| //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for writing dwarf exception info into asm files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DwarfException.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLocation.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Support/Dwarf.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/StringExtras.h" |
| using namespace llvm; |
| |
| static TimerGroup &getDwarfTimerGroup() { |
| static TimerGroup DwarfTimerGroup("Dwarf Exception"); |
| return DwarfTimerGroup; |
| } |
| |
| DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A, |
| const MCAsmInfo *T) |
| : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false), |
| shouldEmitTableModule(false), shouldEmitMovesModule(false), |
| ExceptionTimer(0) { |
| if (TimePassesIsEnabled) |
| ExceptionTimer = new Timer("Dwarf Exception Writer", |
| getDwarfTimerGroup()); |
| } |
| |
| DwarfException::~DwarfException() { |
| delete ExceptionTimer; |
| } |
| |
| void DwarfException::EmitCommonEHFrame(const Function *Personality, |
| unsigned Index) { |
| // Size and sign of stack growth. |
| int stackGrowth = |
| Asm->TM.getFrameInfo()->getStackGrowthDirection() == |
| TargetFrameInfo::StackGrowsUp ? |
| TD->getPointerSize() : -TD->getPointerSize(); |
| |
| // Begin eh frame section. |
| Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection()); |
| |
| if (MAI->is_EHSymbolPrivate()) |
| O << MAI->getPrivateGlobalPrefix(); |
| |
| O << "EH_frame" << Index << ":\n"; |
| EmitLabel("section_eh_frame", Index); |
| |
| // Define base labels. |
| EmitLabel("eh_frame_common", Index); |
| |
| // Define the eh frame length. |
| EmitDifference("eh_frame_common_end", Index, |
| "eh_frame_common_begin", Index, true); |
| Asm->EOL("Length of Common Information Entry"); |
| |
| // EH frame header. |
| EmitLabel("eh_frame_common_begin", Index); |
| Asm->EmitInt32((int)0); |
| Asm->EOL("CIE Identifier Tag"); |
| Asm->EmitInt8(dwarf::DW_CIE_VERSION); |
| Asm->EOL("CIE Version"); |
| |
| // The personality presence indicates that language specific information will |
| // show up in the eh frame. |
| Asm->EmitString(Personality ? "zPLR" : "zR"); |
| Asm->EOL("CIE Augmentation"); |
| |
| // Round out reader. |
| Asm->EmitULEB128Bytes(1); |
| Asm->EOL("CIE Code Alignment Factor"); |
| Asm->EmitSLEB128Bytes(stackGrowth); |
| Asm->EOL("CIE Data Alignment Factor"); |
| Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true)); |
| Asm->EOL("CIE Return Address Column"); |
| |
| // If there is a personality, we need to indicate the functions location. |
| if (Personality) { |
| Asm->EmitULEB128Bytes(7); |
| Asm->EOL("Augmentation Size"); |
| |
| if (MAI->getNeedsIndirectEncoding()) { |
| Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 | |
| dwarf::DW_EH_PE_indirect); |
| Asm->EOL("Personality (pcrel sdata4 indirect)"); |
| } else { |
| Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); |
| Asm->EOL("Personality (pcrel sdata4)"); |
| } |
| |
| PrintRelDirective(true); |
| O << MAI->getPersonalityPrefix(); |
| Asm->EmitExternalGlobal((const GlobalVariable *)(Personality)); |
| O << MAI->getPersonalitySuffix(); |
| if (strcmp(MAI->getPersonalitySuffix(), "+4@GOTPCREL")) |
| O << "-" << MAI->getPCSymbol(); |
| Asm->EOL("Personality"); |
| |
| Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); |
| Asm->EOL("LSDA Encoding (pcrel sdata4)"); |
| |
| Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); |
| Asm->EOL("FDE Encoding (pcrel sdata4)"); |
| } else { |
| Asm->EmitULEB128Bytes(1); |
| Asm->EOL("Augmentation Size"); |
| |
| Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); |
| Asm->EOL("FDE Encoding (pcrel sdata4)"); |
| } |
| |
| // Indicate locations of general callee saved registers in frame. |
| std::vector<MachineMove> Moves; |
| RI->getInitialFrameState(Moves); |
| EmitFrameMoves(NULL, 0, Moves, true); |
| |
| // On Darwin the linker honors the alignment of eh_frame, which means it must |
| // be 8-byte on 64-bit targets to match what gcc does. Otherwise you get |
| // holes which confuse readers of eh_frame. |
| Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, |
| 0, 0, false); |
| EmitLabel("eh_frame_common_end", Index); |
| |
| Asm->EOL(); |
| } |
| |
