| //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Bitcode/ReaderWriter.h" |
| #include "BitcodeReader.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/AutoUpgrade.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/OperandTraits.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/DataStream.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| using namespace llvm; |
| |
| enum { |
| SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex |
| }; |
| |
| void BitcodeReader::materializeForwardReferencedFunctions() { |
| while (!BlockAddrFwdRefs.empty()) { |
| Function *F = BlockAddrFwdRefs.begin()->first; |
| F->Materialize(); |
| } |
| } |
| |
| void BitcodeReader::FreeState() { |
| if (BufferOwned) |
| delete Buffer; |
| Buffer = 0; |
| std::vector<Type*>().swap(TypeList); |
| ValueList.clear(); |
| MDValueList.clear(); |
| |
| std::vector<AttributeSet>().swap(MAttributes); |
| std::vector<BasicBlock*>().swap(FunctionBBs); |
| std::vector<Function*>().swap(FunctionsWithBodies); |
| DeferredFunctionInfo.clear(); |
| MDKindMap.clear(); |
| |
| assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions to implement forward reference resolution, etc. |
| //===----------------------------------------------------------------------===// |
| |
| /// ConvertToString - Convert a string from a record into an std::string, return |
| /// true on failure. |
| template<typename StrTy> |
| static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, |
| StrTy &Result) { |
| if (Idx > Record.size()) |
| return true; |
| |
| for (unsigned i = Idx, e = Record.size(); i != e; ++i) |
| Result += (char)Record[i]; |
| return false; |
| } |
| |
| static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { |
| switch (Val) { |
| default: // Map unknown/new linkages to external |
| case 0: return GlobalValue::ExternalLinkage; |
| case 1: return GlobalValue::WeakAnyLinkage; |
| case 2: return GlobalValue::AppendingLinkage; |
| case 3: return GlobalValue::InternalLinkage; |
| case 4: return GlobalValue::LinkOnceAnyLinkage; |
| case 5: return GlobalValue::DLLImportLinkage; |
| case 6: return GlobalValue::DLLExportLinkage; |
| case 7: return GlobalValue::ExternalWeakLinkage; |
| case 8: return GlobalValue::CommonLinkage; |
| case 9: return GlobalValue::PrivateLinkage; |
| case 10: return GlobalValue::WeakODRLinkage; |
| case 11: return GlobalValue::LinkOnceODRLinkage; |
| case 12: return GlobalValue::AvailableExternallyLinkage; |
| case 13: return GlobalValue::LinkerPrivateLinkage; |
| case 14: return GlobalValue::LinkerPrivateWeakLinkage; |
| case 15: return GlobalValue::LinkOnceODRAutoHideLinkage; |
| } |
| } |
| |
| static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { |
| switch (Val) { |
| default: // Map unknown visibilities to default. |
| case 0: return GlobalValue::DefaultVisibility; |
| case 1: return GlobalValue::HiddenVisibility; |
| case 2: return GlobalValue::ProtectedVisibility; |
| } |
| } |
| |
| static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { |
| switch (Val) { |
| case 0: return GlobalVariable::NotThreadLocal; |
| default: // Map unknown non-zero value to general dynamic. |
| case 1: return GlobalVariable::GeneralDynamicTLSModel; |
| case 2: return GlobalVariable::LocalDynamicTLSModel; |
| case 3: return GlobalVariable::InitialExecTLSModel; |
| case 4: return GlobalVariable::LocalExecTLSModel; |
| } |
| } |
| |
| static int GetDecodedCastOpcode(unsigned Val) { |
| switch (Val) { |
| default: return -1; |
| case bitc::CAST_TRUNC : return Instruction::Trunc; |
| case bitc::CAST_ZEXT : return Instruction::ZExt; |
| case bitc::CAST_SEXT : return Instruction::SExt; |
| case bitc::CAST_FPTOUI : return Instruction::FPToUI; |
| case bitc::CAST_FPTOSI : return Instruction::FPToSI; |
| case bitc::CAST_UITOFP : return Instruction::UIToFP; |
| case bitc::CAST_SITOFP : return Instruction::SIToFP; |
| case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; |
| case bitc::CAST_FPEXT : return Instruction::FPExt; |
| case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; |
| case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; |
| case bitc::CAST_BITCAST : return Instruction::BitCast; |
| } |
| } |
| static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { |
| switch (Val) { |
| default: return -1; |
| case bitc::BINOP_ADD: |
| return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; |
| case bitc::BINOP_SUB: |
| return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; |
| case bitc::BINOP_MUL: |
| return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; |
| case bitc::BINOP_UDIV: return Instruction::UDiv; |
| case bitc::BINOP_SDIV: |
| return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; |
| case bitc::BINOP_UREM: return Instruction::URem; |
| case bitc::BINOP_SREM: |
| return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; |
| case bitc::BINOP_SHL: return Instruction::Shl; |
| case bitc::BINOP_LSHR: return Instruction::LShr; |
| case bitc::BINOP_ASHR: return Instruction::AShr; |
| case bitc::BINOP_AND: return Instruction::And; |
| case bitc::BINOP_OR: return Instruction::Or; |
| case bitc::BINOP_XOR: return Instruction::Xor; |
| } |
| } |
| |
| static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { |
| switch (Val) { |
| default: return AtomicRMWInst::BAD_BINOP; |
| case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; |
| case bitc::RMW_ADD: return AtomicRMWInst::Add; |
| case bitc::RMW_SUB: return AtomicRMWInst::Sub; |
| case bitc::RMW_AND: return AtomicRMWInst::And; |
| case bitc::RMW_NAND: return AtomicRMWInst::Nand; |
| case bitc::RMW_OR: return AtomicRMWInst::Or; |
| case bitc::RMW_XOR: return AtomicRMWInst::Xor; |
| case bitc::RMW_MAX: return AtomicRMWInst::Max; |
| case bitc::RMW_MIN: return AtomicRMWInst::Min; |
| case bitc::RMW_UMAX: return AtomicRMWInst::UMax; |
| case bitc::RMW_UMIN: return AtomicRMWInst::UMin; |
| } |
| } |
| |
| static AtomicOrdering GetDecodedOrdering(unsigned Val) { |
| switch (Val) { |
| case bitc::ORDERING_NOTATOMIC: return NotAtomic; |
| case bitc::ORDERING_UNORDERED: return Unordered; |
| case bitc::ORDERING_MONOTONIC: return Monotonic; |
| case bitc::ORDERING_ACQUIRE: return Acquire; |
| case bitc::ORDERING_RELEASE: return Release; |
| case bitc::ORDERING_ACQREL: return AcquireRelease; |
| default: // Map unknown orderings to sequentially-consistent. |
| case bitc::ORDERING_SEQCST: return SequentiallyConsistent; |
| } |
| } |
| |
| static SynchronizationScope GetDecodedSynchScope(unsigned Val) { |
| switch (Val) { |
| case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; |
| default: // Map unknown scopes to cross-thread. |
| case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; |
| } |
| } |
| |
| namespace llvm { |
| namespace { |
| /// @brief A class for maintaining the slot number definition |
| /// as a placeholder for the actual definition for forward constants defs. |
| class ConstantPlaceHolder : public ConstantExpr { |
| void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; |
| public: |
| // allocate space for exactly one operand |
| void *operator new(size_t s) { |
| return User::operator new(s, 1); |
| } |
| explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) |
| : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { |
| Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); |
| } |
| |
| /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. |
| static bool classof(const Value *V) { |
| return isa<ConstantExpr>(V) && |
| cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; |
| } |
| |
| |
| /// Provide fast operand accessors |
| //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| }; |
| } |
| |
| // FIXME: can we inherit this from ConstantExpr? |
| template <> |
| struct OperandTraits<ConstantPlaceHolder> : |
| public FixedNumOperandTraits<ConstantPlaceHolder, 1> { |
| }; |
| } |
| |
| |
| void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { |
| if (Idx == size()) { |
| push_back(V); |
| return; |
| } |
| |
| if (Idx >= size()) |
| resize(Idx+1); |
| |
| WeakVH &OldV = ValuePtrs[Idx]; |
| if (OldV == 0) { |
| OldV = V; |
| return; |
| } |
| |
| // Handle constants and non-constants (e.g. instrs) differently for |
| // efficiency. |
| if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { |
| ResolveConstants.push_back(std::make_pair(PHC, Idx)); |
| OldV = V; |
| } else { |
| // If there was a forward reference to this value, replace it. |
| Value *PrevVal = OldV; |
| OldV->replaceAllUsesWith(V); |
| delete PrevVal; |
| } |
| } |
| |
| |
| Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, |
| Type *Ty) { |
| if (Idx >= size()) |
| resize(Idx + 1); |
| |
| if (Value *V = ValuePtrs[Idx]) { |
| assert(Ty == V->getType() && "Type mismatch in constant table!"); |
| return cast<Constant>(V); |
| } |
| |
| // Create and return a placeholder, which will later be RAUW'd. |
| Constant *C = new ConstantPlaceHolder(Ty, Context); |
| ValuePtrs[Idx] = C; |
| return C; |
| } |
| |
| Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { |
| if (Idx >= size()) |
| resize(Idx + 1); |
| |
| if (Value *V = ValuePtrs[Idx]) { |
| assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); |
| return V; |
| } |
| |
| // No type specified, must be invalid reference. |
| if (Ty == 0) return 0; |
| |
| // Create and return a placeholder, which will later be RAUW'd. |
| Value *V = new Argument(Ty); |
| ValuePtrs[Idx] = V; |
| return V; |
| } |
| |
| /// ResolveConstantForwardRefs - Once all constants are read, this method bulk |
| /// resolves any forward references. The idea behind this is that we sometimes |
| /// get constants (such as large arrays) which reference *many* forward ref |
| /// constants. Replacing each of these causes a lot of thrashing when |
| /// building/reuniquing the constant. Instead of doing this, we look at all the |
| /// uses and rewrite all the place holders at once for any constant that uses |
| /// a placeholder. |
| void BitcodeReaderValueList::ResolveConstantForwardRefs() { |
| // Sort the values by-pointer so that they are efficient to look up with a |
| // binary search. |
| std::sort(ResolveConstants.begin(), ResolveConstants.end()); |
| |
| SmallVector<Constant*, 64> NewOps; |
| |
| while (!ResolveConstants.empty()) { |
| Value *RealVal = operator[](ResolveConstants.back().second); |
| Constant *Placeholder = ResolveConstants.back().first; |
| ResolveConstants.pop_back(); |
| |
| // Loop over all users of the placeholder, updating them to reference the |
| // new value. If they reference more than one placeholder, update them all |
| // at once. |
| while (!Placeholder->use_empty()) { |
| Value::use_iterator UI = Placeholder->use_begin(); |
| User *U = *UI; |
| |
| // If the using object isn't uniqued, just update the operands. This |
| // handles instructions and initializers for global variables. |
| if (!isa<Constant>(U) || isa<GlobalValue>(U)) { |
| UI.getUse().set(RealVal); |
| continue; |
| } |
| |
| // Otherwise, we have a constant that uses the placeholder. Replace that |
| // constant with a new constant that has *all* placeholder uses updated. |
| Constant *UserC = cast<Constant>(U); |
| for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); |
| I != E; ++I) { |
| Value *NewOp; |
| if (!isa<ConstantPlaceHolder>(*I)) { |
| // Not a placeholder reference. |
| NewOp = *I; |
| } else if (*I == Placeholder) { |
| // Common case is that it just references this one placeholder. |
| NewOp = RealVal; |
| } else { |
| // Otherwise, look up the placeholder in ResolveConstants. |
| ResolveConstantsTy::iterator It = |
| std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), |
| std::pair<Constant*, unsigned>(cast<Constant>(*I), |
| 0)); |
| assert(It != ResolveConstants.end() && It->first == *I); |
| NewOp = operator[](It->second); |
| } |
| |
| NewOps.push_back(cast<Constant>(NewOp)); |
| } |
| |
| // Make the new constant. |
| Constant *NewC; |
| if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { |
| NewC = ConstantArray::get(UserCA->getType(), NewOps); |
| } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { |
| NewC = ConstantStruct::get(UserCS->getType(), NewOps); |
| } else if (isa<ConstantVector>(UserC)) { |
| NewC = ConstantVector::get(NewOps); |
| } else { |
| assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); |
| NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); |
