| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| |
| <html> |
| <head> |
| <title>Kaleidoscope: Extending the Language: User-defined Operators</title> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| <meta name="author" content="Chris Lattner"> |
| <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| </head> |
| |
| <body> |
| |
| <div class="doc_title">Kaleidoscope: Extending the Language: User-defined Operators</div> |
| |
| <ul> |
| <li><a href="index.html">Up to Tutorial Index</a></li> |
| <li>Chapter 6 |
| <ol> |
| <li><a href="#intro">Chapter 6 Introduction</a></li> |
| <li><a href="#idea">User-defined Operators: the Idea</a></li> |
| <li><a href="#binary">User-defined Binary Operators</a></li> |
| <li><a href="#unary">User-defined Unary Operators</a></li> |
| <li><a href="#example">Kicking the Tires</a></li> |
| <li><a href="#code">Full Code Listing</a></li> |
| </ol> |
| </li> |
| <li><a href="LangImpl7.html">Chapter 7</a>: Extending the Language: Mutable |
| Variables / SSA Construction</li> |
| </ul> |
| |
| <div class="doc_author"> |
| <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="intro">Chapter 6 Introduction</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language |
| with LLVM</a>" tutorial. At this point in our tutorial, we now have a fully |
| functional language that is fairly minimal, but also useful. There |
| is still one big problem with it, however. Our language doesn't have many |
| useful operators (like division, logical negation, or even any comparisons |
| besides less-than).</p> |
| |
| <p>This chapter of the tutorial takes a wild digression into adding user-defined |
| operators to the simple and beautiful Kaleidoscope language. This digression now gives |
| us a simple and ugly language in some ways, but also a powerful one at the same time. |
| One of the great things about creating your own language is that you get to |
| decide what is good or bad. In this tutorial we'll assume that it is okay to |
| use this as a way to show some interesting parsing techniques.</p> |
| |
| <p>At the end of this tutorial, we'll run through an example Kaleidoscope |
| application that <a href="#example">renders the Mandelbrot set</a>. This gives |
| an example of what you can build with Kaleidoscope and its feature set.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="idea">User-defined Operators: the Idea</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p> |
| The "operator overloading" that we will add to Kaleidoscope is more general than |
| languages like C++. In C++, you are only allowed to redefine existing |
| operators: you can't programatically change the grammar, introduce new |
| operators, change precedence levels, etc. In this chapter, we will add this |
| capability to Kaleidoscope, which will let the user round out the set of |
| operators that are supported.</p> |
| |
| <p>The point of going into user-defined operators in a tutorial like this is to |
| show the power and flexibility of using a hand-written parser. Thus far, the parser |
| we have been implementing uses recursive descent for most parts of the grammar and |
| operator precedence parsing for the expressions. See <a |
| href="LangImpl2.html">Chapter 2</a> for details. Without using operator |
| precedence parsing, it would be very difficult to allow the programmer to |
| introduce new operators into the grammar: the grammar is dynamically extensible |
| as the JIT runs.</p> |
| |
| <p>The two specific features we'll add are programmable unary operators (right |
| now, Kaleidoscope has no unary operators at all) as well as binary operators. |
| An example of this is:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| # Logical unary not. |
| def unary!(v) |
| if v then |
| 0 |
| else |
| 1; |
| |
| # Define > with the same precedence as <. |
| def binary> 10 (LHS RHS) |
| RHS < LHS; |
| |
| # Binary "logical or", (note that it does not "short circuit") |
| def binary| 5 (LHS RHS) |
| if LHS then |
| 1 |
| else if RHS then |
| 1 |
| else |
| 0; |
| |
| # Define = with slightly lower precedence than relationals. |
| def binary= 9 (LHS RHS) |
| !(LHS < RHS | LHS > RHS); |
| </pre> |
| </div> |
| |
| <p>Many languages aspire to being able to implement their standard runtime |
| library in the language itself. In Kaleidoscope, we can implement significant |
| parts of the language in the library!</p> |
| |
| <p>We will break down implementation of these features into two parts: |
| implementing support for user-defined binary operators and adding unary |
| operators.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="binary">User-defined Binary Operators</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>Adding support for user-defined binary operators is pretty simple with our |
| current framework. We'll first add support for the unary/binary keywords:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| enum Token { |
| ... |
| <b>// operators |
| tok_binary = -11, tok_unary = -12</b> |
| }; |
| ... |
| static int gettok() { |
| ... |
| if (IdentifierStr == "for") return tok_for; |
| if (IdentifierStr == "in") return tok_in; |
| <b>if (IdentifierStr == "binary") return tok_binary; |
| if (IdentifierStr == "unary") return tok_unary;</b> |
| return tok_identifier; |
| </pre> |
| </div> |
| |
| <p>This just adds lexer support for the unary and binary keywords, like we |
| did in <a href="LangImpl5.html#iflexer">previous chapters</a>. One nice thing |
| about our current AST, is that we represent binary operators with full generalisation |
| by using their ASCII code as the opcode. For our extended operators, we'll use this |
| same representation, so we don't need any new AST or parser support.</p> |
| |
| <p>On the other hand, we have to be able to represent the definitions of these |
| new operators, in the "def binary| 5" part of the function definition. In our |
| grammar so far, the "name" for the function definition is parsed as the |
| "prototype" production and into the <tt>PrototypeAST</tt> AST node. To |
| represent our new user-defined operators as prototypes, we have to extend |
| the <tt>PrototypeAST</tt> AST node like this:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its argument names as well as if it is an operator. |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| <b>bool isOperator; |
| unsigned Precedence; // Precedence if a binary op.</b> |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args, |
| <b>bool isoperator = false, unsigned prec = 0</b>) |
| : Name(name), Args(args), <b>isOperator(isoperator), Precedence(prec)</b> {} |
| |
| <b>bool isUnaryOp() const { return isOperator && Args.size() == 1; } |
| bool isBinaryOp() const { return isOperator && Args.size() == 2; } |
| |