| /// EmitEHFrame - Emit function exception frame information. |
| /// |
| void DwarfException::EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) { |
| assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() && |
| "Should not emit 'available externally' functions at all"); |
| |
| const Function *TheFunc = EHFrameInfo.function; |
| |
| Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection()); |
| |
| // Externally visible entry into the functions eh frame info. If the |
| // corresponding function is static, this should not be externally visible. |
| if (!TheFunc->hasLocalLinkage()) |
| if (const char *GlobalEHDirective = MAI->getGlobalEHDirective()) |
| O << GlobalEHDirective << EHFrameInfo.FnName << "\n"; |
| |
| // If corresponding function is weak definition, this should be too. |
| if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective()) |
| O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n"; |
| |
| // If there are no calls then you can't unwind. This may mean we can omit the |
| // EH Frame, but some environments do not handle weak absolute symbols. If |
| // UnwindTablesMandatory is set we cannot do this optimization; the unwind |
| // info is to be available for non-EH uses. |
| if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory && |
| (!TheFunc->isWeakForLinker() || |
| !MAI->getWeakDefDirective() || |
| MAI->getSupportsWeakOmittedEHFrame())) { |
| O << EHFrameInfo.FnName << " = 0\n"; |
| // This name has no connection to the function, so it might get |
| // dead-stripped when the function is not, erroneously. Prohibit |
| // dead-stripping unconditionally. |
| if (const char *UsedDirective = MAI->getUsedDirective()) |
| O << UsedDirective << EHFrameInfo.FnName << "\n\n"; |
| } else { |
| O << EHFrameInfo.FnName << ":\n"; |
| |
| // EH frame header. |
| EmitDifference("eh_frame_end", EHFrameInfo.Number, |
| "eh_frame_begin", EHFrameInfo.Number, true); |
| Asm->EOL("Length of Frame Information Entry"); |
| |
| EmitLabel("eh_frame_begin", EHFrameInfo.Number); |
| |
| EmitSectionOffset("eh_frame_begin", "eh_frame_common", |
| EHFrameInfo.Number, EHFrameInfo.PersonalityIndex, |
| true, true, false); |
| |
| Asm->EOL("FDE CIE offset"); |
| |
| EmitReference("eh_func_begin", EHFrameInfo.Number, true, true); |
| Asm->EOL("FDE initial location"); |
| EmitDifference("eh_func_end", EHFrameInfo.Number, |
| "eh_func_begin", EHFrameInfo.Number, true); |
| Asm->EOL("FDE address range"); |
| |
| // If there is a personality and landing pads then point to the language |
| // specific data area in the exception table. |
| if (EHFrameInfo.PersonalityIndex) { |
| Asm->EmitULEB128Bytes(4); |
| Asm->EOL("Augmentation size"); |
| |
| if (EHFrameInfo.hasLandingPads) |
| EmitReference("exception", EHFrameInfo.Number, true, true); |
| else |
| Asm->EmitInt32((int)0); |
| Asm->EOL("Language Specific Data Area"); |
| } else { |
| Asm->EmitULEB128Bytes(0); |
| Asm->EOL("Augmentation size"); |
| } |
| |
| // Indicate locations of function specific callee saved registers in frame. |
| EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves, |
| true); |
| |
| // On Darwin the linker honors the alignment of eh_frame, which means it |
| // must be 8-byte on 64-bit targets to match what gcc does. Otherwise you |
| // get holes which confuse readers of eh_frame. |
| Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, |
| 0, 0, false); |
| EmitLabel("eh_frame_end", EHFrameInfo.Number); |
| |
| // If the function is marked used, this table should be also. We cannot |
| // make the mark unconditional in this case, since retaining the table also |
| // retains the function in this case, and there is code around that depends |
| // on unused functions (calling undefined externals) being dead-stripped to |
| // link correctly. Yes, there really is. |
| if (MMI->isUsedFunction(EHFrameInfo.function)) |
| if (const char *UsedDirective = MAI->getUsedDirective()) |
| O << UsedDirective << EHFrameInfo.FnName << "\n\n"; |
| } |
| } |
| |
| /// SharedTypeIds - How many leading type ids two landing pads have in common. |
| unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L, |
| const LandingPadInfo *R) { |
| const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; |