| } |
| |
| UserC->replaceAllUsesWith(NewC); |
| UserC->destroyConstant(); |
| NewOps.clear(); |
| } |
| |
| // Update all ValueHandles, they should be the only users at this point. |
| Placeholder->replaceAllUsesWith(RealVal); |
| delete Placeholder; |
| } |
| } |
| |
| void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { |
| if (Idx == size()) { |
| push_back(V); |
| return; |
| } |
| |
| if (Idx >= size()) |
| resize(Idx+1); |
| |
| WeakVH &OldV = MDValuePtrs[Idx]; |
| if (OldV == 0) { |
| OldV = V; |
| return; |
| } |
| |
| // If there was a forward reference to this value, replace it. |
| MDNode *PrevVal = cast<MDNode>(OldV); |
| OldV->replaceAllUsesWith(V); |
| MDNode::deleteTemporary(PrevVal); |
| // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new |
| // value for Idx. |
| MDValuePtrs[Idx] = V; |
| } |
| |
| Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { |
| if (Idx >= size()) |
| resize(Idx + 1); |
| |
| if (Value *V = MDValuePtrs[Idx]) { |
| assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); |
| return V; |
| } |
| |
| // Create and return a placeholder, which will later be RAUW'd. |
| Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>()); |
| MDValuePtrs[Idx] = V; |
| return V; |
| } |
| |
| Type *BitcodeReader::getTypeByID(unsigned ID) { |
| // The type table size is always specified correctly. |
| if (ID >= TypeList.size()) |
| return 0; |
| |
| if (Type *Ty = TypeList[ID]) |
| return Ty; |
| |
| // If we have a forward reference, the only possible case is when it is to a |
| // named struct. Just create a placeholder for now. |
| return TypeList[ID] = StructType::create(Context); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Functions for parsing blocks from the bitcode file |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// \brief This fills an AttrBuilder object with the LLVM attributes that have |
| /// been decoded from the given integer. This function must stay in sync with |
| /// 'encodeLLVMAttributesForBitcode'. |
| static void decodeLLVMAttributesForBitcode(AttrBuilder &B, |
| uint64_t EncodedAttrs) { |
| // FIXME: Remove in 4.0. |
| |
| // The alignment is stored as a 16-bit raw value from bits 31--16. We shift |
| // the bits above 31 down by 11 bits. |
| unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; |
| assert((!Alignment || isPowerOf2_32(Alignment)) && |
| "Alignment must be a power of two."); |
| |
| if (Alignment) |
| B.addAlignmentAttr(Alignment); |
| B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | |
| (EncodedAttrs & 0xffff)); |
| } |
| |
| bool BitcodeReader::ParseAttributeBlock() { |
| if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| if (!MAttributes.empty()) |
| return Error("Multiple PARAMATTR blocks found!"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| SmallVector<AttributeSet, 8> Attrs; |
| |
| // Read all the records. |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| return Error("Error at end of PARAMATTR block"); |
| case BitstreamEntry::EndBlock: |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| switch (Stream.readRecord(Entry.ID, Record)) { |
| default: // Default behavior: ignore. |
| break; |
| case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] |
| // FIXME: Remove in 4.0. |
| if (Record.size() & 1) |
| return Error("Invalid ENTRY record"); |
| |
| for (unsigned i = 0, e = Record.size(); i != e; i += 2) { |
| AttrBuilder B; |
| decodeLLVMAttributesForBitcode(B, Record[i+1]); |
| Attrs.push_back(AttributeSet::get(Context, Record[i], B)); |
| } |
| |
| MAttributes.push_back(AttributeSet::get(Context, Attrs)); |
| Attrs.clear(); |
| break; |
| } |
| case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] |
| for (unsigned i = 0, e = Record.size(); i != e; ++i) |
| Attrs.push_back(MAttributeGroups[Record[i]]); |
| |
| MAttributes.push_back(AttributeSet::get(Context, Attrs)); |
| Attrs.clear(); |
| break; |
| } |
| } |
| } |
| } |
| |
| bool BitcodeReader::ParseAttributeGroupBlock() { |
| if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| if (!MAttributeGroups.empty()) |
| return Error("Multiple PARAMATTR_GROUP blocks found!"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records. |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| return Error("Error at end of PARAMATTR_GROUP block"); |
| case BitstreamEntry::EndBlock: |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| switch (Stream.readRecord(Entry.ID, Record)) { |
| default: // Default behavior: ignore. |
| break; |
| case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] |
| if (Record.size() < 3) |
| return Error("Invalid ENTRY record"); |
| |
| uint64_t GrpID = Record[0]; |
| uint64_t Idx = Record[1]; // Index of the object this attribute refers to. |
| |
| AttrBuilder B; |
| for (unsigned i = 2, e = Record.size(); i != e; ++i) { |
| if (Record[i] == 0) { // Enum attribute |
| B.addAttribute(Attribute::AttrKind(Record[++i])); |
| } else if (Record[i] == 1) { // Align attribute |
| if (Attribute::AttrKind(Record[++i]) == Attribute::Alignment) |
| B.addAlignmentAttr(Record[++i]); |
| else |
| B.addStackAlignmentAttr(Record[++i]); |
| } else { // String attribute |
| assert((Record[i] == 3 || Record[i] == 4) && |
| "Invalid attribute group entry"); |
| bool HasValue = (Record[i++] == 4); |
| SmallString<64> KindStr; |
| SmallString<64> ValStr; |
| |
| while (Record[i] != 0 && i != e) |
| KindStr += Record[i++]; |
| assert(Record[i] == 0 && "Kind string not null terminated"); |
| |
| if (HasValue) { |
| // Has a value associated with it. |
| ++i; // Skip the '0' that terminates the "kind" string. |
| while (Record[i] != 0 && i != e) |
| ValStr += Record[i++]; |
| assert(Record[i] == 0 && "Value string not null terminated"); |
| } |
| |
| B.addAttribute(KindStr.str(), ValStr.str()); |
| } |
| } |
| |
| MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); |
| break; |
| } |
| } |
| } |
| } |
| |
| bool BitcodeReader::ParseTypeTable() { |
| if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) |
| return Error("Malformed block record"); |
| |
| return ParseTypeTableBody(); |
| } |
| |
| bool BitcodeReader::ParseTypeTableBody() { |
| if (!TypeList.empty()) |
| return Error("Multiple TYPE_BLOCKs found!"); |
| |
| SmallVector<uint64_t, 64> Record; |
| unsigned NumRecords = 0; |
| |
| SmallString<64> TypeName; |
| |
| // Read all the records for this type table. |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| Error("Error in the type table block"); |
| return true; |
| case BitstreamEntry::EndBlock: |
| if (NumRecords != TypeList.size()) |
| return Error("Invalid type forward reference in TYPE_BLOCK"); |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| Type *ResultTy = 0; |
| switch (Stream.readRecord(Entry.ID, Record)) { |
| default: return Error("unknown type in type table"); |
| case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] |
| // TYPE_CODE_NUMENTRY contains a count of the number of types in the |
| // type list. This allows us to reserve space. |
| if (Record.size() < 1) |
| return Error("Invalid TYPE_CODE_NUMENTRY record"); |
| TypeList.resize(Record[0]); |
| continue; |
| case bitc::TYPE_CODE_VOID: // VOID |
| ResultTy = Type::getVoidTy(Context); |
| break; |
| case bitc::TYPE_CODE_HALF: // HALF |
| ResultTy = Type::getHalfTy(Context); |
| break; |
| case bitc::TYPE_CODE_FLOAT: // FLOAT |
| ResultTy = Type::getFloatTy(Context); |
| break; |
| case bitc::TYPE_CODE_DOUBLE: // DOUBLE |
| ResultTy = Type::getDoubleTy(Context); |
| break; |
| case bitc::TYPE_CODE_X86_FP80: // X86_FP80 |
| ResultTy = Type::getX86_FP80Ty(Context); |
| break; |
| case bitc::TYPE_CODE_FP128: // FP128 |
| ResultTy = Type::getFP128Ty(Context); |
| break; |
| case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 |
| ResultTy = Type::getPPC_FP128Ty(Context); |
| break; |
| case bitc::TYPE_CODE_LABEL: // LABEL |
| ResultTy = Type::getLabelTy(Context); |
| break; |
| case bitc::TYPE_CODE_METADATA: // METADATA |
| ResultTy = Type::getMetadataTy(Context); |
| break; |
| case bitc::TYPE_CODE_X86_MMX: // X86_MMX |
| ResultTy = Type::getX86_MMXTy(Context); |
| break; |
| case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] |
| if (Record.size() < 1) |
| return Error("Invalid Integer type record"); |
| |
| ResultTy = IntegerType::get(Context, Record[0]); |
| break; |
| case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or |
| // [pointee type, address space] |
| if (Record.size() < 1) |
| return Error("Invalid POINTER type record"); |
| unsigned AddressSpace = 0; |
| if (Record.size() == 2) |
| AddressSpace = Record[1]; |
| ResultTy = getTypeByID(Record[0]); |
| if (ResultTy == 0) return Error("invalid element type in pointer type"); |
| ResultTy = PointerType::get(ResultTy, AddressSpace); |
| break; |
| } |
| case bitc::TYPE_CODE_FUNCTION_OLD: { |
| // FIXME: attrid is dead, remove it in LLVM 4.0 |
| // FUNCTION: [vararg, attrid, retty, paramty x N] |
| if (Record.size() < 3) |
| return Error("Invalid FUNCTION type record"); |
| SmallVector<Type*, 8> ArgTys; |
| for (unsigned i = 3, e = Record.size(); i != e; ++i) { |
| if (Type *T = getTypeByID(Record[i])) |
| ArgTys.push_back(T); |
| else |
| break; |
| } |
| |
| ResultTy = getTypeByID(Record[2]); |
| if (ResultTy == 0 || ArgTys.size() < Record.size()-3) |
| return Error("invalid type in function type"); |
| |
| ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); |
| break; |
| } |
| case bitc::TYPE_CODE_FUNCTION: { |
| // FUNCTION: [vararg, retty, paramty x N] |
| if (Record.size() < 2) |
| return Error("Invalid FUNCTION type record"); |
| SmallVector<Type*, 8> ArgTys; |
| for (unsigned i = 2, e = Record.size(); i != e; ++i) { |
| if (Type *T = getTypeByID(Record[i])) |
| ArgTys.push_back(T); |
| else |
| break; |
| } |
| |
| ResultTy = getTypeByID(Record[1]); |
| if (ResultTy == 0 || ArgTys.size() < Record.size()-2) |
| return Error("invalid type in function type"); |
| |
| ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); |
| break; |
| } |
| case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] |
| if (Record.size() < 1) |
| return Error("Invalid STRUCT type record"); |
| SmallVector<Type*, 8> EltTys; |
| for (unsigned i = 1, e = Record.size(); i != e; ++i) { |
| if (Type *T = getTypeByID(Record[i])) |
| EltTys.push_back(T); |
| else |
| break; |
| } |
| if (EltTys.size() != Record.size()-1) |
| return Error("invalid type in struct type"); |
| ResultTy = StructType::get(Context, EltTys, Record[0]); |
| break; |
| } |
| case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] |
| if (ConvertToString(Record, 0, TypeName)) |
| return Error("Invalid STRUCT_NAME record"); |
| continue; |
| |
| case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] |
| if (Record.size() < 1) |
| return Error("Invalid STRUCT type record"); |
| |
| if (NumRecords >= TypeList.size()) |
| return Error("invalid TYPE table"); |
| |
| // Check to see if this was forward referenced, if so fill in the temp. |
| StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); |
| if (Res) { |
| Res->setName(TypeName); |
| TypeList[NumRecords] = 0; |
| } else // Otherwise, create a new struct. |
| Res = StructType::create(Context, TypeName); |
| TypeName.clear(); |
| |
| SmallVector<Type*, 8> EltTys; |
| for (unsigned i = 1, e = Record.size(); i != e; ++i) { |
| if (Type *T = getTypeByID(Record[i])) |
| EltTys.push_back(T); |
| else |
| break; |
| } |
| if (EltTys.size() != Record.size()-1) |
| return Error("invalid STRUCT type record"); |
| Res->setBody(EltTys, Record[0]); |
| ResultTy = Res; |
| break; |
| } |
| case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] |
| if (Record.size() != 1) |
| return Error("Invalid OPAQUE type record"); |
| |
| if (NumRecords >= TypeList.size()) |
| return Error("invalid TYPE table"); |
| |
| // Check to see if this was forward referenced, if so fill in the temp. |
| StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); |
| if (Res) { |
| Res->setName(TypeName); |
| TypeList[NumRecords] = 0; |
| } else // Otherwise, create a new struct with no body. |
| Res = StructType::create(Context, TypeName); |
| TypeName.clear(); |
| ResultTy = Res; |
| break; |
| } |
| case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] |
| if (Record.size() < 2) |
| return Error("Invalid ARRAY type record"); |
