blob: ee3cc4dd78fc6fde7f42fbf1051b7d3b33ad00a0 [file] [log] [blame]
; RUN: llc < %s -O3 -march=thumb -mcpu=cortex-a9 | FileCheck %s -check-prefix=A9
; @simple is the most basic chain of address induction variables. Chaining
; saves at least one register and avoids complex addressing and setup
; code.
;
; A9: @simple
; no expensive address computation in the preheader
; A9: lsl
; A9-NOT: lsl
; A9: %loop
; no complex address modes
; A9-NOT: lsl
define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
entry:
br label %loop
loop:
%iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
%s = phi i32 [ 0, %entry ], [ %s4, %loop ]
%v = load i32* %iv
%iv1 = getelementptr inbounds i32* %iv, i32 %x
%v1 = load i32* %iv1
%iv2 = getelementptr inbounds i32* %iv1, i32 %x
%v2 = load i32* %iv2
%iv3 = getelementptr inbounds i32* %iv2, i32 %x
%v3 = load i32* %iv3
%s1 = add i32 %s, %v
%s2 = add i32 %s1, %v1
%s3 = add i32 %s2, %v2
%s4 = add i32 %s3, %v3
%iv4 = getelementptr inbounds i32* %iv3, i32 %x
%cmp = icmp eq i32* %iv4, %b
br i1 %cmp, label %exit, label %loop
exit:
ret i32 %s4
}
; @user is not currently chained because the IV is live across memory ops.
;
; A9: @user
; stride multiples computed in the preheader
; A9: lsl
; A9: lsl
; A9: %loop
; complex address modes
; A9: lsl
; A9: lsl
define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
entry:
br label %loop
loop:
%iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
%s = phi i32 [ 0, %entry ], [ %s4, %loop ]
%v = load i32* %iv
%iv1 = getelementptr inbounds i32* %iv, i32 %x
%v1 = load i32* %iv1
%iv2 = getelementptr inbounds i32* %iv1, i32 %x
%v2 = load i32* %iv2
%iv3 = getelementptr inbounds i32* %iv2, i32 %x
%v3 = load i32* %iv3
%s1 = add i32 %s, %v
%s2 = add i32 %s1, %v1
%s3 = add i32 %s2, %v2
%s4 = add i32 %s3, %v3
%iv4 = getelementptr inbounds i32* %iv3, i32 %x
store i32 %s4, i32* %iv
%cmp = icmp eq i32* %iv4, %b
br i1 %cmp, label %exit, label %loop
exit:
ret i32 %s4
}
; @extrastride is a slightly more interesting case of a single
; complete chain with multiple strides. The test case IR is what LSR
; used to do, and exactly what we don't want to do. LSR's new IV
; chaining feature should now undo the damage.
;
; A9: extrastride:
; no spills
; A9-NOT: str
; only one stride multiple in the preheader
; A9: lsl
; A9-NOT: {{str r|lsl}}
; A9: %for.body{{$}}
; no complex address modes or reloads
; A9-NOT: {{ldr .*[sp]|lsl}}
define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
entry:
%cmp8 = icmp eq i32 %z, 0
br i1 %cmp8, label %for.end, label %for.body.lr.ph
for.body.lr.ph: ; preds = %entry
%add.ptr.sum = shl i32 %main_stride, 1 ; s*2
%add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
%add.ptr2.sum = add i32 %x, %main_stride ; s + x
%add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
%add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
br label %for.body
for.body: ; preds = %for.body.lr.ph, %for.body
%main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
%i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
%0 = bitcast i8* %main.addr.011 to i32*
%1 = load i32* %0, align 4
%add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride
%2 = bitcast i8* %add.ptr to i32*
%3 = load i32* %2, align 4
%add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum
%4 = bitcast i8* %add.ptr1 to i32*
%5 = load i32* %4, align 4
%add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum
%6 = bitcast i8* %add.ptr2 to i32*
%7 = load i32* %6, align 4
%add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum
%8 = bitcast i8* %add.ptr3 to i32*
%9 = load i32* %8, align 4
%add = add i32 %3, %1
%add4 = add i32 %add, %5
%add5 = add i32 %add4, %7
%add6 = add i32 %add5, %9
store i32 %add6, i32* %res.addr.09, align 4
%add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum
%add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y
%inc = add i32 %i.010, 1
%cmp = icmp eq i32 %inc, %z
br i1 %cmp, label %for.end, label %for.body
for.end: ; preds = %for.body, %entry
ret void
}
; @foldedidx is an unrolled variant of this loop:
; for (unsigned long i = 0; i < len; i += s) {
; c[i] = a[i] + b[i];
; }
; where 's' can be folded into the addressing mode.