| unsigned LSize = LIds.size(), RSize = RIds.size(); |
| unsigned MinSize = LSize < RSize ? LSize : RSize; |
| unsigned Count = 0; |
| |
| for (; Count != MinSize; ++Count) |
| if (LIds[Count] != RIds[Count]) |
| return Count; |
| |
| return Count; |
| } |
| |
| /// PadLT - Order landing pads lexicographically by type id. |
| bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { |
| const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; |
| unsigned LSize = LIds.size(), RSize = RIds.size(); |
| unsigned MinSize = LSize < RSize ? LSize : RSize; |
| |
| for (unsigned i = 0; i != MinSize; ++i) |
| if (LIds[i] != RIds[i]) |
| return LIds[i] < RIds[i]; |
| |
| return LSize < RSize; |
| } |
| |
| /// ComputeActionsTable - Compute the actions table and gather the first action |
| /// index for each landing pad site. |
| unsigned DwarfException:: |
| ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads, |
| SmallVectorImpl<ActionEntry> &Actions, |
| SmallVectorImpl<unsigned> &FirstActions) { |
| |
| // The action table follows the call-site table in the LSDA. The individual |
| // records are of two types: |
| // |
| // * Catch clause |
| // * Exception specification |
| // |
| // The two record kinds have the same format, with only small differences. |
| // They are distinguished by the "switch value" field: Catch clauses |
| // (TypeInfos) have strictly positive switch values, and exception |
| // specifications (FilterIds) have strictly negative switch values. Value 0 |
| // indicates a catch-all clause. |
| // |
| // Negative type IDs index into FilterIds. Positive type IDs index into |
| // TypeInfos. The value written for a positive type ID is just the type ID |
| // itself. For a negative type ID, however, the value written is the |
| // (negative) byte offset of the corresponding FilterIds entry. The byte |
| // offset is usually equal to the type ID (because the FilterIds entries are |
| // written using a variable width encoding, which outputs one byte per entry |
| // as long as the value written is not too large) but can differ. This kind |
| // of complication does not occur for positive type IDs because type infos are |
| // output using a fixed width encoding. FilterOffsets[i] holds the byte |
| // offset corresponding to FilterIds[i]. |
| |
| const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); |
| SmallVector<int, 16> FilterOffsets; |
| FilterOffsets.reserve(FilterIds.size()); |
| int Offset = -1; |
| |
| for (std::vector<unsigned>::const_iterator |
| I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { |
| FilterOffsets.push_back(Offset); |
| Offset -= MCAsmInfo::getULEB128Size(*I); |
| } |
| |
| FirstActions.reserve(LandingPads.size()); |
| |
| int FirstAction = 0; |
| unsigned SizeActions = 0; |
| const LandingPadInfo *PrevLPI = 0; |
| |
| for (SmallVectorImpl<const LandingPadInfo *>::const_iterator |
| I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { |
| const LandingPadInfo *LPI = *I; |
| const std::vector<int> &TypeIds = LPI->TypeIds; |
| const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0; |
| unsigned SizeSiteActions = 0; |
| |
| if (NumShared < TypeIds.size()) { |
| unsigned SizeAction = 0; |
| ActionEntry *PrevAction = 0; |
| |
| if (NumShared) { |
| const unsigned SizePrevIds = PrevLPI->TypeIds.size(); |
| assert(Actions.size()); |
| PrevAction = &Actions.back(); |
| SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + |
| MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); |
| |
| for (unsigned j = NumShared; j != SizePrevIds; ++j) { |
| SizeAction -= |
| MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); |
| SizeAction += -PrevAction->NextAction; |
| PrevAction = PrevAction->Previous; |
| } |
| } |
| |
| // Compute the actions. |
| for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { |
| int TypeID = TypeIds[J]; |
| assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); |
| int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; |
| unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); |
| |
| int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; |
| SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); |
| SizeSiteActions += SizeAction; |
| |
| ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; |
