangeUse[Input] = 1; // Extract from beginning of the vector |
| StartIdx[Input] = 0; |
| } else { |
| StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; |
| if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && |
| StartIdx[Input] + MaskNumElts < SrcNumElts) |
| RangeUse[Input] = 1; // Extract from a multiple of the mask length. |
| } |
| } |
| } |
| |
| if (RangeUse[0] == 0 && RangeUse[0] == 0) { |
| setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. |
| return; |
| } |
| else if (RangeUse[0] < 2 && RangeUse[1] < 2) { |
| // Extract appropriate subvector and generate a vector shuffle |
| for (int Input=0; Input < 2; ++Input) { |
| SDValue& Src = Input == 0 ? Src1 : Src2; |
| if (RangeUse[Input] == 0) { |
| Src = DAG.getUNDEF(VT); |
| } else { |
| Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, |
| Src, DAG.getIntPtrConstant(StartIdx[Input])); |
| } |
| } |
| // Calculate new mask. |
| SmallVector<int, 8> MappedOps; |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| int Idx = Mask[i]; |
| if (Idx < 0) |
| MappedOps.push_back(Idx); |
| else if (Idx < (int)SrcNumElts) |
| MappedOps.push_back(Idx - StartIdx[0]); |
| else |
| MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); |
| } |
| setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, |
| &MappedOps[0])); |
| return; |
| } |
| } |
| |
| // We can't use either concat vectors or extract subvectors so fall back to |
| // replacing the shuffle with extract and build vector. |
| // to insert and build vector. |
| MVT EltVT = VT.getVectorElementType(); |
| MVT PtrVT = TLI.getPointerTy(); |
| SmallVector<SDValue,8> Ops; |
| for (unsigned i = 0; i != MaskNumElts; ++i) { |
| if (Mask[i] < 0) { |
| Ops.push_back(DAG.getUNDEF(EltVT)); |
| } else { |
| int Idx = Mask[i]; |
| if (Idx < (int)SrcNumElts) |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), |
| EltVT, Src1, DAG.getConstant(Idx, PtrVT))); |
| else |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), |
| EltVT, Src2, |
| DAG.getConstant(Idx - SrcNumElts, PtrVT))); |
| } |
| } |
| setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), |
| VT, &Ops[0], Ops.size())); |
| } |
| |
| void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) { |
| const Value *Op0 = I.getOperand(0); |
| const Value *Op1 = I.getOperand(1); |
| const Type *AggTy = I.getType(); |
| const Type *ValTy = Op1->getType(); |
| bool IntoUndef = isa<UndefValue>(Op0); |
| bool FromUndef = isa<UndefValue>(Op1); |
| |
| unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, |
| I.idx_begin(), I.idx_end()); |
| |
| SmallVector<MVT, 4> AggValueVTs; |
| ComputeValueVTs(TLI, AggTy, AggValueVTs); |
| SmallVector<MVT, 4> ValValueVTs; |
| ComputeValueVTs(TLI, ValTy, ValValueVTs); |
| |
| unsigned NumAggValues = AggValueVTs.size(); |
| unsigned NumValValues = ValValueVTs.size(); |
| SmallVector<SDValue, 4> Values(NumAggValues); |
| |
| SDValue Agg = getValue(Op0); |
| SDValue Val = getValue(Op1); |
| unsigned i = 0; |
| // Copy the beginning value(s) from the original aggregate. |
| for (; i != LinearIndex; ++i) |
| Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| // Copy values from the inserted value(s). |
| for (; i != LinearIndex + NumValValues; ++i) |
| Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); |
| // Copy remaining value(s) from the original aggregate. |
| for (; i != NumAggValues; ++i) |
| Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&AggValueVTs[0], NumAggValues), |
| &Values[0], NumAggValues)); |
| } |
| |
| void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) { |
| const Value *Op0 = I.getOperand(0); |
| const Type *AggTy = Op0->getType(); |
| const Type *ValTy = I.getType(); |
| bool OutOfUndef = isa<UndefValue>(Op0); |
| |
| unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, |
| I.idx_begin(), I.idx_end()); |
| |
| SmallVector<MVT, 4> ValValueVTs; |
| ComputeValueVTs(TLI, ValTy, ValValueVTs); |
| |
| unsigned NumValValues = ValValueVTs.size(); |
| SmallVector<SDValue, 4> Values(NumValValues); |
| |
| SDValue Agg = getValue(Op0); |
| // Copy out the selected value(s). |
| for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) |
| Values[i - LinearIndex] = |
| OutOfUndef ? |
| DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : |
| SDValue(Agg.getNode(), Agg.getResNo() + i); |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&ValValueVTs[0], NumValValues), |
| &Values[0], NumValValues)); |
| } |
| |
| |
| void SelectionDAGLowering::visitGetElementPtr(User &I) { |
| SDValue N = getValue(I.getOperand(0)); |
| const Type *Ty = I.getOperand(0)->getType(); |
| |
| for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); |
| OI != E; ++OI) { |
| Value *Idx = *OI; |
| if (const StructType *StTy = dyn_cast<StructType>(Ty)) { |
| unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); |
| if (Field) { |
| // N = N + Offset |
| uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); |
| N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, |
| DAG.getIntPtrConstant(Offset)); |
| } |
| Ty = StTy->getElementType(Field); |
| } else { |
| Ty = cast<SequentialType>(Ty)->getElementType(); |
| |
| // If this is a constant subscript, handle it quickly. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { |
| if (CI->getZExtValue() == 0) continue; |
| uint64_t Offs = |
| TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); |
| SDValue OffsVal; |
| unsigned PtrBits = TLI.getPointerTy().getSizeInBits(); |
| if (PtrBits < 64) { |
| OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), |
| TLI.getPointerTy(), |
| DAG.getConstant(Offs, MVT::i64)); |
| } else |
| OffsVal = DAG.getIntPtrConstant(Offs); |
| N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, |
| OffsVal); |
| continue; |
| } |
| |
| // N = N + Idx * ElementSize; |
| uint64_t ElementSize = TD->getTypeAllocSize(Ty); |
| SDValue IdxN = getValue(Idx); |
| |
| // If the index is smaller or larger than intptr_t, truncate or extend |
| // it. |
| if (IdxN.getValueType().bitsLT(N.getValueType())) |
| IdxN = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), |
| N.getValueType(), IdxN); |
| else if (IdxN.getValueType().bitsGT(N.getValueType())) |
| IdxN = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), |
| N.getValueType(), IdxN); |
| |
| // If this is a multiply by a power of two, turn it into a shl |
| // immediately. This is a very common case. |
| if (ElementSize != 1) { |
| if (isPowerOf2_64(ElementSize)) { |
| unsigned Amt = Log2_64(ElementSize); |
| IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), |
| N.getValueType(), IdxN, |
| DAG.getConstant(Amt, TLI.getPointerTy())); |
| } else { |
| SDValue Scale = DAG.getIntPtrConstant(ElementSize); |
| IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), |
| N.getValueType(), IdxN, Scale); |
| } |
| } |
| |
| N = DAG.getNode(ISD::ADD, getCurDebugLoc(), |
| N.getValueType(), N, IdxN); |
| } |
| } |
| setValue(&I, N); |
| } |
| |
| void SelectionDAGLowering::visitAlloca(AllocaInst &I) { |
| // If this is a fixed sized alloca in the entry block of the function, |
| // allocate it statically on the stack. |
| if (FuncInfo.StaticAllocaMap.count(&I)) |
| return; // getValue will auto-populate this. |
| |
| const Type *Ty = I.getAllocatedType(); |
| uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); |
| unsigned Align = |
| std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), |
| I.getAlignment()); |
| |
| SDValue AllocSize = getValue(I.getArraySize()); |
| |
| AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), |
| AllocSize, |
| DAG.getConstant(TySize, AllocSize.getValueType())); |
| |
| |
| |
| MVT IntPtr = TLI.getPointerTy(); |
| if (IntPtr.bitsLT(AllocSize.getValueType())) |
| AllocSize = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), |
| IntPtr, AllocSize); |
| else if (IntPtr.bitsGT(AllocSize.getValueType())) |
| AllocSize = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), |
| IntPtr, AllocSize); |
| |
| // Handle alignment. If the requested alignment is less than or equal to |
| // the stack alignment, ignore it. If the size is greater than or equal to |
| // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. |
| unsigned StackAlign = |
| TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); |
| if (Align <= StackAlign) |
| Align = 0; |
| |
| // Round the size of the allocation up to the stack alignment size |
| // by add SA-1 to the size. |
| AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), |
| AllocSize.getValueType(), AllocSize, |
| DAG.getIntPtrConstant(StackAlign-1)); |
| // Mask out the low bits for alignment purposes. |
| AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), |
| AllocSize.getValueType(), AllocSize, |
| DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); |
| |
| SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; |
| SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); |
| SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), |
| VTs, Ops, 3); |
| setValue(&I, DSA); |
| DAG.setRoot(DSA.getValue(1)); |
| |
| // Inform the Frame Information that we have just allocated a variable-sized |
| // object. |
| CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); |
| } |
| |
| void SelectionDAGLowering::visitLoad(LoadInst &I) { |
| const Value *SV = I.getOperand(0); |
| SDValue Ptr = getValue(SV); |
| |
| const Type *Ty = I.getType(); |
| bool isVolatile = I.isVolatile(); |
| unsigned Alignment = I.getAlignment(); |
| |
| SmallVector<MVT, 4> ValueVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) |
| return; |
| |
| SDValue Root; |
| bool ConstantMemory = false; |
| if (I.isVolatile()) |
| // Serialize volatile loads with other side effects. |
| Root = getRoot(); |
| else if (AA->pointsToConstantMemory(SV)) { |
| // Do not serialize (non-volatile) loads of constant memory with anything. |
| Root = DAG.getEntryNode(); |
| ConstantMemory = true; |
| } else { |
| // Do not serialize non-volatile loads against each other. |
| Root = DAG.getRoot(); |
| } |
| |
| SmallVector<SDValue, 4> Values(NumValues); |
| SmallVector<SDValue, 4> Chains(NumValues); |
| MVT PtrVT = Ptr.getValueType(); |
| for (unsigned i = 0; i != NumValues; ++i) { |
| SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, |
| DAG.getNode(ISD::ADD, getCurDebugLoc(), |
| PtrVT, Ptr, |
| DAG.getConstant(Offsets[i], PtrVT)), |
| SV, Offsets[i], |
| isVolatile, Alignment); |
| Values[i] = L; |
| Chains[i] = L.getValue(1); |
| } |
| |
| if (!ConstantMemory) { |
| SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), |
| MVT::Other, |
| &Chains[0], NumValues); |
| if (isVolatile) |
| DAG.setRoot(Chain); |
| else |
| PendingLoads.push_back(Chain); |
| } |
| |
| setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), |
| DAG.getVTList(&ValueVTs[0], NumValues), |
| &Values[0], NumValues)); |
| } |
| |
| |
| void SelectionDAGLowering::visitStore(StoreInst &I) { |
| Value *SrcV = I.getOperand(0); |
| Value *PtrV = I.getOperand(1); |
| |
| SmallVector<MVT, 4> ValueVTs; |
| SmallVector<uint64_t, 4> Offsets; |
| ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) |
| return; |
| |
| // Get the lowered operands. Note that we do this after |
| // checking if NumResults is zero, because with zero results |
| // the operands won't have values in the map. |
| SDValue Src = getValue(SrcV); |
| SDValue Ptr = getValue(PtrV); |
| |
| SDValue Root = getRoot(); |
| SmallVector<SDValue, 4> Chains(NumValues); |
| MVT PtrVT = Ptr.getValueType(); |
| bool isVolatile = I.isVolatile(); |
| unsigned Alignment = I.getAlignment(); |
| for (unsigned i = 0; i != NumValues; ++i) |
| Chains[i] = DAG.getStore(Root, getCurDebugLoc(), |
| SDValue(Src.getNode(), Src.getResNo() + i), |
| DAG.getNode(ISD::ADD, getCurDebugLoc(), |
| PtrVT, Ptr, |
| DAG.getConstant(Offsets[i], PtrVT)), |
| PtrV, Offsets[i], |
| isVolatile, Alignment); |
| |
| DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), |
| MVT::Other, &Chains[0], NumValues)); |
| } |
| |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC |
| /// node. |
| void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, |
| unsigned Intrinsic) { |
| bool HasChain = !I.doesNotAccessMemory(); |
| bool OnlyLoad = HasChain && I.onlyReadsMemory(); |
| |
| // Build the operand list. |
| SmallVector<SDValue, 8> Ops; |
| if (HasChain) { // If this intrinsic has side-effects, chainify it. |
| if (OnlyLoad) { |
| // We don't need to serialize loads against other loads. |
| Ops.push_back(DAG.getRoot()); |
| } else { |
| Ops.push_back(getRoot()); |
| } |
| } |
| |
| // Info is set by getTgtMemInstrinsic |
| TargetLowering::IntrinsicInfo Info; |
| bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); |
| |
| // Add the intrinsic ID as an integer operand if it's not a target intrinsic. |
| if (!IsTgtIntrinsic) |
| Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); |
| |
| // Add all operands of the call to the operand list. |
| for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { |
| SDValue Op = getValue(I.getOperand(i)); |
| assert(TLI.isTypeLegal(Op.getValueType()) && |
| "Intrinsic uses a non-legal type?"); |
| Ops.push_back(Op); |
| } |
| |
| std::vector<MVT> VTArray; |
| if (I.getType() != Type::VoidTy) { |
| MVT VT = TLI.getValueType(I.getType()); |
| if (VT.isVector()) { |
| const VectorType *DestTy = cast<VectorType>(I.getType()); |
| MVT EltVT = TLI.getValueType(DestTy->getElementType()); |
| |
| VT = MVT::getVectorVT(EltVT, DestTy->getNumElements()); |
| assert(VT != MVT::Other && "Intrinsic uses a non-legal type?"); |
| } |
| |
| assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?"); |
| VTArray.push_back(VT); |
| } |
| if (HasChain) |
| VTArray.push_back(MVT::Other); |
| |
| SDVTList VTs = DAG.getVTList(&VTArray[0], VTArray.size()); |
| |
| // Create the node. |
| SDValue Result; |
| if (IsTgtIntrinsic) { |
| // This is target intrinsic that touches memory |
| Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), |
| VTs, &Ops[0], Ops.size(), |
| Info.memVT, Info.ptrVal, Info.offset, |
| Info.align, Info.vol, |
| Info.readMem, Info.writeMem); |
| } |
| else if (!HasChain) |
| Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| else if (I.getType() != Type::VoidTy) |
| Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| else |
| Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| |
| if (HasChain) { |
| SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); |
| if (OnlyLoad) |
| PendingLoads.push_back(Chain); |
| else |
| DAG.setRoot(Chain); |
| } |
| if (I.getType() != Type::VoidTy) { |
| if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { |
| MVT VT = TLI.getValueType(PTy); |
| Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); |
| } |
| setValue(&I, Result); |
| } |
| } |
| |
| /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. |
| static GlobalVariable *ExtractTypeInfo(Value *V) { |
| V = V->stripPointerCasts(); |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(V); |
| assert ((GV || isa<ConstantPointerNull>(V)) && |
| "TypeInfo must be a global variable or NULL"); |
| return GV; |
| } |
| |
| namespace llvm { |
| |
| /// AddCatchInfo - Extract the personality and type infos from an eh.selector |
| /// call, and add them to the specified machine basic block. |
| void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI, |
| MachineBasicBlock *MBB) { |
| // Inform the MachineModuleInfo of the personality for this landing pad. |
| ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2)); |
| assert(CE->getOpcode() == Instruction::BitCast && |
| isa<Function>(CE->getOperand(0)) && |
| "Personality should be a function"); |
| MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); |
| |
| // Gather all the type infos for this landing pad and pass them along to |
| // MachineModuleInfo. |
| std::vector<GlobalVariable *> TyInfo; |
| unsigned N = I.getNumOperands(); |
| |
| for (unsigned i = N - 1; i > 2; --i) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { |
| unsigned FilterLength = CI->getZExtValue(); |
| unsigned FirstCatch = i + FilterLength + !FilterLength; |
| assert (FirstCatch <= N && "Invalid filter length"); |
| |
| if (FirstCatch < N) { |
| TyInfo.reserve(N - FirstCatch); |
| for (unsigned j = FirstCatch; j < N; ++j) |
| TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); |
| MMI->addCatchTypeInfo(MBB, TyInfo); |
| TyInfo.clear(); |
| } |
| |
| if (!FilterLength) { |
| // Cleanup. |
| MMI->addCleanup(MBB); |
| } else { |
| // Filter. |
| TyInfo.reserve(FilterLength - 1); |
| for (unsigned j = i + 1; j < FirstCatch; ++j) |
| TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); |
| MMI->addFilterTypeInfo(MBB, TyInfo); |
| TyInfo.clear(); |
| } |
| |
| N = i; |
| } |
| } |
| |
| if (N > 3) { |
| TyInfo.reserve(N - 3); |
| for (unsigned j = 3; j < N; ++j) |
| TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); |
| MMI->addCatchTypeInfo(MBB, TyInfo); |
| } |
| } |
| |
| } |
| |
| /// GetSignificand - Get the significand and build it into a floating-point |
| /// number with exponent of 1: |
| /// |
| /// Op = (Op & 0x007fffff) | 0x3f800000; |
| /// |
| /// where Op is the hexidecimal representation of floating point value. |
| static SDValue |
| GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { |
| SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, |
| DAG.getConstant(0x007fffff, MVT::i32)); |
| SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, |
| DAG.getConstant(0x3f800000, MVT::i32)); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); |
| } |
| |
| /// GetExponent - Get the exponent: |
| /// |
| /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); |
| /// |
| /// where Op is the hexidecimal representation of floating point value. |
| static SDValue |
| GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, |
| DebugLoc dl) { |
| SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, |
| DAG.getConstant(0x7f800000, MVT::i32)); |
| SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, |
| DAG.getConstant(23, TLI.getPointerTy())); |
| SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, |
| DAG.getConstant(127, MVT::i32)); |
| return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); |
| } |
| |
| /// getF32Constant - Get 32-bit floating point constant. |
| static SDValue |
| getF32Constant(SelectionDAG &DAG, unsigned Flt) { |
| return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); |
| } |
| |
| /// Inlined utility function to implement binary input atomic intrinsics for |
| /// visitIntrinsicCall: I is a call instruction |
| /// Op is the associated NodeType for I |
| const char * |
| SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { |
| SDValue Root = getRoot(); |
| SDValue L = |
| DAG.getAtomic(Op, getCurDebugLoc(), |
| getValue(I.getOperand(2)).getValueType().getSimpleVT(), |
| Root, |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)), |
| I.getOperand(1)); |
| setValue(&I, L); |
| DAG.setRoot(L.getValue(1)); |
| return 0; |
| } |
| |
| // implVisitAluOverflow - Lower arithmetic overflow instrinsics. |
| const char * |
| SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { |
| SDValue Op1 = getValue(I.getOperand(1)); |
| SDValue Op2 = getValue(I.getOperand(2)); |
| |
| SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); |
| SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); |
| |
| setValue(&I, Result); |
| return 0; |
| } |
| |
| /// visitExp - Lower an exp intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| void |
| SelectionDAGLowering::visitExp(CallInst &I) { |
| SDValue result; |
| DebugLoc dl = getCurDebugLoc(); |
| |
| if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op = getValue(I.getOperand(1)); |
| |
| // Put the exponent in the right bit position for later addition to the |
| // final result: |
| // |
| // #define LOG2OFe 1.4426950f |
| // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, |
| getF32Constant(DAG, 0x3fb8aa3b)); |
| SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); |
| |
| // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; |
| SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); |
| SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); |
| |
| // IntegerPartOfX <<= 23; |
| IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, |
| DAG.getConstant(23, TLI.getPointerTy())); |
| |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.997535578f + |
| // (0.735607626f + 0.252464424f * x) * x; |
| // |
| // error 0.0144103317, which is 6 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3e814304)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f3c50c8)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f7f5e7e)); |
| SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); |
| |
| // Add the exponent into the result in integer domain. |
| SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, |
| TwoToFracPartOfX, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); |
| } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999892986f + |
| // (0.696457318f + |
| // (0.224338339f + 0.792043434e-1f * x) * x) * x; |
| // |
| // 0.000107046256 error, which is 13 to 14 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3da235e3)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3e65b8f3)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f324b07)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3f7ff8fd)); |
| SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); |
| |
| // Add the exponent into the result in integer domain. |
| SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, |
| TwoToFracPartOfX, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); |
| } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999999982f + |
| // (0.693148872f + |
| // (0.240227044f + |
| // (0.554906021e-1f + |
| // (0.961591928e-2f + |
| // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; |
| // |
| // error 2.47208000*10^(-7), which is better than 18 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3924b03e)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3ab24b87)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3c1d8c17)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3d634a1d)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3e75fe14)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x3f317234)); |
| SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); |
| SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, |
| getF32Constant(DAG, 0x3f800000)); |
| SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::i32, t13); |
| |
| // Add the exponent into the result in integer domain. |
| SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, |
| TwoToFracPartOfX, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); |
| } |
| } else { |
| // No special expansion. |
| result = DAG.getNode(ISD::FEXP, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1))); |
| } |
| |
| setValue(&I, result); |
| } |
| |
| /// visitLog - Lower a log intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| void |
| SelectionDAGLowering::visitLog(CallInst &I) { |
| SDValue result; |
| DebugLoc dl = getCurDebugLoc(); |
| |
| if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op = getValue(I.getOperand(1)); |
| SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); |
| |
| // Scale the exponent by log(2) [0.69314718f]. |
| SDValue Exp = GetExponent(DAG, Op1, TLI, dl); |
| SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, |
| getF32Constant(DAG, 0x3f317218)); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // LogofMantissa = |
| // -1.1609546f + |
| // (1.4034025f - 0.23903021f * x) * x; |
| // |
| // error 0.0034276066, which is better than 8 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbe74c456)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3fb3a2b1)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f949a29)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, LogOfMantissa); |
| } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // LogOfMantissa = |
| // -1.7417939f + |
| // (2.8212026f + |
| // (-1.4699568f + |
| // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; |
| // |
| // error 0.000061011436, which is 14 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbd67b6d6)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3ee4f4b8)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fbc278b)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40348e95)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3fdef31a)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, LogOfMantissa); |
| } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // LogOfMantissa = |
| // -2.1072184f + |
| // (4.2372794f + |
| // (-3.7029485f + |
| // (2.2781945f + |
| // (-0.87823314f + |
| // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; |
| // |
| // error 0.0000023660568, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbc91e5ac)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e4350aa)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f60d3e3)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x4011cdf0)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x406cfd1c)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x408797cb)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x4006dcab)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, LogOfMantissa); |
| } |
| } else { |
| // No special expansion. |
| result = DAG.getNode(ISD::FLOG, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1))); |
| } |
| |
| setValue(&I, result); |
| } |
| |
| /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| void |
| SelectionDAGLowering::visitLog2(CallInst &I) { |
| SDValue result; |
| DebugLoc dl = getCurDebugLoc(); |
| |
| if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op = getValue(I.getOperand(1)); |
| SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); |
| |
| // Get the exponent. |
| SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| // Different possible minimax approximations of significand in |
| // floating-point for various degrees of accuracy over [1,2]. |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; |
| // |
| // error 0.0049451742, which is more than 7 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbeb08fe0)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x40019463)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fd6633d)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, Log2ofMantissa); |
| } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // Log2ofMantissa = |
| // -2.51285454f + |
| // (4.07009056f + |
| // (-2.12067489f + |
| // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; |
| // |
| // error 0.0000876136000, which is better than 13 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbda7262e)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3f25280b)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x4007b923)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40823e2f)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x4020d29c)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, Log2ofMantissa); |
| } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // Log2ofMantissa = |
| // -3.0400495f + |
| // (6.1129976f + |
| // (-5.3420409f + |
| // (3.2865683f + |
| // (-1.2669343f + |
| // (0.27515199f - |
| // 0.25691327e-1f * x) * x) * x) * x) * x) * x; |
| // |
| // error 0.0000018516, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbcd2769e)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e8ce0b9)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3fa22ae7)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x40525723)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x40aaf200)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x40c39dad)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x4042902c)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, Log2ofMantissa); |
| } |
| } else { |
| // No special expansion. |
| result = DAG.getNode(ISD::FLOG2, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1))); |
| } |
| |
| setValue(&I, result); |
| } |
| |
| /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| void |
| SelectionDAGLowering::visitLog10(CallInst &I) { |
| SDValue result; |
| DebugLoc dl = getCurDebugLoc(); |
| |
| if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op = getValue(I.getOperand(1)); |
| SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); |
| |
| // Scale the exponent by log10(2) [0.30102999f]. |
| SDValue Exp = GetExponent(DAG, Op1, TLI, dl); |
| SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, |
| getF32Constant(DAG, 0x3e9a209a)); |
| |
| // Get the significand and build it into a floating-point number with |
| // exponent of 1. |
| SDValue X = GetSignificand(DAG, Op1, dl); |
| |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // Log10ofMantissa = |
| // -0.50419619f + |
| // (0.60948995f - 0.10380950f * x) * x; |
| // |
| // error 0.0014886165, which is 6 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0xbdd49a13)); |
| SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3f1c0789)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f011300)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, Log10ofMantissa); |
| } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // Log10ofMantissa = |
| // -0.64831180f + |
| // (0.91751397f + |
| // (-0.31664806f + 0.47637168e-1f * x) * x) * x; |
| // |
| // error 0.00019228036, which is better than 12 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3d431f31)); |
| SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3ea21fb2)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f6ae232)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f25f7c3)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, Log10ofMantissa); |
| } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // Log10ofMantissa = |
| // -0.84299375f + |
| // (1.5327582f + |
| // (-1.0688956f + |
| // (0.49102474f + |
| // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; |
| // |
| // error 0.0000037995730, which is better than 18 bits |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3c5d51ce)); |
| SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, |
| getF32Constant(DAG, 0x3e00685a)); |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3efb6798)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f88d192)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3fc4316c)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3f57ce70)); |
| |
| result = DAG.getNode(ISD::FADD, dl, |
| MVT::f32, LogOfExponent, Log10ofMantissa); |
| } |
| } else { |
| // No special expansion. |
| result = DAG.getNode(ISD::FLOG10, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1))); |
| } |
| |
| setValue(&I, result); |
| } |
| |
| /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for |
| /// limited-precision mode. |
| void |
| SelectionDAGLowering::visitExp2(CallInst &I) { |
| SDValue result; |
| DebugLoc dl = getCurDebugLoc(); |
| |
| if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op = getValue(I.getOperand(1)); |
| |
| SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); |
| |
| // FractionalPartOfX = x - (float)IntegerPartOfX; |
| SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); |
| SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); |
| |
| // IntegerPartOfX <<= 23; |
| IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, |
| DAG.getConstant(23, TLI.getPointerTy())); |
| |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.997535578f + |
| // (0.735607626f + 0.252464424f * x) * x; |
| // |
| // error 0.0144103317, which is 6 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3e814304)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f3c50c8)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f7f5e7e)); |
| SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); |
| SDValue TwoToFractionalPartOfX = |
| DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::f32, TwoToFractionalPartOfX); |
| } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999892986f + |
| // (0.696457318f + |
| // (0.224338339f + 0.792043434e-1f * x) * x) * x; |
| // |
| // error 0.000107046256, which is 13 to 14 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3da235e3)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3e65b8f3)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f324b07)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3f7ff8fd)); |
| SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); |
| SDValue TwoToFractionalPartOfX = |
| DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::f32, TwoToFractionalPartOfX); |
| } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999999982f + |
| // (0.693148872f + |
| // (0.240227044f + |
| // (0.554906021e-1f + |
| // (0.961591928e-2f + |
| // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; |
| // error 2.47208000*10^(-7), which is better than 18 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3924b03e)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3ab24b87)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3c1d8c17)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3d634a1d)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3e75fe14)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x3f317234)); |
| SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); |
| SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, |
| getF32Constant(DAG, 0x3f800000)); |
| SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); |
| SDValue TwoToFractionalPartOfX = |
| DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::f32, TwoToFractionalPartOfX); |
| } |
| } else { |
| // No special expansion. |
| result = DAG.getNode(ISD::FEXP2, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1))); |
| } |
| |
| setValue(&I, result); |
| } |
| |
| /// visitPow - Lower a pow intrinsic. Handles the special sequences for |
| /// limited-precision mode with x == 10.0f. |
| void |
| SelectionDAGLowering::visitPow(CallInst &I) { |
| SDValue result; |
| Value *Val = I.getOperand(1); |
| DebugLoc dl = getCurDebugLoc(); |
| bool IsExp10 = false; |
| |
| if (getValue(Val).getValueType() == MVT::f32 && |
| getValue(I.getOperand(2)).getValueType() == MVT::f32 && |
| LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| APFloat Ten(10.0f); |
| IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); |
| } |
| } |
| } |
| |
| if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
| SDValue Op = getValue(I.getOperand(2)); |
| |
| // Put the exponent in the right bit position for later addition to the |
| // final result: |
| // |
| // #define LOG2OF10 3.3219281f |
| // IntegerPartOfX = (int32_t)(x * LOG2OF10); |
| SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, |
| getF32Constant(DAG, 0x40549a78)); |
| SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); |
| |
| // FractionalPartOfX = x - (float)IntegerPartOfX; |
| SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); |
| SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); |
| |
| // IntegerPartOfX <<= 23; |
| IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, |
| DAG.getConstant(23, TLI.getPointerTy())); |
| |
| if (LimitFloatPrecision <= 6) { |
| // For floating-point precision of 6: |
| // |
| // twoToFractionalPartOfX = |
| // 0.997535578f + |
| // (0.735607626f + 0.252464424f * x) * x; |
| // |
| // error 0.0144103317, which is 6 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3e814304)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3f3c50c8)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f7f5e7e)); |
| SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); |
| SDValue TwoToFractionalPartOfX = |
| DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::f32, TwoToFractionalPartOfX); |
| } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { |
| // For floating-point precision of 12: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999892986f + |
| // (0.696457318f + |
| // (0.224338339f + 0.792043434e-1f * x) * x) * x; |
| // |
| // error 0.000107046256, which is 13 to 14 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3da235e3)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3e65b8f3)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3f324b07)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3f7ff8fd)); |
| SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); |
| SDValue TwoToFractionalPartOfX = |
| DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::f32, TwoToFractionalPartOfX); |
| } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 |
| // For floating-point precision of 18: |
| // |
| // TwoToFractionalPartOfX = |
| // 0.999999982f + |
| // (0.693148872f + |
| // (0.240227044f + |
| // (0.554906021e-1f + |
| // (0.961591928e-2f + |
| // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; |
| // error 2.47208000*10^(-7), which is better than 18 bits |
| SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
| getF32Constant(DAG, 0x3924b03e)); |
| SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
| getF32Constant(DAG, 0x3ab24b87)); |
| SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
| SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
| getF32Constant(DAG, 0x3c1d8c17)); |
| SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
| SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
| getF32Constant(DAG, 0x3d634a1d)); |
| SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
| SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
| getF32Constant(DAG, 0x3e75fe14)); |
| SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
| SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, |
| getF32Constant(DAG, 0x3f317234)); |
| SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); |
| SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, |
| getF32Constant(DAG, 0x3f800000)); |
| SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); |
| SDValue TwoToFractionalPartOfX = |
| DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); |
| |
| result = DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::f32, TwoToFractionalPartOfX); |
| } |
| } else { |
| // No special expansion. |
| result = DAG.getNode(ISD::FPOW, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2))); |
| } |
| |
| setValue(&I, result); |
| } |
| |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If |
| /// we want to emit this as a call to a named external function, return the name |
| /// otherwise lower it and return null. |
| const char * |
| SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { |
| DebugLoc dl = getCurDebugLoc(); |
| switch (Intrinsic) { |
| default: |
| // By default, turn this into a target intrinsic node. |
| visitTargetIntrinsic(I, Intrinsic); |
| return 0; |
| case Intrinsic::vastart: visitVAStart(I); return 0; |
| case Intrinsic::vaend: visitVAEnd(I); return 0; |
| case Intrinsic::vacopy: visitVACopy(I); return 0; |
| case Intrinsic::returnaddress: |
| setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::frameaddress: |
| setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::setjmp: |
| return "_setjmp"+!TLI.usesUnderscoreSetJmp(); |
| break; |
| case Intrinsic::longjmp: |
| return "_longjmp"+!TLI.usesUnderscoreLongJmp(); |
| break; |
| case Intrinsic::memcpy: { |
| SDValue Op1 = getValue(I.getOperand(1)); |
| SDValue Op2 = getValue(I.getOperand(2)); |
| SDValue Op3 = getValue(I.getOperand(3)); |
| unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); |
| DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, |
| I.getOperand(1), 0, I.getOperand(2), 0)); |
| return 0; |
| } |
| case Intrinsic::memset: { |
| SDValue Op1 = getValue(I.getOperand(1)); |
| SDValue Op2 = getValue(I.getOperand(2)); |
| SDValue Op3 = getValue(I.getOperand(3)); |
| unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); |
| DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, |
| I.getOperand(1), 0)); |
| return 0; |
| } |
| case Intrinsic::memmove: { |
| SDValue Op1 = getValue(I.getOperand(1)); |
| SDValue Op2 = getValue(I.getOperand(2)); |
| SDValue Op3 = getValue(I.getOperand(3)); |
| unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); |
| |
| // If the source and destination are known to not be aliases, we can |
| // lower memmove as memcpy. |
| uint64_t Size = -1ULL; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) |
| Size = C->getZExtValue(); |
| if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == |
| AliasAnalysis::NoAlias) { |
| DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, |
| I.getOperand(1), 0, I.getOperand(2), 0)); |
| return 0; |
| } |
| |
| DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, |
| I.getOperand(1), 0, I.getOperand(2), 0)); |
| return 0; |
| } |
| case Intrinsic::dbg_stoppoint: { |
| DbgStopPointInst &SPI = cast<DbgStopPointInst>(I); |
| if (isValidDebugInfoIntrinsic(SPI, CodeGenOpt::Default)) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| DebugLoc Loc = ExtractDebugLocation(SPI, MF.getDebugLocInfo()); |
| setCurDebugLoc(Loc); |
| |
| if (OptLevel == CodeGenOpt::None) |
| DAG.setRoot(DAG.getDbgStopPoint(Loc, getRoot(), |
| SPI.getLine(), |
| SPI.getColumn(), |
| SPI.getContext())); |
| } |
| return 0; |
| } |
| case Intrinsic::dbg_region_start: { |
| DwarfWriter *DW = DAG.getDwarfWriter(); |
| DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I); |
| if (isValidDebugInfoIntrinsic(RSI, OptLevel) && DW |
| && DW->ShouldEmitDwarfDebug()) { |
| unsigned LabelID = |
| DW->RecordRegionStart(cast<GlobalVariable>(RSI.getContext())); |
| DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(), |
| getRoot(), LabelID)); |
| } |
| return 0; |
| } |
| case Intrinsic::dbg_region_end: { |
| DwarfWriter *DW = DAG.getDwarfWriter(); |
| DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I); |
| |
| if (!isValidDebugInfoIntrinsic(REI, OptLevel) || !DW |
| || !DW->ShouldEmitDwarfDebug()) |
| return 0; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| DISubprogram Subprogram(cast<GlobalVariable>(REI.getContext())); |
| |
| if (isInlinedFnEnd(REI, MF.getFunction())) { |
| // This is end of inlined function. Debugging information for inlined |
| // function is not handled yet (only supported by FastISel). |
| if (OptLevel == CodeGenOpt::None) { |
| unsigned ID = DW->RecordInlinedFnEnd(Subprogram); |
| if (ID != 0) |
| // Returned ID is 0 if this is unbalanced "end of inlined |
| // scope". This could happen if optimizer eats dbg intrinsics or |
| // "beginning of inlined scope" is not recoginized due to missing |
