| //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Bitcode writer implementation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Bitcode/ReaderWriter.h" |
| #include "ValueEnumerator.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Bitcode/BitstreamWriter.h" |
| #include "llvm/Bitcode/LLVMBitCodes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Program.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cctype> |
| #include <map> |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| EnablePreserveUseListOrdering("enable-bc-uselist-preserve", |
| cl::desc("Turn on experimental support for " |
| "use-list order preservation."), |
| cl::init(false), cl::Hidden); |
| |
| /// These are manifest constants used by the bitcode writer. They do not need to |
| /// be kept in sync with the reader, but need to be consistent within this file. |
| enum { |
| // VALUE_SYMTAB_BLOCK abbrev id's. |
| VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| VST_ENTRY_7_ABBREV, |
| VST_ENTRY_6_ABBREV, |
| VST_BBENTRY_6_ABBREV, |
| |
| // CONSTANTS_BLOCK abbrev id's. |
| CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| CONSTANTS_INTEGER_ABBREV, |
| CONSTANTS_CE_CAST_Abbrev, |
| CONSTANTS_NULL_Abbrev, |
| |
| // FUNCTION_BLOCK abbrev id's. |
| FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| FUNCTION_INST_BINOP_ABBREV, |
| FUNCTION_INST_BINOP_FLAGS_ABBREV, |
| FUNCTION_INST_CAST_ABBREV, |
| FUNCTION_INST_RET_VOID_ABBREV, |
| FUNCTION_INST_RET_VAL_ABBREV, |
| FUNCTION_INST_UNREACHABLE_ABBREV, |
| |
| // SwitchInst Magic |
| SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex |
| }; |
| |
| static unsigned GetEncodedCastOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| default: llvm_unreachable("Unknown cast instruction!"); |
| case Instruction::Trunc : return bitc::CAST_TRUNC; |
| case Instruction::ZExt : return bitc::CAST_ZEXT; |
| case Instruction::SExt : return bitc::CAST_SEXT; |
| case Instruction::FPToUI : return bitc::CAST_FPTOUI; |
| case Instruction::FPToSI : return bitc::CAST_FPTOSI; |
| case Instruction::UIToFP : return bitc::CAST_UITOFP; |
| case Instruction::SIToFP : return bitc::CAST_SITOFP; |
| case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; |
| case Instruction::FPExt : return bitc::CAST_FPEXT; |
| case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; |
| case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; |
| case Instruction::BitCast : return bitc::CAST_BITCAST; |
| } |
| } |
| |
| static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| default: llvm_unreachable("Unknown binary instruction!"); |
| case Instruction::Add: |
| case Instruction::FAdd: return bitc::BINOP_ADD; |
| case Instruction::Sub: |
| case Instruction::FSub: return bitc::BINOP_SUB; |
| case Instruction::Mul: |
| case Instruction::FMul: return bitc::BINOP_MUL; |
| case Instruction::UDiv: return bitc::BINOP_UDIV; |
| case Instruction::FDiv: |
| case Instruction::SDiv: return bitc::BINOP_SDIV; |
| case Instruction::URem: return bitc::BINOP_UREM; |
| case Instruction::FRem: |
| case Instruction::SRem: return bitc::BINOP_SREM; |
| case Instruction::Shl: return bitc::BINOP_SHL; |
| case Instruction::LShr: return bitc::BINOP_LSHR; |
| case Instruction::AShr: return bitc::BINOP_ASHR; |
| case Instruction::And: return bitc::BINOP_AND; |
| case Instruction::Or: return bitc::BINOP_OR; |
| case Instruction::Xor: return bitc::BINOP_XOR; |
| } |
| } |
| |
| static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { |
| switch (Op) { |
| default: llvm_unreachable("Unknown RMW operation!"); |
| case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; |
| case AtomicRMWInst::Add: return bitc::RMW_ADD; |
| case AtomicRMWInst::Sub: return bitc::RMW_SUB; |
| case AtomicRMWInst::And: return bitc::RMW_AND; |
| case AtomicRMWInst::Nand: return bitc::RMW_NAND; |
| case AtomicRMWInst::Or: return bitc::RMW_OR; |
| case AtomicRMWInst::Xor: return bitc::RMW_XOR; |
| case AtomicRMWInst::Max: return bitc::RMW_MAX; |
| case AtomicRMWInst::Min: return bitc::RMW_MIN; |
| case AtomicRMWInst::UMax: return bitc::RMW_UMAX; |
| case AtomicRMWInst::UMin: return bitc::RMW_UMIN; |
| } |
| } |
| |
| static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { |
| switch (Ordering) { |
| case NotAtomic: return bitc::ORDERING_NOTATOMIC; |
| case Unordered: return bitc::ORDERING_UNORDERED; |
| case Monotonic: return bitc::ORDERING_MONOTONIC; |
| case Acquire: return bitc::ORDERING_ACQUIRE; |
| case Release: return bitc::ORDERING_RELEASE; |
| case AcquireRelease: return bitc::ORDERING_ACQREL; |
| case SequentiallyConsistent: return bitc::ORDERING_SEQCST; |
| } |
| llvm_unreachable("Invalid ordering"); |
| } |
| |
| static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { |
| switch (SynchScope) { |
| case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; |
| case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; |
| } |
| llvm_unreachable("Invalid synch scope"); |
| } |
| |
| static void WriteStringRecord(unsigned Code, StringRef Str, |
| unsigned AbbrevToUse, BitstreamWriter &Stream) { |
| SmallVector<unsigned, 64> Vals; |
| |
| // Code: [strchar x N] |
| for (unsigned i = 0, e = Str.size(); i != e; ++i) { |
| if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) |
| AbbrevToUse = 0; |
| Vals.push_back(Str[i]); |
| } |
| |
| // Emit the finished record. |
| Stream.EmitRecord(Code, Vals, AbbrevToUse); |
| } |
| |
| static void WriteAttributeGroupTable(const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); |
| if (AttrGrps.empty()) return; |
| |
| Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); |
| |
| SmallVector<uint64_t, 64> Record; |
| for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { |
| AttributeSet AS = AttrGrps[i]; |
| for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { |
| AttributeSet A = AS.getSlotAttributes(i); |
| |
| Record.push_back(VE.getAttributeGroupID(A)); |
| Record.push_back(AS.getSlotIndex(i)); |
| |
| for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); |
| I != E; ++I) { |
| Attribute Attr = *I; |
| if (Attr.isEnumAttribute()) { |
| Record.push_back(0); |
| Record.push_back(Attr.getKindAsEnum()); |
| } else if (Attr.isAlignAttribute()) { |
| Record.push_back(1); |
| Record.push_back(Attr.getKindAsEnum()); |
| Record.push_back(Attr.getValueAsInt()); |
| } else { |
| StringRef Kind = Attr.getKindAsString(); |
| StringRef Val = Attr.getValueAsString(); |
| |
| Record.push_back(Val.empty() ? 3 : 4); |
| Record.append(Kind.begin(), Kind.end()); |
| Record.push_back(0); |
| if (!Val.empty()) { |
| Record.append(Val.begin(), Val.end()); |
| Record.push_back(0); |
| } |
| } |
| } |
| |
| Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); |
| Record.clear(); |
| } |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| static void WriteAttributeTable(const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| const std::vector<AttributeSet> &Attrs = VE.getAttributes(); |
| if (Attrs.empty()) return; |
| |
| Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); |
| |
| SmallVector<uint64_t, 64> Record; |
| for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { |
| const AttributeSet &A = Attrs[i]; |
| for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) |
| Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); |
| |
| Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); |
| Record.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| /// WriteTypeTable - Write out the type table for a module. |
| static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { |
| const ValueEnumerator::TypeList &TypeList = VE.getTypes(); |
| |
| Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); |
| SmallVector<uint64_t, 64> TypeVals; |
| |
| uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); |
| |
| // Abbrev for TYPE_CODE_POINTER. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 |
| unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for TYPE_CODE_FUNCTION. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| |
| unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for TYPE_CODE_STRUCT_ANON. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| |
| unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for TYPE_CODE_STRUCT_NAME. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for TYPE_CODE_STRUCT_NAMED. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| |
| unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for TYPE_CODE_ARRAY. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| |
| unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Emit an entry count so the reader can reserve space. |
| TypeVals.push_back(TypeList.size()); |
| Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); |
| TypeVals.clear(); |
| |
| // Loop over all of the types, emitting each in turn. |
| for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { |
| Type *T = TypeList[i]; |
| int AbbrevToUse = 0; |
| unsigned Code = 0; |
| |
| switch (T->getTypeID()) { |
| default: llvm_unreachable("Unknown type!"); |
| case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; |
| case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; |
| case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; |
| case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; |
| case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; |
| case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; |
| case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; |
| case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; |
| case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; |
| case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; |
| case Type::IntegerTyID: |
| // INTEGER: [width] |
| Code = bitc::TYPE_CODE_INTEGER; |
| TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); |
| break; |
| case Type::PointerTyID: { |
| PointerType *PTy = cast<PointerType>(T); |
| // POINTER: [pointee type, address space] |
| Code = bitc::TYPE_CODE_POINTER; |
| TypeVals.push_back(VE.getTypeID(PTy->getElementType())); |
| unsigned AddressSpace = PTy->getAddressSpace(); |
| TypeVals.push_back(AddressSpace); |
| if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; |
| break; |
| } |
| case Type::FunctionTyID: { |
| FunctionType *FT = cast<FunctionType>(T); |
| // FUNCTION: [isvararg, retty, paramty x N] |
| Code = bitc::TYPE_CODE_FUNCTION; |
| TypeVals.push_back(FT->isVarArg()); |
| TypeVals.push_back(VE.getTypeID(FT->getReturnType())); |
| for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) |
| TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); |
| AbbrevToUse = FunctionAbbrev; |
| break; |
| } |
| case Type::StructTyID: { |
| StructType *ST = cast<StructType>(T); |
| // STRUCT: [ispacked, eltty x N] |
| TypeVals.push_back(ST->isPacked()); |
| // Output all of the element types. |
| for (StructType::element_iterator I = ST->element_begin(), |
| E = ST->element_end(); I != E; ++I) |
| TypeVals.push_back(VE.getTypeID(*I)); |
| |
| if (ST->isLiteral()) { |
| Code = bitc::TYPE_CODE_STRUCT_ANON; |
| AbbrevToUse = StructAnonAbbrev; |
| } else { |
| if (ST->isOpaque()) { |
| Code = bitc::TYPE_CODE_OPAQUE; |
| } else { |
| Code = bitc::TYPE_CODE_STRUCT_NAMED; |
| AbbrevToUse = StructNamedAbbrev; |
| } |
| |
| // Emit the name if it is present. |
| if (!ST->getName().empty()) |
| WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), |
| StructNameAbbrev, Stream); |
| } |
| break; |
| } |
| case Type::ArrayTyID: { |
| ArrayType *AT = cast<ArrayType>(T); |
| // ARRAY: [numelts, eltty] |
| Code = bitc::TYPE_CODE_ARRAY; |
| TypeVals.push_back(AT->getNumElements()); |
| TypeVals.push_back(VE.getTypeID(AT->getElementType())); |
| AbbrevToUse = ArrayAbbrev; |
| break; |
| } |
| case Type::VectorTyID: { |
| VectorType *VT = cast<VectorType>(T); |
| // VECTOR [numelts, eltty] |
| Code = bitc::TYPE_CODE_VECTOR; |
| TypeVals.push_back(VT->getNumElements()); |
| TypeVals.push_back(VE.getTypeID(VT->getElementType())); |
| break; |
| } |
| } |
| |
| // Emit the finished record. |
| Stream.EmitRecord(Code, TypeVals, AbbrevToUse); |
| TypeVals.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| static unsigned getEncodedLinkage(const GlobalValue *GV) { |
| switch (GV->getLinkage()) { |
| case GlobalValue::ExternalLinkage: return 0; |
| case GlobalValue::WeakAnyLinkage: return 1; |
| case GlobalValue::AppendingLinkage: return 2; |
| case GlobalValue::InternalLinkage: return 3; |
| case GlobalValue::LinkOnceAnyLinkage: return 4; |
| case GlobalValue::DLLImportLinkage: return 5; |
| case GlobalValue::DLLExportLinkage: return 6; |
| case GlobalValue::ExternalWeakLinkage: return 7; |
| case GlobalValue::CommonLinkage: return 8; |
| case GlobalValue::PrivateLinkage: return 9; |
| case GlobalValue::WeakODRLinkage: return 10; |
| case GlobalValue::LinkOnceODRLinkage: return 11; |
| case GlobalValue::AvailableExternallyLinkage: return 12; |
| case GlobalValue::LinkerPrivateLinkage: return 13; |
| case GlobalValue::LinkerPrivateWeakLinkage: return 14; |
| case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; |
| } |
| llvm_unreachable("Invalid linkage"); |
| } |
| |
| static unsigned getEncodedVisibility(const GlobalValue *GV) { |
| switch (GV->getVisibility()) { |
| case GlobalValue::DefaultVisibility: return 0; |
| case GlobalValue::HiddenVisibility: return 1; |
| case GlobalValue::ProtectedVisibility: return 2; |
| } |
| llvm_unreachable("Invalid visibility"); |
| } |
| |
| static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { |
| switch (GV->getThreadLocalMode()) { |
| case GlobalVariable::NotThreadLocal: return 0; |
| case GlobalVariable::GeneralDynamicTLSModel: return 1; |
| case GlobalVariable::LocalDynamicTLSModel: return 2; |
| case GlobalVariable::InitialExecTLSModel: return 3; |
| case GlobalVariable::LocalExecTLSModel: return 4; |
| } |
| llvm_unreachable("Invalid TLS model"); |
| } |
| |
| // Emit top-level description of module, including target triple, inline asm, |
| // descriptors for global variables, and function prototype info. |
| static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| // Emit various pieces of data attached to a module. |
| if (!M->getTargetTriple().empty()) |
| WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), |
| 0/*TODO*/, Stream); |
| if (!M->getDataLayout().empty()) |
| WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), |
| 0/*TODO*/, Stream); |
| if (!M->getModuleInlineAsm().empty()) |
| WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), |
| 0/*TODO*/, Stream); |
| |
| // Emit information about sections and GC, computing how many there are. Also |
| // compute the maximum alignment value. |
| std::map<std::string, unsigned> SectionMap; |
| std::map<std::string, unsigned> GCMap; |
| unsigned MaxAlignment = 0; |
| unsigned MaxGlobalType = 0; |
| for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); |
| GV != E; ++GV) { |
| MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); |
| MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); |
| if (GV->hasSection()) { |
| // Give section names unique ID's. |
| unsigned &Entry = SectionMap[GV->getSection()]; |
| if (!Entry) { |
| WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), |
| 0/*TODO*/, Stream); |
| Entry = SectionMap.size(); |
| } |
| } |
| } |
| for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { |
| MaxAlignment = std::max(MaxAlignment, F->getAlignment()); |
| if (F->hasSection()) { |
| // Give section names unique ID's. |
| unsigned &Entry = SectionMap[F->getSection()]; |
| if (!Entry) { |
| WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), |
| 0/*TODO*/, Stream); |
| Entry = SectionMap.size(); |
| } |
| } |
| if (F->hasGC()) { |
| // Same for GC names. |
| unsigned &Entry = GCMap[F->getGC()]; |
| if (!Entry) { |
| WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), |
| 0/*TODO*/, Stream); |
| Entry = GCMap.size(); |
| } |
| } |
| } |
| |
| // Emit abbrev for globals, now that we know # sections and max alignment. |
| unsigned SimpleGVarAbbrev = 0; |
| if (!M->global_empty()) { |
| // Add an abbrev for common globals with no visibility or thread localness. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(MaxGlobalType+1))); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. |