| Actions.push_back(Action); |
| PrevAction = &Actions.back(); |
| } |
| |
| // Record the first action of the landing pad site. |
| FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; |
| } // else identical - re-use previous FirstAction |
| |
| // Information used when created the call-site table. The action record |
| // field of the call site record is the offset of the first associated |
| // action record, relative to the start of the actions table. This value is |
| // biased by 1 (1 in dicating the start of the actions table), and 0 |
| // indicates that there are no actions. |
| FirstActions.push_back(FirstAction); |
| |
| // Compute this sites contribution to size. |
| SizeActions += SizeSiteActions; |
| |
| PrevLPI = LPI; |
| } |
| |
| return SizeActions; |
| } |
| |
| /// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke |
| /// has a try-range containing the call, a non-zero landing pad, and an |
| /// appropriate action. The entry for an ordinary call has a try-range |
| /// containing the call and zero for the landing pad and the action. Calls |
| /// marked 'nounwind' have no entry and must not be contained in the try-range |
| /// of any entry - they form gaps in the table. Entries must be ordered by |
| /// try-range address. |
| void DwarfException:: |
| ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, |
| const RangeMapType &PadMap, |
| const SmallVectorImpl<const LandingPadInfo *> &LandingPads, |
| const SmallVectorImpl<unsigned> &FirstActions) { |
| // The end label of the previous invoke or nounwind try-range. |
| unsigned LastLabel = 0; |
| |
| // Whether there is a potentially throwing instruction (currently this means |
| // an ordinary call) between the end of the previous try-range and now. |
| bool SawPotentiallyThrowing = false; |
| |
| // Whether the last CallSite entry was for an invoke. |
| bool PreviousIsInvoke = false; |
| |
| // Visit all instructions in order of address. |
| for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); |
| I != E; ++I) { |
| for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); |
| MI != E; ++MI) { |
| if (!MI->isLabel()) { |
| SawPotentiallyThrowing |= MI->getDesc().isCall(); |
| continue; |
| } |
| |
| unsigned BeginLabel = MI->getOperand(0).getImm(); |
| assert(BeginLabel && "Invalid label!"); |
| |
| // End of the previous try-range? |
| if (BeginLabel == LastLabel) |
| SawPotentiallyThrowing = false; |
| |
| // Beginning of a new try-range? |
| RangeMapType::iterator L = PadMap.find(BeginLabel); |
| if (L == PadMap.end()) |
| // Nope, it was just some random label. |
| continue; |
| |
| const PadRange &P = L->second; |
| const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; |
| assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && |
| "Inconsistent landing pad map!"); |
| |
| // For Dwarf exception handling (SjLj handling doesn't use this). If some |
| // instruction between the previous try-range and this one may throw, |
| // create a call-site entry with no landing pad for the region between the |
| // try-ranges. |
| if (SawPotentiallyThrowing && |
| MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { |
| CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; |
| CallSites.push_back(Site); |
| PreviousIsInvoke = false; |
| } |
| |
| LastLabel = LandingPad->EndLabels[P.RangeIndex]; |
| assert(BeginLabel && LastLabel && "Invalid landing pad!"); |
| |
| if (LandingPad->LandingPadLabel) { |
| // This try-range is for an invoke. |
| CallSiteEntry Site = { |
| BeginLabel, |
| LastLabel, |
| LandingPad->LandingPadLabel, |
| FirstActions[P.PadIndex] |
| }; |
| |
| // Try to merge with the previous call-site. |
| if (PreviousIsInvoke) { |
| CallSiteEntry &Prev = CallSites.back(); |
| if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { |
| // Extend the range of the previous entry. |
| Prev.EndLabel = Site.EndLabel; |
| continue; |
| } |
| } |
| |
| // Otherwise, create a new call-site. |
| CallSites.push_back(Site); |
| PreviousIsInvoke = true; |
| } else { |
| // Create a gap. |
| PreviousIsInvoke = false; |
| } |
| } |
| } |
| |
| // If some instruction between the previous try-range and the end of the |