; Consequently, we should *not* form any chains.
;
; A9: foldedidx:
; A9: ldrb.w {{r[0-9]|lr}}, [{{r[0-9]|lr}}, #3]
define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
%arrayidx = getelementptr inbounds i8* %a, i32 %i.07
%0 = load i8* %arrayidx, align 1
%conv5 = zext i8 %0 to i32
%arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07
%1 = load i8* %arrayidx1, align 1
%conv26 = zext i8 %1 to i32
%add = add nsw i32 %conv26, %conv5
%conv3 = trunc i32 %add to i8
%arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07
store i8 %conv3, i8* %arrayidx4, align 1
%inc1 = or i32 %i.07, 1
%arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1
%2 = load i8* %arrayidx.1, align 1
%conv5.1 = zext i8 %2 to i32
%arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1
%3 = load i8* %arrayidx1.1, align 1
%conv26.1 = zext i8 %3 to i32
%add.1 = add nsw i32 %conv26.1, %conv5.1
%conv3.1 = trunc i32 %add.1 to i8
%arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1
store i8 %conv3.1, i8* %arrayidx4.1, align 1
%inc.12 = or i32 %i.07, 2
%arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12
%4 = load i8* %arrayidx.2, align 1
%conv5.2 = zext i8 %4 to i32
%arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12
%5 = load i8* %arrayidx1.2, align 1
%conv26.2 = zext i8 %5 to i32
%add.2 = add nsw i32 %conv26.2, %conv5.2
%conv3.2 = trunc i32 %add.2 to i8
%arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12
store i8 %conv3.2, i8* %arrayidx4.2, align 1
%inc.23 = or i32 %i.07, 3
%arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23
%6 = load i8* %arrayidx.3, align 1
%conv5.3 = zext i8 %6 to i32
%arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23
%7 = load i8* %arrayidx1.3, align 1
%conv26.3 = zext i8 %7 to i32
%add.3 = add nsw i32 %conv26.3, %conv5.3
%conv3.3 = trunc i32 %add.3 to i8
%arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23
store i8 %conv3.3, i8* %arrayidx4.3, align 1
%inc.3 = add nsw i32 %i.07, 4
%exitcond.3 = icmp eq i32 %inc.3, 400
br i1 %exitcond.3, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; @testNeon is an important example of the nead for ivchains.
;
; Currently we have three extra add.w's that keep the store address
; live past the next increment because ISEL is unfortunately undoing
; the store chain. ISEL also fails to convert the stores to
; post-increment addressing. However, the loads should use
; post-increment addressing, no add's or add.w's beyond the three
; mentioned. Most importantly, there should be no spills or reloads!