| char getOperatorName() const { |
| assert(isUnaryOp() || isBinaryOp()); |
| return Name[Name.size()-1]; |
| } |
| |
| unsigned getBinaryPrecedence() const { return Precedence; }</b> |
| |
| Function *Codegen(); |
| }; |
| </pre> |
| </div> |
| |
| <p>Basically, in addition to knowing a name for the prototype, we now keep track |
| of whether it was an operator, and if it was, what precedence level the operator |
| is at. The precedence is only used for binary operators (as you'll see below, |
| it just doesn't apply for unary operators). Now that we have a way to represent |
| the prototype for a user-defined operator, we need to parse it:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// prototype |
| /// ::= id '(' id* ')' |
| <b>/// ::= binary LETTER number? (id, id)</b> |
| static PrototypeAST *ParsePrototype() { |
| std::string FnName; |
| |
| <b>unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| unsigned BinaryPrecedence = 30;</b> |
| |
| switch (CurTok) { |
| default: |
| return ErrorP("Expected function name in prototype"); |
| case tok_identifier: |
| FnName = IdentifierStr; |
| Kind = 0; |
| getNextToken(); |
| break; |
| <b>case tok_binary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return ErrorP("Expected binary operator"); |
| FnName = "binary"; |
| FnName += (char)CurTok; |
| Kind = 2; |
| getNextToken(); |
| |
| // Read the precedence if present. |
| if (CurTok == tok_number) { |
| if (NumVal < 1 || NumVal > 100) |
| return ErrorP("Invalid precedecnce: must be 1..100"); |
| BinaryPrecedence = (unsigned)NumVal; |
| getNextToken(); |
| } |
| break;</b> |
| } |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| <b>// Verify right number of names for operator. |
| if (Kind && ArgNames.size() != Kind) |
| return ErrorP("Invalid number of operands for operator"); |
| |
| return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);</b> |
| } |
| </pre> |
| </div> |
| |
| <p>This is all fairly straightforward parsing code, and we have already seen |
| a lot of similar code in the past. One interesting part about the code above is |
| the couple lines that set up <tt>FnName</tt> for binary operators. This builds names |
| like "binary@" for a newly defined "@" operator. This then takes advantage of the |
| fact that symbol names in the LLVM symbol table are allowed to have any character in |
| them, including embedded nul characters.</p> |
| |
| <p>The next interesting thing to add, is codegen support for these binary operators. |
| Given our current structure, this is a simple addition of a default case for our |
| existing binary operator node:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *BinaryExprAST::Codegen() { |
| Value *L = LHS->Codegen(); |
| Value *R = RHS->Codegen(); |
| if (L == 0 || R == 0) return 0; |
| |
| switch (Op) { |
| case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| case '*': return Builder.CreateFMul(L, R, "multmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| "booltmp"); |
| <b>default: break;</b> |
| } |
| |
| <b>// If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| // a call to it. |
| Function *F = TheModule->getFunction(std::string("binary")+Op); |
| assert(F && "binary operator not found!"); |
| |
| Value *Ops[] = { L, R }; |
| return Builder.CreateCall(F, Ops, Ops+2, "binop");</b> |
| } |
| |
| </pre> |
| </div> |
| |
| <p>As you can see above, the new code is actually really simple. It just does |
| a lookup for the appropriate operator in the symbol table and generates a |
| function call to it. Since user-defined operators are just built as normal |
| functions (because the "prototype" boils down to a function with the right |
| name) everything falls into place.</p> |
| |
| <p>The final piece of code we are missing, is a bit of top-level magic:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Function *FunctionAST::Codegen() { |
| NamedValues.clear(); |
| |
| Function *TheFunction = Proto->Codegen(); |
| if (TheFunction == 0) |
| return 0; |
| |
| <b>// If this is an operator, install it. |
| if (Proto->isBinaryOp()) |
| BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();</b> |
| |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| if (Value *RetVal = Body->Codegen()) { |
| ... |
| </pre> |
| </div> |
| |
| <p>Basically, before codegening a function, if it is a user-defined operator, we |
| register it in the precedence table. This allows the binary operator parsing |
| logic we already have in place to handle it. Since we are working on a fully-general operator precedence parser, this is all we need to do to "extend the grammar".</p> |
| |
| <p>Now we have useful user-defined binary operators. This builds a lot |
| on the previous framework we built for other operators. Adding unary operators |
| is a bit more challenging, because we don't have any framework for it yet - lets |
| see what it takes.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="unary">User-defined Unary Operators</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>Since we don't currently support unary operators in the Kaleidoscope |
| language, we'll need to add everything to support them. Above, we added simple |
| support for the 'unary' keyword to the lexer. In addition to that, we need an |
| AST node:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// UnaryExprAST - Expression class for a unary operator. |
| class UnaryExprAST : public ExprAST { |
| char Opcode; |
| ExprAST *Operand; |
| public: |
| UnaryExprAST(char opcode, ExprAST *operand) |
| : Opcode(opcode), Operand(operand) {} |
| virtual Value *Codegen(); |
| }; |
| </pre> |
| </div> |
| |
| <p>This AST node is very simple and obvious by now. It directly mirrors the |
| binary operator AST node, except that it only has one child. With this, we |
| need to add the parsing logic. Parsing a unary operator is pretty simple: we'll |
| add a new function to do it:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// unary |
| /// ::= primary |
| /// ::= '!' unary |
| static ExprAST *ParseUnary() { |
| // If the current token is not an operator, it must be a primary expr. |
| if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| return ParsePrimary(); |
| |
| // If this is a unary operator, read it. |
| int Opc = CurTok; |
| getNextToken(); |
| if (ExprAST *Operand = ParseUnary()) |
| return new UnaryExprAST(Opc, Operand); |
| return 0; |
| } |
| </pre> |
| </div> |
| |
| <p>The grammar we add is pretty straightforward here. If we see a unary |
| operator when parsing a primary operator, we eat the operator as a prefix and |
| parse the remaining piece as another unary operator. This allows us to handle |
| multiple unary operators (e.g. "!!x"). Note that unary operators can't have |