| if (MaxAlignment == 0) // Alignment. |
| Abbv->Add(BitCodeAbbrevOp(0)); |
| else { |
| unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(MaxEncAlignment+1))); |
| } |
| if (SectionMap.empty()) // Section. |
| Abbv->Add(BitCodeAbbrevOp(0)); |
| else |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(SectionMap.size()+1))); |
| // Don't bother emitting vis + thread local. |
| SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); |
| } |
| |
| // Emit the global variable information. |
| SmallVector<unsigned, 64> Vals; |
| for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); |
| GV != E; ++GV) { |
| unsigned AbbrevToUse = 0; |
| |
| // GLOBALVAR: [type, isconst, initid, |
| // linkage, alignment, section, visibility, threadlocal, |
| // unnamed_addr] |
| Vals.push_back(VE.getTypeID(GV->getType())); |
| Vals.push_back(GV->isConstant()); |
| Vals.push_back(GV->isDeclaration() ? 0 : |
| (VE.getValueID(GV->getInitializer()) + 1)); |
| Vals.push_back(getEncodedLinkage(GV)); |
| Vals.push_back(Log2_32(GV->getAlignment())+1); |
| Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); |
| if (GV->isThreadLocal() || |
| GV->getVisibility() != GlobalValue::DefaultVisibility || |
| GV->hasUnnamedAddr() || GV->isExternallyInitialized()) { |
| Vals.push_back(getEncodedVisibility(GV)); |
| Vals.push_back(getEncodedThreadLocalMode(GV)); |
| Vals.push_back(GV->hasUnnamedAddr()); |
| Vals.push_back(GV->isExternallyInitialized()); |
| } else { |
| AbbrevToUse = SimpleGVarAbbrev; |
| } |
| |
| Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); |
| Vals.clear(); |
| } |
| |
| // Emit the function proto information. |
| for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { |
| // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, |
| // section, visibility, gc, unnamed_addr] |
| Vals.push_back(VE.getTypeID(F->getType())); |
| Vals.push_back(F->getCallingConv()); |
| Vals.push_back(F->isDeclaration()); |
| Vals.push_back(getEncodedLinkage(F)); |
| Vals.push_back(VE.getAttributeID(F->getAttributes())); |
| Vals.push_back(Log2_32(F->getAlignment())+1); |
| Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); |
| Vals.push_back(getEncodedVisibility(F)); |
| Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); |
| Vals.push_back(F->hasUnnamedAddr()); |
| |
| unsigned AbbrevToUse = 0; |
| Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); |
| Vals.clear(); |
| } |
| |
| // Emit the alias information. |
| for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); |
| AI != E; ++AI) { |
| // ALIAS: [alias type, aliasee val#, linkage, visibility] |
| Vals.push_back(VE.getTypeID(AI->getType())); |
| Vals.push_back(VE.getValueID(AI->getAliasee())); |
| Vals.push_back(getEncodedLinkage(AI)); |
| Vals.push_back(getEncodedVisibility(AI)); |
| unsigned AbbrevToUse = 0; |
| Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); |
| Vals.clear(); |
| } |
| } |
| |
| static uint64_t GetOptimizationFlags(const Value *V) { |
| uint64_t Flags = 0; |
| |
| if (const OverflowingBinaryOperator *OBO = |
| dyn_cast<OverflowingBinaryOperator>(V)) { |
| if (OBO->hasNoSignedWrap()) |
| Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; |
| if (OBO->hasNoUnsignedWrap()) |
| Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; |
| } else if (const PossiblyExactOperator *PEO = |
| dyn_cast<PossiblyExactOperator>(V)) { |
| if (PEO->isExact()) |
| Flags |= 1 << bitc::PEO_EXACT; |
| } else if (const FPMathOperator *FPMO = |
| dyn_cast<const FPMathOperator>(V)) { |
| if (FPMO->hasUnsafeAlgebra()) |
| Flags |= FastMathFlags::UnsafeAlgebra; |
| if (FPMO->hasNoNaNs()) |
| Flags |= FastMathFlags::NoNaNs; |
| if (FPMO->hasNoInfs()) |
| Flags |= FastMathFlags::NoInfs; |
| if (FPMO->hasNoSignedZeros()) |
| Flags |= FastMathFlags::NoSignedZeros; |
| if (FPMO->hasAllowReciprocal()) |
| Flags |= FastMathFlags::AllowReciprocal; |
| } |
| |
| return Flags; |
| } |
| |
| static void WriteMDNode(const MDNode *N, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream, |
| SmallVector<uint64_t, 64> &Record) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (N->getOperand(i)) { |
| Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); |
| Record.push_back(VE.getValueID(N->getOperand(i))); |
| } else { |
| Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); |
| Record.push_back(0); |
| } |
| } |
| unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : |
| bitc::METADATA_NODE; |
| Stream.EmitRecord(MDCode, Record, 0); |
| Record.clear(); |
| } |
| |
| static void WriteModuleMetadata(const Module *M, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| const ValueEnumerator::ValueList &Vals = VE.getMDValues(); |
| bool StartedMetadataBlock = false; |
| unsigned MDSAbbrev = 0; |
| SmallVector<uint64_t, 64> Record; |
| for (unsigned i = 0, e = Vals.size(); i != e; ++i) { |
| |
| if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { |
| if (!N->isFunctionLocal() || !N->getFunction()) { |
| if (!StartedMetadataBlock) { |
| Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); |
| StartedMetadataBlock = true; |
| } |
| WriteMDNode(N, VE, Stream, Record); |
| } |
| } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { |
| if (!StartedMetadataBlock) { |
| Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); |
| |
| // Abbrev for METADATA_STRING. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| MDSAbbrev = Stream.EmitAbbrev(Abbv); |
| StartedMetadataBlock = true; |
| } |
| |
| // Code: [strchar x N] |
| Record.append(MDS->begin(), MDS->end()); |
| |
| // Emit the finished record. |
| Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); |
| Record.clear(); |
| } |
| } |
| |
| // Write named metadata. |
| for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), |
| E = M->named_metadata_end(); I != E; ++I) { |
| const NamedMDNode *NMD = I; |
| if (!StartedMetadataBlock) { |
| Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); |
| StartedMetadataBlock = true; |
| } |
| |
| // Write name. |
| StringRef Str = NMD->getName(); |
| for (unsigned i = 0, e = Str.size(); i != e; ++i) |
| Record.push_back(Str[i]); |
| Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); |
| Record.clear(); |
| |
| // Write named metadata operands. |
| for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) |
| Record.push_back(VE.getValueID(NMD->getOperand(i))); |
| Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); |
| Record.clear(); |
| } |
| |
| if (StartedMetadataBlock) |
| Stream.ExitBlock(); |
| } |
| |
| static void WriteFunctionLocalMetadata(const Function &F, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| bool StartedMetadataBlock = false; |
| SmallVector<uint64_t, 64> Record; |
| const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); |
| for (unsigned i = 0, e = Vals.size(); i != e; ++i) |
| if (const MDNode *N = Vals[i]) |
| if (N->isFunctionLocal() && N->getFunction() == &F) { |
| if (!StartedMetadataBlock) { |
| Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); |
| StartedMetadataBlock = true; |
| } |
| WriteMDNode(N, VE, Stream, Record); |
| } |
| |
| if (StartedMetadataBlock) |
| Stream.ExitBlock(); |
| } |
| |
| static void WriteMetadataAttachment(const Function &F, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| // Write metadata attachments |
| // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] |
| SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; |
| |
| for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); |
| I != E; ++I) { |
| MDs.clear(); |
| I->getAllMetadataOtherThanDebugLoc(MDs); |
| |
| // If no metadata, ignore instruction. |
| if (MDs.empty()) continue; |
| |
| Record.push_back(VE.getInstructionID(I)); |
| |
| for (unsigned i = 0, e = MDs.size(); i != e; ++i) { |
| Record.push_back(MDs[i].first); |
| Record.push_back(VE.getValueID(MDs[i].second)); |
| } |
| Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); |
| Record.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { |
| SmallVector<uint64_t, 64> Record; |
| |
| // Write metadata kinds |