| // location info. In such cases, do ignore this region.end. |
| DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(), |
| getRoot(), ID)); |
| } |
| return 0; |
| } |
| |
| unsigned LabelID = |
| DW->RecordRegionEnd(cast<GlobalVariable>(REI.getContext())); |
| DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(), |
| getRoot(), LabelID)); |
| return 0; |
| } |
| case Intrinsic::dbg_func_start: { |
| DwarfWriter *DW = DAG.getDwarfWriter(); |
| DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I); |
| if (!isValidDebugInfoIntrinsic(FSI, CodeGenOpt::None)) |
| return 0; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| // This is a beginning of an inlined function. |
| if (isInlinedFnStart(FSI, MF.getFunction())) { |
| if (OptLevel != CodeGenOpt::None) |
| // FIXME: Debugging informaation for inlined function is only |
| // supported at CodeGenOpt::Node. |
| return 0; |
| |
| DebugLoc PrevLoc = CurDebugLoc; |
| // If llvm.dbg.func.start is seen in a new block before any |
| // llvm.dbg.stoppoint intrinsic then the location info is unknown. |
| // FIXME : Why DebugLoc is reset at the beginning of each block ? |
| if (PrevLoc.isUnknown()) |
| return 0; |
| |
| // Record the source line. |
| setCurDebugLoc(ExtractDebugLocation(FSI, MF.getDebugLocInfo())); |
| |
| if (!DW || !DW->ShouldEmitDwarfDebug()) |
| return 0; |
| DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc); |
| DISubprogram SP(cast<GlobalVariable>(FSI.getSubprogram())); |
| DICompileUnit CU(PrevLocTpl.CompileUnit); |
| unsigned LabelID = DW->RecordInlinedFnStart(SP, CU, |
| PrevLocTpl.Line, |
| PrevLocTpl.Col); |
| DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(), |
| getRoot(), LabelID)); |
| return 0; |
| } |
| |
| // This is a beginning of a new function. |
| MF.setDefaultDebugLoc(ExtractDebugLocation(FSI, MF.getDebugLocInfo())); |
| |
| if (!DW || !DW->ShouldEmitDwarfDebug()) |
| return 0; |
| // llvm.dbg.func_start also defines beginning of function scope. |
| DW->RecordRegionStart(cast<GlobalVariable>(FSI.getSubprogram())); |
| return 0; |
| } |
| case Intrinsic::dbg_declare: { |
| if (OptLevel != CodeGenOpt::None) |
| // FIXME: Variable debug info is not supported here. |
| return 0; |
| |
| DbgDeclareInst &DI = cast<DbgDeclareInst>(I); |
| if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) |
| return 0; |
| |
| Value *Variable = DI.getVariable(); |
| DAG.setRoot(DAG.getNode(ISD::DECLARE, dl, MVT::Other, getRoot(), |
| getValue(DI.getAddress()), getValue(Variable))); |
| return 0; |
| } |
| case Intrinsic::eh_exception: { |
| // Insert the EXCEPTIONADDR instruction. |
| assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); |
| SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); |
| SDValue Ops[1]; |
| Ops[0] = DAG.getRoot(); |
| SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); |
| setValue(&I, Op); |
| DAG.setRoot(Op.getValue(1)); |
| return 0; |
| } |
| |
| case Intrinsic::eh_selector_i32: |
| case Intrinsic::eh_selector_i64: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ? |
| MVT::i32 : MVT::i64); |
| |
| if (MMI) { |
| if (CurMBB->isLandingPad()) |
| AddCatchInfo(I, MMI, CurMBB); |
| else { |
| #ifndef NDEBUG |
| FuncInfo.CatchInfoLost.insert(&I); |
| #endif |
| // FIXME: Mark exception selector register as live in. Hack for PR1508. |
| unsigned Reg = TLI.getExceptionSelectorRegister(); |
| if (Reg) CurMBB->addLiveIn(Reg); |
| } |
| |
| // Insert the EHSELECTION instruction. |
| SDVTList VTs = DAG.getVTList(VT, MVT::Other); |
| SDValue Ops[2]; |
| Ops[0] = getValue(I.getOperand(1)); |
| Ops[1] = getRoot(); |
| SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); |
| setValue(&I, Op); |
| DAG.setRoot(Op.getValue(1)); |
| } else { |
| setValue(&I, DAG.getConstant(0, VT)); |
| } |
| |
| return 0; |
| } |
| |
| case Intrinsic::eh_typeid_for_i32: |
| case Intrinsic::eh_typeid_for_i64: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ? |
| MVT::i32 : MVT::i64); |
| |
| if (MMI) { |
| // Find the type id for the given typeinfo. |
| GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); |
| |
| unsigned TypeID = MMI->getTypeIDFor(GV); |
| setValue(&I, DAG.getConstant(TypeID, VT)); |
| } else { |
| // Return something different to eh_selector. |
| setValue(&I, DAG.getConstant(1, VT)); |
| } |
| |
| return 0; |
| } |
| |
| case Intrinsic::eh_return_i32: |
| case Intrinsic::eh_return_i64: |
| if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { |
| MMI->setCallsEHReturn(true); |
| DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, |
| MVT::Other, |
| getControlRoot(), |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)))); |
| } else { |
| setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); |
| } |
| |
| return 0; |
| case Intrinsic::eh_unwind_init: |
| if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { |
| MMI->setCallsUnwindInit(true); |
| } |
| |
| return 0; |
| |
| case Intrinsic::eh_dwarf_cfa: { |
| MVT VT = getValue(I.getOperand(1)).getValueType(); |
| SDValue CfaArg; |
| if (VT.bitsGT(TLI.getPointerTy())) |
| CfaArg = DAG.getNode(ISD::TRUNCATE, dl, |
| TLI.getPointerTy(), getValue(I.getOperand(1))); |
| else |
| CfaArg = DAG.getNode(ISD::SIGN_EXTEND, dl, |
| TLI.getPointerTy(), getValue(I.getOperand(1))); |
| |
| SDValue Offset = DAG.getNode(ISD::ADD, dl, |
| TLI.getPointerTy(), |
| DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, |
| TLI.getPointerTy()), |
| CfaArg); |
| setValue(&I, DAG.getNode(ISD::ADD, dl, |
| TLI.getPointerTy(), |
| DAG.getNode(ISD::FRAMEADDR, dl, |
| TLI.getPointerTy(), |
| DAG.getConstant(0, |
| TLI.getPointerTy())), |
| Offset)); |
| return 0; |
| } |
| |
| case Intrinsic::convertff: |
| case Intrinsic::convertfsi: |
| case Intrinsic::convertfui: |
| case Intrinsic::convertsif: |
| case Intrinsic::convertuif: |
| case Intrinsic::convertss: |
| case Intrinsic::convertsu: |
| case Intrinsic::convertus: |
| case Intrinsic::convertuu: { |
| ISD::CvtCode Code = ISD::CVT_INVALID; |
| switch (Intrinsic) { |
| case Intrinsic::convertff: Code = ISD::CVT_FF; break; |
| case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; |
| case Intrinsic::convertfui: Code = ISD::CVT_FU; break; |
| case Intrinsic::convertsif: Code = ISD::CVT_SF; break; |
| case Intrinsic::convertuif: Code = ISD::CVT_UF; break; |
| case Intrinsic::convertss: Code = ISD::CVT_SS; break; |
| case Intrinsic::convertsu: Code = ISD::CVT_SU; break; |
| case Intrinsic::convertus: Code = ISD::CVT_US; break; |
| case Intrinsic::convertuu: Code = ISD::CVT_UU; break; |
| } |
| MVT DestVT = TLI.getValueType(I.getType()); |
| Value* Op1 = I.getOperand(1); |
| setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), |
| DAG.getValueType(DestVT), |
| DAG.getValueType(getValue(Op1).getValueType()), |
| getValue(I.getOperand(2)), |
| getValue(I.getOperand(3)), |
| Code)); |
| return 0; |
| } |
| |
| case Intrinsic::sqrt: |
| setValue(&I, DAG.getNode(ISD::FSQRT, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::powi: |
| setValue(&I, DAG.getNode(ISD::FPOWI, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)))); |
| return 0; |
| case Intrinsic::sin: |
| setValue(&I, DAG.getNode(ISD::FSIN, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::cos: |
| setValue(&I, DAG.getNode(ISD::FCOS, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::log: |
| visitLog(I); |
| return 0; |
| case Intrinsic::log2: |
| visitLog2(I); |
| return 0; |
| case Intrinsic::log10: |
| visitLog10(I); |
| return 0; |
| case Intrinsic::exp: |
| visitExp(I); |
| return 0; |
| case Intrinsic::exp2: |
| visitExp2(I); |
| return 0; |
| case Intrinsic::pow: |
| visitPow(I); |
| return 0; |
| case Intrinsic::pcmarker: { |
| SDValue Tmp = getValue(I.getOperand(1)); |
| DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); |
| return 0; |
| } |
| case Intrinsic::readcyclecounter: { |
| SDValue Op = getRoot(); |
| SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, |
| DAG.getVTList(MVT::i64, MVT::Other), |
| &Op, 1); |
| setValue(&I, Tmp); |
| DAG.setRoot(Tmp.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::bswap: |
| setValue(&I, DAG.getNode(ISD::BSWAP, dl, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::cttz: { |
| SDValue Arg = getValue(I.getOperand(1)); |
| MVT Ty = Arg.getValueType(); |
| SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); |
| setValue(&I, result); |
| return 0; |
| } |
| case Intrinsic::ctlz: { |
| SDValue Arg = getValue(I.getOperand(1)); |
| MVT Ty = Arg.getValueType(); |
| SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); |
| setValue(&I, result); |
| return 0; |
| } |
| case Intrinsic::ctpop: { |
| SDValue Arg = getValue(I.getOperand(1)); |
| MVT Ty = Arg.getValueType(); |
| SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); |
| setValue(&I, result); |
| return 0; |
| } |
| case Intrinsic::stacksave: { |
| SDValue Op = getRoot(); |
| SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, |
| DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); |
| setValue(&I, Tmp); |
| DAG.setRoot(Tmp.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::stackrestore: { |
| SDValue Tmp = getValue(I.getOperand(1)); |
| DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); |
| return 0; |
| } |
| case Intrinsic::stackprotector: { |
| // Emit code into the DAG to store the stack guard onto the stack. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MVT PtrTy = TLI.getPointerTy(); |
| |
| SDValue Src = getValue(I.getOperand(1)); // The guard's value. |
| AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); |
| |
| int FI = FuncInfo.StaticAllocaMap[Slot]; |
| MFI->setStackProtectorIndex(FI); |
| |
| SDValue FIN = DAG.getFrameIndex(FI, PtrTy); |
| |
| // Store the stack protector onto the stack. |
| SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, |
| PseudoSourceValue::getFixedStack(FI), |
| 0, true); |
| setValue(&I, Result); |
| DAG.setRoot(Result); |
| return 0; |
| } |
| case Intrinsic::var_annotation: |
| // Discard annotate attributes |
| return 0; |
| |
| case Intrinsic::init_trampoline: { |
| const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); |
| |
| SDValue Ops[6]; |
| Ops[0] = getRoot(); |
| Ops[1] = getValue(I.getOperand(1)); |
| Ops[2] = getValue(I.getOperand(2)); |
| Ops[3] = getValue(I.getOperand(3)); |
| Ops[4] = DAG.getSrcValue(I.getOperand(1)); |
| Ops[5] = DAG.getSrcValue(F); |
| |
| SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, |
| DAG.getVTList(TLI.getPointerTy(), MVT::Other), |
| Ops, 6); |
| |
| setValue(&I, Tmp); |
| DAG.setRoot(Tmp.getValue(1)); |
| return 0; |
| } |
| |
| case Intrinsic::gcroot: |
| if (GFI) { |
| Value *Alloca = I.getOperand(1); |
| Constant *TypeMap = cast<Constant>(I.getOperand(2)); |
| |
| FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); |
| GFI->addStackRoot(FI->getIndex(), TypeMap); |
| } |
| return 0; |
| |
| case Intrinsic::gcread: |
| case Intrinsic::gcwrite: |
| llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); |
| return 0; |
| |
| case Intrinsic::flt_rounds: { |
| setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); |
| return 0; |
| } |
| |
| case Intrinsic::trap: { |
| DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); |
| return 0; |
| } |
| |
| case Intrinsic::uadd_with_overflow: |
| return implVisitAluOverflow(I, ISD::UADDO); |
| case Intrinsic::sadd_with_overflow: |
| return implVisitAluOverflow(I, ISD::SADDO); |
| case Intrinsic::usub_with_overflow: |
| return implVisitAluOverflow(I, ISD::USUBO); |
| case Intrinsic::ssub_with_overflow: |
| return implVisitAluOverflow(I, ISD::SSUBO); |
| case Intrinsic::umul_with_overflow: |
| return implVisitAluOverflow(I, ISD::UMULO); |
| case Intrinsic::smul_with_overflow: |
| return implVisitAluOverflow(I, ISD::SMULO); |
| |
| case Intrinsic::prefetch: { |
| SDValue Ops[4]; |
| Ops[0] = getRoot(); |
| Ops[1] = getValue(I.getOperand(1)); |
| Ops[2] = getValue(I.getOperand(2)); |
| Ops[3] = getValue(I.getOperand(3)); |
| DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); |
| return 0; |
| } |
| |
| case Intrinsic::memory_barrier: { |
| SDValue Ops[6]; |
| Ops[0] = getRoot(); |
| for (int x = 1; x < 6; ++x) |
| Ops[x] = getValue(I.getOperand(x)); |
| |
| DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); |
| return 0; |
| } |
| case Intrinsic::atomic_cmp_swap: { |
| SDValue Root = getRoot(); |
| SDValue L = |
| DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), |
| getValue(I.getOperand(2)).getValueType().getSimpleVT(), |
| Root, |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)), |
| getValue(I.getOperand(3)), |
| I.getOperand(1)); |
| setValue(&I, L); |
| DAG.setRoot(L.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::atomic_load_add: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); |
| case Intrinsic::atomic_load_sub: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); |
| case Intrinsic::atomic_load_or: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); |
| case Intrinsic::atomic_load_xor: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); |
| case Intrinsic::atomic_load_and: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); |
| case Intrinsic::atomic_load_nand: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); |
| case Intrinsic::atomic_load_max: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); |
| case Intrinsic::atomic_load_min: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); |
| case Intrinsic::atomic_load_umin: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); |
| case Intrinsic::atomic_load_umax: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); |
| case Intrinsic::atomic_swap: |
| return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); |
| } |
| } |
| |
| |
| void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee, |
| bool IsTailCall, |
| MachineBasicBlock *LandingPad) { |
| const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| unsigned BeginLabel = 0, EndLabel = 0; |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Args.reserve(CS.arg_size()); |
| for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); |
| i != e; ++i) { |
| SDValue ArgNode = getValue(*i); |
| Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); |