| // function may throw, create a call-site entry with no landing pad for the |
| // region following the try-range. |
| if (SawPotentiallyThrowing && |
| MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { |
| CallSiteEntry Site = { LastLabel, 0, 0, 0 }; |
| CallSites.push_back(Site); |
| } |
| } |
| |
| /// EmitExceptionTable - Emit landing pads and actions. |
| /// |
| /// The general organization of the table is complex, but the basic concepts are |
| /// easy. First there is a header which describes the location and organization |
| /// of the three components that follow. |
| /// |
| /// 1. The landing pad site information describes the range of code covered by |
| /// the try. In our case it's an accumulation of the ranges covered by the |
| /// invokes in the try. There is also a reference to the landing pad that |
| /// handles the exception once processed. Finally an index into the actions |
| /// table. |
| /// 2. The action table, in our case, is composed of pairs of type IDs and next |
| /// action offset. Starting with the action index from the landing pad |
| /// site, each type ID is checked for a match to the current exception. If |
| /// it matches then the exception and type id are passed on to the landing |
| /// pad. Otherwise the next action is looked up. This chain is terminated |
| /// with a next action of zero. If no type id is found the the frame is |
| /// unwound and handling continues. |
| /// 3. Type ID table contains references to all the C++ typeinfo for all |
| /// catches in the function. This tables is reversed indexed base 1. |
| void DwarfException::EmitExceptionTable() { |
| const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); |
| const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); |
| const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); |
| if (PadInfos.empty()) return; |
| |
| // Sort the landing pads in order of their type ids. This is used to fold |
| // duplicate actions. |
| SmallVector<const LandingPadInfo *, 64> LandingPads; |
| LandingPads.reserve(PadInfos.size()); |
| |
| for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) |
| LandingPads.push_back(&PadInfos[i]); |
| |
| std::sort(LandingPads.begin(), LandingPads.end(), PadLT); |
| |
| // Compute the actions table and gather the first action index for each |
| // landing pad site. |
| SmallVector<ActionEntry, 32> Actions; |
| SmallVector<unsigned, 64> FirstActions; |
| unsigned SizeActions = ComputeActionsTable(LandingPads, Actions, FirstActions); |
| |
| // Invokes and nounwind calls have entries in PadMap (due to being bracketed |
| // by try-range labels when lowered). Ordinary calls do not, so appropriate |
| // try-ranges for them need be deduced when using Dwarf exception handling. |
| RangeMapType PadMap; |
| for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { |
| const LandingPadInfo *LandingPad = LandingPads[i]; |
| for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { |
| unsigned BeginLabel = LandingPad->BeginLabels[j]; |
| assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); |
| PadRange P = { i, j }; |
| PadMap[BeginLabel] = P; |
| } |
| } |
| |
| // Compute the call-site table. |
| SmallVector<CallSiteEntry, 64> CallSites; |
| ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions); |
| |
| // Final tallies. |
| |
| // Call sites. |
| const unsigned SiteStartSize = sizeof(int32_t); // DW_EH_PE_udata4 |
| const unsigned SiteLengthSize = sizeof(int32_t); // DW_EH_PE_udata4 |
| const unsigned LandingPadSize = sizeof(int32_t); // DW_EH_PE_udata4 |
| unsigned SizeSites; |
| |
| bool HaveTTData = (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj) |
| ? (!TypeInfos.empty() || !FilterIds.empty()) : true; |
| |
| |
| if (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj) { |
| SizeSites = 0; |
| } else |
| SizeSites = CallSites.size() * |
| (SiteStartSize + SiteLengthSize + LandingPadSize); |
| for (unsigned i = 0, e = CallSites.size(); i < e; ++i) { |
| SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); |
| if (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj) |
| SizeSites += MCAsmInfo::getULEB128Size(i); |
| } |
| // Type infos. |
| const unsigned TypeInfoSize = TD->getPointerSize(); // DW_EH_PE_absptr |