| ambiguous parses like binary operators can, so there is no need for precedence |
| information.</p> |
| |
| <p>The problem with this function, is that we need to call ParseUnary from somewhere. |
| To do this, we change previous callers of ParsePrimary to call ParseUnary |
| instead:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// binoprhs |
| /// ::= ('+' unary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| ... |
| <b>// Parse the unary expression after the binary operator. |
| ExprAST *RHS = ParseUnary(); |
| if (!RHS) return 0;</b> |
| ... |
| } |
| /// expression |
| /// ::= unary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| <b>ExprAST *LHS = ParseUnary();</b> |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| </pre> |
| </div> |
| |
| <p>With these two simple changes, we are now able to parse unary operators and build the |
| AST for them. Next up, we need to add parser support for prototypes, to parse |
| the unary operator prototype. We extend the binary operator code above |
| with:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// prototype |
| /// ::= id '(' id* ')' |
| /// ::= binary LETTER number? (id, id) |
| <b>/// ::= unary LETTER (id)</b> |
| static PrototypeAST *ParsePrototype() { |
| std::string FnName; |
| |
| unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| unsigned BinaryPrecedence = 30; |
| |
| switch (CurTok) { |
| default: |
| return ErrorP("Expected function name in prototype"); |
| case tok_identifier: |
| FnName = IdentifierStr; |
| Kind = 0; |
| getNextToken(); |
| break; |
| <b>case tok_unary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return ErrorP("Expected unary operator"); |
| FnName = "unary"; |
| FnName += (char)CurTok; |
| Kind = 1; |
| getNextToken(); |
| break;</b> |
| case tok_binary: |
| ... |
| </pre> |
| </div> |
| |
| <p>As with binary operators, we name unary operators with a name that includes |
| the operator character. This assists us at code generation time. Speaking of, |
| the final piece we need to add is codegen support for unary operators. It looks |
| like this:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *UnaryExprAST::Codegen() { |
| Value *OperandV = Operand->Codegen(); |
| if (OperandV == 0) return 0; |
| |
| Function *F = TheModule->getFunction(std::string("unary")+Opcode); |
| if (F == 0) |
| return ErrorV("Unknown unary operator"); |
| |
| return Builder.CreateCall(F, OperandV, "unop"); |
| } |
| </pre> |
| </div> |
| |
| <p>This code is similar to, but simpler than, the code for binary operators. It |
| is simpler primarily because it doesn't need to handle any predefined operators. |
| </p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="example">Kicking the Tires</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>It is somewhat hard to believe, but with a few simple extensions we've |
| covered in the last chapters, we have grown a real-ish language. With this, we |
| can do a lot of interesting things, including I/O, math, and a bunch of other |
| things. For example, we can now add a nice sequencing operator (printd is |
| defined to print out the specified value and a newline):</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>extern printd(x);</b> |
| Read extern: declare double @printd(double) |
| ready> <b>def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.</b> |
| .. |
| ready> <b>printd(123) : printd(456) : printd(789);</b> |
| 123.000000 |
| 456.000000 |
| 789.000000 |
| Evaluated to 0.000000 |
| </pre> |
| </div> |
| |
| <p>We can also define a bunch of other "primitive" operations, such as:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| # Logical unary not. |
| def unary!(v) |
| if v then |
| 0 |
| else |
| 1; |
| |
| # Unary negate. |
| def unary-(v) |
| 0-v; |
| |
| # Define > with the same precedence as <. |
| def binary> 10 (LHS RHS) |
| RHS < LHS; |
| |
| # Binary logical or, which does not short circuit. |
| def binary| 5 (LHS RHS) |
| if LHS then |
| 1 |
| else if RHS then |
| 1 |
| else |
| 0; |
| |
| # Binary logical and, which does not short circuit. |
| def binary& 6 (LHS RHS) |
| if !LHS then |
| 0 |
| else |
| !!RHS; |
| |
| # Define = with slightly lower precedence than relationals. |
| def binary = 9 (LHS RHS) |
| !(LHS < RHS | LHS > RHS); |
| |
| </pre> |
| </div> |
| |
| |
| <p>Given the previous if/then/else support, we can also define interesting |
| functions for I/O. For example, the following prints out a character whose |
| "density" reflects the value passed in: the lower the value, the denser the |
| character:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> |
| <b> |
| extern putchard(char) |
| def printdensity(d) |
| if d > 8 then |
| putchard(32) # ' ' |
| else if d > 4 then |
| putchard(46) # '.' |
| else if d > 2 then |
| putchard(43) # '+' |
| else |
| putchard(42); # '*'</b> |
| ... |
| ready> <b>printdensity(1): printdensity(2): printdensity(3) : |
| printdensity(4): printdensity(5): printdensity(9): putchard(10);</b> |
| *++.. |
| Evaluated to 0.000000 |
| </pre> |
| </div> |
| |
| <p>Based on these simple primitive operations, we can start to define more |
| interesting things. For example, here's a little function that solves for the |
| number of iterations it takes a function in the complex plane to |
| converge:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| # determine whether the specific location diverges. |
| # Solve for z = z^2 + c in the complex plane. |
| def mandleconverger(real imag iters creal cimag) |
| if iters > 255 | (real*real + imag*imag > 4) then |
| iters |
| else |
| mandleconverger(real*real - imag*imag + creal, |
| 2*real*imag + cimag, |
| iters+1, creal, cimag); |
| |
| # return the number of iterations required for the iteration to escape |
| def mandleconverge(real imag) |
| mandleconverger(real, imag, 0, real, imag); |
| </pre> |
| </div> |
| |
| <p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis |
| for computation of the <a |
| href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>. Our |
| <tt>mandelconverge</tt> function returns the number of iterations that it takes |
| for a complex orbit to escape, saturating to 255. This is not a very useful |
| function by itself, but if you plot its value over a two-dimensional plane, |
| you can see the Mandelbrot set. Given that we are limited to using putchard |
| here, our amazing graphical output is limited, but we can whip together |
| something using the density plotter above:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| # compute and plot the mandlebrot set with the specified 2 dimensional range |
| # info. |
| def mandelhelp(xmin xmax xstep ymin ymax ystep) |
| for y = ymin, y < ymax, ystep in ( |
| (for x = xmin, x < xmax, xstep in |
| printdensity(mandleconverge(x,y))) |