| |
| unsigned attrInd = i - CS.arg_begin() + 1; |
| Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); |
| Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); |
| Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); |
| Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); |
| Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); |
| Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); |
| Entry.Alignment = CS.getParamAlignment(attrInd); |
| Args.push_back(Entry); |
| } |
| |
| if (LandingPad && MMI) { |
| // Insert a label before the invoke call to mark the try range. This can be |
| // used to detect deletion of the invoke via the MachineModuleInfo. |
| BeginLabel = MMI->NextLabelID(); |
| // Both PendingLoads and PendingExports must be flushed here; |
| // this call might not return. |
| (void)getRoot(); |
| DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), |
| getControlRoot(), BeginLabel)); |
| } |
| |
| std::pair<SDValue,SDValue> Result = |
| TLI.LowerCallTo(getRoot(), CS.getType(), |
| CS.paramHasAttr(0, Attribute::SExt), |
| CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), |
| CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), |
| CS.getCallingConv(), |
| IsTailCall && PerformTailCallOpt, |
| Callee, Args, DAG, getCurDebugLoc()); |
| if (CS.getType() != Type::VoidTy) |
| setValue(CS.getInstruction(), Result.first); |
| DAG.setRoot(Result.second); |
| |
| if (LandingPad && MMI) { |
| // Insert a label at the end of the invoke call to mark the try range. This |
| // can be used to detect deletion of the invoke via the MachineModuleInfo. |
| EndLabel = MMI->NextLabelID(); |
| DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), |
| getRoot(), EndLabel)); |
| |
| // Inform MachineModuleInfo of range. |
| MMI->addInvoke(LandingPad, BeginLabel, EndLabel); |
| } |
| } |
| |
| |
| void SelectionDAGLowering::visitCall(CallInst &I) { |
| const char *RenameFn = 0; |
| if (Function *F = I.getCalledFunction()) { |
| if (F->isDeclaration()) { |
| const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); |
| if (II) { |
| if (unsigned IID = II->getIntrinsicID(F)) { |
| RenameFn = visitIntrinsicCall(I, IID); |
| if (!RenameFn) |
| return; |
| } |
| } |
| if (unsigned IID = F->getIntrinsicID()) { |
| RenameFn = visitIntrinsicCall(I, IID); |
| if (!RenameFn) |
| return; |
| } |
| } |
| |
| // Check for well-known libc/libm calls. If the function is internal, it |
| // can't be a library call. |
| if (!F->hasLocalLinkage() && F->hasName()) { |
| StringRef Name = F->getName(); |
| if (Name == "copysign" || Name == "copysignf") { |
| if (I.getNumOperands() == 3 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType() && |
| I.getType() == I.getOperand(2)->getType()) { |
| SDValue LHS = getValue(I.getOperand(1)); |
| SDValue RHS = getValue(I.getOperand(2)); |
| setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), |
| LHS.getValueType(), LHS, RHS)); |
| return; |
| } |
| } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDValue Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), |
| Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDValue Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), |
| Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDValue Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), |
| Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } |
| } |
| } else if (isa<InlineAsm>(I.getOperand(0))) { |
| visitInlineAsm(&I); |
| return; |
| } |
| |
| SDValue Callee; |
| if (!RenameFn) |
| Callee = getValue(I.getOperand(0)); |
| else |
| Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); |
| |
| LowerCallTo(&I, Callee, I.isTailCall()); |
| } |
| |
| |
| /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from |
| /// this value and returns the result as a ValueVT value. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| /// If the Flag pointer is NULL, no flag is used. |
| SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, |
| SDValue &Chain, |
| SDValue *Flag) const { |
| // Assemble the legal parts into the final values. |
| SmallVector<SDValue, 4> Values(ValueVTs.size()); |
| SmallVector<SDValue, 8> Parts; |
| for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| // Copy the legal parts from the registers. |
| MVT ValueVT = ValueVTs[Value]; |
| unsigned NumRegs = TLI->getNumRegisters(ValueVT); |
| MVT RegisterVT = RegVTs[Value]; |
| |
| Parts.resize(NumRegs); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| SDValue P; |
| if (Flag == 0) |
| P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); |
| else { |
| P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); |
| *Flag = P.getValue(2); |
| } |
| Chain = P.getValue(1); |
| |
| // If the source register was virtual and if we know something about it, |
| // add an assert node. |
| if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && |
| RegisterVT.isInteger() && !RegisterVT.isVector()) { |
| unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; |
| FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); |
| if (FLI.LiveOutRegInfo.size() > SlotNo) { |
| FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; |
| |
| unsigned RegSize = RegisterVT.getSizeInBits(); |
| unsigned NumSignBits = LOI.NumSignBits; |
| unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); |
| |
| // FIXME: We capture more information than the dag can represent. For |
| // now, just use the tightest assertzext/assertsext possible. |
| bool isSExt = true; |
| MVT FromVT(MVT::Other); |
| if (NumSignBits == RegSize) |
| isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 |
| else if (NumZeroBits >= RegSize-1) |
| isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 |
| else if (NumSignBits > RegSize-8) |
| isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 |
| else if (NumZeroBits >= RegSize-8) |
| isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 |
| else if (NumSignBits > RegSize-16) |
| isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 |
| else if (NumZeroBits >= RegSize-16) |
| isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 |
| else if (NumSignBits > RegSize-32) |
| isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 |
| else if (NumZeroBits >= RegSize-32) |
| isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 |
| |
| if (FromVT != MVT::Other) { |
| P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, |
| RegisterVT, P, DAG.getValueType(FromVT)); |
| |
| } |
| } |
| } |
| |
| Parts[i] = P; |
| } |
| |
| Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), |
| NumRegs, RegisterVT, ValueVT); |
| Part += NumRegs; |
| Parts.clear(); |
| } |
| |
| return DAG.getNode(ISD::MERGE_VALUES, dl, |
| DAG.getVTList(&ValueVTs[0], ValueVTs.size()), |
| &Values[0], ValueVTs.size()); |
| } |
| |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the |
| /// specified value into the registers specified by this object. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| /// If the Flag pointer is NULL, no flag is used. |
| void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, |
| SDValue &Chain, SDValue *Flag) const { |
| // Get the list of the values's legal parts. |
| unsigned NumRegs = Regs.size(); |
| SmallVector<SDValue, 8> Parts(NumRegs); |
| for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| MVT ValueVT = ValueVTs[Value]; |
| unsigned NumParts = TLI->getNumRegisters(ValueVT); |
| MVT RegisterVT = RegVTs[Value]; |
| |
| getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), |
| &Parts[Part], NumParts, RegisterVT); |
| Part += NumParts; |
| } |
| |
| // Copy the parts into the registers. |
| SmallVector<SDValue, 8> Chains(NumRegs); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| SDValue Part; |
| if (Flag == 0) |
| Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); |
| else { |
| Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); |
| *Flag = Part.getValue(1); |
| } |
| Chains[i] = Part.getValue(0); |
| } |
| |
| if (NumRegs == 1 || Flag) |
| // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is |
| // flagged to it. That is the CopyToReg nodes and the user are considered |
| // a single scheduling unit. If we create a TokenFactor and return it as |
| // chain, then the TokenFactor is both a predecessor (operand) of the |
| // user as well as a successor (the TF operands are flagged to the user). |
| // c1, f1 = CopyToReg |
| // c2, f2 = CopyToReg |
| // c3 = TokenFactor c1, c2 |
| // ... |
| // = op c3, ..., f2 |
| Chain = Chains[NumRegs-1]; |
| else |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); |
| } |
| |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node |
| /// operand list. This adds the code marker and includes the number of |
| /// values added into it. |
| void RegsForValue::AddInlineAsmOperands(unsigned Code, |
| bool HasMatching,unsigned MatchingIdx, |
| SelectionDAG &DAG, |
| std::vector<SDValue> &Ops) const { |
| MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); |
| assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); |
| unsigned Flag = Code | (Regs.size() << 3); |
| if (HasMatching) |
| Flag |= 0x80000000 | (MatchingIdx << 16); |
| Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); |
| for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]); |
| MVT RegisterVT = RegVTs[Value]; |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| assert(Reg < Regs.size() && "Mismatch in # registers expected"); |
| Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); |
| } |
| } |
| } |
| |
| /// isAllocatableRegister - If the specified register is safe to allocate, |
| /// i.e. it isn't a stack pointer or some other special register, return the |
| /// register class for the register. Otherwise, return null. |
| static const TargetRegisterClass * |
| isAllocatableRegister(unsigned Reg, MachineFunction &MF, |
| const TargetLowering &TLI, |
| const TargetRegisterInfo *TRI) { |
| MVT FoundVT = MVT::Other; |
| const TargetRegisterClass *FoundRC = 0; |
| for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), |
| E = TRI->regclass_end(); RCI != E; ++RCI) { |
| MVT ThisVT = MVT::Other; |
| |
| const TargetRegisterClass *RC = *RCI; |
| // If none of the the value types for this register class are valid, we |
| // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| I != E; ++I) { |
| if (TLI.isTypeLegal(*I)) { |
| // If we have already found this register in a different register class, |
| // choose the one with the largest VT specified. For example, on |
| // PowerPC, we favor f64 register classes over f32. |
| if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { |
| ThisVT = *I; |
| break; |
| } |
| } |
| } |
| |
| if (ThisVT == MVT::Other) continue; |
| |
| // NOTE: This isn't ideal. In particular, this might allocate the |
| // frame pointer in functions that need it (due to them not being taken |
| // out of allocation, because a variable sized allocation hasn't been seen |
| // yet). This is a slight code pessimization, but should still work. |
| for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), |
| E = RC->allocation_order_end(MF); I != E; ++I) |
| if (*I == Reg) { |
| // We found a matching register class. Keep looking at others in case |
| // we find one with larger registers that this physreg is also in. |
| FoundRC = RC; |
| FoundVT = ThisVT; |
| break; |
| } |
| } |
| return FoundRC; |
| } |
| |
| |
| namespace llvm { |
| /// AsmOperandInfo - This contains information for each constraint that we are |
| /// lowering. |
| class VISIBILITY_HIDDEN SDISelAsmOperandInfo : |
| public TargetLowering::AsmOperandInfo { |
| public: |
| /// CallOperand - If this is the result output operand or a clobber |
| /// this is null, otherwise it is the incoming operand to the CallInst. |
| /// This gets modified as the asm is processed. |
| SDValue CallOperand; |
| |
| /// AssignedRegs - If this is a register or register class operand, this |
| /// contains the set of register corresponding to the operand. |
| RegsForValue AssignedRegs; |
| |
| explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) |
| : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { |
| } |
| |
| /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers |
| /// busy in OutputRegs/InputRegs. |
| void MarkAllocatedRegs(bool isOutReg, bool isInReg, |
| std::set<unsigned> &OutputRegs, |
| std::set<unsigned> &InputRegs, |
| const TargetRegisterInfo &TRI) const { |
| if (isOutReg) { |
| for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) |
| MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); |
| } |
| if (isInReg) { |
| for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) |
| MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); |
| } |
| } |
| |
| /// getCallOperandValMVT - Return the MVT of the Value* that this operand |
| /// corresponds to. If there is no Value* for this operand, it returns |
| /// MVT::Other. |
| MVT getCallOperandValMVT(const TargetLowering &TLI, |
| const TargetData *TD) const { |
| if (CallOperandVal == 0) return MVT::Other; |
| |
| if (isa<BasicBlock>(CallOperandVal)) |
| return TLI.getPointerTy(); |
| |
| const llvm::Type *OpTy = CallOperandVal->getType(); |
| |
| // If this is an indirect operand, the operand is a pointer to the |
| // accessed type. |
| if (isIndirect) |
| OpTy = cast<PointerType>(OpTy)->getElementType(); |
| |
| // If OpTy is not a single value, it may be a struct/union that we |
| // can tile with integers. |
| if (!OpTy->isSingleValueType() && OpTy->isSized()) { |
| unsigned BitSize = TD->getTypeSizeInBits(OpTy); |
| switch (BitSize) { |
| default: break; |
| case 1: |
| case 8: |
| case 16: |
| case 32: |
| case 64: |
| case 128: |
| OpTy = IntegerType::get(BitSize); |
| break; |
| } |
| } |
| |
| return TLI.getValueType(OpTy, true); |
| } |
| |
| private: |
| /// MarkRegAndAliases - Mark the specified register and all aliases in the |
| /// specified set. |
| static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, |
| const TargetRegisterInfo &TRI) { |
| assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); |
| Regs.insert(Reg); |
| if (const unsigned *Aliases = TRI.getAliasSet(Reg)) |
| for (; *Aliases; ++Aliases) |