| if ((ResultTy = getTypeByID(Record[1]))) |
| ResultTy = ArrayType::get(ResultTy, Record[0]); |
| else |
| return Error("Invalid ARRAY type element"); |
| break; |
| case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] |
| if (Record.size() < 2) |
| return Error("Invalid VECTOR type record"); |
| if ((ResultTy = getTypeByID(Record[1]))) |
| ResultTy = VectorType::get(ResultTy, Record[0]); |
| else |
| return Error("Invalid ARRAY type element"); |
| break; |
| } |
| |
| if (NumRecords >= TypeList.size()) |
| return Error("invalid TYPE table"); |
| assert(ResultTy && "Didn't read a type?"); |
| assert(TypeList[NumRecords] == 0 && "Already read type?"); |
| TypeList[NumRecords++] = ResultTy; |
| } |
| } |
| |
| bool BitcodeReader::ParseValueSymbolTable() { |
| if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records for this value table. |
| SmallString<128> ValueName; |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| return Error("malformed value symbol table block"); |
| case BitstreamEntry::EndBlock: |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| switch (Stream.readRecord(Entry.ID, Record)) { |
| default: // Default behavior: unknown type. |
| break; |
| case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] |
| if (ConvertToString(Record, 1, ValueName)) |
| return Error("Invalid VST_ENTRY record"); |
| unsigned ValueID = Record[0]; |
| if (ValueID >= ValueList.size()) |
| return Error("Invalid Value ID in VST_ENTRY record"); |
| Value *V = ValueList[ValueID]; |
| |
| V->setName(StringRef(ValueName.data(), ValueName.size())); |
| ValueName.clear(); |
| break; |
| } |
| case bitc::VST_CODE_BBENTRY: { |
| if (ConvertToString(Record, 1, ValueName)) |
| return Error("Invalid VST_BBENTRY record"); |
| BasicBlock *BB = getBasicBlock(Record[0]); |
| if (BB == 0) |
| return Error("Invalid BB ID in VST_BBENTRY record"); |
| |
| BB->setName(StringRef(ValueName.data(), ValueName.size())); |
| ValueName.clear(); |
| break; |
| } |
| } |
| } |
| } |
| |
| bool BitcodeReader::ParseMetadata() { |
| unsigned NextMDValueNo = MDValueList.size(); |
| |
| if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records. |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| Error("malformed metadata block"); |
| return true; |
| case BitstreamEntry::EndBlock: |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| bool IsFunctionLocal = false; |
| // Read a record. |
| Record.clear(); |
| unsigned Code = Stream.readRecord(Entry.ID, Record); |
| switch (Code) { |
| default: // Default behavior: ignore. |
| break; |
| case bitc::METADATA_NAME: { |
| // Read name of the named metadata. |
| SmallString<8> Name(Record.begin(), Record.end()); |
| Record.clear(); |
| Code = Stream.ReadCode(); |
| |
| // METADATA_NAME is always followed by METADATA_NAMED_NODE. |
| unsigned NextBitCode = Stream.readRecord(Code, Record); |
| assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; |
| |
| // Read named metadata elements. |
| unsigned Size = Record.size(); |
| NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); |
| for (unsigned i = 0; i != Size; ++i) { |
| MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); |
| if (MD == 0) |
| return Error("Malformed metadata record"); |
| NMD->addOperand(MD); |
| } |
| break; |
| } |
| case bitc::METADATA_FN_NODE: |
| IsFunctionLocal = true; |
| // fall-through |
| case bitc::METADATA_NODE: { |
| if (Record.size() % 2 == 1) |
| return Error("Invalid METADATA_NODE record"); |
| |
| unsigned Size = Record.size(); |
| SmallVector<Value*, 8> Elts; |
| for (unsigned i = 0; i != Size; i += 2) { |
| Type *Ty = getTypeByID(Record[i]); |
| if (!Ty) return Error("Invalid METADATA_NODE record"); |
| if (Ty->isMetadataTy()) |
| Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); |
| else if (!Ty->isVoidTy()) |
| Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); |
| else |
| Elts.push_back(NULL); |
| } |
| Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); |
| IsFunctionLocal = false; |
| MDValueList.AssignValue(V, NextMDValueNo++); |
| break; |
| } |
| case bitc::METADATA_STRING: { |
| SmallString<8> String(Record.begin(), Record.end()); |
| Value *V = MDString::get(Context, String); |
| MDValueList.AssignValue(V, NextMDValueNo++); |
| break; |
| } |
| case bitc::METADATA_KIND: { |
| if (Record.size() < 2) |
| return Error("Invalid METADATA_KIND record"); |
| |
| unsigned Kind = Record[0]; |
| SmallString<8> Name(Record.begin()+1, Record.end()); |
| |
| unsigned NewKind = TheModule->getMDKindID(Name.str()); |
| if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) |
| return Error("Conflicting METADATA_KIND records"); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in |
| /// the LSB for dense VBR encoding. |
| uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { |
| if ((V & 1) == 0) |
| return V >> 1; |
| if (V != 1) |
| return -(V >> 1); |
| // There is no such thing as -0 with integers. "-0" really means MININT. |
| return 1ULL << 63; |
| } |
| |
| /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global |
| /// values and aliases that we can. |
| bool BitcodeReader::ResolveGlobalAndAliasInits() { |
| std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; |
| std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; |
| |
| GlobalInitWorklist.swap(GlobalInits); |
| AliasInitWorklist.swap(AliasInits); |
| |
| while (!GlobalInitWorklist.empty()) { |
| unsigned ValID = GlobalInitWorklist.back().second; |
| if (ValID >= ValueList.size()) { |
| // Not ready to resolve this yet, it requires something later in the file. |
| GlobalInits.push_back(GlobalInitWorklist.back()); |
| } else { |
| if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) |
| GlobalInitWorklist.back().first->setInitializer(C); |
| else |
| return Error("Global variable initializer is not a constant!"); |
| } |
| GlobalInitWorklist.pop_back(); |
| } |
| |
| while (!AliasInitWorklist.empty()) { |
| unsigned ValID = AliasInitWorklist.back().second; |
| if (ValID >= ValueList.size()) { |
| AliasInits.push_back(AliasInitWorklist.back()); |
| } else { |
| if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) |
| AliasInitWorklist.back().first->setAliasee(C); |
| else |
| return Error("Alias initializer is not a constant!"); |
| } |
| AliasInitWorklist.pop_back(); |
| } |
| return false; |
| } |
| |
| static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { |
| SmallVector<uint64_t, 8> Words(Vals.size()); |
| std::transform(Vals.begin(), Vals.end(), Words.begin(), |
| BitcodeReader::decodeSignRotatedValue); |
| |
| return APInt(TypeBits, Words); |
| } |
| |
| bool BitcodeReader::ParseConstants() { |
| if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records for this value table. |
| Type *CurTy = Type::getInt32Ty(Context); |
| unsigned NextCstNo = ValueList.size(); |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| return Error("malformed block record in AST file"); |
| case BitstreamEntry::EndBlock: |
| if (NextCstNo != ValueList.size()) |
| return Error("Invalid constant reference!"); |
| |
| // Once all the constants have been read, go through and resolve forward |
| // references. |
| ValueList.ResolveConstantForwardRefs(); |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| Value *V = 0; |
| unsigned BitCode = Stream.readRecord(Entry.ID, Record); |
| switch (BitCode) { |
| default: // Default behavior: unknown constant |
| case bitc::CST_CODE_UNDEF: // UNDEF |
| V = UndefValue::get(CurTy); |
| break; |
| case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] |
| if (Record.empty()) |
| return Error("Malformed CST_SETTYPE record"); |
| if (Record[0] >= TypeList.size()) |
| return Error("Invalid Type ID in CST_SETTYPE record"); |
| CurTy = TypeList[Record[0]]; |
| continue; // Skip the ValueList manipulation. |
| case bitc::CST_CODE_NULL: // NULL |
| V = Constant::getNullValue(CurTy); |
| break; |
| case bitc::CST_CODE_INTEGER: // INTEGER: [intval] |
| if (!CurTy->isIntegerTy() || Record.empty()) |
| return Error("Invalid CST_INTEGER record"); |
| V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); |
| break; |
| case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] |
| if (!CurTy->isIntegerTy() || Record.empty()) |
| return Error("Invalid WIDE_INTEGER record"); |
| |
| APInt VInt = ReadWideAPInt(Record, |
| cast<IntegerType>(CurTy)->getBitWidth()); |
| V = ConstantInt::get(Context, VInt); |
| |
| break; |
| } |
| case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] |
| if (Record.empty()) |
| return Error("Invalid FLOAT record"); |
| if (CurTy->isHalfTy()) |
| V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, |
| APInt(16, (uint16_t)Record[0]))); |
| else if (CurTy->isFloatTy()) |
| V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, |
| APInt(32, (uint32_t)Record[0]))); |
| else if (CurTy->isDoubleTy()) |
| V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, |
| APInt(64, Record[0]))); |
| else if (CurTy->isX86_FP80Ty()) { |
| // Bits are not stored the same way as a normal i80 APInt, compensate. |
| uint64_t Rearrange[2]; |
| Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); |
| Rearrange[1] = Record[0] >> 48; |
| V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, |
| APInt(80, Rearrange))); |
| } else if (CurTy->isFP128Ty()) |
| V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, |
| APInt(128, Record))); |
| else if (CurTy->isPPC_FP128Ty()) |
| V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, |
| APInt(128, Record))); |
| else |
| V = UndefValue::get(CurTy); |
| break; |
| } |
| |
| case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] |
| if (Record.empty()) |
| return Error("Invalid CST_AGGREGATE record"); |
| |
| unsigned Size = Record.size(); |
| SmallVector<Constant*, 16> Elts; |
| |
| if (StructType *STy = dyn_cast<StructType>(CurTy)) { |
| for (unsigned i = 0; i != Size; ++i) |
| Elts.push_back(ValueList.getConstantFwdRef(Record[i], |
| STy->getElementType(i))); |
| V = ConstantStruct::get(STy, Elts); |
| } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { |
| Type *EltTy = ATy->getElementType(); |
| for (unsigned i = 0; i != Size; ++i) |
| Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); |
| V = ConstantArray::get(ATy, Elts); |
| } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { |
| Type *EltTy = VTy->getElementType(); |
| for (unsigned i = 0; i != Size; ++i) |
| Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); |
| V = ConstantVector::get(Elts); |
| } else { |
| V = UndefValue::get(CurTy); |
| } |
| break; |
| } |
| case bitc::CST_CODE_STRING: // STRING: [values] |
| case bitc::CST_CODE_CSTRING: { // CSTRING: [values] |
| if (Record.empty()) |
| return Error("Invalid CST_STRING record"); |
| |
| SmallString<16> Elts(Record.begin(), Record.end()); |
| V = ConstantDataArray::getString(Context, Elts, |
| BitCode == bitc::CST_CODE_CSTRING); |
| break; |
| } |
| case bitc::CST_CODE_DATA: {// DATA: [n x value] |
| if (Record.empty()) |
| return Error("Invalid CST_DATA record"); |
| |
| Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); |
| unsigned Size = Record.size(); |
| |
| if (EltTy->isIntegerTy(8)) { |
| SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); |
| if (isa<VectorType>(CurTy)) |
| V = ConstantDataVector::get(Context, Elts); |
| else |
| V = ConstantDataArray::get(Context, Elts); |
| } else if (EltTy->isIntegerTy(16)) { |
| SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); |
| if (isa<VectorType>(CurTy)) |
| V = ConstantDataVector::get(Context, Elts); |
| else |
| V = ConstantDataArray::get(Context, Elts); |
| } else if (EltTy->isIntegerTy(32)) { |
| SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); |
| if (isa<VectorType>(CurTy)) |
| V = ConstantDataVector::get(Context, Elts); |
| else |
| V = ConstantDataArray::get(Context, Elts); |
| } else if (EltTy->isIntegerTy(64)) { |
| SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); |
| if (isa<VectorType>(CurTy)) |
| V = ConstantDataVector::get(Context, Elts); |
| else |
| V = ConstantDataArray::get(Context, Elts); |
| } else if (EltTy->isFloatTy()) { |
| SmallVector<float, 16> Elts(Size); |
| std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); |
| if (isa<VectorType>(CurTy)) |
| V = ConstantDataVector::get(Context, Elts); |
| else |
| V = ConstantDataArray::get(Context, Elts); |
| } else if (EltTy->isDoubleTy()) { |