| : putchard(10) |
| ) |
| |
| # mandel - This is a convenient helper function for ploting the mandelbrot set |
| # from the specified position with the specified Magnification. |
| def mandel(realstart imagstart realmag imagmag) |
| mandelhelp(realstart, realstart+realmag*78, realmag, |
| imagstart, imagstart+imagmag*40, imagmag); |
| </pre> |
| </div> |
| |
| <p>Given this, we can try plotting out the mandlebrot set! Lets try it out:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>mandel(-2.3, -1.3, 0.05, 0.07);</b> |
| *******************************+++++++++++************************************* |
| *************************+++++++++++++++++++++++******************************* |
| **********************+++++++++++++++++++++++++++++**************************** |
| *******************+++++++++++++++++++++.. ...++++++++************************* |
| *****************++++++++++++++++++++++.... ...+++++++++*********************** |
| ***************+++++++++++++++++++++++..... ...+++++++++********************* |
| **************+++++++++++++++++++++++.... ....+++++++++******************** |
| *************++++++++++++++++++++++...... .....++++++++******************* |
| ************+++++++++++++++++++++....... .......+++++++****************** |
| ***********+++++++++++++++++++.... ... .+++++++***************** |
| **********+++++++++++++++++....... .+++++++**************** |
| *********++++++++++++++........... ...+++++++*************** |
| ********++++++++++++............ ...++++++++************** |
| ********++++++++++... .......... .++++++++************** |
| *******+++++++++..... .+++++++++************* |
| *******++++++++...... ..+++++++++************* |
| *******++++++....... ..+++++++++************* |
| *******+++++...... ..+++++++++************* |
| *******.... .... ...+++++++++************* |
| *******.... . ...+++++++++************* |
| *******+++++...... ...+++++++++************* |
| *******++++++....... ..+++++++++************* |
| *******++++++++...... .+++++++++************* |
| *******+++++++++..... ..+++++++++************* |
| ********++++++++++... .......... .++++++++************** |
| ********++++++++++++............ ...++++++++************** |
| *********++++++++++++++.......... ...+++++++*************** |
| **********++++++++++++++++........ .+++++++**************** |
| **********++++++++++++++++++++.... ... ..+++++++**************** |
| ***********++++++++++++++++++++++....... .......++++++++***************** |
| ************+++++++++++++++++++++++...... ......++++++++****************** |
| **************+++++++++++++++++++++++.... ....++++++++******************** |
| ***************+++++++++++++++++++++++..... ...+++++++++********************* |
| *****************++++++++++++++++++++++.... ...++++++++*********************** |
| *******************+++++++++++++++++++++......++++++++************************* |
| *********************++++++++++++++++++++++.++++++++*************************** |
| *************************+++++++++++++++++++++++******************************* |
| ******************************+++++++++++++************************************ |
| ******************************************************************************* |
| ******************************************************************************* |
| ******************************************************************************* |
| Evaluated to 0.000000 |
| ready> <b>mandel(-2, -1, 0.02, 0.04);</b> |
| **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++. |
| *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++... |
| *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++..... |
| ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........ |
| **************++++++++++++++++++++++++++++++++++++++++++++++++++++++........... |
| ************+++++++++++++++++++++++++++++++++++++++++++++++++++++.............. |
| ***********++++++++++++++++++++++++++++++++++++++++++++++++++........ . |
| **********++++++++++++++++++++++++++++++++++++++++++++++............. |
| ********+++++++++++++++++++++++++++++++++++++++++++.................. |
| *******+++++++++++++++++++++++++++++++++++++++....................... |
| ******+++++++++++++++++++++++++++++++++++........................... |
| *****++++++++++++++++++++++++++++++++............................ |
| *****++++++++++++++++++++++++++++............................... |
| ****++++++++++++++++++++++++++...... ......................... |
| ***++++++++++++++++++++++++......... ...... ........... |
| ***++++++++++++++++++++++............ |
| **+++++++++++++++++++++.............. |
| **+++++++++++++++++++................ |
| *++++++++++++++++++................. |
| *++++++++++++++++............ ... |
| *++++++++++++++.............. |
| *+++....++++................ |
| *.......... ........... |
| * |
| *.......... ........... |
| *+++....++++................ |
| *++++++++++++++.............. |
| *++++++++++++++++............ ... |
| *++++++++++++++++++................. |
| **+++++++++++++++++++................ |
| **+++++++++++++++++++++.............. |
| ***++++++++++++++++++++++............ |
| ***++++++++++++++++++++++++......... ...... ........... |
| ****++++++++++++++++++++++++++...... ......................... |
| *****++++++++++++++++++++++++++++............................... |
| *****++++++++++++++++++++++++++++++++............................ |
| ******+++++++++++++++++++++++++++++++++++........................... |
| *******+++++++++++++++++++++++++++++++++++++++....................... |
| ********+++++++++++++++++++++++++++++++++++++++++++.................. |
| Evaluated to 0.000000 |
| ready> <b>mandel(-0.9, -1.4, 0.02, 0.03);</b> |
| ******************************************************************************* |
| ******************************************************************************* |
| ******************************************************************************* |
| **********+++++++++++++++++++++************************************************ |
| *+++++++++++++++++++++++++++++++++++++++*************************************** |
| +++++++++++++++++++++++++++++++++++++++++++++********************************** |
| ++++++++++++++++++++++++++++++++++++++++++++++++++***************************** |
| ++++++++++++++++++++++++++++++++++++++++++++++++++++++************************* |
| +++++++++++++++++++++++++++++++++++++++++++++++++++++++++********************** |
| +++++++++++++++++++++++++++++++++.........++++++++++++++++++******************* |
| +++++++++++++++++++++++++++++++.... ......+++++++++++++++++++**************** |
| +++++++++++++++++++++++++++++....... ........+++++++++++++++++++************** |
| ++++++++++++++++++++++++++++........ ........++++++++++++++++++++************ |