| // METADATA_KIND - [n x [id, name]] |
| SmallVector<StringRef, 8> Names; |
| M->getMDKindNames(Names); |
| |
| if (Names.empty()) return; |
| |
| Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); |
| |
| for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { |
| Record.push_back(MDKindID); |
| StringRef KName = Names[MDKindID]; |
| Record.append(KName.begin(), KName.end()); |
| |
| Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); |
| Record.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { |
| if ((int64_t)V >= 0) |
| Vals.push_back(V << 1); |
| else |
| Vals.push_back((-V << 1) | 1); |
| } |
| |
| static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, |
| unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, |
| bool EmitSizeForWideNumbers = false |
| ) { |
| if (Val.getBitWidth() <= 64) { |
| uint64_t V = Val.getSExtValue(); |
| emitSignedInt64(Vals, V); |
| Code = bitc::CST_CODE_INTEGER; |
| AbbrevToUse = CONSTANTS_INTEGER_ABBREV; |
| } else { |
| // Wide integers, > 64 bits in size. |
| // We have an arbitrary precision integer value to write whose |
| // bit width is > 64. However, in canonical unsigned integer |
| // format it is likely that the high bits are going to be zero. |
| // So, we only write the number of active words. |
| unsigned NWords = Val.getActiveWords(); |
| |
| if (EmitSizeForWideNumbers) |
| Vals.push_back(NWords); |
| |
| const uint64_t *RawWords = Val.getRawData(); |
| for (unsigned i = 0; i != NWords; ++i) { |
| emitSignedInt64(Vals, RawWords[i]); |
| } |
| Code = bitc::CST_CODE_WIDE_INTEGER; |
| } |
| } |
| |
| static void WriteConstants(unsigned FirstVal, unsigned LastVal, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream, bool isGlobal) { |
| if (FirstVal == LastVal) return; |
| |
| Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); |
| |
| unsigned AggregateAbbrev = 0; |
| unsigned String8Abbrev = 0; |
| unsigned CString7Abbrev = 0; |
| unsigned CString6Abbrev = 0; |
| // If this is a constant pool for the module, emit module-specific abbrevs. |
| if (isGlobal) { |
| // Abbrev for CST_CODE_AGGREGATE. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); |
| AggregateAbbrev = Stream.EmitAbbrev(Abbv); |
| |
| // Abbrev for CST_CODE_STRING. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| String8Abbrev = Stream.EmitAbbrev(Abbv); |
| // Abbrev for CST_CODE_CSTRING. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); |
| CString7Abbrev = Stream.EmitAbbrev(Abbv); |
| // Abbrev for CST_CODE_CSTRING. |
| Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| CString6Abbrev = Stream.EmitAbbrev(Abbv); |
| } |
| |
| SmallVector<uint64_t, 64> Record; |
| |
| const ValueEnumerator::ValueList &Vals = VE.getValues(); |
| Type *LastTy = 0; |
| for (unsigned i = FirstVal; i != LastVal; ++i) { |
| const Value *V = Vals[i].first; |
| // If we need to switch types, do so now. |
| if (V->getType() != LastTy) { |
| LastTy = V->getType(); |
| Record.push_back(VE.getTypeID(LastTy)); |
| Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, |
| CONSTANTS_SETTYPE_ABBREV); |
| Record.clear(); |
| } |
| |
| if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { |
| Record.push_back(unsigned(IA->hasSideEffects()) | |
| unsigned(IA->isAlignStack()) << 1 | |
| unsigned(IA->getDialect()&1) << 2); |
| |
| // Add the asm string. |
| const std::string &AsmStr = IA->getAsmString(); |
| Record.push_back(AsmStr.size()); |
| for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) |
| Record.push_back(AsmStr[i]); |
| |
| // Add the constraint string. |
| const std::string &ConstraintStr = IA->getConstraintString(); |
| Record.push_back(ConstraintStr.size()); |
| for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) |
| Record.push_back(ConstraintStr[i]); |
| Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); |
| Record.clear(); |
| continue; |
| } |
| const Constant *C = cast<Constant>(V); |
| unsigned Code = -1U; |
| unsigned AbbrevToUse = 0; |
| if (C->isNullValue()) { |
| Code = bitc::CST_CODE_NULL; |
| } else if (isa<UndefValue>(C)) { |
| Code = bitc::CST_CODE_UNDEF; |
| } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { |
| EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| Code = bitc::CST_CODE_FLOAT; |
| Type *Ty = CFP->getType(); |
| if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { |
| Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); |
| } else if (Ty->isX86_FP80Ty()) { |
| // api needed to prevent premature destruction |
| // bits are not in the same order as a normal i80 APInt, compensate. |
| APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| Record.push_back((p[1] << 48) | (p[0] >> 16)); |
| Record.push_back(p[0] & 0xffffLL); |
| } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { |
| APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| Record.push_back(p[0]); |
| Record.push_back(p[1]); |
| } else { |
| assert (0 && "Unknown FP type!"); |
| } |
| } else if (isa<ConstantDataSequential>(C) && |
| cast<ConstantDataSequential>(C)->isString()) { |
| const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); |
| // Emit constant strings specially. |
| unsigned NumElts = Str->getNumElements(); |
| // If this is a null-terminated string, use the denser CSTRING encoding. |
| if (Str->isCString()) { |
| Code = bitc::CST_CODE_CSTRING; |
| --NumElts; // Don't encode the null, which isn't allowed by char6. |
| } else { |
| Code = bitc::CST_CODE_STRING; |
| AbbrevToUse = String8Abbrev; |
| } |
| bool isCStr7 = Code == bitc::CST_CODE_CSTRING; |
| bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| unsigned char V = Str->getElementAsInteger(i); |
| Record.push_back(V); |
| isCStr7 &= (V & 128) == 0; |
| if (isCStrChar6) |
| isCStrChar6 = BitCodeAbbrevOp::isChar6(V); |
| } |
| |
| if (isCStrChar6) |
| AbbrevToUse = CString6Abbrev; |
| else if (isCStr7) |
| AbbrevToUse = CString7Abbrev; |
| } else if (const ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(C)) { |
| Code = bitc::CST_CODE_DATA; |
| Type *EltTy = CDS->getType()->getElementType(); |
| if (isa<IntegerType>(EltTy)) { |
| for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) |
| Record.push_back(CDS->getElementAsInteger(i)); |
| } else if (EltTy->isFloatTy()) { |
| for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { |
| union { float F; uint32_t I; }; |
| F = CDS->getElementAsFloat(i); |
| Record.push_back(I); |
| } |
| } else { |
| assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); |
| for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { |
| union { double F; uint64_t I; }; |
| F = CDS->getElementAsDouble(i); |
| Record.push_back(I); |
| } |
| } |
| } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || |
| isa<ConstantVector>(C)) { |
| Code = bitc::CST_CODE_AGGREGATE; |
| for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) |
| Record.push_back(VE.getValueID(C->getOperand(i))); |
| AbbrevToUse = AggregateAbbrev; |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| default: |
| if (Instruction::isCast(CE->getOpcode())) { |
| Code = bitc::CST_CODE_CE_CAST; |
| Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); |
| Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; |
| } else { |
| assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); |
| Code = bitc::CST_CODE_CE_BINOP; |
| Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| uint64_t Flags = GetOptimizationFlags(CE); |
| if (Flags != 0) |
| Record.push_back(Flags); |
| } |
| break; |
| case Instruction::GetElementPtr: |
| Code = bitc::CST_CODE_CE_GEP; |
| if (cast<GEPOperator>(C)->isInBounds()) |
| Code = bitc::CST_CODE_CE_INBOUNDS_GEP; |
| for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { |
| Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); |
| Record.push_back(VE.getValueID(C->getOperand(i))); |
| } |
| break; |
| case Instruction::Select: |
| Code = bitc::CST_CODE_CE_SELECT; |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| Record.push_back(VE.getValueID(C->getOperand(2))); |
| break; |
| case Instruction::ExtractElement: |
| Code = bitc::CST_CODE_CE_EXTRACTELT; |
| Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| break; |
| case Instruction::InsertElement: |
| Code = bitc::CST_CODE_CE_INSERTELT; |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| Record.push_back(VE.getValueID(C->getOperand(2))); |
| break; |
| case Instruction::ShuffleVector: |
| // If the return type and argument types are the same, this is a |
| // standard shufflevector instruction. If the types are different, |
| // then the shuffle is widening or truncating the input vectors, and |
| // the argument type must also be encoded. |
| if (C->getType() == C->getOperand(0)->getType()) { |
| Code = bitc::CST_CODE_CE_SHUFFLEVEC; |
| } else { |
| Code = bitc::CST_CODE_CE_SHUFVEC_EX; |
| Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); |
| } |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| Record.push_back(VE.getValueID(C->getOperand(2))); |
| break; |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| Code = bitc::CST_CODE_CE_CMP; |
| Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); |
| Record.push_back(VE.getValueID(C->getOperand(0))); |
| Record.push_back(VE.getValueID(C->getOperand(1))); |
| Record.push_back(CE->getPredicate()); |
| break; |
| } |
| } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { |
| Code = bitc::CST_CODE_BLOCKADDRESS; |
| Record.push_back(VE.getTypeID(BA->getFunction()->getType())); |
| Record.push_back(VE.getValueID(BA->getFunction())); |
| Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); |
| } else { |
| #ifndef NDEBUG |
| C->dump(); |
| #endif |
| llvm_unreachable("Unknown constant!"); |
| } |
| Stream.EmitRecord(Code, Record, AbbrevToUse); |
| Record.clear(); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| static void WriteModuleConstants(const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| const ValueEnumerator::ValueList &Vals = VE.getValues(); |
| |
| // Find the first constant to emit, which is the first non-globalvalue value. |
| // We know globalvalues have been emitted by WriteModuleInfo. |
| for (unsigned i = 0, e = Vals.size(); i != e; ++i) { |
| if (!isa<GlobalValue>(Vals[i].first)) { |
| WriteConstants(i, Vals.size(), VE, Stream, true); |
| return; |
| } |
| } |
| } |
| |
| /// PushValueAndType - The file has to encode both the value and type id for |
| /// many values, because we need to know what type to create for forward |
| /// references. However, most operands are not forward references, so this type |
| /// field is not needed. |
| /// |
| /// This function adds V's value ID to Vals. If the value ID is higher than the |
| /// instruction ID, then it is a forward reference, and it also includes the |
| /// type ID. The value ID that is written is encoded relative to the InstID. |
| static bool PushValueAndType(const Value *V, unsigned InstID, |
| SmallVector<unsigned, 64> &Vals, |
| ValueEnumerator &VE) { |
| unsigned ValID = VE.getValueID(V); |
| // Make encoding relative to the InstID. |
| Vals.push_back(InstID - ValID); |
| if (ValID >= InstID) { |
| Vals.push_back(VE.getTypeID(V->getType())); |
| return true; |
| } |
| return false; |
| } |
| |
| /// pushValue - Like PushValueAndType, but where the type of the value is |
| /// omitted (perhaps it was already encoded in an earlier operand). |
| static void pushValue(const Value *V, unsigned InstID, |
| SmallVector<unsigned, 64> &Vals, |
| ValueEnumerator &VE) { |
| unsigned ValID = VE.getValueID(V); |
| Vals.push_back(InstID - ValID); |
| } |
| |
| static void pushValue64(const Value *V, unsigned InstID, |
| SmallVector<uint64_t, 128> &Vals, |
| ValueEnumerator &VE) { |
| uint64_t ValID = VE.getValueID(V); |
| Vals.push_back(InstID - ValID); |
| } |
| |
| static void pushValueSigned(const Value *V, unsigned InstID, |
| SmallVector<uint64_t, 128> &Vals, |
| ValueEnumerator &VE) { |
| unsigned ValID = VE.getValueID(V); |
| int64_t diff = ((int32_t)InstID - (int32_t)ValID); |
| emitSignedInt64(Vals, diff); |
| } |
| |
| /// WriteInstruction - Emit an instruction to the specified stream. |
| static void WriteInstruction(const Instruction &I, unsigned InstID, |
| ValueEnumerator &VE, BitstreamWriter &Stream, |
| SmallVector<unsigned, 64> &Vals) { |
| unsigned Code = 0; |
| unsigned AbbrevToUse = 0; |
| VE.setInstructionID(&I); |
| switch (I.getOpcode()) { |
| default: |
| if (Instruction::isCast(I.getOpcode())) { |
| Code = bitc::FUNC_CODE_INST_CAST; |
| if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) |
| AbbrevToUse = FUNCTION_INST_CAST_ABBREV; |
| Vals.push_back(VE.getTypeID(I.getType())); |
| Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); |
| } else { |
| assert(isa<BinaryOperator>(I) && "Unknown instruction!"); |
| Code = bitc::FUNC_CODE_INST_BINOP; |
| if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) |
| AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; |
| pushValue(I.getOperand(1), InstID, Vals, VE); |
| Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); |
| uint64_t Flags = GetOptimizationFlags(&I); |
| if (Flags != 0) { |
| if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) |
| AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; |
| Vals.push_back(Flags); |
| } |
| } |
| break; |
| |
| case Instruction::GetElementPtr: |
| Code = bitc::FUNC_CODE_INST_GEP; |
| if (cast<GEPOperator>(&I)->isInBounds()) |
| Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| PushValueAndType(I.getOperand(i), InstID, Vals, VE); |
| break; |
| case Instruction::ExtractValue: { |
| Code = bitc::FUNC_CODE_INST_EXTRACTVAL; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); |
| for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) |
| Vals.push_back(*i); |
| break; |
| } |
| case Instruction::InsertValue: { |
| Code = bitc::FUNC_CODE_INST_INSERTVAL; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| PushValueAndType(I.getOperand(1), InstID, Vals, VE); |
| const InsertValueInst *IVI = cast<InsertValueInst>(&I); |
| for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) |
| Vals.push_back(*i); |
| break; |
| } |
| case Instruction::Select: |
| Code = bitc::FUNC_CODE_INST_VSELECT; |
| PushValueAndType(I.getOperand(1), InstID, Vals, VE); |
| pushValue(I.getOperand(2), InstID, Vals, VE); |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| break; |
| case Instruction::ExtractElement: |
| Code = bitc::FUNC_CODE_INST_EXTRACTELT; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| pushValue(I.getOperand(1), InstID, Vals, VE); |
| break; |
| case Instruction::InsertElement: |
| Code = bitc::FUNC_CODE_INST_INSERTELT; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| pushValue(I.getOperand(1), InstID, Vals, VE); |
| pushValue(I.getOperand(2), InstID, Vals, VE); |
| break; |
| case Instruction::ShuffleVector: |
| Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| pushValue(I.getOperand(1), InstID, Vals, VE); |
| pushValue(I.getOperand(2), InstID, Vals, VE); |
| break; |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| // compare returning Int1Ty or vector of Int1Ty |
| Code = bitc::FUNC_CODE_INST_CMP2; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| pushValue(I.getOperand(1), InstID, Vals, VE); |
| Vals.push_back(cast<CmpInst>(I).getPredicate()); |
| break; |
| |
| case Instruction::Ret: |
| { |
| Code = bitc::FUNC_CODE_INST_RET; |
| unsigned NumOperands = I.getNumOperands(); |
| if (NumOperands == 0) |
| AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; |
| else if (NumOperands == 1) { |
| if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) |
| AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; |
| } else { |
| for (unsigned i = 0, e = NumOperands; i != e; ++i) |
| PushValueAndType(I.getOperand(i), InstID, Vals, VE); |
| } |
| } |
| break; |
| case Instruction::Br: |
| { |
| Code = bitc::FUNC_CODE_INST_BR; |
| const BranchInst &II = cast<BranchInst>(I); |
| Vals.push_back(VE.getValueID(II.getSuccessor(0))); |
| if (II.isConditional()) { |
| Vals.push_back(VE.getValueID(II.getSuccessor(1))); |
| pushValue(II.getCondition(), InstID, Vals, VE); |
| } |
| } |
| break; |
| case Instruction::Switch: |
| { |
| // Redefine Vals, since here we need to use 64 bit values |