;
; A9: testNeon:
; A9: %.lr.ph
; A9-NOT: lsl.w
; A9-NOT: {{ldr|str|adds|add r}}
; A9: add.w r
; A9-NOT: {{ldr|str|adds|add r}}
; A9: add.w r
; A9-NOT: {{ldr|str|adds|add r}}
; A9: add.w r
; A9-NOT: {{ldr|str|adds|add r}}
; A9-NOT: add.w r
; A9: bne
define hidden void @testNeon(i8* %ref_data, i32 %ref_stride, i32 %limit, <16 x i8>* nocapture %data) nounwind optsize {
%1 = icmp sgt i32 %limit, 0
br i1 %1, label %.lr.ph, label %45
.lr.ph: ; preds = %0
%2 = shl nsw i32 %ref_stride, 1
%3 = mul nsw i32 %ref_stride, 3
%4 = shl nsw i32 %ref_stride, 2
%5 = mul nsw i32 %ref_stride, 5
%6 = mul nsw i32 %ref_stride, 6
%7 = mul nsw i32 %ref_stride, 7
%8 = shl nsw i32 %ref_stride, 3
%9 = sub i32 0, %8
%10 = mul i32 %limit, -64
br label %11
; <label>:11 ; preds = %11, %.lr.ph
%.05 = phi i8* [ %ref_data, %.lr.ph ], [ %42, %11 ]
%counter.04 = phi i32 [ 0, %.lr.ph ], [ %44, %11 ]
%result.03 = phi <16 x i8> [ zeroinitializer, %.lr.ph ], [ %41, %11 ]
%.012 = phi <16 x i8>* [ %data, %.lr.ph ], [ %43, %11 ]
%12 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %.05, i32 1) nounwind
%13 = getelementptr inbounds i8* %.05, i32 %ref_stride
%14 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %13, i32 1) nounwind
%15 = shufflevector <1 x i64> %12, <1 x i64> %14, <2 x i32> <i32 0, i32 1>
%16 = bitcast <2 x i64> %15 to <16 x i8>
%17 = getelementptr inbounds <16 x i8>* %.012, i32 1
store <16 x i8> %16, <16 x i8>* %.012, align 4
%18 = getelementptr inbounds i8* %.05, i32 %2
%19 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %18, i32 1) nounwind
%20 = getelementptr inbounds i8* %.05, i32 %3
%21 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %20, i32 1) nounwind
%22 = shufflevector <1 x i64> %19, <1 x i64> %21, <2 x i32> <i32 0, i32 1>
%23 = bitcast <2 x i64> %22 to <16 x i8>
%24 = getelementptr inbounds <16 x i8>* %.012, i32 2
store <16 x i8> %23, <16 x i8>* %17, align 4
%25 = getelementptr inbounds i8* %.05, i32 %4
%26 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %25, i32 1) nounwind
%27 = getelementptr inbounds i8* %.05, i32 %5
%28 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %27, i32 1) nounwind
%29 = shufflevector <1 x i64> %26, <1 x i64> %28, <2 x i32> <i32 0, i32 1>
%30 = bitcast <2 x i64> %29 to <16 x i8>
%31 = getelementptr inbounds <16 x i8>* %.012, i32 3
store <16 x i8> %30, <16 x i8>* %24, align 4
%32 = getelementptr inbounds i8* %.05, i32 %6
%33 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %32, i32 1) nounwind
%34 = getelementptr inbounds i8* %.05, i32 %7
%35 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %34, i32 1) nounwind
%36 = shufflevector <1 x i64> %33, <1 x i64> %35, <2 x i32> <i32 0, i32 1>
%37 = bitcast <2 x i64> %36 to <16 x i8>
store <16 x i8> %37, <16 x i8>* %31, align 4
%38 = add <16 x i8> %16, %23
%39 = add <16 x i8> %38, %30
%40 = add <16 x i8> %39, %37
%41 = add <16 x i8> %result.03, %40
%42 = getelementptr i8* %.05, i32 %9
%43 = getelementptr inbounds <16 x i8>* %.012, i32 -64
%44 = add nsw i32 %counter.04, 1
%exitcond = icmp eq i32 %44, %limit
br i1 %exitcond, label %._crit_edge, label %11
._crit_edge: ; preds = %11
%scevgep = getelementptr <16 x i8>* %data, i32 %10
br label %45
; <label>:45 ; preds = %._crit_edge, %0
%result.0.lcssa = phi <16 x i8> [ %41, %._crit_edge ], [ zeroinitializer, %0 ]
%.01.lcssa = phi <16 x i8>* [ %scevgep, %._crit_edge ], [ %data, %0 ]
store <16 x i8> %result.0.lcssa, <16 x i8>* %.01.lcssa, align 4
ret void
}
declare <1 x i64> @llvm.arm.neon.vld1.v1i64(i8*, i32) nounwind readonly
; Handle chains in which the same offset is used for both loads and
; stores to the same array.