| unsigned SizeTypes = TypeInfos.size() * TypeInfoSize; |
| |
| unsigned TypeOffset = sizeof(int8_t) + // Call site format |
| MCAsmInfo::getULEB128Size(SizeSites) + // Call-site table length |
| SizeSites + SizeActions + SizeTypes; |
| |
| unsigned TotalSize = sizeof(int8_t) + // LPStart format |
| sizeof(int8_t) + // TType format |
| (HaveTTData ? |
| MCAsmInfo::getULEB128Size(TypeOffset) : 0) + // TType base offset |
| TypeOffset; |
| |
| unsigned SizeAlign = (4 - TotalSize) & 3; |
| |
| // Begin the exception table. |
| const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); |
| Asm->OutStreamer.SwitchSection(LSDASection); |
| Asm->EmitAlignment(2, 0, 0, false); |
| O << "GCC_except_table" << SubprogramCount << ":\n"; |
| |
| for (unsigned i = 0; i != SizeAlign; ++i) { |
| Asm->EmitInt8(0); |
| Asm->EOL("Padding"); |
| } |
| |
| EmitLabel("exception", SubprogramCount); |
| if (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj) { |
| std::string SjLjName = "_lsda_"; |
| SjLjName += MF->getFunction()->getName().str(); |
| EmitLabel(SjLjName.c_str(), 0); |
| } |
| |
| // Emit the header. |
| Asm->EmitInt8(dwarf::DW_EH_PE_omit); |
| Asm->EOL("@LPStart format (DW_EH_PE_omit)"); |
| |
| #if 0 |
| if (TypeInfos.empty() && FilterIds.empty()) { |
| // If there are no typeinfos or filters, there is nothing to emit, optimize |
| // by specifying the "omit" encoding. |
| Asm->EmitInt8(dwarf::DW_EH_PE_omit); |
| Asm->EOL("@TType format (DW_EH_PE_omit)"); |
| } else { |
| // Okay, we have actual filters or typeinfos to emit. As such, we need to |
| // pick a type encoding for them. We're about to emit a list of pointers to |
| // typeinfo objects at the end of the LSDA. However, unless we're in static |
| // mode, this reference will require a relocation by the dynamic linker. |
| // |
| // Because of this, we have a couple of options: |
| // 1) If we are in -static mode, we can always use an absolute reference |
| // from the LSDA, because the static linker will resolve it. |
| // 2) Otherwise, if the LSDA section is writable, we can output the direct |
| // reference to the typeinfo and allow the dynamic linker to relocate |
| // it. Since it is in a writable section, the dynamic linker won't |
| // have a problem. |
| // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, |
| // we need to use some form of indirection. For example, on Darwin, |
| // we can output a statically-relocatable reference to a dyld stub. The |
| // offset to the stub is constant, but the contents are in a section |
| // that is updated by the dynamic linker. This is easy enough, but we |
| // need to tell the personality function of the unwinder to indirect |
| // through the dyld stub. |
| // |
| // FIXME: When this is actually implemented, we'll have to emit the stubs |
| // somewhere. This predicate should be moved to a shared location that is |
| // in target-independent code. |
| // |
| if (LSDASection->isWritable() || |
| Asm->TM.getRelocationModel() == Reloc::Static) { |
| Asm->EmitInt8(DW_EH_PE_absptr); |
| Asm->EOL("TType format (DW_EH_PE_absptr)"); |
| } else { |
| Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_indirect | DW_EH_PE_sdata4); |
| Asm->EOL("TType format (DW_EH_PE_pcrel | DW_EH_PE_indirect" |
| " | DW_EH_PE_sdata4)"); |
| } |
| Asm->EmitULEB128Bytes(TypeOffset); |
| Asm->EOL("TType base offset"); |
| } |
| #else |
| // For SjLj exceptions, if there is no TypeInfo, then we just explicitly |
| // say that we're omitting that bit. |
| // FIXME: does this apply to Dwarf also? The above #if 0 implies yes? |
| if (!HaveTTData) { |
| Asm->EmitInt8(dwarf::DW_EH_PE_omit); |
| Asm->EOL("@TType format (DW_EH_PE_omit)"); |
| } else { |
| Asm->EmitInt8(dwarf::DW_EH_PE_absptr); |
| Asm->EOL("@TType format (DW_EH_PE_absptr)"); |
| Asm->EmitULEB128Bytes(TypeOffset); |
| Asm->EOL("@TType base offset"); |
| } |
| #endif |
| |
| // SjLj Exception handilng |
| if (MAI->getExceptionHandlingType() == ExceptionHandling::SjLj) { |
| Asm->EmitInt8(dwarf::DW_EH_PE_udata4); |
| Asm->EOL("Call site format (DW_EH_PE_udata4)"); |
| Asm->EmitULEB128Bytes(SizeSites); |
| Asm->EOL("Call site table length"); |
| |
| // Emit the landing pad site information. |
| unsigned idx = 0; |
| for (SmallVectorImpl<CallSiteEntry>::const_iterator |