| // explicitly to store large APInt numbers. |
| SmallVector<uint64_t, 128> Vals64; |
| |
| Code = bitc::FUNC_CODE_INST_SWITCH; |
| const SwitchInst &SI = cast<SwitchInst>(I); |
| |
| uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16); |
| Vals64.push_back(SwitchRecordHeader); |
| |
| Vals64.push_back(VE.getTypeID(SI.getCondition()->getType())); |
| pushValue64(SI.getCondition(), InstID, Vals64, VE); |
| Vals64.push_back(VE.getValueID(SI.getDefaultDest())); |
| Vals64.push_back(SI.getNumCases()); |
| for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); |
| i != e; ++i) { |
| const IntegersSubset& CaseRanges = i.getCaseValueEx(); |
| unsigned Code, Abbrev; // will unused. |
| |
| if (CaseRanges.isSingleNumber()) { |
| Vals64.push_back(1/*NumItems = 1*/); |
| Vals64.push_back(true/*IsSingleNumber = true*/); |
| EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true); |
| } else { |
| |
| Vals64.push_back(CaseRanges.getNumItems()); |
| |
| if (CaseRanges.isSingleNumbersOnly()) { |
| for (unsigned ri = 0, rn = CaseRanges.getNumItems(); |
| ri != rn; ++ri) { |
| |
| Vals64.push_back(true/*IsSingleNumber = true*/); |
| |
| EmitAPInt(Vals64, Code, Abbrev, |
| CaseRanges.getSingleNumber(ri), true); |
| } |
| } else |
| for (unsigned ri = 0, rn = CaseRanges.getNumItems(); |
| ri != rn; ++ri) { |
| IntegersSubset::Range r = CaseRanges.getItem(ri); |
| bool IsSingleNumber = CaseRanges.isSingleNumber(ri); |
| |
| Vals64.push_back(IsSingleNumber); |
| |
| EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true); |
| if (!IsSingleNumber) |
| EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true); |
| } |
| } |
| Vals64.push_back(VE.getValueID(i.getCaseSuccessor())); |
| } |
| |
| Stream.EmitRecord(Code, Vals64, AbbrevToUse); |
| |
| // Also do expected action - clear external Vals collection: |
| Vals.clear(); |
| return; |
| } |
| break; |
| case Instruction::IndirectBr: |
| Code = bitc::FUNC_CODE_INST_INDIRECTBR; |
| Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); |
| // Encode the address operand as relative, but not the basic blocks. |
| pushValue(I.getOperand(0), InstID, Vals, VE); |
| for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) |
| Vals.push_back(VE.getValueID(I.getOperand(i))); |
| break; |
| |
| case Instruction::Invoke: { |
| const InvokeInst *II = cast<InvokeInst>(&I); |
| const Value *Callee(II->getCalledValue()); |
| PointerType *PTy = cast<PointerType>(Callee->getType()); |
| FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| Code = bitc::FUNC_CODE_INST_INVOKE; |
| |
| Vals.push_back(VE.getAttributeID(II->getAttributes())); |
| Vals.push_back(II->getCallingConv()); |
| Vals.push_back(VE.getValueID(II->getNormalDest())); |
| Vals.push_back(VE.getValueID(II->getUnwindDest())); |
| PushValueAndType(Callee, InstID, Vals, VE); |
| |
| // Emit value #'s for the fixed parameters. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. |
| |
| // Emit type/value pairs for varargs params. |
| if (FTy->isVarArg()) { |
| for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; |
| i != e; ++i) |
| PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg |
| } |
| break; |
| } |
| case Instruction::Resume: |
| Code = bitc::FUNC_CODE_INST_RESUME; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| break; |
| case Instruction::Unreachable: |
| Code = bitc::FUNC_CODE_INST_UNREACHABLE; |
| AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; |
| break; |
| |
| case Instruction::PHI: { |
| const PHINode &PN = cast<PHINode>(I); |
| Code = bitc::FUNC_CODE_INST_PHI; |
| // With the newer instruction encoding, forward references could give |
| // negative valued IDs. This is most common for PHIs, so we use |
| // signed VBRs. |
| SmallVector<uint64_t, 128> Vals64; |
| Vals64.push_back(VE.getTypeID(PN.getType())); |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); |
| Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); |
| } |
| // Emit a Vals64 vector and exit. |
| Stream.EmitRecord(Code, Vals64, AbbrevToUse); |
| Vals64.clear(); |
| return; |
| } |
| |
| case Instruction::LandingPad: { |
| const LandingPadInst &LP = cast<LandingPadInst>(I); |
| Code = bitc::FUNC_CODE_INST_LANDINGPAD; |
| Vals.push_back(VE.getTypeID(LP.getType())); |
| PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); |
| Vals.push_back(LP.isCleanup()); |
| Vals.push_back(LP.getNumClauses()); |
| for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { |
| if (LP.isCatch(I)) |
| Vals.push_back(LandingPadInst::Catch); |
| else |
| Vals.push_back(LandingPadInst::Filter); |
| PushValueAndType(LP.getClause(I), InstID, Vals, VE); |
| } |
| break; |
| } |
| |
| case Instruction::Alloca: |
| Code = bitc::FUNC_CODE_INST_ALLOCA; |
| Vals.push_back(VE.getTypeID(I.getType())); |
| Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); |
| Vals.push_back(VE.getValueID(I.getOperand(0))); // size. |
| Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); |
| break; |
| |
| case Instruction::Load: |
| if (cast<LoadInst>(I).isAtomic()) { |
| Code = bitc::FUNC_CODE_INST_LOADATOMIC; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); |
| } else { |
| Code = bitc::FUNC_CODE_INST_LOAD; |
| if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr |
| AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; |
| } |
| Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); |
| Vals.push_back(cast<LoadInst>(I).isVolatile()); |
| if (cast<LoadInst>(I).isAtomic()) { |
| Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); |
| Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); |
| } |
| break; |
| case Instruction::Store: |
| if (cast<StoreInst>(I).isAtomic()) |
| Code = bitc::FUNC_CODE_INST_STOREATOMIC; |
| else |
| Code = bitc::FUNC_CODE_INST_STORE; |
| PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr |
| pushValue(I.getOperand(0), InstID, Vals, VE); // val. |
| Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); |
| Vals.push_back(cast<StoreInst>(I).isVolatile()); |
| if (cast<StoreInst>(I).isAtomic()) { |
| Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); |
| Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); |
| } |
| break; |
| case Instruction::AtomicCmpXchg: |
| Code = bitc::FUNC_CODE_INST_CMPXCHG; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr |
| pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. |
| pushValue(I.getOperand(2), InstID, Vals, VE); // newval. |
| Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); |
| Vals.push_back(GetEncodedOrdering( |
| cast<AtomicCmpXchgInst>(I).getOrdering())); |
| Vals.push_back(GetEncodedSynchScope( |
| cast<AtomicCmpXchgInst>(I).getSynchScope())); |
| break; |
| case Instruction::AtomicRMW: |
| Code = bitc::FUNC_CODE_INST_ATOMICRMW; |
| PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr |
| pushValue(I.getOperand(1), InstID, Vals, VE); // val. |
| Vals.push_back(GetEncodedRMWOperation( |
| cast<AtomicRMWInst>(I).getOperation())); |
| Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); |
| Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); |
| Vals.push_back(GetEncodedSynchScope( |
| cast<AtomicRMWInst>(I).getSynchScope())); |
| break; |
| case Instruction::Fence: |
| Code = bitc::FUNC_CODE_INST_FENCE; |
| Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); |
| Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); |
| break; |
| case Instruction::Call: { |
| const CallInst &CI = cast<CallInst>(I); |
| PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); |
| FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| |
| Code = bitc::FUNC_CODE_INST_CALL; |
| |
| Vals.push_back(VE.getAttributeID(CI.getAttributes())); |
| Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); |
| PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee |
| |
| // Emit value #'s for the fixed parameters. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { |
| // Check for labels (can happen with asm labels). |
| if (FTy->getParamType(i)->isLabelTy()) |
| Vals.push_back(VE.getValueID(CI.getArgOperand(i))); |
| else |
| pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. |