| +++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++********** |
| ++++++++++++++++++++++++++........... ....++++++++++++++++++++++******** |
| ++++++++++++++++++++++++............. .......++++++++++++++++++++++****** |
| +++++++++++++++++++++++............. ........+++++++++++++++++++++++**** |
| ++++++++++++++++++++++........... ..........++++++++++++++++++++++*** |
| ++++++++++++++++++++........... .........++++++++++++++++++++++* |
| ++++++++++++++++++............ ...........++++++++++++++++++++ |
| ++++++++++++++++............... .............++++++++++++++++++ |
| ++++++++++++++................. ...............++++++++++++++++ |
| ++++++++++++.................. .................++++++++++++++ |
| +++++++++.................. .................+++++++++++++ |
| ++++++........ . ......... ..++++++++++++ |
| ++............ ...... ....++++++++++ |
| .............. ...++++++++++ |
| .............. ....+++++++++ |
| .............. .....++++++++ |
| ............. ......++++++++ |
| ........... .......++++++++ |
| ......... ........+++++++ |
| ......... ........+++++++ |
| ......... ....+++++++ |
| ........ ...+++++++ |
| ....... ...+++++++ |
| ....+++++++ |
| .....+++++++ |
| ....+++++++ |
| ....+++++++ |
| ....+++++++ |
| Evaluated to 0.000000 |
| ready> <b>^D</b> |
| </pre> |
| </div> |
| |
| <p>At this point, you may be starting to realize that Kaleidoscope is a real |
| and powerful language. It may not be self-similar :), but it can be used to |
| plot things that are!</p> |
| |
| <p>With this, we conclude the "adding user-defined operators" chapter of the |
| tutorial. We have successfully augmented our language, adding the ability to extend the |
| language in the library, and we have shown how this can be used to build a simple but |
| interesting end-user application in Kaleidoscope. At this point, Kaleidoscope |
| can build a variety of applications that are functional and can call functions |
| with side-effects, but it can't actually define and mutate a variable itself. |
| </p> |
| |
| <p>Strikingly, variable mutation is an important feature of some |
| languages, and it is not at all obvious how to <a href="LangImpl7.html">add |
| support for mutable variables</a> without having to add an "SSA construction" |
| phase to your front-end. In the next chapter, we will describe how you can |
| add variable mutation without building SSA in your front-end.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="code">Full Code Listing</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p> |
| Here is the complete code listing for our running example, enhanced with the |
| if/then/else and for expressions.. To build this example, use: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| # Compile |
| g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| # Run |
| ./toy |
| </pre> |
| </div> |
| |
| <p>Here is the code:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| #include "llvm/ExecutionEngine/JIT.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetSelect.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include <cstdio> |
| #include <string> |
| #include <map> |
| #include <vector> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer |
| //===----------------------------------------------------------------------===// |
| |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| // of these for known things. |
| enum Token { |
| tok_eof = -1, |
| |
| // commands |
| tok_def = -2, tok_extern = -3, |
| |
| // primary |
| tok_identifier = -4, tok_number = -5, |
| |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| tok_for = -9, tok_in = -10, |
| |
| // operators |
| tok_binary = -11, tok_unary = -12 |
| }; |
| |
| static std::string IdentifierStr; // Filled in if tok_identifier |
| static double NumVal; // Filled in if tok_number |
| |
| /// gettok - Return the next token from standard input. |
| static int gettok() { |
| static int LastChar = ' '; |
| |
| // Skip any whitespace. |
| while (isspace(LastChar)) |
| LastChar = getchar(); |
| |
| if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| IdentifierStr = LastChar; |
| while (isalnum((LastChar = getchar()))) |
| IdentifierStr += LastChar; |
| |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else; |
| if (IdentifierStr == "for") return tok_for; |
| if (IdentifierStr == "in") return tok_in; |
| if (IdentifierStr == "binary") return tok_binary; |
| if (IdentifierStr == "unary") return tok_unary; |
| return tok_identifier; |
| } |
| |
| if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| std::string NumStr; |
| do { |
| NumStr += LastChar; |
| LastChar = getchar(); |
| } while (isdigit(LastChar) || LastChar == '.'); |
| |
| NumVal = strtod(NumStr.c_str(), 0); |
| return tok_number; |
| } |
| |
| if (LastChar == '#') { |
| // Comment until end of line. |
| do LastChar = getchar(); |
| while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| |
| if (LastChar != EOF) |
| return gettok(); |
| } |
| |
| // Check for end of file. Don't eat the EOF. |
| if (LastChar == EOF) |
| return tok_eof; |
| |
| // Otherwise, just return the character as its ascii value. |
| int ThisChar = LastChar; |
| LastChar = getchar(); |
| return ThisChar; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Abstract Syntax Tree (aka Parse Tree) |
| //===----------------------------------------------------------------------===// |
| |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| virtual Value *Codegen() = 0; |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| NumberExprAST(double val) : Val(val) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| public: |
| VariableExprAST(const std::string &name) : Name(name) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// UnaryExprAST - Expression class for a unary operator. |
| class UnaryExprAST : public ExprAST { |
| char Opcode; |
| ExprAST *Operand; |
| public: |
| UnaryExprAST(char opcode, ExprAST *operand) |
| : Opcode(opcode), Operand(operand) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| ExprAST *LHS, *RHS; |
| public: |
| BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| : Op(op), LHS(lhs), RHS(rhs) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<ExprAST*> Args; |
| public: |
| CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| : Callee(callee), Args(args) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// IfExprAST - Expression class for if/then/else. |
| class IfExprAST : public ExprAST { |
| ExprAST *Cond, *Then, *Else; |
| public: |
| IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| : Cond(cond), Then(then), Else(_else) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// ForExprAST - Expression class for for/in. |
| class ForExprAST : public ExprAST { |
| std::string VarName; |