| I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { |
| const CallSiteEntry &S = *I; |
| |
| // Offset of the landing pad, counted in 16-byte bundles relative to the |
| // @LPStart address. |
| Asm->EmitULEB128Bytes(idx); |
| Asm->EOL("Landing pad"); |
| |
| // Offset of the first associated action record, relative to the start of |
| // the action table. This value is biased by 1 (1 indicates the start of |
| // the action table), and 0 indicates that there are no actions. |
| Asm->EmitULEB128Bytes(S.Action); |
| Asm->EOL("Action"); |
| } |
| } else { |
| // DWARF Exception handling |
| assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf); |
| |
| // The call-site table is a list of all call sites that may throw an |
| // exception (including C++ 'throw' statements) in the procedure |
| // fragment. It immediately follows the LSDA header. Each entry indicates, |
| // for a given call, the first corresponding action record and corresponding |
| // landing pad. |
| // |
| // The table begins with the number of bytes, stored as an LEB128 |
| // compressed, unsigned integer. The records immediately follow the record |
| // count. They are sorted in increasing call-site address. Each record |
| // indicates: |
| // |
| // * The position of the call-site. |
| // * The position of the landing pad. |
| // * The first action record for that call site. |
| // |
| // A missing entry in the call-site table indicates that a call is not |
| // supposed to throw. Such calls include: |
| // |
| // * Calls to destructors within cleanup code. C++ semantics forbids these |
| // calls to throw. |
| // * Calls to intrinsic routines in the standard library which are known |
| // not to throw (sin, memcpy, et al). |
| // |
| // If the runtime does not find the call-site entry for a given call, it |
| // will call `terminate()'. |
| |
| // Emit the landing pad call site table. |
| Asm->EmitInt8(dwarf::DW_EH_PE_udata4); |
| Asm->EOL("Call site format (DW_EH_PE_udata4)"); |
| Asm->EmitULEB128Bytes(SizeSites); |
| Asm->EOL("Call site table size"); |
| |
| for (SmallVectorImpl<CallSiteEntry>::const_iterator |
| I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { |
| const CallSiteEntry &S = *I; |
| const char *BeginTag; |
| unsigned BeginNumber; |
| |
| if (!S.BeginLabel) { |
| BeginTag = "eh_func_begin"; |
| BeginNumber = SubprogramCount; |
| } else { |
| BeginTag = "label"; |
| BeginNumber = S.BeginLabel; |
| } |
| |
| // Offset of the call site relative to the previous call site, counted in |
| // number of 16-byte bundles. The first call site is counted relative to |
| // the start of the procedure fragment. |
| EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount, |
| true, true); |
| Asm->EOL("Region start"); |
| |
| if (!S.EndLabel) |
| EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber, |
| true); |
| else |
| EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true); |
| |
| Asm->EOL("Region length"); |
| |
| // Offset of the landing pad, counted in 16-byte bundles relative to the |
| // @LPStart address. |
| if (!S.PadLabel) |
| Asm->EmitInt32(0); |
| else |
| EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount, |
| true, true); |
| |
| Asm->EOL("Landing pad"); |
| |
| // Offset of the first associated action record, relative to the start of |
| // the action table. This value is biased by 1 (1 indicates the start of |
| // the action table), and 0 indicates that there are no actions. |
| Asm->EmitULEB128Bytes(S.Action); |
| Asm->EOL("Action"); |
| } |
| } |
| |
| // Emit the Action Table. |
| for (SmallVectorImpl<ActionEntry>::const_iterator |
| I = Actions.begin(), E = Actions.end(); I != E; ++I) { |
| const ActionEntry &Action = *I; |
| |
| // Type Filter |
| // |
| // Used by the runtime to match the type of the thrown exception to the |
| // type of the catch clauses or the types in the exception specification. |
| |
| Asm->EmitSLEB128Bytes(Action.ValueForTypeID); |
| Asm->EOL("TypeInfo index"); |
| |
| // Action Record |
| // |
| // Self-relative signed displacement in bytes of the next action record, |
| // or 0 if there is no next action record. |
| |
| Asm->EmitSLEB128Bytes(Action.NextAction); |
| Asm->EOL("Next action"); |
| } |