| } |
| |
| // Emit type/value pairs for varargs params. |
| if (FTy->isVarArg()) { |
| for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); |
| i != e; ++i) |
| PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs |
| } |
| break; |
| } |
| case Instruction::VAArg: |
| Code = bitc::FUNC_CODE_INST_VAARG; |
| Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty |
| pushValue(I.getOperand(0), InstID, Vals, VE); // valist. |
| Vals.push_back(VE.getTypeID(I.getType())); // restype. |
| break; |
| } |
| |
| Stream.EmitRecord(Code, Vals, AbbrevToUse); |
| Vals.clear(); |
| } |
| |
| // Emit names for globals/functions etc. |
| static void WriteValueSymbolTable(const ValueSymbolTable &VST, |
| const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| if (VST.empty()) return; |
| Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); |
| |
| // FIXME: Set up the abbrev, we know how many values there are! |
| // FIXME: We know if the type names can use 7-bit ascii. |
| SmallVector<unsigned, 64> NameVals; |
| |
| for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); |
| SI != SE; ++SI) { |
| |
| const ValueName &Name = *SI; |
| |
| // Figure out the encoding to use for the name. |
| bool is7Bit = true; |
| bool isChar6 = true; |
| for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); |
| C != E; ++C) { |
| if (isChar6) |
| isChar6 = BitCodeAbbrevOp::isChar6(*C); |
| if ((unsigned char)*C & 128) { |
| is7Bit = false; |
| break; // don't bother scanning the rest. |
| } |
| } |
| |
| unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; |
| |
| // VST_ENTRY: [valueid, namechar x N] |
| // VST_BBENTRY: [bbid, namechar x N] |
| unsigned Code; |
| if (isa<BasicBlock>(SI->getValue())) { |
| Code = bitc::VST_CODE_BBENTRY; |
| if (isChar6) |
| AbbrevToUse = VST_BBENTRY_6_ABBREV; |
| } else { |
| Code = bitc::VST_CODE_ENTRY; |
| if (isChar6) |
| AbbrevToUse = VST_ENTRY_6_ABBREV; |
| else if (is7Bit) |
| AbbrevToUse = VST_ENTRY_7_ABBREV; |
| } |
| |
| NameVals.push_back(VE.getValueID(SI->getValue())); |
| for (const char *P = Name.getKeyData(), |
| *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) |
| NameVals.push_back((unsigned char)*P); |
| |
| // Emit the finished record. |
| Stream.EmitRecord(Code, NameVals, AbbrevToUse); |
| NameVals.clear(); |
| } |
| Stream.ExitBlock(); |
| } |
| |
| /// WriteFunction - Emit a function body to the module stream. |
| static void WriteFunction(const Function &F, ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); |
| VE.incorporateFunction(F); |
| |
| SmallVector<unsigned, 64> Vals; |
| |
| // Emit the number of basic blocks, so the reader can create them ahead of |
| // time. |
| Vals.push_back(VE.getBasicBlocks().size()); |
| Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); |
| Vals.clear(); |
| |
| // If there are function-local constants, emit them now. |
| unsigned CstStart, CstEnd; |
| VE.getFunctionConstantRange(CstStart, CstEnd); |
| WriteConstants(CstStart, CstEnd, VE, Stream, false); |
| |
| // If there is function-local metadata, emit it now. |
| WriteFunctionLocalMetadata(F, VE, Stream); |
| |
| // Keep a running idea of what the instruction ID is. |
| unsigned InstID = CstEnd; |
| |
| bool NeedsMetadataAttachment = false; |
| |
| DebugLoc LastDL; |
| |
| // Finally, emit all the instructions, in order. |
| for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); |
| I != E; ++I) { |
| WriteInstruction(*I, InstID, VE, Stream, Vals); |
| |
| if (!I->getType()->isVoidTy()) |
| ++InstID; |
| |
| // If the instruction has metadata, write a metadata attachment later. |
| NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); |
| |
| // If the instruction has a debug location, emit it. |
| DebugLoc DL = I->getDebugLoc(); |
| if (DL.isUnknown()) { |
| // nothing todo. |
| } else if (DL == LastDL) { |
| // Just repeat the same debug loc as last time. |
| Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); |
| } else { |
| MDNode *Scope, *IA; |
| DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); |
| |
| Vals.push_back(DL.getLine()); |
| Vals.push_back(DL.getCol()); |
| Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); |
| Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); |
| Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); |
| Vals.clear(); |
| |
| LastDL = DL; |
| } |
| } |
| |
| // Emit names for all the instructions etc. |
| WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); |
| |
| if (NeedsMetadataAttachment) |
| WriteMetadataAttachment(F, VE, Stream); |
| VE.purgeFunction(); |
| Stream.ExitBlock(); |
| } |
| |
| // Emit blockinfo, which defines the standard abbreviations etc. |
| static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { |
| // We only want to emit block info records for blocks that have multiple |
| // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. |
| // Other blocks can define their abbrevs inline. |
| Stream.EnterBlockInfoBlock(2); |
| |
| { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, |
| Abbv) != VST_ENTRY_8_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| |
| { // 7-bit fixed width VST_ENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, |
| Abbv) != VST_ENTRY_7_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| { // 6-bit char6 VST_ENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, |
| Abbv) != VST_ENTRY_6_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| { // 6-bit char6 VST_BBENTRY strings. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, |
| Abbv) != VST_BBENTRY_6_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| |
| |
| |
| { // SETTYPE abbrev for CONSTANTS_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, |
| Abbv) != CONSTANTS_SETTYPE_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| |
| { // INTEGER abbrev for CONSTANTS_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, |
| Abbv) != CONSTANTS_INTEGER_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| |
| { // CE_CAST abbrev for CONSTANTS_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id |
| |
| if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, |
| Abbv) != CONSTANTS_CE_CAST_Abbrev) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| { // NULL abbrev for CONSTANTS_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, |
| Abbv) != CONSTANTS_NULL_Abbrev) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| |
| // FIXME: This should only use space for first class types! |
| |
| { // INST_LOAD abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_LOAD_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| { // INST_BINOP abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_BINOP_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| { // INST_CAST abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty |
| Log2_32_Ceil(VE.getTypes().size()+1))); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_CAST_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| |
| { // INST_RET abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_RET_VOID_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| { // INST_RET abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); |
| Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_RET_VAL_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. |
| BitCodeAbbrev *Abbv = new BitCodeAbbrev(); |
| Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); |
| if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, |
| Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) |
| llvm_unreachable("Unexpected abbrev ordering!"); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| // Sort the Users based on the order in which the reader parses the bitcode |
| // file. |
| static bool bitcodereader_order(const User *lhs, const User *rhs) { |
| // TODO: Implement. |
| return true; |
| } |
| |
| static void WriteUseList(const Value *V, const ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| |
| // One or zero uses can't get out of order. |
| if (V->use_empty() || V->hasNUses(1)) |
| return; |
| |
| // Make a copy of the in-memory use-list for sorting. |
| unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); |
| SmallVector<const User*, 8> UseList; |
| UseList.reserve(UseListSize); |
| for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); |
| I != E; ++I) { |
| const User *U = *I; |
| UseList.push_back(U); |
| } |
| |
| // Sort the copy based on the order read by the BitcodeReader. |
| std::sort(UseList.begin(), UseList.end(), bitcodereader_order); |
| |
| // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the |
| // sorted list (i.e., the expected BitcodeReader in-memory use-list). |
| |
| // TODO: Emit the USELIST_CODE_ENTRYs. |
| } |
| |
| static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| VE.incorporateFunction(*F); |
| |
| for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
| AI != AE; ++AI) |
| WriteUseList(AI, VE, Stream); |
| for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; |
| ++BB) { |
| WriteUseList(BB, VE, Stream); |
| for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; |
| ++II) { |
| WriteUseList(II, VE, Stream); |
| for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); |
| OI != E; ++OI) { |
| if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || |
| isa<InlineAsm>(*OI)) |
| WriteUseList(*OI, VE, Stream); |
| } |
| } |
| } |
| VE.purgeFunction(); |
| } |
| |
| // Emit use-lists. |
| static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, |
| BitstreamWriter &Stream) { |
| Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); |
| |
| // XXX: this modifies the module, but in a way that should never change the |
| // behavior of any pass or codegen in LLVM. The problem is that GVs may |
| // contain entries in the use_list that do not exist in the Module and are |
| // not stored in the .bc file. |
| for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); |
| I != E; ++I) |
| I->removeDeadConstantUsers(); |
| |
| // Write the global variables. |
| for (Module::const_global_iterator GI = M->global_begin(), |
| GE = M->global_end(); GI != GE; ++GI) { |
| WriteUseList(GI, VE, Stream); |
| |
| // Write the global variable initializers. |
| if (GI->hasInitializer()) |
| WriteUseList(GI->getInitializer(), VE, Stream); |
| } |
| |
| // Write the functions. |
| for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { |
| WriteUseList(FI, VE, Stream); |
| if (!FI->isDeclaration()) |
| WriteFunctionUseList(FI, VE, Stream); |
| } |
| |
| // Write the aliases. |
| for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); |
| AI != AE; ++AI) { |
| WriteUseList(AI, VE, Stream); |
| WriteUseList(AI->getAliasee(), VE, Stream); |
| } |
| |
| Stream.ExitBlock(); |
| } |
| |
| /// WriteModule - Emit the specified module to the bitstream. |
| static void WriteModule(const Module *M, BitstreamWriter &Stream) { |
| Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); |
| |
| SmallVector<unsigned, 1> Vals; |
| unsigned CurVersion = 1; |
| Vals.push_back(CurVersion); |
| Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); |
| |
| // Analyze the module, enumerating globals, functions, etc. |
| ValueEnumerator VE(M); |
| |
| // Emit blockinfo, which defines the standard abbreviations etc. |
| WriteBlockInfo(VE, Stream); |
| |
| // Emit information about attribute groups. |
| WriteAttributeGroupTable(VE, Stream); |
| |
| // Emit information about parameter attributes. |
| WriteAttributeTable(VE, Stream); |
| |
| // Emit information describing all of the types in the module. |
| WriteTypeTable(VE, Stream); |
| |
| // Emit top-level description of module, including target triple, inline asm, |
| // descriptors for global variables, and function prototype info. |
| WriteModuleInfo(M, VE, Stream); |
| |
| // Emit constants. |
| WriteModuleConstants(VE, Stream); |
| |
| // Emit metadata. |
| WriteModuleMetadata(M, VE, Stream); |
| |
| // Emit metadata. |
| WriteModuleMetadataStore(M, Stream); |
| |
| // Emit names for globals/functions etc. |
| WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); |
| |
| // Emit use-lists. |
| if (EnablePreserveUseListOrdering) |
| WriteModuleUseLists(M, VE, Stream); |
| |
| // Emit function bodies. |
| for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) |
| if (!F->isDeclaration()) |
| WriteFunction(*F, VE, Stream); |
| |
| Stream.ExitBlock(); |
| } |
| |
| /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a |
| /// header and trailer to make it compatible with the system archiver. To do |
| /// this we emit the following header, and then emit a trailer that pads the |
| /// file out to be a multiple of 16 bytes. |
| /// |
| /// struct bc_header { |
| /// uint32_t Magic; // 0x0B17C0DE |
| /// uint32_t Version; // Version, currently always 0. |
| /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. |
| /// uint32_t BitcodeSize; // Size of traditional bitcode file. |
| /// uint32_t CPUType; // CPU specifier. |
| /// ... potentially more later ... |
| /// }; |
| enum { |
| DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. |
| DarwinBCHeaderSize = 5*4 |
| }; |
| |
| static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, |
| uint32_t &Position) { |
| Buffer[Position + 0] = (unsigned char) (Value >> 0); |
| Buffer[Position + 1] = (unsigned char) (Value >> 8); |
| Buffer[Position + 2] = (unsigned char) (Value >> 16); |
| Buffer[Position + 3] = (unsigned char) (Value >> 24); |
| Position += 4; |
| } |
| |
| static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, |
| const Triple &TT) { |
| unsigned CPUType = ~0U; |
| |
| // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, |
| // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic |
| // number from /usr/include/mach/machine.h. It is ok to reproduce the |
| // specific constants here because they are implicitly part of the Darwin ABI. |
| enum { |
| DARWIN_CPU_ARCH_ABI64 = 0x01000000, |
| DARWIN_CPU_TYPE_X86 = 7, |
| DARWIN_CPU_TYPE_ARM = 12, |
| DARWIN_CPU_TYPE_POWERPC = 18 |
| }; |
| |
| Triple::ArchType Arch = TT.getArch(); |
| if (Arch == Triple::x86_64) |
| CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; |
| else if (Arch == Triple::x86) |
| CPUType = DARWIN_CPU_TYPE_X86; |
| else if (Arch == Triple::ppc) |
| CPUType = DARWIN_CPU_TYPE_POWERPC; |
| else if (Arch == Triple::ppc64) |
| CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; |
| else if (Arch == Triple::arm || Arch == Triple::thumb) |
| CPUType = DARWIN_CPU_TYPE_ARM; |
| |
| // Traditional Bitcode starts after header. |
| assert(Buffer.size() >= DarwinBCHeaderSize && |
| "Expected header size to be reserved"); |
| unsigned BCOffset = DarwinBCHeaderSize; |
| unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; |
| |
| // Write the magic and version. |
| unsigned Position = 0; |
| WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); |
| WriteInt32ToBuffer(0 , Buffer, Position); // Version. |
| WriteInt32ToBuffer(BCOffset , Buffer, Position); |
| WriteInt32ToBuffer(BCSize , Buffer, Position); |
| WriteInt32ToBuffer(CPUType , Buffer, Position); |
| |
| // If the file is not a multiple of 16 bytes, insert dummy padding. |
| while (Buffer.size() & 15) |
| Buffer.push_back(0); |
| } |
| |
| /// WriteBitcodeToFile - Write the specified module to the specified output |
| /// stream. |
| void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { |
| SmallVector<char, 0> Buffer; |
| Buffer.reserve(256*1024); |
| |
| // If this is darwin or another generic macho target, reserve space for the |
| // header. |
| Triple TT(M->getTargetTriple()); |
| if (TT.isOSDarwin()) |
| Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); |
| |
| // Emit the module into the buffer. |
| { |
| BitstreamWriter Stream(Buffer); |
| |
| // Emit the file header. |
| Stream.Emit((unsigned)'B', 8); |
| Stream.Emit((unsigned)'C', 8); |
| Stream.Emit(0x0, 4); |
| Stream.Emit(0xC, 4); |
| Stream.Emit(0xE, 4); |
| Stream.Emit(0xD, 4); |
| |
| // Emit the module. |
| WriteModule(M, Stream); |
| } |
| |
| if (TT.isOSDarwin()) |
| EmitDarwinBCHeaderAndTrailer(Buffer, TT); |
| |
| // Write the generated bitstream to "Out". |
| Out.write((char*)&Buffer.front(), Buffer.size()); |
| } |