; rdar://11410078.
;
; A9: @testReuse
; A9: %for.body
; A9: vld1.8 {d{{[0-9]+}}}, [[BASE:[r[0-9]+]]], [[INC:r[0-9]]]
; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vld1.8 {d{{[0-9]+}}}, [[BASE]], {{r[0-9]}}
; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]], [[INC]]
; A9: vst1.8 {d{{[0-9]+}}}, [[BASE]]
; A9: bne
define void @testReuse(i8* %src, i32 %stride) nounwind ssp {
entry:
%mul = shl nsw i32 %stride, 2
%idx.neg = sub i32 0, %mul
%mul1 = mul nsw i32 %stride, 3
%idx.neg2 = sub i32 0, %mul1
%mul5 = shl nsw i32 %stride, 1
%idx.neg6 = sub i32 0, %mul5
%idx.neg10 = sub i32 0, %stride
br label %for.body
for.body: ; preds = %for.body, %entry
%i.0110 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%src.addr = phi i8* [ %src, %entry ], [ %add.ptr45, %for.body ]
%add.ptr = getelementptr inbounds i8* %src.addr, i32 %idx.neg
%vld1 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8(i8* %add.ptr, i32 1)
%add.ptr3 = getelementptr inbounds i8* %src.addr, i32 %idx.neg2
%vld2 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8(i8* %add.ptr3, i32 1)
%add.ptr7 = getelementptr inbounds i8* %src.addr, i32 %idx.neg6
%vld3 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8(i8* %add.ptr7, i32 1)
%add.ptr11 = getelementptr inbounds i8* %src.addr, i32 %idx.neg10
%vld4 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8(i8* %add.ptr11, i32 1)
%vld5 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8(i8* %src.addr, i32 1)
%add.ptr17 = getelementptr inbounds i8* %src.addr, i32 %stride
%vld6 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8(i8* %add.ptr17, i32 1)
%add.ptr20 = getelementptr inbounds i8* %src.addr, i32 %mul5
%vld7 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8(i8* %add.ptr20, i32 1)
%add.ptr23 = getelementptr inbounds i8* %src.addr, i32 %mul1
%vld8 = tail call <8 x i8> @llvm.arm.neon.vld1.v8i8(i8* %add.ptr23, i32 1)
%vadd1 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld1, <8 x i8> %vld2) nounwind
%vadd2 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld2, <8 x i8> %vld3) nounwind
%vadd3 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld3, <8 x i8> %vld4) nounwind
%vadd4 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld4, <8 x i8> %vld5) nounwind
%vadd5 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld5, <8 x i8> %vld6) nounwind
%vadd6 = tail call <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8> %vld6, <8 x i8> %vld7) nounwind
tail call void @llvm.arm.neon.vst1.v8i8(i8* %add.ptr3, <8 x i8> %vadd1, i32 1)
tail call void @llvm.arm.neon.vst1.v8i8(i8* %add.ptr7, <8 x i8> %vadd2, i32 1)
tail call void @llvm.arm.neon.vst1.v8i8(i8* %add.ptr11, <8 x i8> %vadd3, i32 1)
tail call void @llvm.arm.neon.vst1.v8i8(i8* %src.addr, <8 x i8> %vadd4, i32 1)
tail call void @llvm.arm.neon.vst1.v8i8(i8* %add.ptr17, <8 x i8> %vadd5, i32 1)
tail call void @llvm.arm.neon.vst1.v8i8(i8* %add.ptr20, <8 x i8> %vadd6, i32 1)
%inc = add nsw i32 %i.0110, 1
%add.ptr45 = getelementptr inbounds i8* %src.addr, i32 8
%exitcond = icmp eq i32 %inc, 4
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
declare <8 x i8> @llvm.arm.neon.vld1.v8i8(i8*, i32) nounwind readonly
declare void @llvm.arm.neon.vst1.v8i8(i8*, <8 x i8>, i32) nounwind
declare <8 x i8> @llvm.arm.neon.vhaddu.v8i8(<8 x i8>, <8 x i8>) nounwind readnone