| Regs.insert(*Aliases); |
| } |
| }; |
| } // end llvm namespace. |
| |
| |
| /// GetRegistersForValue - Assign registers (virtual or physical) for the |
| /// specified operand. We prefer to assign virtual registers, to allow the |
| /// register allocator handle the assignment process. However, if the asm uses |
| /// features that we can't model on machineinstrs, we have SDISel do the |
| /// allocation. This produces generally horrible, but correct, code. |
| /// |
| /// OpInfo describes the operand. |
| /// Input and OutputRegs are the set of already allocated physical registers. |
| /// |
| void SelectionDAGLowering:: |
| GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, |
| std::set<unsigned> &OutputRegs, |
| std::set<unsigned> &InputRegs) { |
| // Compute whether this value requires an input register, an output register, |
| // or both. |
| bool isOutReg = false; |
| bool isInReg = false; |
| switch (OpInfo.Type) { |
| case InlineAsm::isOutput: |
| isOutReg = true; |
| |
| // If there is an input constraint that matches this, we need to reserve |
| // the input register so no other inputs allocate to it. |
| isInReg = OpInfo.hasMatchingInput(); |
| break; |
| case InlineAsm::isInput: |
| isInReg = true; |
| isOutReg = false; |
| break; |
| case InlineAsm::isClobber: |
| isOutReg = true; |
| isInReg = true; |
| break; |
| } |
| |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SmallVector<unsigned, 4> Regs; |
| |
| // If this is a constraint for a single physreg, or a constraint for a |
| // register class, find it. |
| std::pair<unsigned, const TargetRegisterClass*> PhysReg = |
| TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, |
| OpInfo.ConstraintVT); |
| |
| unsigned NumRegs = 1; |
| if (OpInfo.ConstraintVT != MVT::Other) { |
| // If this is a FP input in an integer register (or visa versa) insert a bit |
| // cast of the input value. More generally, handle any case where the input |
| // value disagrees with the register class we plan to stick this in. |
| if (OpInfo.Type == InlineAsm::isInput && |
| PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { |
| // Try to convert to the first MVT that the reg class contains. If the |
| // types are identical size, use a bitcast to convert (e.g. two differing |
| // vector types). |
| MVT RegVT = *PhysReg.second->vt_begin(); |
| if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { |
| OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), |
| RegVT, OpInfo.CallOperand); |
| OpInfo.ConstraintVT = RegVT; |
| } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { |
| // If the input is a FP value and we want it in FP registers, do a |
| // bitcast to the corresponding integer type. This turns an f64 value |
| // into i64, which can be passed with two i32 values on a 32-bit |
| // machine. |
| RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); |
| OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), |
| RegVT, OpInfo.CallOperand); |
| OpInfo.ConstraintVT = RegVT; |
| } |
| } |
| |
| NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT); |
| } |
| |
| MVT RegVT; |
| MVT ValueVT = OpInfo.ConstraintVT; |
| |
| // If this is a constraint for a specific physical register, like {r17}, |
| // assign it now. |
| if (unsigned AssignedReg = PhysReg.first) { |
| const TargetRegisterClass *RC = PhysReg.second; |
| if (OpInfo.ConstraintVT == MVT::Other) |
| ValueVT = *RC->vt_begin(); |
| |
| // Get the actual register value type. This is important, because the user |
| // may have asked for (e.g.) the AX register in i32 type. We need to |
| // remember that AX is actually i16 to get the right extension. |
| RegVT = *RC->vt_begin(); |
| |
| // This is a explicit reference to a physical register. |
| Regs.push_back(AssignedReg); |
| |
| // If this is an expanded reference, add the rest of the regs to Regs. |
| if (NumRegs != 1) { |
| TargetRegisterClass::iterator I = RC->begin(); |
| for (; *I != AssignedReg; ++I) |
| assert(I != RC->end() && "Didn't find reg!"); |
| |
| // Already added the first reg. |
| --NumRegs; ++I; |
| for (; NumRegs; --NumRegs, ++I) { |
| assert(I != RC->end() && "Ran out of registers to allocate!"); |
| Regs.push_back(*I); |
| } |
| } |
| OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); |
| const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); |
| OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); |
| return; |
| } |
| |
| // Otherwise, if this was a reference to an LLVM register class, create vregs |
| // for this reference. |
| if (const TargetRegisterClass *RC = PhysReg.second) { |
| RegVT = *RC->vt_begin(); |
| if (OpInfo.ConstraintVT == MVT::Other) |
| ValueVT = RegVT; |
| |
| // Create the appropriate number of virtual registers. |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| for (; NumRegs; --NumRegs) |
| Regs.push_back(RegInfo.createVirtualRegister(RC)); |
| |
| OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); |
| return; |
| } |
| |
| // This is a reference to a register class that doesn't directly correspond |
| // to an LLVM register class. Allocate NumRegs consecutive, available, |
| // registers from the class. |
| std::vector<unsigned> RegClassRegs |
| = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, |
| OpInfo.ConstraintVT); |
| |
| const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); |
| unsigned NumAllocated = 0; |
| for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { |
| unsigned Reg = RegClassRegs[i]; |
| // See if this register is available. |
| if ((isOutReg && OutputRegs.count(Reg)) || // Already used. |
| (isInReg && InputRegs.count(Reg))) { // Already used. |
| // Make sure we find consecutive registers. |
| NumAllocated = 0; |
| continue; |
| } |
| |
| // Check to see if this register is allocatable (i.e. don't give out the |
| // stack pointer). |
| const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); |
| if (!RC) { // Couldn't allocate this register. |
| // Reset NumAllocated to make sure we return consecutive registers. |
| NumAllocated = 0; |
| continue; |
| } |
| |
| // Okay, this register is good, we can use it. |
| ++NumAllocated; |
| |
| // If we allocated enough consecutive registers, succeed. |
| if (NumAllocated == NumRegs) { |
| unsigned RegStart = (i-NumAllocated)+1; |
| unsigned RegEnd = i+1; |
| // Mark all of the allocated registers used. |
| for (unsigned i = RegStart; i != RegEnd; ++i) |
| Regs.push_back(RegClassRegs[i]); |
| |
| OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), |
| OpInfo.ConstraintVT); |
| OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); |
| return; |
| } |
| } |
| |
| // Otherwise, we couldn't allocate enough registers for this. |
| } |
| |
| /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being |
| /// processed uses a memory 'm' constraint. |
| static bool |
| hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, |
| const TargetLowering &TLI) { |
| for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { |
| InlineAsm::ConstraintInfo &CI = CInfos[i]; |
| for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { |
| TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); |
| if (CType == TargetLowering::C_Memory) |
| return true; |
| } |
| |
| // Indirect operand accesses access memory. |
| if (CI.isIndirect) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// visitInlineAsm - Handle a call to an InlineAsm object. |
| /// |
| void SelectionDAGLowering::visitInlineAsm(CallSite CS) { |
| InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); |
| |
| /// ConstraintOperands - Information about all of the constraints. |
| std::vector<SDISelAsmOperandInfo> ConstraintOperands; |
| |
| std::set<unsigned> OutputRegs, InputRegs; |
| |
| // Do a prepass over the constraints, canonicalizing them, and building up the |
| // ConstraintOperands list. |
| std::vector<InlineAsm::ConstraintInfo> |
| ConstraintInfos = IA->ParseConstraints(); |
| |
| bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); |
| |
| SDValue Chain, Flag; |
| |
| // We won't need to flush pending loads if this asm doesn't touch |
| // memory and is nonvolatile. |
| if (hasMemory || IA->hasSideEffects()) |
| Chain = getRoot(); |
| else |
| Chain = DAG.getRoot(); |
| |
| unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. |
| unsigned ResNo = 0; // ResNo - The result number of the next output. |
| for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { |
| ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); |
| |
| MVT OpVT = MVT::Other; |
| |
| // Compute the value type for each operand. |
| switch (OpInfo.Type) { |
| case InlineAsm::isOutput: |
| // Indirect outputs just consume an argument. |
| if (OpInfo.isIndirect) { |
| OpInfo.CallOperandVal = CS.getArgument(ArgNo++); |
| break; |
| } |
| |
| // The return value of the call is this value. As such, there is no |
| // corresponding argument. |
| assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); |
| if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { |
| OpVT = TLI.getValueType(STy->getElementType(ResNo)); |
| } else { |
| assert(ResNo == 0 && "Asm only has one result!"); |
| OpVT = TLI.getValueType(CS.getType()); |
| } |
| ++ResNo; |
| break; |
| case InlineAsm::isInput: |
| OpInfo.CallOperandVal = CS.getArgument(ArgNo++); |
| break; |
| case InlineAsm::isClobber: |
| // Nothing to do. |
| break; |
| } |
| |
| // If this is an input or an indirect output, process the call argument. |
| // BasicBlocks are labels, currently appearing only in asm's. |
| if (OpInfo.CallOperandVal) { |
| // Strip bitcasts, if any. This mostly comes up for functions. |
| ConstantExpr* CE = NULL; |
| while ((CE = dyn_cast<ConstantExpr>(OpInfo.CallOperandVal)) && |
| CE->getOpcode()==Instruction::BitCast) |
| OpInfo.CallOperandVal = CE->getOperand(0); |
| if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { |
| OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); |
| } else { |
| OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); |
| } |
| |
| OpVT = OpInfo.getCallOperandValMVT(TLI, TD); |
| } |
| |
| OpInfo.ConstraintVT = OpVT; |
| } |
| |
| // Second pass over the constraints: compute which constraint option to use |
| // and assign registers to constraints that want a specific physreg. |
| for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; |
| |
| // If this is an output operand with a matching input operand, look up the |
| // matching input. If their types mismatch, e.g. one is an integer, the |
| // other is floating point, or their sizes are different, flag it as an |
| // error. |
| if (OpInfo.hasMatchingInput()) { |
| SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
| if (OpInfo.ConstraintVT != Input.ConstraintVT) { |
| if ((OpInfo.ConstraintVT.isInteger() != |
| Input.ConstraintVT.isInteger()) || |
| (OpInfo.ConstraintVT.getSizeInBits() != |
| Input.ConstraintVT.getSizeInBits())) { |
| llvm_report_error("llvm: error: Unsupported asm: input constraint" |
| " with a matching output constraint of incompatible" |
| " type!"); |
| } |
| Input.ConstraintVT = OpInfo.ConstraintVT; |
| } |
| } |
| |
| // Compute the constraint code and ConstraintType to use. |
| TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); |
| |
| // If this is a memory input, and if the operand is not indirect, do what we |
| // need to to provide an address for the memory input. |
| if (OpInfo.ConstraintType == TargetLowering::C_Memory && |
| !OpInfo.isIndirect) { |
| assert(OpInfo.Type == InlineAsm::isInput && |
| "Can only indirectify direct input operands!"); |
| |
| // Memory operands really want the address of the value. If we don't have |
| // an indirect input, put it in the constpool if we can, otherwise spill |
| // it to a stack slot. |
| |
| // If the operand is a float, integer, or vector constant, spill to a |
| // constant pool entry to get its address. |
| Value *OpVal = OpInfo.CallOperandVal; |
| if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || |
| isa<ConstantVector>(OpVal)) { |
| OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), |
| TLI.getPointerTy()); |
| } else { |
| // Otherwise, create a stack slot and emit a store to it before the |
| // asm. |
| const Type *Ty = OpVal->getType(); |
| uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); |
| unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); |
| Chain = DAG.getStore(Chain, getCurDebugLoc(), |
| OpInfo.CallOperand, StackSlot, NULL, 0); |
| OpInfo.CallOperand = StackSlot; |
| } |
| |
| // There is no longer a Value* corresponding to this operand. |
| OpInfo.CallOperandVal = 0; |
| // It is now an indirect operand. |
| OpInfo.isIndirect = true; |
| } |
| |
| // If this constraint is for a specific register, allocate it before |
| // anything else. |
| if (OpInfo.ConstraintType == TargetLowering::C_Register) |
| GetRegistersForValue(OpInfo, OutputRegs, InputRegs); |
| } |
| ConstraintInfos.clear(); |
| |
| |
| // Second pass - Loop over all of the operands, assigning virtual or physregs |
| // to register class operands. |
| for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; |
| |
| // C_Register operands have already been allocated, Other/Memory don't need |
| // to be. |
| if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) |
| GetRegistersForValue(OpInfo, OutputRegs, InputRegs); |
| } |
| |
| // AsmNodeOperands - The operands for the ISD::INLINEASM node. |
| std::vector<SDValue> AsmNodeOperands; |
| AsmNodeOperands.push_back(SDValue()); // reserve space for input chain |
| AsmNodeOperands.push_back( |
| DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); |
| |
| |
| // Loop over all of the inputs, copying the operand values into the |
| // appropriate registers and processing the output regs. |
| RegsForValue RetValRegs; |
| |
| // IndirectStoresToEmit - The set of stores to emit after the inline asm node. |
| std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; |
| |
| for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { |
| SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; |
| |
| switch (OpInfo.Type) { |
| case InlineAsm::isOutput: { |
| if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && |
| OpInfo.ConstraintType != TargetLowering::C_Register) { |
| // Memory output, or 'other' output (e.g. 'X' constraint). |
| assert(OpInfo.isIndirect && "Memory output must be indirect operand"); |
| |
| // Add information to the INLINEASM node to know about this output. |
| unsigned ResOpType = 4/*MEM*/ | (1<<3); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, |
| TLI.getPointerTy())); |
| AsmNodeOperands.push_back(OpInfo.CallOperand); |
| break; |
| } |
| |
| // Otherwise, this is a register or register class output. |
| |
| // Copy the output from the appropriate register. Find a register that |
| // we can use. |
| if (OpInfo.AssignedRegs.Regs.empty()) { |
| llvm_report_error("llvm: error: Couldn't allocate output reg for" |
| " constraint '" + OpInfo.ConstraintCode + "'!"); |
| } |
| |
| // If this is an indirect operand, store through the pointer after the |
| // asm. |
| if (OpInfo.isIndirect) { |
| IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, |
| OpInfo.CallOperandVal)); |
| } else { |
| // This is the result value of the call. |
| assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); |
| // Concatenate this output onto the outputs list. |
| RetValRegs.append(OpInfo.AssignedRegs); |
| } |
| |
| // Add information to the INLINEASM node to know that this register is |
| // set. |
| OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? |
| 6 /* EARLYCLOBBER REGDEF */ : |
| 2 /* REGDEF */ , |
| false, |
| 0, |
| DAG, AsmNodeOperands); |
| break; |
| } |
| case InlineAsm::isInput: { |
| SDValue InOperandVal = OpInfo.CallOperand; |
| |
| if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? |
| // If this is required to match an output register we have already set, |
| // just use its register. |
| unsigned OperandNo = OpInfo.getMatchedOperand(); |
| |
| // Scan until we find the definition we already emitted of this operand. |
| // When we find it, create a RegsForValue operand. |
| unsigned CurOp = 2; // The first operand. |
| for (; OperandNo; --OperandNo) { |
| // Advance to the next operand. |
| unsigned OpFlag = |
| cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); |
| assert(((OpFlag & 7) == 2 /*REGDEF*/ || |
| (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || |
| (OpFlag & 7) == 4 /*MEM*/) && |
| "Skipped past definitions?"); |
| CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; |
| } |
| |
| unsigned OpFlag = |
| cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); |
| if ((OpFlag & 7) == 2 /*REGDEF*/ |
| || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { |
| // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. |
| if (OpInfo.isIndirect) { |
| llvm_report_error("llvm: error: " |
| "Don't know how to handle tied indirect " |
| "register inputs yet!"); |
| } |
| RegsForValue MatchedRegs; |
| MatchedRegs.TLI = &TLI; |
| MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); |
| MVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); |
| MatchedRegs.RegVTs.push_back(RegVT); |
| MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); |
| for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); |
| i != e; ++i) |
| MatchedRegs.Regs. |
| push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); |
| |
| // Use the produced MatchedRegs object to |
| MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), |
| Chain, &Flag); |
| MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, |
| true, OpInfo.getMatchedOperand(), |
| DAG, AsmNodeOperands); |
| break; |
| } else { |
| assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); |
| assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && |
| "Unexpected number of operands"); |
| // Add information to the INLINEASM node to know about this input. |
| // See InlineAsm.h isUseOperandTiedToDef. |
| OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, |
| TLI.getPointerTy())); |
| AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); |
| break; |
| } |
| } |
| |
| if (OpInfo.ConstraintType == TargetLowering::C_Other) { |
| assert(!OpInfo.isIndirect && |
| "Don't know how to handle indirect other inputs yet!"); |
| |
| std::vector<SDValue> Ops; |
| TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], |
| hasMemory, Ops, DAG); |
| if (Ops.empty()) { |
| llvm_report_error("llvm: error: Invalid operand for inline asm" |
| " constraint '" + OpInfo.ConstraintCode + "'!"); |
| } |
| |
| // Add information to the INLINEASM node to know about this input. |
| unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, |
| TLI.getPointerTy())); |
| AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); |
| break; |
| } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { |
| assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); |
| assert(InOperandVal.getValueType() == TLI.getPointerTy() && |
| "Memory operands expect pointer values"); |
| |
| // Add information to the INLINEASM node to know about this input. |
| unsigned ResOpType = 4/*MEM*/ | (1<<3); |
| AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, |
| TLI.getPointerTy())); |
| AsmNodeOperands.push_back(InOperandVal); |
| break; |
| } |
| |
| assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || |
| OpInfo.ConstraintType == TargetLowering::C_Register) && |
| "Unknown constraint type!"); |
| assert(!OpInfo.isIndirect && |
| "Don't know how to handle indirect register inputs yet!"); |
| |
| // Copy the input into the appropriate registers. |
| if (OpInfo.AssignedRegs.Regs.empty()) { |
| llvm_report_error("llvm: error: Couldn't allocate input reg for" |
| " constraint '"+ OpInfo.ConstraintCode +"'!"); |
| } |
| |
| OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), |
| Chain, &Flag); |
| |
| OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, |
| DAG, AsmNodeOperands); |
| break; |
| } |
| case InlineAsm::isClobber: { |
| // Add the clobbered value to the operand list, so that the register |
| // allocator is aware that the physreg got clobbered. |
| if (!OpInfo.AssignedRegs.Regs.empty()) |
| OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, |
| false, 0, DAG,AsmNodeOperands); |
| break; |
| } |
| } |
| } |
| |
| // Finish up input operands. |
| AsmNodeOperands[0] = Chain; |
| if (Flag.getNode()) AsmNodeOperands.push_back(Flag); |
| |
| Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), |
| DAG.getVTList(MVT::Other, MVT::Flag), |
| &AsmNodeOperands[0], AsmNodeOperands.size()); |
| Flag = Chain.getValue(1); |
| |
| // If this asm returns a register value, copy the result from that register |
| // and set it as the value of the call. |
| if (!RetValRegs.Regs.empty()) { |
| SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), |
| Chain, &Flag); |
| |
| // FIXME: Why don't we do this for inline asms with MRVs? |
| if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { |
| MVT ResultType = TLI.getValueType(CS.getType()); |
| |
| // If any of the results of the inline asm is a vector, it may have the |
| // wrong width/num elts. This can happen for register classes that can |
| // contain multiple different value types. The preg or vreg allocated may |
| // not have the same VT as was expected. Convert it to the right type |
| // with bit_convert. |
| if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { |
| Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), |
| ResultType, Val); |
| |
| } else if (ResultType != Val.getValueType() && |
| ResultType.isInteger() && Val.getValueType().isInteger()) { |
| // If a result value was tied to an input value, the computed result may |
| // have a wider width than the expected result. Extract the relevant |
| // portion. |
| Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); |
| } |
| |
| assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); |
| } |
| |
| setValue(CS.getInstruction(), Val); |
| // Don't need to use this as a chain in this case. |
| if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) |
| return; |
| } |
| |
| std::vector<std::pair<SDValue, Value*> > StoresToEmit; |
| |
| // Process indirect outputs, first output all of the flagged copies out of |
| // physregs. |
| for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { |
| RegsForValue &OutRegs = IndirectStoresToEmit[i].first; |
| Value *Ptr = IndirectStoresToEmit[i].second; |
| SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), |
| Chain, &Flag); |
| StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); |
| |
| } |
| |
| // Emit the non-flagged stores from the physregs. |
| SmallVector<SDValue, 8> OutChains; |
| for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) |
| OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), |
| StoresToEmit[i].first, |
| getValue(StoresToEmit[i].second), |
| StoresToEmit[i].second, 0)); |
| if (!OutChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, |
| &OutChains[0], OutChains.size()); |
| DAG.setRoot(Chain); |
| } |
| |
| |
| void SelectionDAGLowering::visitMalloc(MallocInst &I) { |
| SDValue Src = getValue(I.getOperand(0)); |
| |
| // Scale up by the type size in the original i32 type width. Various |
| // mid-level optimizers may make assumptions about demanded bits etc from the |
| // i32-ness of the optimizer: we do not want to promote to i64 and then |
| // multiply on 64-bit targets. |
| // FIXME: Malloc inst should go away: PR715. |
| uint64_t ElementSize = TD->getTypeAllocSize(I.getType()->getElementType()); |
| if (ElementSize != 1) { |
| // Src is always 32-bits, make sure the constant fits. |
| assert(Src.getValueType() == MVT::i32); |
| ElementSize = (uint32_t)ElementSize; |
| Src = DAG.getNode(ISD::MUL, getCurDebugLoc(), Src.getValueType(), |
| Src, DAG.getConstant(ElementSize, Src.getValueType())); |
| } |
| |
| MVT IntPtr = TLI.getPointerTy(); |
| |
| if (IntPtr.bitsLT(Src.getValueType())) |
| Src = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), IntPtr, Src); |
| else if (IntPtr.bitsGT(Src.getValueType())) |
| Src = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), IntPtr, Src); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = Src; |
| Entry.Ty = TLI.getTargetData()->getIntPtrType(); |
| Args.push_back(Entry); |
| |
| std::pair<SDValue,SDValue> Result = |
| TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, false, |
| 0, CallingConv::C, PerformTailCallOpt, |
| DAG.getExternalSymbol("malloc", IntPtr), |
| Args, DAG, getCurDebugLoc()); |
| setValue(&I, Result.first); // Pointers always fit in registers |
| DAG.setRoot(Result.second); |
| } |
| |
| void SelectionDAGLowering::visitFree(FreeInst &I) { |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = getValue(I.getOperand(0)); |
| Entry.Ty = TLI.getTargetData()->getIntPtrType(); |
| Args.push_back(Entry); |
| MVT IntPtr = TLI.getPointerTy(); |
| std::pair<SDValue,SDValue> Result = |
| TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, false, |
| 0, CallingConv::C, PerformTailCallOpt, |
| DAG.getExternalSymbol("free", IntPtr), Args, DAG, |
| getCurDebugLoc()); |
| DAG.setRoot(Result.second); |
| } |
| |
| void SelectionDAGLowering::visitVAStart(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(1)))); |
| } |
| |
| void SelectionDAGLowering::visitVAArg(VAArgInst &I) { |
| SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), |
| getRoot(), getValue(I.getOperand(0)), |
| DAG.getSrcValue(I.getOperand(0))); |
| setValue(&I, V); |
| DAG.setRoot(V.getValue(1)); |
| } |
| |
| void SelectionDAGLowering::visitVAEnd(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(1)))); |
| } |
| |
| void SelectionDAGLowering::visitVACopy(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), |
| MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)), |
| DAG.getSrcValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(2)))); |
| } |
| |
| /// TargetLowering::LowerArguments - This is the default LowerArguments |
| /// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all |
| /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be |
| /// integrated into SDISel. |
| void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &ArgValues, |
| DebugLoc dl) { |
| // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node. |
| SmallVector<SDValue, 3+16> Ops; |
| Ops.push_back(DAG.getRoot()); |
| Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy())); |
| Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy())); |
| |
| // Add one result value for each formal argument. |
| SmallVector<MVT, 16> RetVals; |
| unsigned j = 1; |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); |
| I != E; ++I, ++j) { |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(*this, I->getType(), ValueVTs); |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| Value != NumValues; ++Value) { |
| MVT VT = ValueVTs[Value]; |
| const Type *ArgTy = VT.getTypeForMVT(*DAG.getContext()); |
| ISD::ArgFlagsTy Flags; |
| unsigned OriginalAlignment = |
| getTargetData()->getABITypeAlignment(ArgTy); |
| |
| if (F.paramHasAttr(j, Attribute::ZExt)) |
| Flags.setZExt(); |
| if (F.paramHasAttr(j, Attribute::SExt)) |
| Flags.setSExt(); |
| if (F.paramHasAttr(j, Attribute::InReg)) |
| Flags.setInReg(); |
| if (F.paramHasAttr(j, Attribute::StructRet)) |
| Flags.setSRet(); |
| if (F.paramHasAttr(j, Attribute::ByVal)) { |
| Flags.setByVal(); |
| const PointerType *Ty = cast<PointerType>(I->getType()); |
| const Type *ElementTy = Ty->getElementType(); |
| unsigned FrameAlign = getByValTypeAlignment(ElementTy); |
| unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); |
| // For ByVal, alignment should be passed from FE. BE will guess if |
| // this info is not there but there are cases it cannot get right. |
| if (F.getParamAlignment(j)) |
| FrameAlign = F.getParamAlignment(j); |
| Flags.setByValAlign(FrameAlign); |
| Flags.setByValSize(FrameSize); |
| } |
| if (F.paramHasAttr(j, Attribute::Nest)) |
| Flags.setNest(); |
| Flags.setOrigAlign(OriginalAlignment); |
| |
| MVT RegisterVT = getRegisterType(VT); |
| unsigned NumRegs = getNumRegisters(VT); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| RetVals.push_back(RegisterVT); |
| ISD::ArgFlagsTy MyFlags = Flags; |
| if (NumRegs > 1 && i == 0) |
| MyFlags.setSplit(); |
| // if it isn't first piece, alignment must be 1 |
| else if (i > 0) |