| SmallVector<double, 16> Elts(Size); |
| std::transform(Record.begin(), Record.end(), Elts.begin(), |
| BitsToDouble); |
| if (isa<VectorType>(CurTy)) |
| V = ConstantDataVector::get(Context, Elts); |
| else |
| V = ConstantDataArray::get(Context, Elts); |
| } else { |
| return Error("Unknown element type in CE_DATA"); |
| } |
| break; |
| } |
| |
| case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] |
| if (Record.size() < 3) return Error("Invalid CE_BINOP record"); |
| int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); |
| if (Opc < 0) { |
| V = UndefValue::get(CurTy); // Unknown binop. |
| } else { |
| Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); |
| Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); |
| unsigned Flags = 0; |
| if (Record.size() >= 4) { |
| if (Opc == Instruction::Add || |
| Opc == Instruction::Sub || |
| Opc == Instruction::Mul || |
| Opc == Instruction::Shl) { |
| if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) |
| Flags |= OverflowingBinaryOperator::NoSignedWrap; |
| if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) |
| Flags |= OverflowingBinaryOperator::NoUnsignedWrap; |
| } else if (Opc == Instruction::SDiv || |
| Opc == Instruction::UDiv || |
| Opc == Instruction::LShr || |
| Opc == Instruction::AShr) { |
| if (Record[3] & (1 << bitc::PEO_EXACT)) |
| Flags |= SDivOperator::IsExact; |
| } |
| } |
| V = ConstantExpr::get(Opc, LHS, RHS, Flags); |
| } |
| break; |
| } |
| case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] |
| if (Record.size() < 3) return Error("Invalid CE_CAST record"); |
| int Opc = GetDecodedCastOpcode(Record[0]); |
| if (Opc < 0) { |
| V = UndefValue::get(CurTy); // Unknown cast. |
| } else { |
| Type *OpTy = getTypeByID(Record[1]); |
| if (!OpTy) return Error("Invalid CE_CAST record"); |
| Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); |
| V = ConstantExpr::getCast(Opc, Op, CurTy); |
| } |
| break; |
| } |
| case bitc::CST_CODE_CE_INBOUNDS_GEP: |
| case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] |
| if (Record.size() & 1) return Error("Invalid CE_GEP record"); |
| SmallVector<Constant*, 16> Elts; |
| for (unsigned i = 0, e = Record.size(); i != e; i += 2) { |
| Type *ElTy = getTypeByID(Record[i]); |
| if (!ElTy) return Error("Invalid CE_GEP record"); |
| Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); |
| } |
| ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); |
| V = ConstantExpr::getGetElementPtr(Elts[0], Indices, |
| BitCode == |
| bitc::CST_CODE_CE_INBOUNDS_GEP); |
| break; |
| } |
| case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] |
| if (Record.size() < 3) return Error("Invalid CE_SELECT record"); |
| V = ConstantExpr::getSelect( |
| ValueList.getConstantFwdRef(Record[0], |
| Type::getInt1Ty(Context)), |
| ValueList.getConstantFwdRef(Record[1],CurTy), |
| ValueList.getConstantFwdRef(Record[2],CurTy)); |
| break; |
| case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] |
| if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); |
| VectorType *OpTy = |
| dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); |
| if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[2], |
| Type::getInt32Ty(Context)); |
| V = ConstantExpr::getExtractElement(Op0, Op1); |
| break; |
| } |
| case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] |
| VectorType *OpTy = dyn_cast<VectorType>(CurTy); |
| if (Record.size() < 3 || OpTy == 0) |
| return Error("Invalid CE_INSERTELT record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[1], |
| OpTy->getElementType()); |
| Constant *Op2 = ValueList.getConstantFwdRef(Record[2], |
| Type::getInt32Ty(Context)); |
| V = ConstantExpr::getInsertElement(Op0, Op1, Op2); |
| break; |
| } |
| case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] |
| VectorType *OpTy = dyn_cast<VectorType>(CurTy); |
| if (Record.size() < 3 || OpTy == 0) |
| return Error("Invalid CE_SHUFFLEVEC record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); |
| Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), |
| OpTy->getNumElements()); |
| Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); |
| V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); |
| break; |
| } |
| case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] |
| VectorType *RTy = dyn_cast<VectorType>(CurTy); |
| VectorType *OpTy = |
| dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); |
| if (Record.size() < 4 || RTy == 0 || OpTy == 0) |
| return Error("Invalid CE_SHUFVEC_EX record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); |
| Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), |
| RTy->getNumElements()); |
| Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); |
| V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); |
| break; |
| } |
| case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] |
| if (Record.size() < 4) return Error("Invalid CE_CMP record"); |
| Type *OpTy = getTypeByID(Record[0]); |
| if (OpTy == 0) return Error("Invalid CE_CMP record"); |
| Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); |
| Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); |
| |
| if (OpTy->isFPOrFPVectorTy()) |
| V = ConstantExpr::getFCmp(Record[3], Op0, Op1); |
| else |
| V = ConstantExpr::getICmp(Record[3], Op0, Op1); |
| break; |
| } |
| // This maintains backward compatibility, pre-asm dialect keywords. |
| // FIXME: Remove with the 4.0 release. |
| case bitc::CST_CODE_INLINEASM_OLD: { |
| if (Record.size() < 2) return Error("Invalid INLINEASM record"); |
| std::string AsmStr, ConstrStr; |
| bool HasSideEffects = Record[0] & 1; |
| bool IsAlignStack = Record[0] >> 1; |
| unsigned AsmStrSize = Record[1]; |
| if (2+AsmStrSize >= Record.size()) |
| return Error("Invalid INLINEASM record"); |
| unsigned ConstStrSize = Record[2+AsmStrSize]; |
| if (3+AsmStrSize+ConstStrSize > Record.size()) |
| return Error("Invalid INLINEASM record"); |
| |
| for (unsigned i = 0; i != AsmStrSize; ++i) |
| AsmStr += (char)Record[2+i]; |
| for (unsigned i = 0; i != ConstStrSize; ++i) |
| ConstrStr += (char)Record[3+AsmStrSize+i]; |
| PointerType *PTy = cast<PointerType>(CurTy); |
| V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), |
| AsmStr, ConstrStr, HasSideEffects, IsAlignStack); |
| break; |
| } |
| // This version adds support for the asm dialect keywords (e.g., |
| // inteldialect). |
| case bitc::CST_CODE_INLINEASM: { |
| if (Record.size() < 2) return Error("Invalid INLINEASM record"); |
| std::string AsmStr, ConstrStr; |
| bool HasSideEffects = Record[0] & 1; |
| bool IsAlignStack = (Record[0] >> 1) & 1; |
| unsigned AsmDialect = Record[0] >> 2; |
| unsigned AsmStrSize = Record[1]; |
| if (2+AsmStrSize >= Record.size()) |
| return Error("Invalid INLINEASM record"); |
| unsigned ConstStrSize = Record[2+AsmStrSize]; |
| if (3+AsmStrSize+ConstStrSize > Record.size()) |
| return Error("Invalid INLINEASM record"); |
| |
| for (unsigned i = 0; i != AsmStrSize; ++i) |
| AsmStr += (char)Record[2+i]; |
| for (unsigned i = 0; i != ConstStrSize; ++i) |
| ConstrStr += (char)Record[3+AsmStrSize+i]; |
| PointerType *PTy = cast<PointerType>(CurTy); |
| V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), |
| AsmStr, ConstrStr, HasSideEffects, IsAlignStack, |
| InlineAsm::AsmDialect(AsmDialect)); |
| break; |
| } |
| case bitc::CST_CODE_BLOCKADDRESS:{ |
| if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); |
| Type *FnTy = getTypeByID(Record[0]); |
| if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); |
| Function *Fn = |
| dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); |
| if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); |
| |
| // If the function is already parsed we can insert the block address right |
| // away. |
| if (!Fn->empty()) { |
| Function::iterator BBI = Fn->begin(), BBE = Fn->end(); |
| for (size_t I = 0, E = Record[2]; I != E; ++I) { |
| if (BBI == BBE) |
| return Error("Invalid blockaddress block #"); |
| ++BBI; |
| } |
| V = BlockAddress::get(Fn, BBI); |
| } else { |
| // Otherwise insert a placeholder and remember it so it can be inserted |
| // when the function is parsed. |
| GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), |
| Type::getInt8Ty(Context), |
| false, GlobalValue::InternalLinkage, |
| 0, ""); |
| BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); |
| V = FwdRef; |
| } |
| break; |
| } |
| } |
| |
| ValueList.AssignValue(V, NextCstNo); |
| ++NextCstNo; |
| } |
| } |
| |
| bool BitcodeReader::ParseUseLists() { |
| if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records. |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| return Error("malformed use list block"); |
| case BitstreamEntry::EndBlock: |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a use list record. |
| Record.clear(); |
| switch (Stream.readRecord(Entry.ID, Record)) { |
| default: // Default behavior: unknown type. |
| break; |
| case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. |
| unsigned RecordLength = Record.size(); |
| if (RecordLength < 1) |
| return Error ("Invalid UseList reader!"); |
| UseListRecords.push_back(Record); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// RememberAndSkipFunctionBody - When we see the block for a function body, |
| /// remember where it is and then skip it. This lets us lazily deserialize the |
| /// functions. |
| bool BitcodeReader::RememberAndSkipFunctionBody() { |
| // Get the function we are talking about. |
| if (FunctionsWithBodies.empty()) |
| return Error("Insufficient function protos"); |
| |
| Function *Fn = FunctionsWithBodies.back(); |
| FunctionsWithBodies.pop_back(); |
| |
| // Save the current stream state. |
| uint64_t CurBit = Stream.GetCurrentBitNo(); |
| DeferredFunctionInfo[Fn] = CurBit; |
| |
| // Skip over the function block for now. |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| return false; |
| } |
| |
| bool BitcodeReader::GlobalCleanup() { |
| // Patch the initializers for globals and aliases up. |
| ResolveGlobalAndAliasInits(); |
| if (!GlobalInits.empty() || !AliasInits.empty()) |
| return Error("Malformed global initializer set"); |
| |
| // Look for intrinsic functions which need to be upgraded at some point |
| for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); |
| FI != FE; ++FI) { |
| Function *NewFn; |
| if (UpgradeIntrinsicFunction(FI, NewFn)) |
| UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); |
| } |
| |
| // Look for global variables which need to be renamed. |
| for (Module::global_iterator |
| GI = TheModule->global_begin(), GE = TheModule->global_end(); |
| GI != GE; ++GI) |
| UpgradeGlobalVariable(GI); |
| // Force deallocation of memory for these vectors to favor the client that |
| // want lazy deserialization. |
| std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); |
| std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); |
| return false; |
| } |
| |
| bool BitcodeReader::ParseModule(bool Resume) { |
| if (Resume) |
| Stream.JumpToBit(NextUnreadBit); |
| else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| std::vector<std::string> SectionTable; |
| std::vector<std::string> GCTable; |
| |
| // Read all the records for this module. |
| while (1) { |
| BitstreamEntry Entry = Stream.advance(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::Error: |
| Error("malformed module block"); |
| return true; |
| case BitstreamEntry::EndBlock: |
| return GlobalCleanup(); |
| |
| case BitstreamEntry::SubBlock: |
| switch (Entry.ID) { |
| default: // Skip unknown content. |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| break; |
| case bitc::BLOCKINFO_BLOCK_ID: |
| if (Stream.ReadBlockInfoBlock()) |
| return Error("Malformed BlockInfoBlock"); |
| break; |
| case bitc::PARAMATTR_BLOCK_ID: |
| if (ParseAttributeBlock()) |
| return true; |
| break; |
| case bitc::PARAMATTR_GROUP_BLOCK_ID: |
| if (ParseAttributeGroupBlock()) |
| return true; |
| break; |
| case bitc::TYPE_BLOCK_ID_NEW: |
| if (ParseTypeTable()) |
| return true; |
| break; |
| case bitc::VALUE_SYMTAB_BLOCK_ID: |
| if (ParseValueSymbolTable()) |
| return true; |
| SeenValueSymbolTable = true; |
| break; |
| case bitc::CONSTANTS_BLOCK_ID: |
| if (ParseConstants() || ResolveGlobalAndAliasInits()) |
| return true; |
| break; |
| case bitc::METADATA_BLOCK_ID: |
| if (ParseMetadata()) |
| return true; |
| break; |
| case bitc::FUNCTION_BLOCK_ID: |