| ExprAST *Start, *End, *Step, *Body; |
| public: |
| ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| ExprAST *step, ExprAST *body) |
| : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its name, and its argument names (thus implicitly the number |
| /// of arguments the function takes), as well as if it is an operator. |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| bool isOperator; |
| unsigned Precedence; // Precedence if a binary op. |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args, |
| bool isoperator = false, unsigned prec = 0) |
| : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} |
| |
| bool isUnaryOp() const { return isOperator && Args.size() == 1; } |
| bool isBinaryOp() const { return isOperator && Args.size() == 2; } |
| |
| char getOperatorName() const { |
| assert(isUnaryOp() || isBinaryOp()); |
| return Name[Name.size()-1]; |
| } |
| |
| unsigned getBinaryPrecedence() const { return Precedence; } |
| |
| Function *Codegen(); |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| PrototypeAST *Proto; |
| ExprAST *Body; |
| public: |
| FunctionAST(PrototypeAST *proto, ExprAST *body) |
| : Proto(proto), Body(body) {} |
| |
| Function *Codegen(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Parser |
| //===----------------------------------------------------------------------===// |
| |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser is looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { |
| return CurTok = gettok(); |
| } |
| |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) return -1; |
| return TokPrec; |
| } |
| |
| /// Error* - These are little helper functions for error handling. |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| |
| static ExprAST *ParseExpression(); |
| |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static ExprAST *ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return new VariableExprAST(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<ExprAST*> Args; |
| if (CurTok != ')') { |
| while (1) { |
| ExprAST *Arg = ParseExpression(); |
| if (!Arg) return 0; |
| Args.push_back(Arg); |
| |
| if (CurTok == ')') break; |
| |
| if (CurTok != ',') |
| return Error("Expected ')' or ',' in argument list"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return new CallExprAST(IdName, Args); |
| } |
| |
| /// numberexpr ::= number |
| static ExprAST *ParseNumberExpr() { |
| ExprAST *Result = new NumberExprAST(NumVal); |
| getNextToken(); // consume the number |
| return Result; |
| } |
| |
| /// parenexpr ::= '(' expression ')' |
| static ExprAST *ParseParenExpr() { |
| getNextToken(); // eat (. |
| ExprAST *V = ParseExpression(); |
| if (!V) return 0; |
| |
| if (CurTok != ')') |
| return Error("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| static ExprAST *ParseIfExpr() { |
| getNextToken(); // eat the if. |
| |
| // condition. |
| ExprAST *Cond = ParseExpression(); |
| if (!Cond) return 0; |
| |
| if (CurTok != tok_then) |
| return Error("expected then"); |
| getNextToken(); // eat the then |
| |
| ExprAST *Then = ParseExpression(); |
| if (Then == 0) return 0; |
| |
| if (CurTok != tok_else) |
| return Error("expected else"); |
| |
| getNextToken(); |
| |
| ExprAST *Else = ParseExpression(); |
| if (!Else) return 0; |
| |
| return new IfExprAST(Cond, Then, Else); |
| } |
| |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| static ExprAST *ParseForExpr() { |
| getNextToken(); // eat the for. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after for"); |
| |
| std::string IdName = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '=') |
| return Error("expected '=' after for"); |
| getNextToken(); // eat '='. |
| |
| |
| ExprAST *Start = ParseExpression(); |
| if (Start == 0) return 0; |
| if (CurTok != ',') |
| return Error("expected ',' after for start value"); |
| getNextToken(); |
| |
| ExprAST *End = ParseExpression(); |
| if (End == 0) return 0; |
| |
| // The step value is optional. |
| ExprAST *Step = 0; |
| if (CurTok == ',') { |
| getNextToken(); |
| Step = ParseExpression(); |
| if (Step == 0) return 0; |
| } |
| |
| if (CurTok != tok_in) |
| return Error("expected 'in' after for"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new ForExprAST(IdName, Start, End, Step, Body); |
| } |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| /// ::= ifexpr |
| /// ::= forexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| case tok_if: return ParseIfExpr(); |
| case tok_for: return ParseForExpr(); |
| } |
| } |
| |
| /// unary |
| /// ::= primary |
| /// ::= '!' unary |
| static ExprAST *ParseUnary() { |
| // If the current token is not an operator, it must be a primary expr. |
| if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| return ParsePrimary(); |
| |
| // If this is a unary operator, read it. |
| int Opc = CurTok; |
| getNextToken(); |
| if (ExprAST *Operand = ParseUnary()) |
| return new UnaryExprAST(Opc, Operand); |
| return 0; |
| } |
| |
| /// binoprhs |
| /// ::= ('+' unary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| // If this is a binop, find its precedence. |
| while (1) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the unary expression after the binary operator. |
| ExprAST *RHS = ParseUnary(); |
| if (!RHS) return 0; |
| |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| if (RHS == 0) return 0; |
| } |
| |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } |
| } |
| |
| /// expression |
| /// ::= unary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| ExprAST *LHS = ParseUnary(); |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| |
| /// prototype |
| /// ::= id '(' id* ')' |
| /// ::= binary LETTER number? (id, id) |
| /// ::= unary LETTER (id) |
| static PrototypeAST *ParsePrototype() { |
| std::string FnName; |
| |
| unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| unsigned BinaryPrecedence = 30; |
| |
| switch (CurTok) { |
| default: |
| return ErrorP("Expected function name in prototype"); |
| case tok_identifier: |
| FnName = IdentifierStr; |
| Kind = 0; |
| getNextToken(); |
| break; |
| case tok_unary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return ErrorP("Expected unary operator"); |
| FnName = "unary"; |
| FnName += (char)CurTok; |
| Kind = 1; |
| getNextToken(); |
| break; |
| case tok_binary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return ErrorP("Expected binary operator"); |
| FnName = "binary"; |
| FnName += (char)CurTok; |
| Kind = 2; |
| getNextToken(); |
| |
| // Read the precedence if present. |
| if (CurTok == tok_number) { |
| if (NumVal < 1 || NumVal > 100) |
| return ErrorP("Invalid precedecnce: must be 1..100"); |
| BinaryPrecedence = (unsigned)NumVal; |
| getNextToken(); |
| } |
| break; |