| MyFlags.setOrigAlign(1); |
| Ops.push_back(DAG.getArgFlags(MyFlags)); |
| } |
| } |
| } |
| |
| RetVals.push_back(MVT::Other); |
| |
| // Create the node. |
| SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, dl, |
| DAG.getVTList(&RetVals[0], RetVals.size()), |
| &Ops[0], Ops.size()).getNode(); |
| |
| // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but |
| // allows exposing the loads that may be part of the argument access to the |
| // first DAGCombiner pass. |
| SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG); |
| |
| // The number of results should match up, except that the lowered one may have |
| // an extra flag result. |
| assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() || |
| (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() && |
| TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag)) |
| && "Lowering produced unexpected number of results!"); |
| |
| // The FORMAL_ARGUMENTS node itself is likely no longer needed. |
| if (Result != TmpRes.getNode() && Result->use_empty()) { |
| HandleSDNode Dummy(DAG.getRoot()); |
| DAG.RemoveDeadNode(Result); |
| } |
| |
| Result = TmpRes.getNode(); |
| |
| unsigned NumArgRegs = Result->getNumValues() - 1; |
| DAG.setRoot(SDValue(Result, NumArgRegs)); |
| |
| // Set up the return result vector. |
| unsigned i = 0; |
| unsigned Idx = 1; |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; |
| ++I, ++Idx) { |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(*this, I->getType(), ValueVTs); |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| Value != NumValues; ++Value) { |
| MVT VT = ValueVTs[Value]; |
| MVT PartVT = getRegisterType(VT); |
| |
| unsigned NumParts = getNumRegisters(VT); |
| SmallVector<SDValue, 4> Parts(NumParts); |
| for (unsigned j = 0; j != NumParts; ++j) |
| Parts[j] = SDValue(Result, i++); |
| |
| ISD::NodeType AssertOp = ISD::DELETED_NODE; |
| if (F.paramHasAttr(Idx, Attribute::SExt)) |
| AssertOp = ISD::AssertSext; |
| else if (F.paramHasAttr(Idx, Attribute::ZExt)) |
| AssertOp = ISD::AssertZext; |
| |
| ArgValues.push_back(getCopyFromParts(DAG, dl, &Parts[0], NumParts, |
| PartVT, VT, AssertOp)); |
| } |
| } |
| assert(i == NumArgRegs && "Argument register count mismatch!"); |
| } |
| |
| |
| /// TargetLowering::LowerCallTo - This is the default LowerCallTo |
| /// implementation, which just inserts an ISD::CALL node, which is later custom |
| /// lowered by the target to something concrete. FIXME: When all targets are |
| /// migrated to using ISD::CALL, this hook should be integrated into SDISel. |
| std::pair<SDValue, SDValue> |
| TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, |
| bool RetSExt, bool RetZExt, bool isVarArg, |
| bool isInreg, unsigned NumFixedArgs, |
| unsigned CallingConv, bool isTailCall, |
| SDValue Callee, |
| ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { |
| assert((!isTailCall || PerformTailCallOpt) && |
| "isTailCall set when tail-call optimizations are disabled!"); |
| |
| SmallVector<SDValue, 32> Ops; |
| Ops.push_back(Chain); // Op#0 - Chain |
| Ops.push_back(Callee); |
| |
| // Handle all of the outgoing arguments. |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(*this, Args[i].Ty, ValueVTs); |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| Value != NumValues; ++Value) { |
| MVT VT = ValueVTs[Value]; |
| const Type *ArgTy = VT.getTypeForMVT(*DAG.getContext()); |
| SDValue Op = SDValue(Args[i].Node.getNode(), |
| Args[i].Node.getResNo() + Value); |
| ISD::ArgFlagsTy Flags; |
| unsigned OriginalAlignment = |
| getTargetData()->getABITypeAlignment(ArgTy); |
| |
| if (Args[i].isZExt) |
| Flags.setZExt(); |
| if (Args[i].isSExt) |
| Flags.setSExt(); |
| if (Args[i].isInReg) |
| Flags.setInReg(); |
| if (Args[i].isSRet) |
| Flags.setSRet(); |
| if (Args[i].isByVal) { |
| Flags.setByVal(); |
| const PointerType *Ty = cast<PointerType>(Args[i].Ty); |
| const Type *ElementTy = Ty->getElementType(); |
| unsigned FrameAlign = getByValTypeAlignment(ElementTy); |
| unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); |
| // For ByVal, alignment should come from FE. BE will guess if this |
| // info is not there but there are cases it cannot get right. |
| if (Args[i].Alignment) |
| FrameAlign = Args[i].Alignment; |
| Flags.setByValAlign(FrameAlign); |
| Flags.setByValSize(FrameSize); |
| } |
| if (Args[i].isNest) |
| Flags.setNest(); |
| Flags.setOrigAlign(OriginalAlignment); |
| |
| MVT PartVT = getRegisterType(VT); |
| unsigned NumParts = getNumRegisters(VT); |
| SmallVector<SDValue, 4> Parts(NumParts); |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| |
| if (Args[i].isSExt) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (Args[i].isZExt) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); |
| |
| for (unsigned i = 0; i != NumParts; ++i) { |
| // if it isn't first piece, alignment must be 1 |
| ISD::ArgFlagsTy MyFlags = Flags; |
| if (NumParts > 1 && i == 0) |
| MyFlags.setSplit(); |
| else if (i != 0) |
| MyFlags.setOrigAlign(1); |
| |
| Ops.push_back(Parts[i]); |
| Ops.push_back(DAG.getArgFlags(MyFlags)); |
| } |
| } |
| } |
| |
| // Figure out the result value types. We start by making a list of |
| // the potentially illegal return value types. |
| SmallVector<MVT, 4> LoweredRetTys; |
| SmallVector<MVT, 4> RetTys; |
| ComputeValueVTs(*this, RetTy, RetTys); |
| |
| // Then we translate that to a list of legal types. |
| for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { |
| MVT VT = RetTys[I]; |
| MVT RegisterVT = getRegisterType(VT); |
| unsigned NumRegs = getNumRegisters(VT); |
| for (unsigned i = 0; i != NumRegs; ++i) |
| LoweredRetTys.push_back(RegisterVT); |
| } |
| |
| LoweredRetTys.push_back(MVT::Other); // Always has a chain. |
| |
| // Create the CALL node. |
| SDValue Res = DAG.getCall(CallingConv, dl, |
| isVarArg, isTailCall, isInreg, |
| DAG.getVTList(&LoweredRetTys[0], |
| LoweredRetTys.size()), |
| &Ops[0], Ops.size(), NumFixedArgs |
| ); |
| Chain = Res.getValue(LoweredRetTys.size() - 1); |
| |
| // Gather up the call result into a single value. |
| if (RetTy != Type::VoidTy && !RetTys.empty()) { |
| ISD::NodeType AssertOp = ISD::DELETED_NODE; |
| |
| if (RetSExt) |
| AssertOp = ISD::AssertSext; |
| else if (RetZExt) |
| AssertOp = ISD::AssertZext; |
| |
| SmallVector<SDValue, 4> ReturnValues; |
| unsigned RegNo = 0; |
| for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { |
| MVT VT = RetTys[I]; |
| MVT RegisterVT = getRegisterType(VT); |
| unsigned NumRegs = getNumRegisters(VT); |
| unsigned RegNoEnd = NumRegs + RegNo; |
| SmallVector<SDValue, 4> Results; |
| for (; RegNo != RegNoEnd; ++RegNo) |
| Results.push_back(Res.getValue(RegNo)); |
| SDValue ReturnValue = |
| getCopyFromParts(DAG, dl, &Results[0], NumRegs, RegisterVT, VT, |
| AssertOp); |
| ReturnValues.push_back(ReturnValue); |
| } |
| Res = DAG.getNode(ISD::MERGE_VALUES, dl, |
| DAG.getVTList(&RetTys[0], RetTys.size()), |
| &ReturnValues[0], ReturnValues.size()); |
| } |
| |
| return std::make_pair(Res, Chain); |
| } |
| |
| void TargetLowering::LowerOperationWrapper(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) { |
| SDValue Res = LowerOperation(SDValue(N, 0), DAG); |
| if (Res.getNode()) |
| Results.push_back(Res); |
| } |
| |
| SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { |
| llvm_unreachable("LowerOperation not implemented for this target!"); |
| return SDValue(); |
| } |
| |
| |
| void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) { |
| SDValue Op = getValue(V); |
| assert((Op.getOpcode() != ISD::CopyFromReg || |
| cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && |
| "Copy from a reg to the same reg!"); |
| assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); |
| |
| RegsForValue RFV(TLI, Reg, V->getType()); |
| SDValue Chain = DAG.getEntryNode(); |
| RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); |
| PendingExports.push_back(Chain); |
| } |
| |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| |
| void SelectionDAGISel:: |
| LowerArguments(BasicBlock *LLVMBB) { |
| // If this is the entry block, emit arguments. |
| Function &F = *LLVMBB->getParent(); |
| SDValue OldRoot = SDL->DAG.getRoot(); |
| SmallVector<SDValue, 16> Args; |
| TLI.LowerArguments(F, SDL->DAG, Args, SDL->getCurDebugLoc()); |
| |
| unsigned a = 0; |
| for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); |
| AI != E; ++AI) { |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, AI->getType(), ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (!AI->use_empty()) { |
| SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues, |
| SDL->getCurDebugLoc())); |
| // If this argument is live outside of the entry block, insert a copy from |
| // whereever we got it to the vreg that other BB's will reference it as. |
| SDL->CopyToExportRegsIfNeeded(AI); |
| } |
| a += NumValues; |
| } |
| |
| // Finally, if the target has anything special to do, allow it to do so. |
| // FIXME: this should insert code into the DAG! |
| EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction()); |
| } |
| |
| /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to |
| /// ensure constants are generated when needed. Remember the virtual registers |
| /// that need to be added to the Machine PHI nodes as input. We cannot just |
| /// directly add them, because expansion might result in multiple MBB's for one |
| /// BB. As such, the start of the BB might correspond to a different MBB than |
| /// the end. |
| /// |
| void |
| SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { |
| TerminatorInst *TI = LLVMBB->getTerminator(); |
| |
| SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; |
| |
| // Check successor nodes' PHI nodes that expect a constant to be available |
| // from this block. |
| for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { |
| BasicBlock *SuccBB = TI->getSuccessor(succ); |
| if (!isa<PHINode>(SuccBB->begin())) continue; |
| MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; |
| |
| // If this terminator has multiple identical successors (common for |
| // switches), only handle each succ once. |
| if (!SuccsHandled.insert(SuccMBB)) continue; |
| |
| MachineBasicBlock::iterator MBBI = SuccMBB->begin(); |
| PHINode *PN; |
| |
| // At this point we know that there is a 1-1 correspondence between LLVM PHI |
| // nodes and Machine PHI nodes, but the incoming operands have not been |
| // emitted yet. |
| for (BasicBlock::iterator I = SuccBB->begin(); |
| (PN = dyn_cast<PHINode>(I)); ++I) { |
| // Ignore dead phi's. |
| if (PN->use_empty()) continue; |
| |
| unsigned Reg; |
| Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); |
| |
| if (Constant *C = dyn_cast<Constant>(PHIOp)) { |
| unsigned &RegOut = SDL->ConstantsOut[C]; |
| if (RegOut == 0) { |
| RegOut = FuncInfo->CreateRegForValue(C); |
| SDL->CopyValueToVirtualRegister(C, RegOut); |
| } |
| Reg = RegOut; |
| } else { |
| Reg = FuncInfo->ValueMap[PHIOp]; |
| if (Reg == 0) { |
| assert(isa<AllocaInst>(PHIOp) && |
| FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && |
| "Didn't codegen value into a register!??"); |
| Reg = FuncInfo->CreateRegForValue(PHIOp); |
| SDL->CopyValueToVirtualRegister(PHIOp, Reg); |
| } |
| } |
| |
| // Remember that this register needs to added to the machine PHI node as |
| // the input for this MBB. |
| SmallVector<MVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, PN->getType(), ValueVTs); |
| for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { |
| MVT VT = ValueVTs[vti]; |
| unsigned NumRegisters = TLI.getNumRegisters(VT); |
| for (unsigned i = 0, e = NumRegisters; i != e; ++i) |
| SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); |
| Reg += NumRegisters; |
| } |
| } |
| } |
| SDL->ConstantsOut.clear(); |
| } |
| |
| /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only |
| /// supports legal types, and it emits MachineInstrs directly instead of |
| /// creating SelectionDAG nodes. |
| /// |
| bool |
| SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, |
| FastISel *F) { |
| TerminatorInst *TI = LLVMBB->getTerminator(); |
| |
| SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; |
| unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size(); |
| |
| // Check successor nodes' PHI nodes that expect a constant to be available |
| // from this block. |
| for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { |
| BasicBlock *SuccBB = TI->getSuccessor(succ); |
| if (!isa<PHINode>(SuccBB->begin())) continue; |
| MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; |
| |
| // If this terminator has multiple identical successors (common for |
| // switches), only handle each succ once. |
| if (!SuccsHandled.insert(SuccMBB)) continue; |
| |
| MachineBasicBlock::iterator MBBI = SuccMBB->begin(); |
| PHINode *PN; |
| |
| // At this point we know that there is a 1-1 correspondence between LLVM PHI |
| // nodes and Machine PHI nodes, but the incoming operands have not been |
| // emitted yet. |
| for (BasicBlock::iterator I = SuccBB->begin(); |
| (PN = dyn_cast<PHINode>(I)); ++I) { |
| // Ignore dead phi's. |
| if (PN->use_empty()) continue; |
| |
| // Only handle legal types. Two interesting things to note here. First, |
| // by bailing out early, we may leave behind some dead instructions, |
| // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its |
| // own moves. Second, this check is necessary becuase FastISel doesn't |
| // use CreateRegForValue to create registers, so it always creates |
| // exactly one register for each non-void instruction. |
| MVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); |
| if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { |
| // Promote MVT::i1. |
| if (VT == MVT::i1) |
| VT = TLI.getTypeToTransformTo(VT); |
| else { |
| SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); |
| return false; |
| } |
| } |
| |
| Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); |
| |
| unsigned Reg = F->getRegForValue(PHIOp); |
| if (Reg == 0) { |
| SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); |
| return false; |
| } |
| SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); |
| } |
| } |
| |
| return true; |
| } |