| // If this is the first function body we've seen, reverse the |
| // FunctionsWithBodies list. |
| if (!SeenFirstFunctionBody) { |
| std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); |
| if (GlobalCleanup()) |
| return true; |
| SeenFirstFunctionBody = true; |
| } |
| |
| if (RememberAndSkipFunctionBody()) |
| return true; |
| // For streaming bitcode, suspend parsing when we reach the function |
| // bodies. Subsequent materialization calls will resume it when |
| // necessary. For streaming, the function bodies must be at the end of |
| // the bitcode. If the bitcode file is old, the symbol table will be |
| // at the end instead and will not have been seen yet. In this case, |
| // just finish the parse now. |
| if (LazyStreamer && SeenValueSymbolTable) { |
| NextUnreadBit = Stream.GetCurrentBitNo(); |
| return false; |
| } |
| break; |
| case bitc::USELIST_BLOCK_ID: |
| if (ParseUseLists()) |
| return true; |
| break; |
| } |
| continue; |
| |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| |
| // Read a record. |
| switch (Stream.readRecord(Entry.ID, Record)) { |
| default: break; // Default behavior, ignore unknown content. |
| case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] |
| if (Record.size() < 1) |
| return Error("Malformed MODULE_CODE_VERSION"); |
| // Only version #0 and #1 are supported so far. |
| unsigned module_version = Record[0]; |
| switch (module_version) { |
| default: return Error("Unknown bitstream version!"); |
| case 0: |
| UseRelativeIDs = false; |
| break; |
| case 1: |
| UseRelativeIDs = true; |
| break; |
| } |
| break; |
| } |
| case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_TRIPLE record"); |
| TheModule->setTargetTriple(S); |
| break; |
| } |
| case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_DATALAYOUT record"); |
| TheModule->setDataLayout(S); |
| break; |
| } |
| case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_ASM record"); |
| TheModule->setModuleInlineAsm(S); |
| break; |
| } |
| case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] |
| // FIXME: Remove in 4.0. |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_DEPLIB record"); |
| // Ignore value. |
| break; |
| } |
| case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_SECTIONNAME record"); |
| SectionTable.push_back(S); |
| break; |
| } |
| case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_GCNAME record"); |
| GCTable.push_back(S); |
| break; |
| } |
| // GLOBALVAR: [pointer type, isconst, initid, |
| // linkage, alignment, section, visibility, threadlocal, |
| // unnamed_addr] |
| case bitc::MODULE_CODE_GLOBALVAR: { |
| if (Record.size() < 6) |
| return Error("Invalid MODULE_CODE_GLOBALVAR record"); |
| Type *Ty = getTypeByID(Record[0]); |
| if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record"); |
| if (!Ty->isPointerTy()) |
| return Error("Global not a pointer type!"); |
| unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); |
| Ty = cast<PointerType>(Ty)->getElementType(); |
| |
| bool isConstant = Record[1]; |
| GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); |
| unsigned Alignment = (1 << Record[4]) >> 1; |
| std::string Section; |
| if (Record[5]) { |
| if (Record[5]-1 >= SectionTable.size()) |
| return Error("Invalid section ID"); |
| Section = SectionTable[Record[5]-1]; |
| } |
| GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; |
| if (Record.size() > 6) |
| Visibility = GetDecodedVisibility(Record[6]); |
| |
| GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; |
| if (Record.size() > 7) |
| TLM = GetDecodedThreadLocalMode(Record[7]); |
| |
| bool UnnamedAddr = false; |
| if (Record.size() > 8) |
| UnnamedAddr = Record[8]; |
| |
| bool ExternallyInitialized = false; |
| if (Record.size() > 9) |
| ExternallyInitialized = Record[9]; |
| |
| GlobalVariable *NewGV = |
| new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, |
| TLM, AddressSpace, ExternallyInitialized); |
| NewGV->setAlignment(Alignment); |
| if (!Section.empty()) |
| NewGV->setSection(Section); |
| NewGV->setVisibility(Visibility); |
| NewGV->setUnnamedAddr(UnnamedAddr); |
| |
| ValueList.push_back(NewGV); |
| |
| // Remember which value to use for the global initializer. |
| if (unsigned InitID = Record[2]) |
| GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); |
| break; |
| } |
| // FUNCTION: [type, callingconv, isproto, linkage, paramattr, |
| // alignment, section, visibility, gc, unnamed_addr] |
| case bitc::MODULE_CODE_FUNCTION: { |
| if (Record.size() < 8) |
| return Error("Invalid MODULE_CODE_FUNCTION record"); |
| Type *Ty = getTypeByID(Record[0]); |
| if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record"); |
| if (!Ty->isPointerTy()) |
| return Error("Function not a pointer type!"); |
| FunctionType *FTy = |
| dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); |
| if (!FTy) |
| return Error("Function not a pointer to function type!"); |
| |
| Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, |
| "", TheModule); |
| |
| Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); |
| bool isProto = Record[2]; |
| Func->setLinkage(GetDecodedLinkage(Record[3])); |
| Func->setAttributes(getAttributes(Record[4])); |
| |
| Func->setAlignment((1 << Record[5]) >> 1); |
| if (Record[6]) { |
| if (Record[6]-1 >= SectionTable.size()) |
| return Error("Invalid section ID"); |
| Func->setSection(SectionTable[Record[6]-1]); |
| } |
| Func->setVisibility(GetDecodedVisibility(Record[7])); |
| if (Record.size() > 8 && Record[8]) { |
| if (Record[8]-1 > GCTable.size()) |
| return Error("Invalid GC ID"); |
| Func->setGC(GCTable[Record[8]-1].c_str()); |
| } |
| bool UnnamedAddr = false; |
| if (Record.size() > 9) |
| UnnamedAddr = Record[9]; |
| Func->setUnnamedAddr(UnnamedAddr); |
| ValueList.push_back(Func); |
| |
| // If this is a function with a body, remember the prototype we are |
| // creating now, so that we can match up the body with them later. |
| if (!isProto) { |
| FunctionsWithBodies.push_back(Func); |
| if (LazyStreamer) DeferredFunctionInfo[Func] = 0; |
| } |
| break; |
| } |
| // ALIAS: [alias type, aliasee val#, linkage] |
| // ALIAS: [alias type, aliasee val#, linkage, visibility] |
| case bitc::MODULE_CODE_ALIAS: { |
| if (Record.size() < 3) |
| return Error("Invalid MODULE_ALIAS record"); |
| Type *Ty = getTypeByID(Record[0]); |
| if (!Ty) return Error("Invalid MODULE_ALIAS record"); |
| if (!Ty->isPointerTy()) |
| return Error("Function not a pointer type!"); |
| |
| GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), |
| "", 0, TheModule); |
| // Old bitcode files didn't have visibility field. |
| if (Record.size() > 3) |
| NewGA->setVisibility(GetDecodedVisibility(Record[3])); |
| ValueList.push_back(NewGA); |
| AliasInits.push_back(std::make_pair(NewGA, Record[1])); |
| break; |
| } |
| /// MODULE_CODE_PURGEVALS: [numvals] |
| case bitc::MODULE_CODE_PURGEVALS: |
| // Trim down the value list to the specified size. |
| if (Record.size() < 1 || Record[0] > ValueList.size()) |
| return Error("Invalid MODULE_PURGEVALS record"); |
| ValueList.shrinkTo(Record[0]); |
| break; |
| } |
| Record.clear(); |
| } |
| } |
| |
| bool BitcodeReader::ParseBitcodeInto(Module *M) { |
| TheModule = 0; |
| |
| if (InitStream()) return true; |
| |
| // Sniff for the signature. |
| if (Stream.Read(8) != 'B' || |
| Stream.Read(8) != 'C' || |
| Stream.Read(4) != 0x0 || |
| Stream.Read(4) != 0xC || |
| Stream.Read(4) != 0xE || |
| Stream.Read(4) != 0xD) |
| return Error("Invalid bitcode signature"); |
| |
| // We expect a number of well-defined blocks, though we don't necessarily |
| // need to understand them all. |
| while (1) { |
| if (Stream.AtEndOfStream()) |
| return false; |
| |
| BitstreamEntry Entry = |
| Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::Error: |
| Error("malformed module file"); |
| return true; |
| case BitstreamEntry::EndBlock: |
| return false; |
| |
| case BitstreamEntry::SubBlock: |
| switch (Entry.ID) { |
| case bitc::BLOCKINFO_BLOCK_ID: |
| if (Stream.ReadBlockInfoBlock()) |
| return Error("Malformed BlockInfoBlock"); |
| break; |
| case bitc::MODULE_BLOCK_ID: |
| // Reject multiple MODULE_BLOCK's in a single bitstream. |
| if (TheModule) |
| return Error("Multiple MODULE_BLOCKs in same stream"); |
| TheModule = M; |
| if (ParseModule(false)) |
| return true; |
| if (LazyStreamer) return false; |
| break; |
| default: |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| break; |
| } |
| continue; |
| case BitstreamEntry::Record: |
| // There should be no records in the top-level of blocks. |
| |
| // The ranlib in Xcode 4 will align archive members by appending newlines |
| // to the end of them. If this file size is a multiple of 4 but not 8, we |
| // have to read and ignore these final 4 bytes :-( |
| if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && |
| Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && |
| Stream.AtEndOfStream()) |
| return false; |
| |
| return Error("Invalid record at top-level"); |
| } |
| } |
| } |
| |
| bool BitcodeReader::ParseModuleTriple(std::string &Triple) { |
| if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Read all the records for this module. |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| return Error("malformed module block"); |
| case BitstreamEntry::EndBlock: |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a record. |
| switch (Stream.readRecord(Entry.ID, Record)) { |
| default: break; // Default behavior, ignore unknown content. |
| case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] |
| std::string S; |
| if (ConvertToString(Record, 0, S)) |
| return Error("Invalid MODULE_CODE_TRIPLE record"); |
| Triple = S; |
| break; |
| } |
| } |
| Record.clear(); |
| } |
| } |
| |
| bool BitcodeReader::ParseTriple(std::string &Triple) { |
| if (InitStream()) return true; |
| |
| // Sniff for the signature. |
| if (Stream.Read(8) != 'B' || |
| Stream.Read(8) != 'C' || |
| Stream.Read(4) != 0x0 || |
| Stream.Read(4) != 0xC || |
| Stream.Read(4) != 0xE || |
| Stream.Read(4) != 0xD) |
| return Error("Invalid bitcode signature"); |
| |
| // We expect a number of well-defined blocks, though we don't necessarily |
| // need to understand them all. |
| while (1) { |
| BitstreamEntry Entry = Stream.advance(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::Error: |
| Error("malformed module file"); |
| return true; |
| case BitstreamEntry::EndBlock: |
| return false; |
| |
| case BitstreamEntry::SubBlock: |
| if (Entry.ID == bitc::MODULE_BLOCK_ID) |
| return ParseModuleTriple(Triple); |
| |
| // Ignore other sub-blocks. |
| if (Stream.SkipBlock()) { |
| Error("malformed block record in AST file"); |
| return true; |
| } |
| continue; |
| |
| case BitstreamEntry::Record: |
| Stream.skipRecord(Entry.ID); |
| continue; |
| } |
| } |
| } |
| |
| /// ParseMetadataAttachment - Parse metadata attachments. |
| bool BitcodeReader::ParseMetadataAttachment() { |
| if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) |
| return Error("Malformed block record"); |
| |
| SmallVector<uint64_t, 64> Record; |
| while (1) { |
| BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::SubBlock: // Handled for us already. |
| case BitstreamEntry::Error: |
| return Error("malformed metadata block"); |
| case BitstreamEntry::EndBlock: |
| return false; |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a metadata attachment record. |
| Record.clear(); |
| switch (Stream.readRecord(Entry.ID, Record)) { |
| default: // Default behavior: ignore. |
| break; |
| case bitc::METADATA_ATTACHMENT: { |
| unsigned RecordLength = Record.size(); |
| if (Record.empty() || (RecordLength - 1) % 2 == 1) |
| return Error ("Invalid METADATA_ATTACHMENT reader!"); |
| Instruction *Inst = InstructionList[Record[0]]; |
| for (unsigned i = 1; i != RecordLength; i = i+2) { |
| unsigned Kind = Record[i]; |
| DenseMap<unsigned, unsigned>::iterator I = |
| MDKindMap.find(Kind); |
| if (I == MDKindMap.end()) |
| return Error("Invalid metadata kind ID"); |
| Value *Node = MDValueList.getValueFwdRef(Record[i+1]); |
| Inst->setMetadata(I->second, cast<MDNode>(Node)); |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| /// ParseFunctionBody - Lazily parse the specified function body block. |
| bool BitcodeReader::ParseFunctionBody(Function *F) { |
| if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) |