| } |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| // Verify right number of names for operator. |
| if (Kind && ArgNames.size() != Kind) |
| return ErrorP("Invalid number of operands for operator"); |
| |
| return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); |
| } |
| |
| /// definition ::= 'def' prototype expression |
| static FunctionAST *ParseDefinition() { |
| getNextToken(); // eat def. |
| PrototypeAST *Proto = ParsePrototype(); |
| if (Proto == 0) return 0; |
| |
| if (ExprAST *E = ParseExpression()) |
| return new FunctionAST(Proto, E); |
| return 0; |
| } |
| |
| /// toplevelexpr ::= expression |
| static FunctionAST *ParseTopLevelExpr() { |
| if (ExprAST *E = ParseExpression()) { |
| // Make an anonymous proto. |
| PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| return new FunctionAST(Proto, E); |
| } |
| return 0; |
| } |
| |
| /// external ::= 'extern' prototype |
| static PrototypeAST *ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code Generation |
| //===----------------------------------------------------------------------===// |
| |
| static Module *TheModule; |
| static IRBuilder<> Builder(getGlobalContext()); |
| static std::map<std::string, Value*> NamedValues; |
| static FunctionPassManager *TheFPM; |
| |
| Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| |
| Value *NumberExprAST::Codegen() { |
| return ConstantFP::get(getGlobalContext(), APFloat(Val)); |
| } |
| |
| Value *VariableExprAST::Codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| return V ? V : ErrorV("Unknown variable name"); |
| } |
| |
| Value *UnaryExprAST::Codegen() { |
| Value *OperandV = Operand->Codegen(); |
| if (OperandV == 0) return 0; |
| |
| Function *F = TheModule->getFunction(std::string("unary")+Opcode); |
| if (F == 0) |
| return ErrorV("Unknown unary operator"); |
| |
| return Builder.CreateCall(F, OperandV, "unop"); |
| } |
| |
| Value *BinaryExprAST::Codegen() { |
| Value *L = LHS->Codegen(); |
| Value *R = RHS->Codegen(); |
| if (L == 0 || R == 0) return 0; |
| |
| switch (Op) { |
| case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| case '*': return Builder.CreateFMul(L, R, "multmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| "booltmp"); |
| default: break; |
| } |
| |
| // If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| // a call to it. |
| Function *F = TheModule->getFunction(std::string("binary")+Op); |
| assert(F && "binary operator not found!"); |
| |
| Value *Ops[] = { L, R }; |
| return Builder.CreateCall(F, Ops, Ops+2, "binop"); |
| } |
| |
| Value *CallExprAST::Codegen() { |
| // Look up the name in the global module table. |
| Function *CalleeF = TheModule->getFunction(Callee); |
| if (CalleeF == 0) |
| return ErrorV("Unknown function referenced"); |
| |
| // If argument mismatch error. |
| if (CalleeF->arg_size() != Args.size()) |
| return ErrorV("Incorrect # arguments passed"); |
| |
| std::vector<Value*> ArgsV; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| ArgsV.push_back(Args[i]->Codegen()); |
| if (ArgsV.back() == 0) return 0; |
| } |
| |
| return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| } |
| |
| Value *IfExprAST::Codegen() { |
| Value *CondV = Cond->Codegen(); |
| if (CondV == 0) return 0; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| CondV = Builder.CreateFCmpONE(CondV, |
| ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| "ifcond"); |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create blocks for the then and else cases. Insert the 'then' block at the |
| // end of the function. |
| BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); |
| BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); |
| BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); |
| |
| Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| |
| // Emit then value. |
| Builder.SetInsertPoint(ThenBB); |
| |
| Value *ThenV = Then->Codegen(); |
| if (ThenV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| ThenBB = Builder.GetInsertBlock(); |
| |
| // Emit else block. |
| TheFunction->getBasicBlockList().push_back(ElseBB); |
| Builder.SetInsertPoint(ElseBB); |
| |
| Value *ElseV = Else->Codegen(); |
| if (ElseV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| ElseBB = Builder.GetInsertBlock(); |
| |
| // Emit merge block. |
| TheFunction->getBasicBlockList().push_back(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), |
| "iftmp"); |
| |
| PN->addIncoming(ThenV, ThenBB); |
| PN->addIncoming(ElseV, ElseBB); |
| return PN; |
| } |
| |
| Value *ForExprAST::Codegen() { |
| // Output this as: |
| // ... |
| // start = startexpr |
| // goto loop |
| // loop: |
| // variable = phi [start, loopheader], [nextvariable, loopend] |
| // ... |
| // bodyexpr |
| // ... |
| // loopend: |
| // step = stepexpr |
| // nextvariable = variable + step |
| // endcond = endexpr |
| // br endcond, loop, endloop |
| // outloop: |
| |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->Codegen(); |
| if (StartVal == 0) return 0; |
| |
| // Make the new basic block for the loop header, inserting after current |
| // block. |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); |
| |
| // Insert an explicit fall through from the current block to the LoopBB. |
| Builder.CreateBr(LoopBB); |
| |
| // Start insertion in LoopBB. |
| Builder.SetInsertPoint(LoopBB); |
| |
| // Start the PHI node with an entry for Start. |
| PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str()); |
| Variable->addIncoming(StartVal, PreheaderBB); |
| |
| // Within the loop, the variable is defined equal to the PHI node. If it |
| // shadows an existing variable, we have to restore it, so save it now. |
| Value *OldVal = NamedValues[VarName]; |
| NamedValues[VarName] = Variable; |
| |
| // Emit the body of the loop. This, like any other expr, can change the |
| // current BB. Note that we ignore the value computed by the body, but don't |
| // allow an error. |
| if (Body->Codegen() == 0) |
| return 0; |
| |
| // Emit the step value. |
| Value *StepVal; |
| if (Step) { |
| StepVal = Step->Codegen(); |
| if (StepVal == 0) return 0; |
| } else { |
| // If not specified, use 1.0. |
| StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); |
| } |
| |
| Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); |
| |
| // Compute the end condition. |
| Value *EndCond = End->Codegen(); |
| if (EndCond == 0) return EndCond; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| EndCond = Builder.CreateFCmpONE(EndCond, |
| ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| "loopcond"); |
| |
| // Create the "after loop" block and insert it. |
| BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); |
| |
| // Insert the conditional branch into the end of LoopEndBB. |
| Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| |