| |
| // Emit the Catch Clauses. The code for the catch clauses following the same |
| // try is similar to a switch statement. The catch clause action record |
| // informs the runtime about the type of a catch clause and about the |
| // associated switch value. |
| // |
| // Action Record Fields: |
| // |
| // * Filter Value |
| // Positive value, starting at 1. Index in the types table of the |
| // __typeinfo for the catch-clause type. 1 is the first word preceding |
| // TTBase, 2 is the second word, and so on. Used by the runtime to check |
| // if the thrown exception type matches the catch-clause type. Back-end |
| // generated switch statements check against this value. |
| // |
| // * Next |
| // Signed offset, in bytes from the start of this field, to the next |
| // chained action record, or zero if none. |
| // |
| // The order of the action records determined by the next field is the order |
| // of the catch clauses as they appear in the source code, and must be kept in |
| // the same order. As a result, changing the order of the catch clause would |
| // change the semantics of the program. |
| for (std::vector<GlobalVariable *>::const_reverse_iterator |
| I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) { |
| const GlobalVariable *GV = *I; |
| PrintRelDirective(); |
| |
| if (GV) { |
| std::string GLN; |
| O << Asm->getGlobalLinkName(GV, GLN); |
| } else { |
| O << "0"; |
| } |
| |
| Asm->EOL("TypeInfo"); |
| } |
| |
| // Emit the Type Table. |
| for (std::vector<unsigned>::const_iterator |
| I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { |
| unsigned TypeID = *I; |
| Asm->EmitULEB128Bytes(TypeID); |
| Asm->EOL("Filter TypeInfo index"); |
| } |
| |
| Asm->EmitAlignment(2, 0, 0, false); |
| } |
| |
| /// EndModule - Emit all exception information that should come after the |
| /// content. |
| void DwarfException::EndModule() { |
| if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf) |
| return; |
| if (TimePassesIsEnabled) |
| ExceptionTimer->startTimer(); |
| |
| if (shouldEmitMovesModule || shouldEmitTableModule) { |
| const std::vector<Function *> Personalities = MMI->getPersonalities(); |
| for (unsigned i = 0; i < Personalities.size(); ++i) |
| EmitCommonEHFrame(Personalities[i], i); |
| |
| for (std::vector<FunctionEHFrameInfo>::iterator I = EHFrames.begin(), |
| E = EHFrames.end(); I != E; ++I) |
| EmitEHFrame(*I); |
| } |
| |
| if (TimePassesIsEnabled) |
| ExceptionTimer->stopTimer(); |
| } |
| |
| /// BeginFunction - Gather pre-function exception information. Assumes being |
| /// emitted immediately after the function entry point. |
| void DwarfException::BeginFunction(MachineFunction *MF) { |
| if (TimePassesIsEnabled) |
| ExceptionTimer->startTimer(); |
| |
| this->MF = MF; |
| shouldEmitTable = shouldEmitMoves = false; |
| |
| if (MMI && MAI->doesSupportExceptionHandling()) { |
| // Map all labels and get rid of any dead landing pads. |
| MMI->TidyLandingPads(); |
| |
| // If any landing pads survive, we need an EH table. |
| if (MMI->getLandingPads().size()) |
| shouldEmitTable = true; |
| |
| // See if we need frame move info. |
| if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory) |
| shouldEmitMoves = true; |
| |
| if (shouldEmitMoves || shouldEmitTable) |
| // Assumes in correct section after the entry point. |
| EmitLabel("eh_func_begin", ++SubprogramCount); |
| } |
| |
| shouldEmitTableModule |= shouldEmitTable; |
| shouldEmitMovesModule |= shouldEmitMoves; |
| |
| if (TimePassesIsEnabled) |
| ExceptionTimer->stopTimer(); |
| } |
| |
| /// EndFunction - Gather and emit post-function exception information. |
| /// |
| void DwarfException::EndFunction() { |
| if (TimePassesIsEnabled) |
| ExceptionTimer->startTimer(); |
| |
| if (shouldEmitMoves || shouldEmitTable) { |
| EmitLabel("eh_func_end", SubprogramCount); |
| EmitExceptionTable(); |
| |
| // Save EH frame information |
| EHFrames.push_back( |
| FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF), |
| SubprogramCount, |
| MMI->getPersonalityIndex(), |
| MF->getFrameInfo()->hasCalls(), |
| !MMI->getLandingPads().empty(), |
| MMI->getFrameMoves(), |
| MF->getFunction())); |
| } |
| |
| if (TimePassesIsEnabled) |
| ExceptionTimer->stopTimer(); |
| } |