| return Error("Malformed block record"); |
| |
| InstructionList.clear(); |
| unsigned ModuleValueListSize = ValueList.size(); |
| unsigned ModuleMDValueListSize = MDValueList.size(); |
| |
| // Add all the function arguments to the value table. |
| for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) |
| ValueList.push_back(I); |
| |
| unsigned NextValueNo = ValueList.size(); |
| BasicBlock *CurBB = 0; |
| unsigned CurBBNo = 0; |
| |
| DebugLoc LastLoc; |
| |
| // Read all the records. |
| SmallVector<uint64_t, 64> Record; |
| while (1) { |
| BitstreamEntry Entry = Stream.advance(); |
| |
| switch (Entry.Kind) { |
| case BitstreamEntry::Error: |
| return Error("Bitcode error in function block"); |
| case BitstreamEntry::EndBlock: |
| goto OutOfRecordLoop; |
| |
| case BitstreamEntry::SubBlock: |
| switch (Entry.ID) { |
| default: // Skip unknown content. |
| if (Stream.SkipBlock()) |
| return Error("Malformed block record"); |
| break; |
| case bitc::CONSTANTS_BLOCK_ID: |
| if (ParseConstants()) return true; |
| NextValueNo = ValueList.size(); |
| break; |
| case bitc::VALUE_SYMTAB_BLOCK_ID: |
| if (ParseValueSymbolTable()) return true; |
| break; |
| case bitc::METADATA_ATTACHMENT_ID: |
| if (ParseMetadataAttachment()) return true; |
| break; |
| case bitc::METADATA_BLOCK_ID: |
| if (ParseMetadata()) return true; |
| break; |
| } |
| continue; |
| |
| case BitstreamEntry::Record: |
| // The interesting case. |
| break; |
| } |
| |
| // Read a record. |
| Record.clear(); |
| Instruction *I = 0; |
| unsigned BitCode = Stream.readRecord(Entry.ID, Record); |
| switch (BitCode) { |
| default: // Default behavior: reject |
| return Error("Unknown instruction"); |
| case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] |
| if (Record.size() < 1 || Record[0] == 0) |
| return Error("Invalid DECLAREBLOCKS record"); |
| // Create all the basic blocks for the function. |
| FunctionBBs.resize(Record[0]); |
| for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) |
| FunctionBBs[i] = BasicBlock::Create(Context, "", F); |
| CurBB = FunctionBBs[0]; |
| continue; |
| |
| case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN |
| // This record indicates that the last instruction is at the same |
| // location as the previous instruction with a location. |
| I = 0; |
| |
| // Get the last instruction emitted. |
| if (CurBB && !CurBB->empty()) |
| I = &CurBB->back(); |
| else if (CurBBNo && FunctionBBs[CurBBNo-1] && |
| !FunctionBBs[CurBBNo-1]->empty()) |
| I = &FunctionBBs[CurBBNo-1]->back(); |
| |
| if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); |
| I->setDebugLoc(LastLoc); |
| I = 0; |
| continue; |
| |
| case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] |
| I = 0; // Get the last instruction emitted. |
| if (CurBB && !CurBB->empty()) |
| I = &CurBB->back(); |
| else if (CurBBNo && FunctionBBs[CurBBNo-1] && |
| !FunctionBBs[CurBBNo-1]->empty()) |
| I = &FunctionBBs[CurBBNo-1]->back(); |
| if (I == 0 || Record.size() < 4) |
| return Error("Invalid FUNC_CODE_DEBUG_LOC record"); |
| |
| unsigned Line = Record[0], Col = Record[1]; |
| unsigned ScopeID = Record[2], IAID = Record[3]; |
| |
| MDNode *Scope = 0, *IA = 0; |
| if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); |
| if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); |
| LastLoc = DebugLoc::get(Line, Col, Scope, IA); |
| I->setDebugLoc(LastLoc); |
| I = 0; |
| continue; |
| } |
| |
| case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] |
| unsigned OpNum = 0; |
| Value *LHS, *RHS; |
| if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || |
| popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || |
| OpNum+1 > Record.size()) |
| return Error("Invalid BINOP record"); |
| |
| int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); |
| if (Opc == -1) return Error("Invalid BINOP record"); |
| I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| InstructionList.push_back(I); |
| if (OpNum < Record.size()) { |
| if (Opc == Instruction::Add || |
| Opc == Instruction::Sub || |
| Opc == Instruction::Mul || |
| Opc == Instruction::Shl) { |
| if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) |
| cast<BinaryOperator>(I)->setHasNoSignedWrap(true); |
| if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) |
| cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); |
| } else if (Opc == Instruction::SDiv || |
| Opc == Instruction::UDiv || |
| Opc == Instruction::LShr || |
| Opc == Instruction::AShr) { |
| if (Record[OpNum] & (1 << bitc::PEO_EXACT)) |
| cast<BinaryOperator>(I)->setIsExact(true); |
| } else if (isa<FPMathOperator>(I)) { |
| FastMathFlags FMF; |
| if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) |
| FMF.setUnsafeAlgebra(); |
| if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) |
| FMF.setNoNaNs(); |
| if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) |
| FMF.setNoInfs(); |
| if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) |
| FMF.setNoSignedZeros(); |
| if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) |
| FMF.setAllowReciprocal(); |
| if (FMF.any()) |
| I->setFastMathFlags(FMF); |
| } |
| |
| } |
| break; |
| } |
| case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] |
| unsigned OpNum = 0; |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op) || |
| OpNum+2 != Record.size()) |
| return Error("Invalid CAST record"); |
| |
| Type *ResTy = getTypeByID(Record[OpNum]); |
| int Opc = GetDecodedCastOpcode(Record[OpNum+1]); |
| if (Opc == -1 || ResTy == 0) |
| return Error("Invalid CAST record"); |
| I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_INBOUNDS_GEP: |
| case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] |
| unsigned OpNum = 0; |
| Value *BasePtr; |
| if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) |
| return Error("Invalid GEP record"); |
| |
| SmallVector<Value*, 16> GEPIdx; |
| while (OpNum != Record.size()) { |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op)) |
| return Error("Invalid GEP record"); |
| GEPIdx.push_back(Op); |
| } |
| |
| I = GetElementPtrInst::Create(BasePtr, GEPIdx); |
| InstructionList.push_back(I); |
| if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) |
| cast<GetElementPtrInst>(I)->setIsInBounds(true); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_EXTRACTVAL: { |
| // EXTRACTVAL: [opty, opval, n x indices] |
| unsigned OpNum = 0; |
| Value *Agg; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) |
| return Error("Invalid EXTRACTVAL record"); |
| |
| SmallVector<unsigned, 4> EXTRACTVALIdx; |
| for (unsigned RecSize = Record.size(); |
| OpNum != RecSize; ++OpNum) { |
| uint64_t Index = Record[OpNum]; |
| if ((unsigned)Index != Index) |
| return Error("Invalid EXTRACTVAL index"); |
| EXTRACTVALIdx.push_back((unsigned)Index); |
| } |
| |
| I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_INSERTVAL: { |
| // INSERTVAL: [opty, opval, opty, opval, n x indices] |
| unsigned OpNum = 0; |
| Value *Agg; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) |
| return Error("Invalid INSERTVAL record"); |
| Value *Val; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Val)) |
| return Error("Invalid INSERTVAL record"); |
| |
| SmallVector<unsigned, 4> INSERTVALIdx; |
| for (unsigned RecSize = Record.size(); |
| OpNum != RecSize; ++OpNum) { |
| uint64_t Index = Record[OpNum]; |
| if ((unsigned)Index != Index) |
| return Error("Invalid INSERTVAL index"); |
| INSERTVALIdx.push_back((unsigned)Index); |
| } |
| |
| I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] |
| // obsolete form of select |
| // handles select i1 ... in old bitcode |
| unsigned OpNum = 0; |
| Value *TrueVal, *FalseVal, *Cond; |
| if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || |
| popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || |
| popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) |
| return Error("Invalid SELECT record"); |
| |
| I = SelectInst::Create(Cond, TrueVal, FalseVal); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] |
| // new form of select |
| // handles select i1 or select [N x i1] |
| unsigned OpNum = 0; |
| Value *TrueVal, *FalseVal, *Cond; |
| if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || |
| popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || |
| getValueTypePair(Record, OpNum, NextValueNo, Cond)) |
| return Error("Invalid SELECT record"); |
| |
| // select condition can be either i1 or [N x i1] |
| if (VectorType* vector_type = |
| dyn_cast<VectorType>(Cond->getType())) { |
| // expect <n x i1> |
| if (vector_type->getElementType() != Type::getInt1Ty(Context)) |
| return Error("Invalid SELECT condition type"); |
| } else { |
| // expect i1 |
| if (Cond->getType() != Type::getInt1Ty(Context)) |
| return Error("Invalid SELECT condition type"); |
| } |
| |
| I = SelectInst::Create(Cond, TrueVal, FalseVal); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] |
| unsigned OpNum = 0; |
| Value *Vec, *Idx; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || |
| popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx)) |
| return Error("Invalid EXTRACTELT record"); |
| I = ExtractElementInst::Create(Vec, Idx); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] |
| unsigned OpNum = 0; |
| Value *Vec, *Elt, *Idx; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || |
| popValue(Record, OpNum, NextValueNo, |
| cast<VectorType>(Vec->getType())->getElementType(), Elt) || |
| popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx)) |
| return Error("Invalid INSERTELT record"); |
| I = InsertElementInst::Create(Vec, Elt, Idx); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] |
| unsigned OpNum = 0; |
| Value *Vec1, *Vec2, *Mask; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || |
| popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) |
| return Error("Invalid SHUFFLEVEC record"); |
| |
| if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) |
| return Error("Invalid SHUFFLEVEC record"); |
| I = new ShuffleVectorInst(Vec1, Vec2, Mask); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] |
| // Old form of ICmp/FCmp returning bool |
| // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were |
| // both legal on vectors but had different behaviour. |
| case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] |
| // FCmp/ICmp returning bool or vector of bool |
| |
| unsigned OpNum = 0; |
| Value *LHS, *RHS; |
| if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || |
| popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || |
| OpNum+1 != Record.size()) |
| return Error("Invalid CMP record"); |
| |
| if (LHS->getType()->isFPOrFPVectorTy()) |
| I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); |
| else |
| I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] |
| { |
| unsigned Size = Record.size(); |
| if (Size == 0) { |
| I = ReturnInst::Create(Context); |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| unsigned OpNum = 0; |
| Value *Op = NULL; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op)) |
| return Error("Invalid RET record"); |
| if (OpNum != Record.size()) |
| return Error("Invalid RET record"); |
| |
| I = ReturnInst::Create(Context, Op); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] |
| if (Record.size() != 1 && Record.size() != 3) |
| return Error("Invalid BR record"); |
| BasicBlock *TrueDest = getBasicBlock(Record[0]); |
| if (TrueDest == 0) |
| return Error("Invalid BR record"); |
| |
| if (Record.size() == 1) { |
| I = BranchInst::Create(TrueDest); |
| InstructionList.push_back(I); |
| } |
| else { |
| BasicBlock *FalseDest = getBasicBlock(Record[1]); |
| Value *Cond = getValue(Record, 2, NextValueNo, |
| Type::getInt1Ty(Context)); |
| if (FalseDest == 0 || Cond == 0) |
| return Error("Invalid BR record"); |
| I = BranchInst::Create(TrueDest, FalseDest, Cond); |
| InstructionList.push_back(I); |
| } |
| break; |
| } |
| case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] |
| // Check magic |
| if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { |
| // New SwitchInst format with case ranges. |
| |
| Type *OpTy = getTypeByID(Record[1]); |
| unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); |
| |
| Value *Cond = getValue(Record, 2, NextValueNo, OpTy); |
| BasicBlock *Default = getBasicBlock(Record[3]); |
| if (OpTy == 0 || Cond == 0 || Default == 0) |