| // Any new code will be inserted in AfterBB. |
| Builder.SetInsertPoint(AfterBB); |
| |
| // Add a new entry to the PHI node for the backedge. |
| Variable->addIncoming(NextVar, LoopEndBB); |
| |
| // Restore the unshadowed variable. |
| if (OldVal) |
| NamedValues[VarName] = OldVal; |
| else |
| NamedValues.erase(VarName); |
| |
| |
| // for expr always returns 0.0. |
| return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); |
| } |
| |
| Function *PrototypeAST::Codegen() { |
| // Make the function type: double(double,double) etc. |
| std::vector<const Type*> Doubles(Args.size(), |
| Type::getDoubleTy(getGlobalContext())); |
| FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), |
| Doubles, false); |
| |
| Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
| |
| // If F conflicted, there was already something named 'Name'. If it has a |
| // body, don't allow redefinition or reextern. |
| if (F->getName() != Name) { |
| // Delete the one we just made and get the existing one. |
| F->eraseFromParent(); |
| F = TheModule->getFunction(Name); |
| |
| // If F already has a body, reject this. |
| if (!F->empty()) { |
| ErrorF("redefinition of function"); |
| return 0; |
| } |
| |
| // If F took a different number of args, reject. |
| if (F->arg_size() != Args.size()) { |
| ErrorF("redefinition of function with different # args"); |
| return 0; |
| } |
| } |
| |
| // Set names for all arguments. |
| unsigned Idx = 0; |
| for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| ++AI, ++Idx) { |
| AI->setName(Args[Idx]); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Args[Idx]] = AI; |
| } |
| |
| return F; |
| } |
| |
| Function *FunctionAST::Codegen() { |
| NamedValues.clear(); |
| |
| Function *TheFunction = Proto->Codegen(); |
| if (TheFunction == 0) |
| return 0; |
| |
| // If this is an operator, install it. |
| if (Proto->isBinaryOp()) |
| BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); |
| |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| if (Value *RetVal = Body->Codegen()) { |
| // Finish off the function. |
| Builder.CreateRet(RetVal); |
| |
| // Validate the generated code, checking for consistency. |
| verifyFunction(*TheFunction); |
| |
| // Optimize the function. |
| TheFPM->run(*TheFunction); |
| |
| return TheFunction; |
| } |
| |
| // Error reading body, remove function. |
| TheFunction->eraseFromParent(); |
| |
| if (Proto->isBinaryOp()) |
| BinopPrecedence.erase(Proto->getOperatorName()); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level parsing and JIT Driver |
| //===----------------------------------------------------------------------===// |
| |
| static ExecutionEngine *TheExecutionEngine; |
| |
| static void HandleDefinition() { |
| if (FunctionAST *F = ParseDefinition()) { |
| if (Function *LF = F->Codegen()) { |
| fprintf(stderr, "Read function definition:"); |
| LF->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleExtern() { |
| if (PrototypeAST *P = ParseExtern()) { |
| if (Function *F = P->Codegen()) { |
| fprintf(stderr, "Read extern: "); |
| F->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleTopLevelExpression() { |
| // Evaluate a top-level expression into an anonymous function. |
| if (FunctionAST *F = ParseTopLevelExpr()) { |
| if (Function *LF = F->Codegen()) { |
| // JIT the function, returning a function pointer. |
| void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| |
| // Cast it to the right type (takes no arguments, returns a double) so we |
| // can call it as a native function. |
| double (*FP)() = (double (*)())(intptr_t)FPtr; |
| fprintf(stderr, "Evaluated to %f\n", FP()); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (1) { |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: return; |
| case ';': getNextToken(); break; // ignore top-level semicolons. |
| case tok_def: HandleDefinition(); break; |
| case tok_extern: HandleExtern(); break; |
| default: HandleTopLevelExpression(); break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Library" functions that can be "extern'd" from user code. |
| //===----------------------------------------------------------------------===// |
| |
| /// putchard - putchar that takes a double and returns 0. |
| extern "C" |
| double putchard(double X) { |
| putchar((char)X); |
| return 0; |
| } |
| |
| /// printd - printf that takes a double prints it as "%f\n", returning 0. |
| extern "C" |
| double printd(double X) { |
| printf("%f\n", X); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main driver code. |
| //===----------------------------------------------------------------------===// |
| |
| int main() { |
| InitializeNativeTarget(); |
| LLVMContext &Context = getGlobalContext(); |
| |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['*'] = 40; // highest. |
| |
| // Prime the first token. |
| fprintf(stderr, "ready> "); |
| getNextToken(); |
| |
| // Make the module, which holds all the code. |
| TheModule = new Module("my cool jit", Context); |
| |
| // Create the JIT. This takes ownership of the module. |
| std::string ErrStr; |
| TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); |
| if (!TheExecutionEngine) { |
| fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); |
| exit(1); |
| } |
| |
| FunctionPassManager OurFPM(TheModule); |
| |
| // Set up the optimizer pipeline. Start with registering info about how the |
| // target lays out data structures. |
| OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); |
| // Provide basic AliasAnalysis support for GVN. |
| OurFPM.add(createBasicAliasAnalysisPass()); |
| // Do simple "peephole" optimizations and bit-twiddling optzns. |
| OurFPM.add(createInstructionCombiningPass()); |
| // Reassociate expressions. |
| OurFPM.add(createReassociatePass()); |
| // Eliminate Common SubExpressions. |
| OurFPM.add(createGVNPass()); |
| // Simplify the control flow graph (deleting unreachable blocks, etc). |
| OurFPM.add(createCFGSimplificationPass()); |
| |
| OurFPM.doInitialization(); |
| |
| // Set the global so the code gen can use this. |
| TheFPM = &OurFPM; |
| |
| // Run the main "interpreter loop" now. |
| MainLoop(); |
| |
| TheFPM = 0; |
| |
| // Print out all of the generated code. |
| TheModule->dump(); |
| |
| return 0; |
| } |
| </pre> |
| </div> |
| |
| <a href="LangImpl7.html">Next: Extending the language: mutable variables / SSA construction</a> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <hr> |
| <address> |
| <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| <a href="http://validator.w3.org/check/referer"><img |
| src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| |
| <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| Last modified: $Date$ |
| </address> |
| </body> |
| </html> |