| return Error("Invalid SWITCH record"); |
| |
| unsigned NumCases = Record[4]; |
| |
| SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); |
| InstructionList.push_back(SI); |
| |
| unsigned CurIdx = 5; |
| for (unsigned i = 0; i != NumCases; ++i) { |
| IntegersSubsetToBB CaseBuilder; |
| unsigned NumItems = Record[CurIdx++]; |
| for (unsigned ci = 0; ci != NumItems; ++ci) { |
| bool isSingleNumber = Record[CurIdx++]; |
| |
| APInt Low; |
| unsigned ActiveWords = 1; |
| if (ValueBitWidth > 64) |
| ActiveWords = Record[CurIdx++]; |
| Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), |
| ValueBitWidth); |
| CurIdx += ActiveWords; |
| |
| if (!isSingleNumber) { |
| ActiveWords = 1; |
| if (ValueBitWidth > 64) |
| ActiveWords = Record[CurIdx++]; |
| APInt High = |
| ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), |
| ValueBitWidth); |
| |
| CaseBuilder.add(IntItem::fromType(OpTy, Low), |
| IntItem::fromType(OpTy, High)); |
| CurIdx += ActiveWords; |
| } else |
| CaseBuilder.add(IntItem::fromType(OpTy, Low)); |
| } |
| BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); |
| IntegersSubset Case = CaseBuilder.getCase(); |
| SI->addCase(Case, DestBB); |
| } |
| uint16_t Hash = SI->hash(); |
| if (Hash != (Record[0] & 0xFFFF)) |
| return Error("Invalid SWITCH record"); |
| I = SI; |
| break; |
| } |
| |
| // Old SwitchInst format without case ranges. |
| |
| if (Record.size() < 3 || (Record.size() & 1) == 0) |
| return Error("Invalid SWITCH record"); |
| Type *OpTy = getTypeByID(Record[0]); |
| Value *Cond = getValue(Record, 1, NextValueNo, OpTy); |
| BasicBlock *Default = getBasicBlock(Record[2]); |
| if (OpTy == 0 || Cond == 0 || Default == 0) |
| return Error("Invalid SWITCH record"); |
| unsigned NumCases = (Record.size()-3)/2; |
| SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); |
| InstructionList.push_back(SI); |
| for (unsigned i = 0, e = NumCases; i != e; ++i) { |
| ConstantInt *CaseVal = |
| dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); |
| BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); |
| if (CaseVal == 0 || DestBB == 0) { |
| delete SI; |
| return Error("Invalid SWITCH record!"); |
| } |
| SI->addCase(CaseVal, DestBB); |
| } |
| I = SI; |
| break; |
| } |
| case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] |
| if (Record.size() < 2) |
| return Error("Invalid INDIRECTBR record"); |
| Type *OpTy = getTypeByID(Record[0]); |
| Value *Address = getValue(Record, 1, NextValueNo, OpTy); |
| if (OpTy == 0 || Address == 0) |
| return Error("Invalid INDIRECTBR record"); |
| unsigned NumDests = Record.size()-2; |
| IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); |
| InstructionList.push_back(IBI); |
| for (unsigned i = 0, e = NumDests; i != e; ++i) { |
| if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { |
| IBI->addDestination(DestBB); |
| } else { |
| delete IBI; |
| return Error("Invalid INDIRECTBR record!"); |
| } |
| } |
| I = IBI; |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_INVOKE: { |
| // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] |
| if (Record.size() < 4) return Error("Invalid INVOKE record"); |
| AttributeSet PAL = getAttributes(Record[0]); |
| unsigned CCInfo = Record[1]; |
| BasicBlock *NormalBB = getBasicBlock(Record[2]); |
| BasicBlock *UnwindBB = getBasicBlock(Record[3]); |
| |
| unsigned OpNum = 4; |
| Value *Callee; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) |
| return Error("Invalid INVOKE record"); |
| |
| PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); |
| FunctionType *FTy = !CalleeTy ? 0 : |
| dyn_cast<FunctionType>(CalleeTy->getElementType()); |
| |
| // Check that the right number of fixed parameters are here. |
| if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || |
| Record.size() < OpNum+FTy->getNumParams()) |
| return Error("Invalid INVOKE record"); |
| |
| SmallVector<Value*, 16> Ops; |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { |
| Ops.push_back(getValue(Record, OpNum, NextValueNo, |
| FTy->getParamType(i))); |
| if (Ops.back() == 0) return Error("Invalid INVOKE record"); |
| } |
| |
| if (!FTy->isVarArg()) { |
| if (Record.size() != OpNum) |
| return Error("Invalid INVOKE record"); |
| } else { |
| // Read type/value pairs for varargs params. |
| while (OpNum != Record.size()) { |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op)) |
| return Error("Invalid INVOKE record"); |
| Ops.push_back(Op); |
| } |
| } |
| |
| I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); |
| InstructionList.push_back(I); |
| cast<InvokeInst>(I)->setCallingConv( |
| static_cast<CallingConv::ID>(CCInfo)); |
| cast<InvokeInst>(I)->setAttributes(PAL); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] |
| unsigned Idx = 0; |
| Value *Val = 0; |
| if (getValueTypePair(Record, Idx, NextValueNo, Val)) |
| return Error("Invalid RESUME record"); |
| I = ResumeInst::Create(Val); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE |
| I = new UnreachableInst(Context); |
| InstructionList.push_back(I); |
| break; |
| case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] |
| if (Record.size() < 1 || ((Record.size()-1)&1)) |
| return Error("Invalid PHI record"); |
| Type *Ty = getTypeByID(Record[0]); |
| if (!Ty) return Error("Invalid PHI record"); |
| |
| PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); |
| InstructionList.push_back(PN); |
| |
| for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { |
| Value *V; |
| // With the new function encoding, it is possible that operands have |
| // negative IDs (for forward references). Use a signed VBR |
| // representation to keep the encoding small. |
| if (UseRelativeIDs) |
| V = getValueSigned(Record, 1+i, NextValueNo, Ty); |
| else |
| V = getValue(Record, 1+i, NextValueNo, Ty); |
| BasicBlock *BB = getBasicBlock(Record[2+i]); |
| if (!V || !BB) return Error("Invalid PHI record"); |
| PN->addIncoming(V, BB); |
| } |
| I = PN; |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_LANDINGPAD: { |
| // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] |
| unsigned Idx = 0; |
| if (Record.size() < 4) |
| return Error("Invalid LANDINGPAD record"); |
| Type *Ty = getTypeByID(Record[Idx++]); |
| if (!Ty) return Error("Invalid LANDINGPAD record"); |
| Value *PersFn = 0; |
| if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) |
| return Error("Invalid LANDINGPAD record"); |
| |
| bool IsCleanup = !!Record[Idx++]; |
| unsigned NumClauses = Record[Idx++]; |
| LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); |
| LP->setCleanup(IsCleanup); |
| for (unsigned J = 0; J != NumClauses; ++J) { |
| LandingPadInst::ClauseType CT = |
| LandingPadInst::ClauseType(Record[Idx++]); (void)CT; |
| Value *Val; |
| |
| if (getValueTypePair(Record, Idx, NextValueNo, Val)) { |
| delete LP; |
| return Error("Invalid LANDINGPAD record"); |
| } |
| |
| assert((CT != LandingPadInst::Catch || |
| !isa<ArrayType>(Val->getType())) && |
| "Catch clause has a invalid type!"); |
| assert((CT != LandingPadInst::Filter || |
| isa<ArrayType>(Val->getType())) && |
| "Filter clause has invalid type!"); |
| LP->addClause(Val); |
| } |
| |
| I = LP; |
| InstructionList.push_back(I); |
| break; |
| } |
| |
| case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] |
| if (Record.size() != 4) |
| return Error("Invalid ALLOCA record"); |
| PointerType *Ty = |
| dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); |
| Type *OpTy = getTypeByID(Record[1]); |
| Value *Size = getFnValueByID(Record[2], OpTy); |
| unsigned Align = Record[3]; |
| if (!Ty || !Size) return Error("Invalid ALLOCA record"); |
| I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] |
| unsigned OpNum = 0; |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op) || |
| OpNum+2 != Record.size()) |
| return Error("Invalid LOAD record"); |
| |
| I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_LOADATOMIC: { |
| // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] |
| unsigned OpNum = 0; |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op) || |
| OpNum+4 != Record.size()) |
| return Error("Invalid LOADATOMIC record"); |
| |
| |
| AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); |
| if (Ordering == NotAtomic || Ordering == Release || |
| Ordering == AcquireRelease) |
| return Error("Invalid LOADATOMIC record"); |
| if (Ordering != NotAtomic && Record[OpNum] == 0) |
| return Error("Invalid LOADATOMIC record"); |
| SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); |
| |
| I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, |
| Ordering, SynchScope); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] |
| unsigned OpNum = 0; |
| Value *Val, *Ptr; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || |
| popValue(Record, OpNum, NextValueNo, |
| cast<PointerType>(Ptr->getType())->getElementType(), Val) || |
| OpNum+2 != Record.size()) |
| return Error("Invalid STORE record"); |
| |
| I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_STOREATOMIC: { |
| // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] |
| unsigned OpNum = 0; |
| Value *Val, *Ptr; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || |
| popValue(Record, OpNum, NextValueNo, |
| cast<PointerType>(Ptr->getType())->getElementType(), Val) || |
| OpNum+4 != Record.size()) |
| return Error("Invalid STOREATOMIC record"); |
| |
| AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); |
| if (Ordering == NotAtomic || Ordering == Acquire || |
| Ordering == AcquireRelease) |
| return Error("Invalid STOREATOMIC record"); |
| SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); |
| if (Ordering != NotAtomic && Record[OpNum] == 0) |
| return Error("Invalid STOREATOMIC record"); |
| |
| I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, |
| Ordering, SynchScope); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_CMPXCHG: { |
| // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope] |
| unsigned OpNum = 0; |
| Value *Ptr, *Cmp, *New; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || |
| popValue(Record, OpNum, NextValueNo, |
| cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || |
| popValue(Record, OpNum, NextValueNo, |
| cast<PointerType>(Ptr->getType())->getElementType(), New) || |
| OpNum+3 != Record.size()) |
| return Error("Invalid CMPXCHG record"); |
| AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]); |
| if (Ordering == NotAtomic || Ordering == Unordered) |
| return Error("Invalid CMPXCHG record"); |
| SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); |
| I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope); |
| cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_ATOMICRMW: { |
| // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] |
| unsigned OpNum = 0; |
| Value *Ptr, *Val; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || |
| popValue(Record, OpNum, NextValueNo, |
| cast<PointerType>(Ptr->getType())->getElementType(), Val) || |
| OpNum+4 != Record.size()) |
| return Error("Invalid ATOMICRMW record"); |
| AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); |
| if (Operation < AtomicRMWInst::FIRST_BINOP || |
| Operation > AtomicRMWInst::LAST_BINOP) |
| return Error("Invalid ATOMICRMW record"); |
| AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); |
| if (Ordering == NotAtomic || Ordering == Unordered) |
| return Error("Invalid ATOMICRMW record"); |
| SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); |
| I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); |
| cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] |
| if (2 != Record.size()) |
| return Error("Invalid FENCE record"); |
| AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); |
| if (Ordering == NotAtomic || Ordering == Unordered || |
| Ordering == Monotonic) |
| return Error("Invalid FENCE record"); |
| SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); |
| I = new FenceInst(Context, Ordering, SynchScope); |
| InstructionList.push_back(I); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_CALL: { |
| // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] |
| if (Record.size() < 3) |
| return Error("Invalid CALL record"); |
| |
| AttributeSet PAL = getAttributes(Record[0]); |
| unsigned CCInfo = Record[1]; |
| |
| unsigned OpNum = 2; |
| Value *Callee; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) |
| return Error("Invalid CALL record"); |
| |
| PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); |
| FunctionType *FTy = 0; |
| if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); |
| if (!FTy || Record.size() < FTy->getNumParams()+OpNum) |
| return Error("Invalid CALL record"); |
| |
| SmallVector<Value*, 16> Args; |
| // Read the fixed params. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { |
| if (FTy->getParamType(i)->isLabelTy()) |
| Args.push_back(getBasicBlock(Record[OpNum])); |
| else |
| Args.push_back(getValue(Record, OpNum, NextValueNo, |
| FTy->getParamType(i))); |
| if (Args.back() == 0) return Error("Invalid CALL record"); |
| } |
| |
| // Read type/value pairs for varargs params. |
| if (!FTy->isVarArg()) { |
| if (OpNum != Record.size()) |
| return Error("Invalid CALL record"); |
| } else { |
| while (OpNum != Record.size()) { |
| Value *Op; |
| if (getValueTypePair(Record, OpNum, NextValueNo, Op)) |
| return Error("Invalid CALL record"); |
| Args.push_back(Op); |
| } |
| } |
| |
| I = CallInst::Create(Callee, Args); |
| InstructionList.push_back(I); |
| cast<CallInst>(I)->setCallingConv( |
| static_cast<CallingConv::ID>(CCInfo>>1)); |
| cast<CallInst>(I)->setTailCall(CCInfo & 1); |
| cast<CallInst>(I)->setAttributes(PAL); |
| break; |
| } |
| case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] |
| if (Record.size() < 3) |
| return Error("Invalid VAARG record"); |
| Type *OpTy = getTypeByID(Record[0]); |
| Value *Op = getValue(Record, 1, NextValueNo, OpTy); |
| Type *ResTy = getTypeByID(Record[2]); |
| if (!OpTy || !Op || !ResTy) |
| return Error("Invalid VAARG record"); |
| I = new VAArgInst(Op, ResTy); |
| InstructionList.push_back(I); |
| break; |
| } |
| } |
| |
| // Add instruction to end of current BB. If there is no current BB, reject |
| // this file. |
| if (CurBB == 0) { |
| delete I; |
| return Error("Invalid instruction with no BB"); |
| } |
| CurBB->getInstList().push_back(I); |
| |
| // If this was a terminator instruction, move to the next block. |
| if (isa<TerminatorInst>(I)) { |
| ++CurBBNo; |
| CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; |
| } |
| |
| // Non-void values get registered in the value table for future use. |
| if (I && !I->getType()->isVoidTy()) |
| ValueList.AssignValue(I, NextValueNo++); |
| } |
| |
| OutOfRecordLoop: |
| |
| // Check the function list for unresolved values. |
| if (Argument *A = dyn_cast<Argument>(ValueList.back())) { |
| if (A->getParent() == 0) { |
| // We found at least one unresolved value. Nuke them all to avoid leaks. |
| for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ |
| if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { |
| A->replaceAllUsesWith(UndefValue::get(A->getType())); |
| delete A; |
| } |
| } |
| return Error("Never resolved value found in function!"); |
| } |
| } |
| |
| // FIXME: Check for unresolved forward-declared metadata references |
| // and clean up leaks. |
| |
| // See if anything took the address of blocks in this function. If so, |
| // resolve them now. |
| DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = |
| BlockAddrFwdRefs.find(F); |
| if (BAFRI != BlockAddrFwdRefs.end()) { |
| std::vector<BlockAddrRefTy> &RefList = BAFRI->second; |
| for (unsigned i = 0, e = RefList.size(); i != e; ++i) { |
| unsigned BlockIdx = RefList[i].first; |
| if (BlockIdx >= FunctionBBs.size()) |
| return Error("Invalid blockaddress block #"); |
| |
| GlobalVariable *FwdRef = RefList[i].second; |
| FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); |
| FwdRef->eraseFromParent(); |
| } |
| |
| BlockAddrFwdRefs.erase(BAFRI); |
| } |
| |
| // Trim the value list down to the size it was before we parsed this function. |
| ValueList.shrinkTo(ModuleValueListSize); |
| MDValueList.shrinkTo(ModuleMDValueListSize); |
| std::vector<BasicBlock*>().swap(FunctionBBs); |
| return false; |
| } |
| |
| /// FindFunctionInStream - Find the function body in the bitcode stream |
| bool BitcodeReader::FindFunctionInStream(Function *F, |
| DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) { |
| while (DeferredFunctionInfoIterator->second == 0) { |
| if (Stream.AtEndOfStream()) |
| return Error("Could not find Function in stream"); |
| // ParseModule will parse the next body in the stream and set its |
| // position in the DeferredFunctionInfo map. |
| if (ParseModule(true)) return true; |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GVMaterializer implementation |
| //===----------------------------------------------------------------------===// |
| |
| |
| bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { |
| if (const Function *F = dyn_cast<Function>(GV)) { |
| return F->isDeclaration() && |
| DeferredFunctionInfo.count(const_cast<Function*>(F)); |
| } |
| return false; |
| } |
| |
| bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { |
| Function *F = dyn_cast<Function>(GV); |
| // If it's not a function or is already material, ignore the request. |
| if (!F || !F->isMaterializable()) return false; |
| |
| DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); |
| assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); |
| // If its position is recorded as 0, its body is somewhere in the stream |
| // but we haven't seen it yet. |
| if (DFII->second == 0) |
| if (LazyStreamer && FindFunctionInStream(F, DFII)) return true; |
| |
| // Move the bit stream to the saved position of the deferred function body. |
| Stream.JumpToBit(DFII->second); |
| |
| if (ParseFunctionBody(F)) { |
| if (ErrInfo) *ErrInfo = ErrorString; |
| return true; |
| } |
| |
| // Upgrade any old intrinsic calls in the function. |
| for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), |
| E = UpgradedIntrinsics.end(); I != E; ++I) { |
| if (I->first != I->second) { |
| for (Value::use_iterator UI = I->first->use_begin(), |
| UE = I->first->use_end(); UI != UE; ) { |
| if (CallInst* CI = dyn_cast<CallInst>(*UI++)) |
| UpgradeIntrinsicCall(CI, I->second); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { |
| const Function *F = dyn_cast<Function>(GV); |
| if (!F || F->isDeclaration()) |
| return false; |
| return DeferredFunctionInfo.count(const_cast<Function*>(F)); |
| } |
| |
| void BitcodeReader::Dematerialize(GlobalValue *GV) { |
| Function *F = dyn_cast<Function>(GV); |
| // If this function isn't dematerializable, this is a noop. |
| if (!F || !isDematerializable(F)) |
| return; |
| |
| assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); |
| |
| // Just forget the function body, we can remat it later. |
| F->deleteBody(); |
| } |
| |
| |
| bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { |
| assert(M == TheModule && |
| "Can only Materialize the Module this BitcodeReader is attached to."); |
| // Iterate over the module, deserializing any functions that are still on |
| // disk. |
| for (Module::iterator F = TheModule->begin(), E = TheModule->end(); |
| F != E; ++F) |
| if (F->isMaterializable() && |
| Materialize(F, ErrInfo)) |
| return true; |
| |
| // At this point, if there are any function bodies, the current bit is |
| // pointing to the END_BLOCK record after them. Now make sure the rest |
| // of the bits in the module have been read. |
| if (NextUnreadBit) |
| ParseModule(true); |
| |
| // Upgrade any intrinsic calls that slipped through (should not happen!) and |
| // delete the old functions to clean up. We can't do this unless the entire |
| // module is materialized because there could always be another function body |
| // with calls to the old function. |
| for (std::vector<std::pair<Function*, Function*> >::iterator I = |
| UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { |
| if (I->first != I->second) { |
| for (Value::use_iterator UI = I->first->use_begin(), |
| UE = I->first->use_end(); UI != UE; ) { |
| if (CallInst* CI = dyn_cast<CallInst>(*UI++)) |
| UpgradeIntrinsicCall(CI, I->second); |
| } |
| if (!I->first->use_empty()) |
| I->first->replaceAllUsesWith(I->second); |
| I->first->eraseFromParent(); |
| } |
| } |
| std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); |
| |
| return false; |
| } |
| |
| bool BitcodeReader::InitStream() { |
| if (LazyStreamer) return InitLazyStream(); |
| return InitStreamFromBuffer(); |
| } |
| |
| bool BitcodeReader::InitStreamFromBuffer() { |
| const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); |
| const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); |
| |
| if (Buffer->getBufferSize() & 3) { |
| if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) |
| return Error("Invalid bitcode signature"); |
| else |
| return Error("Bitcode stream should be a multiple of 4 bytes in length"); |
| } |
| |
| // If we have a wrapper header, parse it and ignore the non-bc file contents. |
| // The magic number is 0x0B17C0DE stored in little endian. |
| if (isBitcodeWrapper(BufPtr, BufEnd)) |
| if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) |
| return Error("Invalid bitcode wrapper header"); |
| |
| StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); |
| Stream.init(*StreamFile); |
| |
| return false; |
| } |
| |
| bool BitcodeReader::InitLazyStream() { |
| // Check and strip off the bitcode wrapper; BitstreamReader expects never to |
| // see it. |
| StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); |
| StreamFile.reset(new BitstreamReader(Bytes)); |
| Stream.init(*StreamFile); |
| |
| unsigned char buf[16]; |
| if (Bytes->readBytes(0, 16, buf, NULL) == -1) |
| return Error("Bitcode stream must be at least 16 bytes in length"); |
| |
| if (!isBitcode(buf, buf + 16)) |
| return Error("Invalid bitcode signature"); |
| |
| if (isBitcodeWrapper(buf, buf + 4)) { |
| const unsigned char *bitcodeStart = buf; |
| const unsigned char *bitcodeEnd = buf + 16; |
| SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); |
| Bytes->dropLeadingBytes(bitcodeStart - buf); |
| Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // External interface |
| //===----------------------------------------------------------------------===// |
| |
| /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. |
| /// |
| Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, |
| LLVMContext& Context, |
| std::string *ErrMsg) { |
| Module *M = new Module(Buffer->getBufferIdentifier(), Context); |
| BitcodeReader *R = new BitcodeReader(Buffer, Context); |
| M->setMaterializer(R); |
| if (R->ParseBitcodeInto(M)) { |
| if (ErrMsg) |
| *ErrMsg = R->getErrorString(); |
| |
| delete M; // Also deletes R. |
| return 0; |
| } |
| // Have the BitcodeReader dtor delete 'Buffer'. |
| R->setBufferOwned(true); |
| |
| R->materializeForwardReferencedFunctions(); |
| |
| return M; |
| } |
| |
| |
| Module *llvm::getStreamedBitcodeModule(const std::string &name, |
| DataStreamer *streamer, |
| LLVMContext &Context, |
| std::string *ErrMsg) { |
| Module *M = new Module(name, Context); |
| BitcodeReader *R = new BitcodeReader(streamer, Context); |
| M->setMaterializer(R); |
| if (R->ParseBitcodeInto(M)) { |
| if (ErrMsg) |
| *ErrMsg = R->getErrorString(); |
| delete M; // Also deletes R. |
| return 0; |
| } |
| R->setBufferOwned(false); // no buffer to delete |
| return M; |
| } |
| |
| /// ParseBitcodeFile - Read the specified bitcode file, returning the module. |
| /// If an error occurs, return null and fill in *ErrMsg if non-null. |
| Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, |
| std::string *ErrMsg){ |
| Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); |
| if (!M) return 0; |
| |
| // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether |
| // there was an error. |
| static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); |
| |
| // Read in the entire module, and destroy the BitcodeReader. |
| if (M->MaterializeAllPermanently(ErrMsg)) { |
| delete M; |
| return 0; |
| } |
| |
| // TODO: Restore the use-lists to the in-memory state when the bitcode was |
| // written. We must defer until the Module has been fully materialized. |
| |
| return M; |
| } |
| |
| std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, |
| LLVMContext& Context, |
| std::string *ErrMsg) { |
| BitcodeReader *R = new BitcodeReader(Buffer, Context); |
| // Don't let the BitcodeReader dtor delete 'Buffer'. |
| R->setBufferOwned(false); |
| |
| std::string Triple(""); |
| if (R->ParseTriple(Triple)) |
| if (ErrMsg) |
| *ErrMsg = R->getErrorString(); |
| |
| delete R; |
| return Triple; |
| } |